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Non-perturbative constraints on many body physics–such as the famous Lieb-Schultz-Mattis
theorem–are valuable tools for studying strongly correlated systems. To this end, we present a
number of non-perturbative results that constrain the low-energy physics of systems having con-
served dipole moments. We find that for these systems, a unique translationally invariant gapped
ground state is only possible if the polarization of the system is integer. Furthermore, if a lattice
system also has U(1) subsystem charge conservation symmetry, a unique gapped ground state is
only possible if the particle filling along these subsystems is integer. We also apply these methods to
spin systems, and determine criteria for the existence of a new type of magnetic response plateau in
the presence of a non-uniform magnetic field. Finally, we formulate a version of Luttinger’s theorem
for 1D systems consisting of dipoles.

I. INTRODUCTION

Strongly correlated quantum systems are often the
source of striking phenomena, yet they remain one of the
most challenging to analyze. If perturbative approaches
fail, one’s only recourse is numerical simulation unless
non-perturbative methods or results can be applied. One
of the most celebrated non-perturbative results is the
Lieb-Schultz-Mattis (LSM) theorem, which from very lit-
tle information, i.e., the number of spin-1/2 degrees of
freedom per unit cell, can draw conclusions about the
low-energy properties of 1D spin chains1. This result has
had wide-ranging applicability in quantum systems, and
has been extended to higher dimensions2–5.

A key feature of the proof of the LSM theorem is a twist
operator that slowly rotates the spins across a spin-chain.
In the work of Oshikawa2, which applied and generalized
the LSM result to lattice systems with conserved particle
number, a related twist operator is used

UX = exp

[
2πiX̂

Lx

]
, (1)

where X̂ =
∑

x xn̂x is the many-body position operator.
Indeed, Oshikawa and collaborators also used this opera-
tor to provide a non-perturbative understanding of Lut-
tinger’s theorem6,7, determine the Fermi surface proper-
ties of the Kondo lattice7–10, and more recently to cal-
culate filling-enforced constraints on the quantum Hall
conductivity in lattice systems11. Remarkably, this op-
erator UX has had parallel uses in the theory of elec-
tronic polarization where it was introduced by Resta12.
In this context, the complex phase of the ground state
expectation value of UX is determined by the electronic
polarization12, and the magnitude is determined by the
electron localization length13–15.

In recent work, new twist operators have been pro-
posed whose ground state expectation values can be used
to calculate higher multipole moments16–19. The sim-

plest multipole generalization of UX is the operator

UXY = exp

[
2πiX̂Y

LxLy

]
(2)

where X̂Y =
∑

x xyn̂x is the many-body quadrupole
operator. In light of this development it is natural
to use these multipole operators to try to derive non-
perturbative results analogous to the previous work on
the LSM theorem2,20, Luttinger’s theorem7,8, magnetiza-
tion plateaus21,22, and filling-enforced Hall conductivity
constraints11. In this article we focus on higher mul-
tipole generalizations of some of these results, derived
through the application of operators related to UXY in
each context. Our goal is to recast the original results
that apply to particles/charges to apply to dipoles. No-
tably, we study generalizations of the LSM theorem for
systems that conserve dipole moments (Section II), and
then apply these results to study magnetization (gradi-
ent) plateaus in spin systems (Section III), and an exten-
sion of Luttinger’s theorem to dipole conserving systems
(Section IV). We also extend our results on the LSM-
type theorems to systems with U(1) subsystem symme-
try, e.g., symmetries enforcing charge conservation along
rows or columns in 2D23,24. These results are applica-
ble to some fracton systems, and it is possible they may
eventually be adapted in some form to systems with bro-
ken subsystem symmetry19,25 (and broken microscopic
dipole conservation), e.g., higher order multipole band
insulators of fermions or bosons25–27, though we leave
those developments to future work.

II. LSM-TYPE THEOREMS FOR DIPOLE
CONSERVING SYSTEMS

Let us briefly recount the concept behind Oshikawa’s
proof2 of the LSM theorem that we wish to generalize.
His starting point was a system with U(1) particle conser-
vation, and he utilized a twist operator UX that achieves
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two different things simultaneously: when applied to the
ground state of a periodic insulating system, it extracts
the charge polarization of the ground state, and it per-
forms a large gauge transformation on this state, i.e.,
it effectively inserts or removes a single unit of mag-
netic flux through the periodic loop running along the
x̂-direction. To see how this works, consider a nearest-
neighbor lattice model of free fermions in 1D with Nx
sites along x̂ : H = −t

∑Nx
j=1(c†j+1cj + h.c.). Applying

UX to the Hamiltonian modifies every fermionic hop-
ping term by attaching a phase factor of e2πi/Nx , which is
equivalent to introducing an external gauge field Ax with
a 2π circulation along the loop going around the periodic
x̂-direction. If UX is applied to the ground state |Ψ0〉 of
this free-fermion system, for example, then, in the ther-
modynamic limit, a set of filled bands will return back
to themselves up to a phase proportional to the polariza-
tion, while a partially filled band will change momentum
and be orthogonal to the original state. This is a very
simple application of Oshikawa’s results2 that indicates
that partially filled bands cannot support an excitation
gap since the energy of the state Ux|Ψ0〉 will nominally
approach that of |Ψ0〉 itself in the thermodynamic limit,
and the two states are orthogonal if there are partially
filled bands because they have different momentum quan-
tum numbers.

A. Dipole Conserving Systems

To make progress toward an LSM-type theorem for sys-
tems with charge and dipole conservation, let us consider
a system defined on a rectangular periodic Lx × Ly =
Nxa × Nya, lattice where a is the lattice constant. We
will work with Hamiltonians H that are translationally
invariant and conserve both global particle and dipole
number. Hence, the Hamiltonian is invariant when the
charged operators are changed by constant phase trans-
formations eiα, and phase transformations with linear co-
ordinate dependence eiα·x, respectively. The latter con-
dition also automatically implies that H commutes with
the twist operators UX and UY , i.e., the total polariza-
tion is a fixed quantum number for eigenstates of H. We
note that it has been shown28 that systems with dipole
conservation can be coupled to a rank-2 gauge field Aij .
The rank-2 gauge field transforms as Aij → Aij + ∂i∂jλ
under a gauge transformation, where λ is a generic func-
tion.

Similar to Oshikawa’s work, we will be considering
the action of generalized UXY twist operators on the

ground states of insulating systems: UXY (α) = eiαX̂Y .
For α = 2π

LxLy
, and for systems with open boundaries,

this operator was shown to be successful in extracting
the quadrupolar polarization16–18 and, when applied to
systems that explicitly conserve dipole moment, it intro-
duces a constant rank-2 gauge field Axy across the lattice.
However, if periodic boundary conditions are introduced,

UXY ( 2π
LxLy

) exhibits problematic behavior. For instance,

while the complex phase of its ground-state expectation
value 〈UXY ( 2π

LxLy
)〉0, computed for the ground states of

free-fermion tight-binding models, correctly captures the
quadrupolar polarization, the absolute value of the ex-
pectation value vanishes when the thermodynamic limit
is taken because of fluctuations of the dipole moments.
Even if we mitigate this issue by restricting ourselves to
Hamiltonians with manifest dipole conservation, as we
shall do in this article, the dipole-conserving terms in the
Hamiltonian that cross the periodic boundary pick up an
additional phase factor under the action of UXY ( 2π

LxLy
).

To see this, one can act on dipole-conserving terms in the
Hamiltonian, e.g., ring-exchange terms

U−1
XY (α)

(
c†x,ycx+a,yc

†
x+a,y+acx,y+a

)
UXY (α)

=eiαc†x,ycx+a,yc
†
x+a,y+acx,y+a.

For terms that cross a periodic boundary additional
phase factors are generated, e.g., eiαLxa or eiαLya. In-
deed, one can check that in order to have UXY (α) insert
a constant rank-2 gauge field Axy for a system with peri-
odic boundary conditions then αLxa = 2πZ and αLya =
2πZ. Hence, in order to be consistent with periodic
boundary conditions, we will choose α = 2π

a2 gcd(Nx,Ny)

where a is the lattice constant in the x and y directions.
To proceed from this setup, let us consider adiabati-

cally turning on a constant gauge field configuration of
Axy over a time T having the form

Axy =
2π

a2 gcd(Nx, Ny)

t

T
. (3)

Let us label the Hamiltonian as a function of time as
H(t), and its instantaneous ground state as |Ψ(t)〉. Since
the initial system is translationally invariant, |Ψ(0)〉 is an
eigenstate of the many-body translation operators Tx and
Ty that send each particle coordinate (x, y) to (x+ a, y)
or (x, y + a) respectively. We will take the Tx eigen-
value to be eiPx0 and the Ty eigenvalue to be eiPy0 . Since
H(t) is translationally invariant at all times, |Ψ(t)〉 will
remain an eigenstate of Tx and Ty with the same eigen-
values eiPx0 and eiPy0 at all times. Similarly, since H(t)
commutes with both UX and UY at all times, |Ψ(t)〉 will
also remain an eigenstate of UX and UY with eigenval-
ues e2πiX0/Lx and e2πiY0/Ly at all times. At t = T ,
we have Axy = 2π

a2 gcd(Nx,Ny) , which is equivalent to a

(large) gauge transformation19 that can be removed by
applying the many-body twist operator UXY (αg) where
αg = 2π

a2 gcd(Nx,Ny) . As a result

H(0) = U−1
XY (αg)H(T )UXY (αg), (4)

and so U−1
XY (αg)|Ψ(T )〉 is also a ground state of H(0).

The next key step for an LSM-type theorem is to de-
termine if U−1

XY (αg)|Ψ(T )〉 and |Ψ(0)〉 are orthogonal. To
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do this, we will compare the eigenvalues of the transla-
tion operator for U−1

XY (αg)|Ψ(T )〉 and |Ψ(0)〉. A simple
calculation shows that

TxU
−1
XY (αg)|Ψ(T )〉

= exp

[
2πiŶ

a gcd(Nx, Ny)

]
eiPx0U−1

XY (αg)|Ψ(T )〉.

(5)

We already know that Tx|Ψ(0)〉 = eiPx0 |Ψ(0)〉, so the

ground state is unique only if exp
[

2πiŶ
a gcd(Nx,Ny)

]
|Ψ(T )〉 =

|Ψ(T )〉. If we define n = Ly/(a gcd(Nx, Ny)), then

exp
[

2πiŶ
a gcd(Nx,Ny)

]
= (UY )n, and

exp

[
2πiŶ

a gcd(Nx, Ny)

]
|Ψ(T )〉 = e2πinY0/Ly |Ψ(T )〉, (6)

where we have used that UY |Ψ(T )〉 = e2πiY0/Ly |Ψ(T )〉.
Since (UY )Ny = 1, e2πiY0/Ly must be an N th

y root of

unity, and Y0/Ly ≡ 1
2πi log(e2πiY0/Ly ) must be a rational

number. We can define Y0/Ly = p/q, where p and q are

co-prime. So U−1
XY (αg)|Ψ(T )〉 is an eigenstate of Tx with

eigenvalue exp(iPx0 + 2πinp/q). If n and q are co-prime
U−1
XY (αg)|Ψ(T )〉 must be orthogonal to |Ψ(0)〉, and thus

the system is either gapless, or there must be at least q
degenerate ground states if the system is gapped.

This statement relies on n and q being co-prime, but if
n is an integer multiple of q nothing can be said about the
degeneracy of the ground state. A similar issue was re-
marked upon in Oshikawa’s proof of the LSM theorem2.
Here, we can avoid this issue by requiring that the ther-
modynamic limit is taken such that Nx = Ny = N . Since
ground state properties, including the degeneracy of the
ground state, should be independent of how the thermo-
dynamic limit is taken, we can assume that the the ther-
modynamic limit is taken in this way. From this we can
conclude that the ground state of the system is unique
only if e2πiY0/Na = 1. Using the same logic, i.e., by act-
ing with the translation operator Ty, we can also conclude

that the ground state is unique only if e2πiX0/Na = 1 as
well. In other words, for the ground state to be unique,
we must require that the components of the polarization
in both directions vanish up to a polarization quantum.
The bulk of a locally electrically neutral system must
carry a uniform polarization, which allows us to relate a
microscopic dipole moment stretching between the pair
of neighboring unit cells to a macroscopic polarization of
the system picked up by the phase of the unitary operator

e2πiX̂j/Nja. Therefore, we see that the pair of conditions
e2πiY0/Na = e2πiX0/Na = 1 is equivalent to requiring that
the microscopic dipole moments stretching between every
pair of neighboring unit cells must be an integer times ea.
Thus we conclude that filling factor for x and y dipoles
must be an integer, analogous to the requirement that
the charge filling factor be integer in the conventional
LSM theorem.

B. Subsystem Symmetric Systems

We can construct a stronger version of the above dipole
LSM theorem for Hamiltonians with dipole conservation
arising from U(1) subsystem symmetry. Let us first pro-
vide a brief background discussion on subsystem sym-
metries. To give an example, consider a 2-dimensional
Lx×Ly rectangular lattice. The subsystem symmetry op-
erator corresponding to U(1) charge conservation along
a single column with x = x0 is given by:

U0,x0(α) = exp

iα Ly∑
y=1

n̂x0,y

 . (7)

Such operators rotate the phase of all electrons along a
single column in the lattice. In other words, U0,x0

can be
thought of as a restriction of the global U(1) symmetry

operator U0(α) = exp
(
iα
∑Lx,Ly
x,y=1 n̂x,y

)
to a particular

subsystem. Similarly, we can define subsystem symme-
tries U0,y0 that impose charge conservation along every
single row y0 of the lattice. For the purposes of our work,
by an n-dimensional subsystem in a d-dimensional Bra-
vais lattice, we will understand an n-dimensional lattice
subspace spanned by any n linearly independent lattice
basis vectors. Now, taking a collection of such “parallel”
subspaces that cover the entire lattice, we can impose
U(1) charge conservation along each of the subspaces in-
dividually. This restriction leads to a conservation of all
multipole moments30 in a (d − n)-dimensional subspace
orthogonal to these subsystems.

Coming back to our two-dimensional lattice example,
take a collection of parallel lattice lines that cover the
whole lattice. For concreteness, let us take a collection
of lattice rows that are parallel to x̂. Imposing charge
conservation along each row is equivalent to fixing the
total charge at each position along ŷ, which is the nor-
mal vector to these subsystems. Thus, for any arbitrary
function f(y), the conservation of the quantity

Q =
∑
x,y

f(y)q(x, y), (8)

where q(x, y) is the charge at a site with coordinates
(x, y), is guaranteed by the U(1) subsystem charge con-
servation. For example, by taking f(y) = ym, we can
see that all multipole moments along ŷ, such as the Py
component of the dipole moment, the Qyy component
of the quadrupole moment, etc., are conserved. Simi-
larly, imposing charge conservation along every row of
sites parallel to the x̂-axis in a 3D lattice leads to the
conservation of all multipole moments in the yz-plane,
e.g., Py, Pz, Qyy, Qyz, Qzz, etc.

Furthermore, we can impose subsystem charge con-
servation along two different families of subsystems si-
multaneously, e.g., rows and columns in 2D. For a two-
dimensional lattice this leads to a conservation of both
components of the dipole moment as well as all higher
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multipole moments diagonal in either x or y coordinates.
However, these subsystem symmetries do not guarantee
conservation of all multipole moments with components
along the subsystem. In particular, conservation of the
off-diagonal component of the quadrupole moment Qxy
is not achieved by imposing charge conservation along
rows parallel to x̂ and columns parallel to ŷ. Instead, one
would have to impose charge conservation along rows of
sites that are perpendicular to the xy-plane. In 2D, for
example, this translates into requiring charge conserva-
tion at each individual site of the lattice, which trivially
leads to a conservation of all multipole moments of such
system. For the majority of this article we will be fo-
cused on the simple case of 1D and 2D systems having
subsystem symmetries along the rows and/or columns.

After that brief discussion let us develop an LSM-type
theorem for systems with subsystem symmetry. First, let
us consider a periodic Lx × Ly rectangular lattice with
a Hamiltonian H that conserves U(1) charge along ev-
ery row and every column of the lattice, i.e., we have
[H,U0,x0

(α)] = [H,U0,y0(α)] = 0 for every x0, y0, and
α. Particle and dipole conserving Hamiltonians satisfy-
ing these criteria can be built from subsystem-symmetric
ring-exchange type terms18,31,32.

Now, consider the following twist operator acting along
a single column of sites with fixed coordinate x = x0:

UY,x0
= exp

(
2πi

Ly

∑
y

yn̂x0,y

)
. (9)

For a periodic lattice and a dipole-conserving Hamilto-
nian built from local ring-exchange type interactions (say,
of fermions) such as

H = −t�
∑
r

(
c†r+x̂crc

†
r+ŷcr+x̂+ŷ + h.c.

)
, (10)

we can calculate the energy difference between the
ground state |Ψ0〉, and a twisted “variational” state
UY,x0

|Ψ0〉:

〈Ψ0|U−1
Y,x0

HUY,x0 −H|Ψ0〉

=− t�
[(

e2πi/Ny − 1
)∑

y

〈c†x0+a,ycx0,yc
†
x0,y+acx0+a,y+a〉

+
(

e−2πi/Ny − 1
)∑

y

〈c†x0,ycx0−a,yc
†
x0−a,y+acx0,y+a〉

]
+ h.c.

(11)

We can follow analogous calculations to Refs. 1 and 7
by expanding the exponents in the powers of 1/Ny, and
assuming that the ground state preserves at least one
of the reflection symmetries. The constant term in the
Taylor expansion of the exponential factors immediately
cancels, but we we need to check that the next order term
also vanishes so that the first non-vanishing term is actu-
ally the second-order term from the exponential, which

would imply that the energy difference is ultimately of
the order O(1/Ny). To see this, after expanding the ex-
ponential, consider a pair of plaquettes related by mirror
M̂y : y → −y and consider the following sum of two of
their ring-exchange terms from Eq. 11:

2πi

Ny
〈c†x0+a,ycx0,yc

†
x0,y+acx0+a,y+a〉

− 2πi

Ny
〈c†x0+a,−ycx0,−yc

†
x0,−y−acx0+a,−y−a〉.

(12)

We note that the second term, having an opposite sign,
comes from the hermitian conjugate part of the overall
Hamiltonian (10). If the ground state is an eigenstate

of the reflection symmetry, M̂y|Ψ0〉 = ±|Ψ0〉, we can
rewrite the second term as:

〈Ψ0|c†x0+a,−ycx0,−yc
†
x0,−y−acx0+a,−y−a|Ψ0〉

= 〈Ψ0|M̂−1
y c†x0+a,−ycx0,−yc

†
x0,−y−acx0+a,−y−aM̂y|Ψ0〉

= 〈Ψ0|c†x0+a,ycx0,yc
†
x0,y+acx0+a,y+a|Ψ0〉,

(13)

and so we see that the sum in Eq. 12 exactly vanishes.
The same analysis is applicable to every other pair of
plaquettes that are related by M̂y, and so we conclude
that the first non-vanishing term in Eq. 11 is of the order
O(1/Ny). Therefore, in the thermodynamic limit, where

Ny → ∞, the state |Ψ̃0〉 = UY,x0 |Ψ0〉 has either exactly
the same energy as the ground state |Ψ0〉, or it is an
excited state with an infinitesimally small energy.

Using this result, if we can now show that |Ψ0〉 and

|Ψ̃0〉 are orthogonal, then the system must necessarily
be gapless (or at least have ground state degeneracy).
To this end, let us assume that the ground state does
not spontaneously break the translational symmetry, so
|Ψ0〉 will be an eigenstate of the translation operator Tx.
Using Tx|Ψ0〉 = eiPx0 |Ψ0〉 it follows that

Tx|Ψ̃0〉 = TxUY,x0
T−1
x Tx|Ψ0〉

= e
iPx0+ 2πi

Ly

∑Ly
y=a y(n̂x0+a,y−n̂x0,y)|Ψ̃0〉.

(14)

With the subsystem charge conservation in place, we can
introduce a subsystem polarization associated with a sub-
system s as follows:

Pjs =
e

2π
Im log〈Ψ0|Uj,s|Ψ0〉 (15)

where

Uj,s = exp

(
2πi

Lj

∑
r∈s

xj n̂r

)
, (16)

and where j = x, y. Now the condition on the ground
state momentum shift to be an integer times 2π can be
understood as a condition on the polarizations of two
neighboring subsystems:

e
2πi
Ly

∑Ly
y=a y(n̂x0+a,y−n̂x0,y)|Ψ̃0〉 = |Ψ̃0〉

⇔ 1
e

(
Pyx=x0+a − Pyx=x0

)
∈ Z,

(17)
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where Pyx=x0
is the polarization (15) along the column

with fixed coordinate x = x0, which is defined mod e. In
other words, the x̂ lattice derivative of the y-polarization
must vanish. Now, recall the statement from the previous
subsection, that, in order for a dipole-conserving system
on an N × N lattice to support a gap, we require the
total polarization to vanish. Combining this result with
Eq. 17, we find that the polarization of each subsystem
can take only the following possible values if the system
is gapped:

Pjs =
njs
N
e mod e, njs ∈ Z. (18)

Next, we can derive a condition using the fact that
the ground state |Ψ0〉 will also be an eigenstate of the
translation operator Ty: Ty|Ψ0〉 = eiPy0 |Ψ0〉. Hence for

the twisted state |Ψ̃0〉 we find:

Ty|Ψ̃0〉 = TyUY,x0T
−1
y Ty|Ψ0〉 = e

iPy0+ 2πi
Ny

∑Ny
y=1 n̂x0,y |Ψ̃0〉.

(19)

Thus, |Ψ̃0〉 is an eigenstate of Ty with eigenvalue
exp(iPy0 + 2πiνx0), where νx0 is the filling factor of the

subsystem x = x0. Hence, the states |Ψ̃0〉 and |Ψ0〉 are
orthogonal unless each column has integer filling νx0 . So
the system will either have degenerate ground states or
gapless excitations if νx0 /∈ Z for any column. We can go
back and repeat this analysis for subsystem symmetries
at fixed y0. We will find that Tx will require that the
subsystem filling factors νy0 must all be integers for the
ground state to be gapped/non-degenerate. Analogously,
Ty will require that the subsystem polarizations Pxy=y0
must all be the same up to an integer (polarization quan-
tum) for the ground state to be gapped/non-degenerate.
Although we have chosen a specific Hamiltonian and im-
posed reflection symmetry to illustrate that the twisted
state has low energy, we expect that the result is much
more general34, just as the original LSM result is.

One consequence of these results is that the regu-
lar LSM theorem derived for systems with global U(1)
charge conservation symmetry2 must be satisfied along
every subsystem individually. In the original case, the
LSM theorem states that for the ground state to be
unique, the particle number per unit cell calculated
across the whole lattice must be an integer. Our argu-
ments invoking subsystem symmetry and translation can
be straightforwardly applied to d-dimensional Hamilto-
nians conserving total U(1) charge across n-dimensional
subsystems. We can use this logic to formulate a gener-
alization of the LSM theorem to classes of Hamiltonians
that posses not only global U(1) symmetry but also sub-
system U(1) symmetries:

Consider a d-dimensional periodic lattice with a short-
range Hamiltonian that respects U(1) subsystem charge
conservation across a family of parallel n-dimensional
subspaces. Assume that the ground state does not spon-
taneously break translational symmetry along the subsys-
tem. For an arbitrary lattice there is at least one low-

energy state degenerate, or infinitesimally close in en-
ergy, to the ground state, if the particle number per unit
cell νs in any particular n-dimensional subsystem s is
not an integer. Furthermore, the low-energy state has
a crystal momentum in the j-direction (associated to a
lattice translation operator Tj that leaves the subsystem
invariant) differing from the ground state by an amount

∆Pj = 2π V
s

Lj
νs, where V s is the volume of an individual

subsystem, and Lj is the lattice size along the x̂j .
To provide a proof for this general statement, we can

use a suitably adapted version of the argument in Ref. 11.
Let us consider a general (bosonic or fermionic) Hamilto-
nian H defined on a periodic d-dimensional lattice that
conserves the total U(1) charge across an n-dimensional
subspace spanned by a collection of n linearly indepen-
dent primitive lattice vectors {~a1, ...,~an}, and their inte-
ger linear combinations. We will label this subspace as
s. There are a family of subsystems “parallel” to s, but
for now let us focus on this one subsystem. The U(1)
symmetry operator for this subsystem is given by

U0,s(α) = exp

(
iα
∑
r∈s

n̂r

)
, (20)

where r is a lattice vector.
The most general lowest-order Hamiltonian that acts

on s while commuting with U0,s(α) takes the following
form

H =
∑

r1,r2,j

Jr1,r2,j c
†
r1cr2Ôj + h.c. (21)

where Jr1,r2,j is a set of coupling constants, r1, r2 ∈ s,

and Ôj are products of particle creation and annihilation

operators that have no support on s. The Ôj may be fur-
ther constrained by subsystem symmetries for other sub-
spaces s′, but we will treat them as arbitrary. If we want
to gauge the subsystem U(1) symmetry it requires the
introduction of an (n + 1)-dimensional vector-potential
As
i , i = 0...n associated with subsystem s. Individual

terms in the Hamiltonian Eq. (21) couple to the lattice
gauge field, which modifies the overall Hamiltonian with
a subsystem Peierls factor:

H(As) =
∑

r1,r2,j

(
Jr1,r2,j eiA

s
r1,r2 c†r1cr2Ôj + h.c.

)
. (22)

Now we will invoke the momentum counting argument
for the subsystem s following the presentation of Ref.
11, with the main difference being that the gauge field
is now associated with subsystem U(1) charge conserva-
tion instead of a regular global U(1) symmetry. Let us
define subsystem magnetic flux quantum insertion oper-
ators Fs

j , j = 1...n that adiabatically, over time period
T , evolves the gauge field As between two configurations
that differ by a large gauge transformation performed
along the direction spanned by the ~aj-th primitive vec-
tor. Adiabaticity of the process is required so that the
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gap never closes during the time evolution and that, by
starting with a ground state |Ψ0〉, we are guaranteed to

end up with a (possibly different) state |Ψ̃0〉 which lies
in the ground state subspace, after the time evolution is
finished. Let us define the time evolution of the Hamil-
tonian as:

Hj(t) = H

(
As
j =

2π

Nja

t

T

)
, (23)

where Nj is the lattice period along the primitive vector
~aj having lattice constant a, and the subsystem lattice
gauge field is picked to be uniform in space. The corre-
sponding time evolution operator is then given by

Fs
j = T exp

(
−i
ˆ T

0

dt Hj(t)

)
, (24)

where T denotes time-ordering. The final Hamiltonian
Hj(T ) differs from the initial one Hj(0) by a large gauge
transformation, which can be implemented by the follow-
ing operator:

UXj ,s = exp

(
2πi

Lj

∑
r∈s

rj n̂r

)
, (25)

and one can directly verify that:

Hj(T ) = U−1
Xj ,s

Hj(0)UXj ,s. (26)

We can now define the subsystem flux insertion-removal
operator that leaves the Hamiltonian invariant:

F̃s
j ≡ U−1

Xj ,s
Fs
j . (27)

Importantly, the initial ground state |Ψ0〉, in general,

might be different from the state |Ψ̃0〉 ≡ F̃s
j |Ψ0〉 obtained

after the subsystem flux insertion and removal procedure.
To see this explicitly, let us consider the action of the
translation operator Tj on the states |Ψ0〉 and |Ψ̃0〉 (we
note that these translations preserve the subsystem s).
Provided that the translational invariance is not sponta-
neously broken, we must have:

Tj |Ψ0〉 = eiPj0 |Ψ0〉 (28)

where Pj0 is the many-body momentum along ~aj , and
is a good quantum number modulo 2π. To see how Tj
acts on |Ψ̃0〉 we first note that, since the subsystem gauge
field evolution implemented by Fs

j does not break trans-
lational invariance, we have:

[Fs
j , Tj ] = 0. (29)

However, Tj acts non-trivially on the flux removal uni-
tary:

TjUXj ,sT
−1
j = e

− 2πi
Nj

∑
r∈s n̂r

UXj ,s. (30)

Therefore, the Tj eigenvalue of the final state is:

Tj |Ψ̃0〉 = Fs
j TjUXj ,sT

−1
j Tj |Ψ0〉

= exp

(
iPj0 + 2πi

V s

Nj
νs
)
|Ψ̃0〉,

(31)

where V s is the total number of unit cells inside the sub-
system s, and νs is the filling fraction of said subsystem
νs = Ns

V s , where N s is the total particle number in s. We
thus see that the momentum along ~aj of the two states

|Ψ0〉 and |Ψ̃0〉 differs by:

∆Pj = 2π
V s

Nj
νs. (32)

Hence, whenever V s

Nj
νs is not an integer, the two states

|Ψ0〉 and |Ψ̃0〉 must be orthogonal to each other.
The same argument can be applied to the flux

insertion-removal procedure for every direction along the
subsystem s. Therefore, for the ground state to be
unique, we must require that:

V s

Nj
νs ∈ Z, j = 1...n. (33)

Since each Nj is a divisor of V s the ratios V s/Nj are
all integers. However, for this set of conditions to be
satisfied for arbitrary lattice sizes, we must require νs

itself to be integer. For example, in the case where all Ni
are co-prime with each other, the only way to satisfy all
of the conditions (33) is to require that

νs ∈ Z. (34)

We thereby arrive at the theorem stated at the end of
the Section II B.

We can also provide a lower bound on the ground state
degeneracy in the case when νs /∈ Z. Assuming that
V s

Nj
νs =

psj
qsj

, where the pair of integers psj and qsj are co-

prime for all j = 1...n:

GSD ≥
n∏
j=1

qsj . (35)

If we now consider subsystem charge conservation along
m subsystems si, i = 1, . . .m, which are all translation-
ally invariant in the j-th direction (e.g., parallel rows), we
can combine different twist operators UXj ,si , i = 1, ...,m
to generate low-lying states where the many-body mo-
mentum is shifted when compared to the ground state
by:

∆Pj = 2π
V s

Nj

m∑
i=1

niν
si , (36)

where ni are integers and V s is the total number of unit
cells in every subsystem. The total number of inequiv-
alent values (mod 2π) that ∆Pj can take is the least
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common multiple of corresponding qsij integers. Thus,
the ground state degeneracy associated with translations
Tj is bounded below by

GSDj ≥ lcm
(
qs1j , q

s2
j , ..., q

sm
j

)
. (37)

Hence, the total ground state degeneracy for a d-
dimensional lattice with m subsystem symmetries is
bounded below by:

GSD ≥
d∏
j=1

lcm
(
qs1j , q

s2
j , ..., q

sm
j

)
(38)

where we set qsij = 1 if a particular subsystem si is not
left invariant under the action of Tj .

To give an example, imagine a two-dimensional lattice
where, on top of the regular global U(1) symmetry we
impose independent subsystem U(1) symmetries along
two rows r1 and r2 defined by the equations y = y1 and
y = y2 respectively. Both r1 and r2 are invariant under
the action of Tx operator. As an example, let us now
choose the fillings of these two rows to satisfy:

V r1

Nx
νr1 =

1

2
≡ 1

qr1x
,

V r2

Nx
νr2 =

1

4
≡ 1

qr2x
. (39)

Applying the unitary operator UX,r1 , we can conclude
that there are at least two states in the ground state
subspace which are eigenstates of the translation oper-
ator Tx with eigenvalues eiPx0 and eiPx0+iπ. Similarly,
applying unitary UX,r2 we find at least four translation-

ally invariant states with eigenvalues eiPx0 , eiPx0+iπ/2,
eiPx0+iπ, and eiPx0+i3π/2. Since two of these values have
already appeared when we used UX,r1 , and we cannot
easily distinguish two twisted states with the same mo-
mentum, we conclude that the total ground state degen-
eracy is at least 4 = lcm(qr1x , q

r2
x ).

As another example let us consider a pair of subsystem
symmetries imposed along two columns c1 and c2 which
are defined by the equations x = x1 and x = x2 with
fillings

V c1

Ny
νc1 =

1

2
≡ 1

qc1y
,

V c2

Ny
νc2 =

1

3
≡ 1

qc2y
. (40)

Analogous to the previous paragraph, these subsys-
tems are invariant under Ty, and acting on the ground
state with unitary operators UY,c1 and UY,c2 generates
low-lying states with translation eigenvalues eiPy0 and
eiPy0+iπ for the first operator, and eiPy0 , eiPy0+i2π/3, and
eiPy0+i4π/3 for the second one. Additionally, we can
combine UY,c1 with UY,c2 to obtain a low-energy state

with the translation eigenvalue equal to eiPy0+iπ/3 and
eiPy0+i5π/3. Thus, we conclude that the total number
of low-lying states that can be generated by the column
twist operators is 6 = lcm(qc1y , q

c2
y ).

For a two-dimensional system that is translationally in-
variant simultaneously along both x̂ and ŷ, we expect the
fillings of all rows to be the same if the ground state does

not spontaneously break translation symmetry, therefore
qx = qr1x = qr2x = ..., and so the ground state degeneracy
associated with translations Tx is

GSDx ≥ lcm (qr1x , q
r2
x , ...) = qx. (41)

Similarly, the fillings of all columns must also be the same
giving us qy = qc1y = qc2y = ..., leading to the ground state
degeneracy associated with translations along ŷ to be

GSDy ≥ lcm
(
qc1y , q

c2
y , ...

)
= qy. (42)

The total ground state degeneracy of such system is then
bounded from below by the product of the two factors:

GSD ≥ qxqy. (43)

III. APPLICATION: PLATEAUS IN
MAGNETIZATION AND MAGNETIZATION

GRADIENTS

Let us take these concepts and apply them to spin sys-
tems with an aim toward making physical predictions. In
the work of Oshikawa, Yamanaka, and Affleck22, bosonic
spin counterparts of the twist operators (1) were suc-
cessfully used to derive conditions for the appearance of
magnetization plateaus as a function of applied external
magnetic field in, e.g., spin chains. Here we will define
bosonic spin counterparts of the multipole twist oper-
ators Eqs. (2), (9) to derive conditions in spin ladder
systems for the appearance of plateaus of the gradient of
magnetization as a function of an applied magnetic field
gradient placed across the ladder. Explicitly, we imag-
ine tuning the magnetic field so that the system is on
a conventional magnetization plateau, and then test how
the gradient of the magnetization responds to a magnetic
field gradient around a uniform background field. We will
want to distinguish between two cases: (i) the system has
a non-constant magnetization gradient response, or (ii)
the system exhibits a plateau in the magnetization gra-
dient. These physical phenomena are closely related to
the recent work on dipole insulators18. In the language of
Ref. 18, since the system is tuned to a conventional mag-
netization plateau, the analogous charge system would be
a charge insulator. However, case (i) would be a charge
insulator but a dipole metal, while (ii) would be both a
charge insulator and a dipole insulator.

To illustrate these two possibilities we will consider sys-
tems with axial spin rotation symmetry along subspaces,
i.e., models with U(1) subsystem symmetry correspond-
ing to a conservation of the total Sz along each subspace.
A unitary operator corresponding to a U(1) subsystem
symmetry associated to a particular subsystem s reads:

U0,s(α) = exp

(
iα
∑
r∈s

Ŝzr

)
. (44)

This operator rotates all spins belonging to s around the
z-axis by the same amount. The corresponding conserved
quantity is the total Sz magnetization on s.
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A. One-dimensional Spin Ladder Model

As an explicit test system let us first consider a two-leg
spin-S ladder that is stretched along the x̂-axis with peri-
odic boundary conditions in the x-direction. We will also
enforce two U(1) subsystem symmetries, one of which
implies conservation of the total magnetization on the
top leg (which we label with ‘↑’), and the other which
implies conservation of the total magnetization of the
bottom leg (which we label with ‘↓’). Let us assume
that the system’s ground state does not break transla-
tional symmetry, and has a fixed total magnetization
for some range of values of an external magnetic field
h0 < Bz < h1, i.e., the state of the system is at a magne-
tization plateau. Applying the conventional magnetiza-
tion plateau argument22 to a two-leg ladder spin system
we find the magnetization per spin in a two-leg ladder of
the size Lx × Ly = Nxa× 2a:

Mz ≡ 1

2Nx

Nx∑
x=1

(Szx,↑ + Szx,↓) (45)

takes half-integer values, i.e., Mz = 0,± 1
2 ,±1, etc.

To preserve the subsystem symmetries we can build a
Hamiltonian from spin ring-exchange terms, e.g., nearest
neighbor ring exchanges:

H = J�
∑
x

(
S+
x,↑S

−
x,↓S

+
x+1,↓S

−
x+1,↑ + h.c.

)
. (46)

Similar to the ring-exchange model studied in the previ-
ous section, where such terms tunneled charge dipoles,
here they can be interpreted as tunneling terms for mag-
netic quadrupole moments (spins are already magnetic
dipoles so separating opposite spins by a distance to cre-
ate a “dipole of spins” creates a magnetic quadrupole).
Now, consider the following unitary twist operator acting
along one of the legs of the ladder:

UX,↑ = exp

(
2πi

Lx

∑
x

xSzx,↑

)
. (47)

Under the action of the operator UX,↑ each term in H is
modified as:

U−1
X,↑S

+
x,↑S

−
x,↓S

+
x+1,↓S

−
x+1,↑UX,↑

= e
2πi
Nx S+

x,↑S
−
x,↓S

+
x+1,↓S

−
x+1,↑.

(48)

Therefore, we can show that for the ground state |Ψ0〉,
which we assume preserves translation and reflection
symmetry along x̂, we have:

〈Ψ0|U−1
X,↑HUX,↑ −H|Ψ0〉 = O

(
1

Nx

)
. (49)

And so, similar to the previous section, we see that in the
thermodynamic limit Nx →∞ the state |Ψ̃0〉 = UX,↑|Ψ0〉
lies in, or infinitesimally near, the ground state subspace.

Now let us check if |Ψ̃0〉 = UX,↑|Ψ0〉 is orthogonal to
|Ψ0〉. Following logic that should now be apparent, we can
compute the commutation relation between the transla-
tion operator and UX,↑ to find:

TxUX,↑T
−1
x = UX,↑e

2πiSz1,↑− 2πi
Nx

∑Nx
x=1 S

z
x,↑ . (50)

Therefore, starting from a ground state |Ψ0〉 having a
well-defined many-body momentum Tx|Ψ0〉 = eiPx0 |Ψ0〉,
we find the state |Ψ̃0〉 has the eigenvalue:

Tx|Ψ̃0〉 = TxUX,↑T
−1
x Tx|Ψ0〉

= eiPx0+2πiSz1,↑− 2πi
Nx

∑Nx
x=1 S

z
x,↑ |Ψ̃0〉.

(51)

A notable difference from the previous section is the ap-
pearance of the extra term 2πS1,↑ in the phase factor
which can be integer or half-integer depending on the
spin model of interest. From this analysis we conclude
that the two states are orthogonal unless S↑ −m↑ ∈ Z,
where m↑ = 1

Nx

∑
x S

z
x,↑. We can obtain a similar condi-

tion by considering the unitary operator UX,↓ that acts
on the bottom leg. Thus, the ground state can be unique
only if the spin minus the average magnetization mz

↑/↓ of

the top row or bottom row of spins are both integers:

S↑/↓ −mz
↑/↓ ∈ Z. (52)

Let us analyze these conditions in more detail. We can
actually make a more physically intuitive statement by
noticing that the sum of average magnetizations of both
rows must be an integer as well:

mz
↑ +mz

↓ = 2Mz ∈ Z, (53)

where we have used the assumption that our system is
tuned to a conventional magnetization plateau, and the
fact that the magnetization per spin (Eq. 45) must be a
multiple of 1/2 on the plateau. We can rewrite magneti-
zations on both legs as:

mz
↓ =2Mz −mz

↑, m
z
↑ = n− S, n ∈ Z. (54)

Combining these statements we end up with the following
condition for the magnetization gradient in the direction
transverse to the legs of the ladder:

∆ym
z ≡ (mz

↑ −mz
↓) = 2(n− S −Mz). (55)

In this equation the spin S (in a unit cell on a single
leg) is fixed, and since we are tuned to a magnetization
plateau Mz is a multiple of 1/2. Thus, we expect the
magnetization gradient to have plateaus at only even or
only odd integer values where the parity is determined
by whether the sum of the total spin S and magneti-
zation Mz is integer, or half-integer respectively. Al-
ternatively, since the total magnetization of the ladder
is vanishing, we can recast the magnetization gradient
as a magnetic quadrupole moment QMyz where z-oriented
magnetizations are separated along the y-direction. Our
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results imply that the system has a plateau of QMyz as a
function of magnetic field gradient. If the total magne-
tization were on a plateau, but non-vanishing then the
conversion to a magnetic quadrupole moment would de-
pend on our choice of coordinate origin. In all of the
examples here the total magnetization vanishes so this
issue does not arise.

We corroborate our results using the numerics pre-
sented in Fig. 1. In this figure we compare the magnetic
responses of two types of spin-1/2 ladders. In Fig. 1a,c
we show results for a two-leg spin-ladder with nearest
neighbor XY couplings, while in Fig. 1b,d we show re-
sults for a two-leg spin ladder with ring-exchange terms
(c.f. Eq. 46). For each system we first show their re-
sponse to a uniform magnetic field. For the XY ladder
(Fig. 1a) we see magnetization plateaus at Mz = 0,±1/2
which matches the expected results since 2(S−Mz) ∈ Z
is the condition for a plateau for a two-leg system. We
also find that the ring exchange model exhibits magne-
tization plateaus at Mz = 0,±1/2 (see Fig. 1b), in ac-
cordance to our expectations, since, as was mentioned
above, for a two-leg ladder we must have 2(S−Mz) ∈ Z.
In Fig. 1a we also overlayed a dashed red line showing
the magnetization response of a single, nearest-neighbor
spin chain coupled via (2Sxi S

x
i+1 + Syi S

y
i+1) interactions.

These interactions explicitly break the axial U(1) symme-
try corresponding to spin rotations around the ẑ axis, and
hence the system does not exhibit discrete magnetization
plateaus, but instead smoothly interpolates between the
two configurations where the average magnetization sat-
urates. We chose to compare the XY ladder with an XY
spin chain having broken U(1) spin symmetry to make an
analogy to the comparison between Figs. 1c,d between
the XY ladder and ring-exchange ladder, where the for-
mer has broken U(1) subsystem symmetry.

Now we want to examine the magnetization gradient
response of the XY ladder and the ring-exchange ladder.
Let us consider applying a magnetization gradient cen-
tered around zero uniform applied magnetic field, i.e.,
we apply a Bz = +h to the top leg of the ladder and
Bz = −h to the bottom one. The total magnetiza-
tion of both systems stays at a magnetization plateau
with Mz = 0. For the XY ladder that respects only a
global axial U(1) symmetry, but not a subsystem U(1),
we see a smooth interpolation of the magnetization gra-
dient between the saturation points at ∆ym

z = −1 and
∆ym

z = +1. This is quite similar to the behavior of the
magnetization of the XY spin chain shown in Fig. 1a
that does not respect the global axial U(1) symmetry.

For the ring exchange model, which respects axial sub-
system U(1) symmetry, we find that ∆ym

z exhibits a se-
ries of plateaus. The two most stable ones are located ex-
actly at ∆ym

z = ±1 as we expect from Eq. 55. In our nu-
merical simulations, we also see a plateau at ∆ym

z = 0,
however, as we show in the inset plot in Fig. 1d, this
plateau is shrinking rapidly as we increase the system
size, and it is not clear if it will survive or not in the
thermodynamic limit.
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FIG. 1. Magnetization (a, b) and magnetization gradient
(c, d) responses of a two-leg spin-1/2 ladder to an applied
external magnetic field Bz and magnetic field gradient ∆yB

z

respectively. In plots (a) and (c), the two-leg ladder is cou-
pled via spin-anisotropic XY interactions that do not preserve
subsystem symmetry, while the ladder in plots (b) and (d)
is coupled via ring-exchange interactions that have subsystem
symmetry. Additionally, for we include the magnetization re-
sponse to a constant Bz of a chain that does not respect global
U(1) Sz rotation symmetry, which is depicted as a dashed red
line in (a). We superimposed numerical data for ladders with
4, 6, 8, 10, and 12 rungs. We clearly see that both magnetiza-
tion and its gradient experience plateaus for the ring-exchange
Hamiltonian, while there are no plateaus of magnetization
gradient in the data for the XY-coupled ladder. In the mag-
netization gradient data for the ring-exchange model we see a
small plateau at ∆ym

z = 0 that monotonically shrinks with
increasing system size as shown by the inset plot. It is pos-
sible that this plateau will not survive the thermodynamic
limit.

1. Ising-Coupled Spin Ladder

As a brief aside, we can further illustrate the physics of
magnetization gradient plateaus in one-dimensional lad-
ders by connecting them to the ordinary magnetization
plateaus in an effective single spin chain. To see this,
consider a spin-1/2 ladder of length Lx in a magnetic
field with ring-exchange, Ising, and Zeeman couplings:

H =
∑
x

[(J�S
+
x,↑S

−
x+1,↑S

+
x+1,↓S

−
x,↓ + h.c.) + λSzx,↑S

z
x,↓

+h↑S
z
x,↑ + h↓S

z
x,↓],

(56)

where Sx,↑/↓ is the spin−1/2 operator on rung x and the
top (↑) or bottom (↓) leg. This Hamiltonian commutes
with the total magnetization operator of the entire lad-
der (

∑
x[Sx,↑ + Sx,↓]), and the individual magnetization

operators of each leg (
∑
x Sx,↑ and

∑
x Sx,↓). The former

is a U(1) global symmetry, while the latter are a pair of
U(1) subsystem symmetries.

Here, we will be interested in the limit λ� J�, |h↑/↓|,
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where every rung on the ladder will be pinned such that
〈Szx,↑Szx,↓〉 = − 1

4 . In this limit, the total magnetization
of the system is fixed to be an integer Mz = 0, and the
system is on a magnetization plateau. There are two
configurations that satisfy this constraint: 〈Szx,↑〉 = ± 1

2 ,

〈Szx,↓〉 = ∓ 1
2 . Let us define a new effective spin degree of

freedom on each rung, S̃r such that S̃zx = Szx,↑ = −Szx,↓.
Using this, we can also define: S̃+

x = S+
x,↑S

−
x+1,↑, S̃

−
x =

S−x,↓S
+
x+1,↓. Combined with S̃zx, these operators satisfy

the spin-1/2 algebra, and the spin ladder becomes:

H = J�
∑
x

S̃+
x S̃
−
x+1 + (h↑ − h↓)S̃zx, (57)

which is the Hamiltonian for a single XY spin chain in
an effective magnetic field given by h↑ − h↓.

Now let us consider the response of this system to ex-
ternal magnetic fields. When this system is placed in a
uniform physical magnetic field (h1 = h2), the effective
magnetic field vanishes so the system does not develop a
magnetization as might be expected. However, if we in-
stead consider a physical magnetic field gradient parallel
to the ladder rungs (e.g., h1 = −h2), the effective mag-
netic field is non-vanishing and the system can develop an
effective magnetization. The key point is that the mag-
netization of the effective spins in Eq. 57 is equal to half
the magnetization gradient of the original spin ladder:

1

Lx

∑
x

S̃zx =
1

2

1

Lx

∑
x

[Szx,1 − Szx,2]. (58)

In conclusion, the effective magnetic field and magneti-
zation associated to Eq. 57 are respectively the physi-
cal magnetic field gradient and magnetization gradient
of the spin ladder Eq. 56. A magnetization plateau for
the effective spins in Eq. 57, is thereby equivalent to a
magnetization gradient plateau for the physical spin in
Eq. 56.

It is well known that the XY spin chain has magneti-
zation plateaus when the magnetization is equal to ± 1

2
1.

From this, we can conclude that that the spin ladder Eq.
56 is at a plateau in the gradient of its magnetization
when ∆ym

z =
∑
x(Szx,1−Szx,2)/Lx = 2

∑
x S̃

z
x/Lx = ±1.

Since this model is also at an ordinary magnetization
plateau at Mz = 0, this result agrees with Eq. 55. It
is worth noting that this result is only true in the limit
λ � |h↑/↓|. In the opposite limit, |h↑/↓| � λ, J , the
system will be at ordinary magnetic plateaus where the
spins are aligned parallel to the magnetic field.

B. Two-dimensional Spin Systems

Now let us consider two-dimensional spin models. We
will first derive the spin analog of the dipole LSM the-
orem from Sec. II A. Working on a square periodic
L×L = Na×Na lattice, we will consider spin Hamilto-
nians which possess global U(1) symmetry that acts by

rotating all spins around the ẑ-axis by the same amount.
The corresponding conserved quantity is the total mag-
netization Mz of the system. We will additionally im-
pose conservation of two components of the magnetic
quadrupole moment QMxz and QMyz which is the analog of
the conservation of the x and y components of the dipole
moment for particles whose charge under the global U(1)
symmetry is itself a magnetic dipole moment pointing in
the z-direction.

This setup is entirely analogous to the one considered
in Sec. II A. It is natural then to consider Hamiltoni-
ans where the lowest-order dynamical terms are built of
bosonic spin ring-exchange terms, as in (46). Such sys-
tems were recently discussed in the literature19 where
it was shown, that they naturally couple to the back-
ground symmetric rank-2 gauge field Axy with a Peierls
phase factor. To derive an LSM-type theorem we will
briefly recount the argument already discussed in de-
tail in the context of dipole-conserving systems in Sec.
II A. We start by adiabatically driving the value of the
background field Axy from 0 to 2π/Na2 over time pe-
riod T . This evolves the ground state of the system from
|Ψ(0)〉 to |Ψ(T )〉. As this process is performed uniformly
across the lattice, without breaking translational sym-
metry, |Ψ(T )〉 will remain an eigenstate of Tx and Ty,
provided that the translational invariance of the initial
Hamiltonian was not spontaneously broken in its ground
state |Ψ(0)〉. Then, we apply the unitary twist operator

UXY = exp

(
2πi

aL

∑
r

xy Szr

)
(59)

which removes the change in Axy and brings the Hamil-
tonian back to its original form. The resulting eigen-
state U−1

XY |Ψ(T )〉 has an energy infinitesimally close to
the ground state in the thermodynamic limit, and it may
be different from the original ground state |Ψ(0)〉. If we
consider the commutation relation between translations
in the x̂-direction and the twist operator, we obtain an
additional phase factor:

TxU
−1
XY T

−1
x = U−1

XY e
2πi
L

∑
r yS

z
r e−2πi

∑N
y=1 yS

z
x=1,y (60)

where the first extra factor on the RHS of the equation
contains the total magnetic quadrupole moment QM,tot

yz

of the system in the exponential. The phase in the second
factor can take either integer or half-integer multiples of
2π depending on whether the spin S is integer or half-
integer, and whether the value of N(N + 1)/2 is even or
odd. For eigenvalues of the translation operator Tx to
be the same for U−1

XY |Ψ(T )〉 and |Ψ(0)〉 the extra phase
factors appearing in (60) must be trivial. This yields
the following condition for the uniqueness of the ground
state:

N(N + 1)

2
S +

∑
r

ySzr
Na
∈ Z, (61)

which is very similar to the condition obtained in Sec.
II A. For instance, consider integer S. The condition (61)
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then requires that, for the ground state to be unique,
the total magnetic quadrupole moment QMyz must be an
integer. We can repeat this calculation using translation
in the ŷ-direction to derive

N(N + 1)

2
S +

∑
r

xSzr
Na
∈ Z, (62)

which gives a similar condition but for QMxz.
Now, let us move on to spin systems with U(1) subsys-

tem symmetry where the Sz spin component is conserved
on rows and columns of the lattice. We can again con-
sider a twist operator that acts along a single column of
spins with fixed coordinate x = x0:

UY,x0 = exp

(
2πi

Ly

∑
y

ySzx0,y

)
. (63)

For a periodic lattice and a subsystem symmetric Hamil-
tonian built from local ring-exchange terms such as Eq.
(46), we can compare the energy of a twisted state with
the original ground state |Ψ0〉. If we assume that |Ψ0〉
does not spontaneously break the translational invari-
ance and preserves a reflection symmetry M̂y : y → −y,
similar to (11) we have:

〈Ψ0|U−1
Y,x0

HUY,x0
−H|Ψ0〉 = O

(
1

Ny

)
. (64)

Therefore, in the thermodynamic limit, where Ny →∞,

the state |Ψ̃0〉 = UY,x0
|Ψ0〉 has either exactly the same

energy as the ground state |Ψ0〉, or it is an excited state
with an energy infinitesimally close to the ground state.

We now want to see if |Ψ0〉 and |Ψ̃0〉 are orthogo-
nal. Assuming that the ground state does not sponta-
neously break the translational symmetry, i.e., Tx|Ψ0〉 =
eiPx0 |Ψ0〉, we can show that the translation eigenvalue

for |Ψ̃0〉 may take a dstinct value:

Tx|Ψ̃0〉 = TxUY,x0
T−1
x Tx|Ψ0〉

= e
iPx0+ 2πi

Ly

∑
y y(Szx0+1,y−S

z
x0,y

)|Ψ̃0〉.
(65)

Similar to the subsystem polarization introduced in Sec.
II A, we introduce an analogous notion for spin systems
– a subsystem quadrupole polarization:

QMjz (s) =
1

2π
Im log〈Ψ0|Uj,s|Ψ0〉, (66)

where

Uj,s = exp

(
2πi

Lj

∑
r∈s

xjS
z
r

)
, (67)

and where j = x, y. Therefore, for the ground state
to be unique we must have that the pair of magnetic
quadrupole moments QMyz computed along neighboring
subsystems must differ by an integer number:

e
2πi
Ly

∑
y y(Szx0+1,y−S

z
x0,y

)|Ψ̃0〉 = |Ψ̃0〉
⇔ QMyz(x = x0 + 1)−QMyz(x = x0) ∈ Z,

(68)

where QMyz(x = x0) is the magnetic quadrupolar polariza-
tion (66) along the column with fixed coordinate x = x0.

Therefore, for the states |Ψ0〉 and |Ψ̃0〉 to have the same
eigenvalue of the translation operator Tx we need to re-
quire that the difference between the subsystem magnetic
QMyz quadrupole moments computed along two the adja-
cent rows of spins is an integer number. In general, since
we can translate by any number of lattice constants in
the x-direction, each column must have QMyz that differ
at most by an integer if we want to preserve translation
symmetry and have a unique ground state. Noting that
the total magnetic quadrupole moment QMyz should sat-
isfy the Eq. 62 we can add in the relationship between
subsystem quadrupole moments (68) to see that on a
N × N lattice subsystem quadrupolarization must take
the following set of values:

QMyz(x = x0) =
n

N
− N + 1

2
S, n ∈ Z (69)

and similarly for QMxz(y = y0) on every column with fixed
coordinate y = y0.

Now, considering translations along ŷ we find:

Ty|Ψ̃0〉 = e
iPy0+2πiSzx0,1

− 2πi
Ny

∑Ny
y=1 S

z
x0,y |Ψ̃0〉, (70)

which means that for the ground state |Ψ0〉 to be unique
we need the average magnetization mz

x=x0
of a single col-

umn at x = x0 to satisfy: (S−mz
x=x0

) ∈ Z, with S being
the total spin per unit cell of a subsystem. Hence, the
states |Ψ0〉 and |Ψ̃0〉 are orthogonal unless the average
magnetization of each subsystem s satisfies

S −mz
s ∈ Z. (71)

The physical consequences of these results are more
subtle than the ladder case. We have found that in or-
der for a system with magnetic quadrupole conservation
to have a unique ground state the spin and magnetic
quadrupolarization must satisfy an integer constraint.
Furthermore, if the system has subsystem spin-rotation
symmetry then each subsystem has to be on a magneti-
zation plateau for the ground state to be unique. Thus,
in the latter case, if we apply a spatially varying mag-
netic field that is constant along a family of subsys-
tems, and weak enough not to drive any subsystem off its
plateau, then the system will have a constant magneti-
zation plateau response even to a spatially varying mag-
netic field. For example, if we have subsystem symmetry
in 2D along rows and columns parallel to x and y respec-
tively, then our system will have a non-varying response
to magnetic fields having only x or only y dependence as
long as the field applied to any given subsystem is not
strong enough to drive it off its plateau. In the former
case without subsystem symmetry the system can exhibit
a plateau in the magnetic quadrupolarization in the pres-
ence of a pure magnetic field gradient, i.e., a non-uniform
magnetic field configuration that can have, at most, lin-
ear dependence on the spatial coordinates. Both of these
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possibilities suggest that for magnetic systems tuned to
magnetization plateaus there can be a refinement of the
magnetic response characterization based on how the sys-
tem responds to non-uniform fields. Indeed, the systems
we studied here can exhibit additional types of magnetic
response plateaus when they have unique ground states.

IV. LUTTINGER-LIKE THEOREM FOR
DIPOLES

The LSM theorem has been used in non-perturbative
arguments supporting Luttinger’s theorem7,8. At the
heart of these arguments is the connection between the
momentum of a low-energy excitation and the particle
filling. For a Fermi-liquid this relates the Fermi-surface,
where low-energy excitations are created (having momen-
tum of order kF ), to the electron filling, even in an in-
teracting system. In this section we will apply similar
arguments to show that some systems having U(1) par-
ticle number and dipole conservation can support low-
energy excitations having momentum determined by the
filling of dipoles. Here we will just provide an example,
and leave a full discussion, and generalization to higher
dimensions to future work.

Let us consider a two-leg fermion ladder model parallel
to the x-direction (let the lattice constant a = 1). We
will use the Hamiltonian18

H =
J

2

N∑
i=1

(d†idi+1 + h.c.) + U

N∑
i=1

ni↑ni↓, (72)

where ↑ / ↓ label the two legs of the ladder, di ≡ c†i↓ci↑
is a dipole annihilation operator for a dipole parallel to

y, i.e., along the rungs of the ladder, c†i↓/↑ is a fermion

creation operator on the lower/upper legs respectively at
site i, and the ni↓/↑ are the fermion density operators
on each leg. In Ref. 18, it was shown that when this
system is at half-filling (NF = N), and U � J, then
the dipole operators effectively become hard-core bosons
having onsite anticommutation relations

{d†i , di} = 1, {d†i , d
†
i} = {di, di} = 0, (73)

and commuting off site. Thus, in this limit this model
becomes a hopping model for y-oriented dipoles that be-
have as hardcore bosons. We can identify up-dipoles
(down-dipoles) with a configuration where, at a particu-
lar unit cell i there is a fermion on the upper leg (lower
leg) and no fermion on the lower leg (upper leg). Based
on this, we can define the total dipole number operator

as ND =
∑N
i=1[ni↑ − ni↓], and the y component of the

polarization as py = ND/N . It is clear that the Hamil-
tonian in Eq. 72 conserves the dipole number ND. Since

the total fermion number (NF =
∑N
i=1[ni↑+ni↓]) is also

conserved, the fermion number on each leg of the lad-

der (N↑ =
∑N
i=1 ni↑ and N↓ =

∑N
i=1 ni↓) is conserved as

well.

To prove a Luttinger-like theorem we want to show
that the low-energy modes of this model at some filling
of dipoles have momentum related to that dipole filling.
Let us take the ground state of the system to be |Ψ0〉.
We will consider the twisted variational state |Ψ̃0〉 =

exp(2πi
∑N
j=1 jnj,↑/N)|Ψ0〉. A calculation analogous to

what we have presented in detail above for the ring ex-
change model shows that the energy of this state is within
O(1/N) of the ground state energy. We can now calculate
the momentum of this state. If |Ψ0〉 is an eigenstate of the
lattice translation operator Tx with eigenvalue eiPx0 , then

|Ψ̃0〉 will have an eigenvalue eiPx0+2πi
∑N
i=1 ni,↑/N . Using

the relation
∑N
i=1 ni,↑/N = 1

2N (ND+NF ), (and also that
NF = N since the fermions are half-filled), there must
be a low energy mode with momentum [Px0 +π(py + 1)],
where we recall py is the y-component of the charge po-
larization. Similarly, if we twist the ground state with
the inverse of the operator above we will find another
low energy mode with momentum [Px0 − π(py + 1)]. We
recall that these modes are only guaranteed to be orthog-
onal to the untwisted ground state if the polarization py

is not an integer. We will argue below that these points
form an analog of a Fermi surface for dipoles with Fermi
wavevector

k
(dipole)
F = π (py + 1) . (74)

Alternatively, we can derive these results with an ex-
plicit solution of this model. If the dipoles are effectively
hard-core bosons, this model can be transformed into a
spin-1/2 XY model using:

Sαi =
1

2
~c †i σ

α~ci, where ~ci = (ci,↑, ci↓)
T , (75)

so that

d†i = 2S+
i , di = 2S−i . (76)

The resulting spin Hamiltonian is

H = 2J

N∑
i=1

(
S+
i S
−
i+1 + S−i S

+
i+1

)
. (77)

It is well-known that such an XY model is exactly solv-
able in 1D via a Jordan-Wigner transformation:

S+
i = eiπ

∑i−1
j=1 f

†
j fjf†i , S

−
i = e−iπ

∑i−1
j=1 f

†
j fjfi, (78)

and the resulting transformed Hamiltonian is:

H = 2J

(
N−1∑
i=1

f†i fi+1 + eiπ
∑N
j=1 f

†
j fjf†Nf1

)
+ h.c. (79)

where fi is the annihilation operator for a Jordan-Wigner
fermion on site i.

Using these mappings we can identify the low-energy
excitations of the dipole model with the Fermi-surface
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excitations of the Jordan-Wigner fermions. These exci-

tations occur at momentum ±k(dipole)
F which is directly

proportional to the density of Jordan-Wigner fermions,
and through the mappings above to the density of y-

dipoles. Precisely we have 2k
(dipole)
F = 2πν, where ν is

the fraction of up-dipoles in the system. Alternatively
we can rewrite dipole density as:

ν =
N↑

N↑ +N↓
=

1

2

N↑ −N↓
N↑ +N↓

+
1

2
=

1

2
(py + 1), (80)

where py is the charge polarization in the y-direction.
Thus we can relate the area enclosed by a Fermi sur-
face in 1D to the polarization of the dipole chain in the
transverse direction and we recover Eq. 74.

We expect that results like this can apply beyond one-
dimensional ladders. As an example, we could consider
a model for a 2D dipole metal recently discussed in Ref.
18. This model is built by stacking dipole ladder mod-
els (which are parallel to x̂) into the y-direction and
introducing dipole hopping terms between the nearest-
neighbor rungs of two neighboring ladders. Effectively,
the model describes a system of free y-dipoles that can
move across a rectangular lattice. It was shown that this
model can be Jordan-Wigner transformed to a fermionic
tight-binding model which has a well-defined Fermi sur-
face. This transformation translates number operators
for y-dipoles into ordinary number operators for the
Jordan-Wigner fermions. Hence Luttinger’s theorem for
a two-dimensional fermionic model, when translated to a
dipole language, once again relates an area enclosed by
a Fermi surface to the density of y-dipoles in the lattice,
or, in other words, to the ŷ polarization of the ground
state.

We note a possible connection to the recent work in
Ref. 35, where elementary dipole particles having a fixed
dipole moment were considered. In comparison, however,
the statistics of those particles was taken to be fermionic
(in our case they are hard-core bosons), and the interac-
tions between particles were taken into account. It was
then argued that this system develops a stable interacting
Fermi liquid with a Fermi surface elongated in the direc-
tion of the dipole moment. A Luttinger theorem for such
fermionic dipoles, which we do not prove here, would also
necessarily relate an area enclosed by a Fermi surface to
the density of fermionic dipoles, i.e., the polarization of
the system in the dipole moment direction.

V. CONCLUSIONS

In this paper we derived several non-perturbative re-
sults for dipole-conserving Hamiltonians and their spin
counterparts. We provided a generalization of the LSM
theorem to multipole-conserving systems, and find that
for dipole conserving systems, a unique gapped, transla-
tionally invariant ground state is possible only if the bulk
polarization is integer (integer filling of dipoles). A ra-
tional polarization of p/q implies that there are at least

q degenerate ground states. Furthermore, if the system
both conserves polarization and has a U(1) charge con-
servation symmetry along subsystems, a unique gapped,
translationally invariant ground state is possible only if
the filling in each subystem is an integer. A rational
filling implies either a gapless system or a ground state
degeneracy. We also provided the spin counterpart of
this theorem, that applies to spin systems that have con-
served magnetic quadrupole moments and possibly pre-
serve spin-rotation symmetry on subsystems. These sys-
tems can experience plateaus in the magnetic response
in some types of non-uniform fields. Finally we have also
discussed a possible extension of a Luttinger-like theorem
to dipole systems.

From these results, we have been able to place strong
constraints on the low energy physics of systems having
conserved multipole moments. As with the famous re-
sults of Lieb, Schultz and Mattis, these results can be
used to study strongly correlated systems, where nor-
mal perturbative methods fail. Much is still unknown
about multipole conserving systems on lattices36–38, and
in the continuum39–43, and our results may prove use-
ful in these contexts. These results also hint at possi-
ble exotic gapped phases that have fractional polariza-
tion/dipole moment, in analogy to topologically ordered
systems having fractional charge. The new types of mag-
netic response plateaus we predicted may also belong
to topological phases, analogous to the Haldane phase
in SPT spin chains. Experimentally, our results can be
tested in cold-atom systems, where dipole conserving sys-
tems can be constructed44–46. These cold-atom systems
may be an interesting place to look for the aforemen-
tioned exotic phases. While we have focused primarily
on 1D and 2D we expect the results can be extended
straightforwardly to higher dimensions, and with a va-
riety of conserved types of multipole moments. Finally,
it could prove useful exploring possible connections be-
tween our LSM-type theorems and similar results re-
cently acquired in the context of systems with higher-
form symmetries47.
Note: During the preparation of this manuscript we

became aware of a recent work titled “Lieb-Schultz-
Mattis type constraints on Fractonic Matter” by Huan
He, Yizhi You, and Abhinav Prem48. Section II of our
paper has some overlapping concepts and results with
this article. Our main developments in this section are
focused on systems with U(1) subsystem symmetries in
contrast to Ref. 48 which is more focused on systems
respecting linear shift symmetries. Both of these works
were carried out independently.
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