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We study the antiferromagnetic spin-half Heisenberg ladder in the presence of an additional frustrating rung
spin which is motivated and relevant also for the description of real two-dimensional materials such as the
two-dimensional trimer magnet Ba4Ir3O10. We study the zero-temperature phase diagram, where we combine
numerical and analytical methods into an overall consistent description. All numerical simulations are also
accompanied by studies of the dynamical spin structure factor obtained via the density matrix renormalization
group. Overall, we find in the regime of strong rung coupling a gapped dimerized phase related to competing
symmetry sectors in Hilbert space that ultimately results in frustration-driven spin-Peierls transition. In the
weak rung-coupling regime, the system is uniform, yet shows a gapped spinon continuum together with a sharp
coherent low-energy branch which renders the system critical overall. In either case, the additional rung spin
quickly get sidelined and nearly decouple once their bare coupling to the ladder rops somewhat below the direct
Heisenberg coupling of the legs.

I. INTRODUCTION

In this paper we study a model of a frustrated spin S =
1/2 Heisenberg ladder antiferromagnet that is motivated by a
quasi-one-dimensional (1D) reduction of the trimer magnet
Ba4Ir3O10 [1–3]. That material is a member of the hexag-
onal perovskite family considered a potential host for quan-
tum spin liquid behavior [4]. It consists of a layered struc-
ture with two-dimensional (2D) planes where trimer units in-
terconnected into a quasi-hexagonal structure [cf. Fig. 1(b)].
The magnetism comes from trimer units that host three Ir4+

spin-half ions located within face-sharing octahedra. The di-
mensional reduction to 1D is partially justified by experimen-
tal indications, and is consistent with an extremely low Neel
ordering temperature TN = 0.2 K for the material where the
bandwidth of the spin excitations by the Heisenberg couplings
is of several hundreds of Kelvin [3] thus spanning nearly four
orders of magnitude in energy scales. As such, this material
may be instrumental to the investigation of the long-standing
speculation that 2D frustrated magnets might support quan-
tum disordered states with neutral spin-1/2 excitations known
as spinons [5].

Our interest in this system is driven by its unusual spin ar-
rangement as schematically depicted in Fig. 1. This arrange-
ment is conducive to several interesting effects. In its classi-
cal Ising limit, the system exhibits a frustration-driven ultra-
narrow phase crossover at finite temperature [6, 7]. For the
quantum case, as we will demonstrate in this work, the exci-
tation spectrum contains a soft gapless mode separated from
the other excitations by a gap in the limit of weak interchain
coupling J2, J3 � J1. The main contribution to the spectral
weight of this mode comes from the central spins on the rungs.
These spins nearly decouple from the system due to frustra-
tion, and only experience an effective weak higher-order inter-
action amongst each other. As far as the spins located on the
legs of the ladder are concerned, most of their spectral weight
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is located at higher energies in agreement with experimental
observations.

We point out that though the model looks like a version of
3-leg ladder which is expected to be equivalent to spin-1/2
chain and hence to be critical, this equivalence does not hold
throughout the entire phase diagram. In the parameter range
where the interchain interaction is frustrated the “orbital” fluc-
tuations are active and they may lead to dimerization [8–12]
which is absent in spin-1/2 chains.

The paper then is organized as follows: In Sec. II we intro-
duce the model. We then discuss first the strong rung-coupling
regime in Sec. III, followed by the weak rung-coupling regime
in Sec. IV. Each of these contains an analytical treatment to-
gether with a complimentary density matrix renormalization
group (DMRG) analysis that also includes dynamical proper-
ties via the dynamical structure factor. Sec. V contains conclu-
sions. The appendix discusses an alternative, even though not
physically realized, possibility of an intermediate isotropic ne-
matic phase with spontaneously broken rung mirror symmetry
due to frustration.
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FIG. 1. The model system. (a) Two-leg Heisenberg ladder with
trimer rungs and couplings J ≡ (J1, J2, J3). A rung consists of
three spin S = 1/2 sites, where m = 1, 2 are the sites on the legs
of the ladder. The presence of the additional center site on a rung
(site m = 3) coupled symmetrically to the leg sites via a finite cou-
pling strength J3 induces frustration. (b) The same model may be
seen to represent a hexagonal brick lattice with three-site rungs, using
Ly = 2 with periodic boundary condition in vertical direction. The
lattice spacing of the 3-site unit cell (yellow shaded area) is taken as
a = 1 (horizontally, in either case), or b [vertically, panel (b) only].
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II. MODEL

We study the frustrated ladder model in Fig. 1, described by
the Heisenberg Hamiltonian,

H =
∑
i

[ ∑
m=1,2

(
J1 Sim·Si+1,m+J3 Sim·Si3

)
+J2 Si1·Si2

]
≡ H legs(J1) +

∑
i

Hrung
i (J2, J3) (1)

with isotropic spin interactions, where rung i consists of three
spin-half sitesm=1, 2, 3 described by the spin operators Si,m.
The couplings (J1, J2) describe the regular ladder of two legs,
whereas J3 couples the two legs to a third site m = 3 present
for each rung and referred to as the center site, which thus
frustrates the direct coupling in between the legs. We consider
antiferromagnetic Ji > 0, throughout. Moreover, we assume
J1 = 1 as unit of energy, unless specified otherwise, as well
as ~ = 1.

The Hamiltonian (1) has SU(2) spin symmetry, as well as
up-down mirror symmetry as shown in Fig. 1(a), with the
latter referred to as rung inversion or Z2 parity symmetry.
Within the analytical or mean-field approach we assume peri-
odic boundary conditions (BCs), whereas in the DMRG sim-
ulations we adopt open BCs, with the ladder terminated by
rungs i = 1 and N . Overall, we are interested in the thermo-
dynamic limit N →∞.

Taking J3 to zero reduces the system to the ordinary 2-leg
ladder, except for the presence of decoupled, and thus free
center spins. The latter would introduce macroscopic degener-
acy. As will be shown an approximate decoupling can also be
achieved by frustration that, in practice, may give rise to spin
freezing [13]. Also, one could introduce a Heisenberg interac-
tion J ′1 in between nearest-neighbor center spins in Fig. 1(a),
thus resulting in a 3-leg ladder. But such a coupling J ′1 is con-
sidered negligible here, except for the discussion with Fig. 4.
The motivation for this is that the center spins may not neces-
sarily be nearest-neighbor (NN) spins, after all, as compared
to the leg spins. For example, one may assume that the cen-
ter spins in Fig. 1(a) have a 2-rung periodicity, in that e.g.,
they point into and out of the plane in an alternating fashion.
Even more, when viewed as a minimal model for the deco-
rated brick lattice in Fig. 1(b) assuming Ly = 2, the center
sites are, indeed, very clearly far from being NN sites.

III. THE LIMIT OF STRONG RUNG EXCHANGE

Let us start with focusing on a single rung consisting of
three sites as marked in Fig. 1. This is relevant in the limit
J1 → 0, i.e., dominating rung coupling, which reduces the
system to (nearly) decoupled trimers or triangles. Due to the
SU(2) spin symmetry, the state space of a rung can be reduced
from d = 23 states to an effective dimension of d∗ = 3 mul-
tiplets, having two S = 1/2 multiplets and one multiplet with
S = 3/2. The latter is already symmetric under rung inver-
sion. The two S = 1/2 multiplets can be symmetrized, where
the first is symmetric and the second asymmetric under rung

inversion (by convention, the S = 1/2 rung multiplet space
will be always considered in this order). They will be denoted
by |1/2〉±. The antisymmetric multiplet |1/2〉− forms a singlet
across sites m = (1, 2), with a free spin-half at site m = 3.
The symmetric multiplet |1/2〉+ can be derived as a symmet-
ric triplet on sites m = (1, 2) that when fused with site 3, also
forms a total rung spin S = 1/2. The eigenstates of a single
rung thus are divided into two groups: the low-energy space
consisting of the two spin-full “orbitals” |1/2〉± at respective
energies E(0)

± = −∆0

2 ±
1
2 (J2−J3), with ∆0 ≡ 1

2 (J2 +2J3),
and the high-energy S = 3/2 multiplet at energy +∆0

2 .
Frustration within each rung is therefore strongest when

J2 ≈ J3. In this case, the two orbitals |1/2〉± become de-
generate in energy. A finite detuning J2 6= J3 introduces an
orbital splitting by an energy exactly equal to J2 − J3. This
motivates the dimensionless parameter,

α ≡ J2−J3
J1

. (2)

The smaller the magnitude |α|, the stronger the frustration.
The excitation energy from the low-energy states to the

high-energy states is ∆ = ∆0 ± αJ1
2 . For low enough tem-

peratures T satisfying e−∆/T � 1 together with |α| � 1, the
thermal population of the high-energy S = 3/2 multiplet van-
ishes. With the high-energy states irrelevant to the low-energy
physics, we integrate it out by projecting the Hamiltonian of
two nearest-neighbor rungs including their interaction along
the legs into the low-energy space formed by the multiplet
space |1/2〉± using the many-body down-folding method [14–
19] based on Hubbard operators [20]. In order to make the
physics more apparent, we find it more convenient to repre-
sent these operators as products of Pauli matrices acting in the
spin and and effective orbital sector (see App. A for details),
as customary in theoretical studies of manganites with colos-
sal magnetoresistance and many other materials with active
orbital physics [19, 21–26].

Since the strengths of the bare projection of the Hamilto-
nian for a nearest-neighbor pair of rungs and the second-order
perturbative terms are proportional to J1 and J2

1/∆0, respec-
tively [18], for strong rung-coupling J1/∆0 � 1 it suffices
to study the lowest order. This is described by the projected
low-energy Hamiltonian,

1
J1
Heff
α = 8

9

∑
i

(Si · Si+1)⊗ Ti,i+1 + α

N∑
i=1

T zi (3a)

where given the 2-leg ladder with center spins on the rungs we
write Ti,i+1 = T(2)

i,i+1, we have

T(2)
i,i+1 ≡ 1

4 + 1
2 (T zi +T zi+1) + T zi T zi+1 + 3T xi T xi+1 , (3b)

Here Sai ≡ 1
2σ

a
i and T ai ≡ 1

2τ
a
i are effective spin and or-

bital spin-half operators, respectively, with σa and τa Pauli
matrices with a ∈ {x, y, z}. These form the direct product
space σ ⊗ τ that acts on rung i. Matter of fact, the new spin
operators exactly correspond to the total spin operator on a
rung, Si ≡ Stot

i ≡
∑3
m=1 Sim, which, once projected onto the

low-energy spin sector, indeed, represent a plain proper spin
operator acting on a S = 1/2 spin degree of freedom.
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The last term in Eq. (3a) is nothing but the aforementioned
“orbital” splitting of αJ1. It now functions as an effective
magnetic field applied on the τ pseudo-spins along the z-
direction. It is offset by the linear T zi term in Eq. (3b). The
prefactor can be roughly estimated via a mean-field value for a
decoupled Heisenberg chain [27, 28], resulting in [cf. App. B]

α0 ≡ − 8
9 〈Si · Si+1〉 ≈ 8

9 (ln 2− 1
4 ) = 0.394 . (4)

Therefore only if α ≈ α0, the effective magnetic field be-
comes zero in the orbital sector. This offset also approxi-
mately agrees with the full many-body calculation, where the
DMRG simulation in Fig. 2(c) shows that α0 renormalizes to
a slightly smaller value of 0.341.

The orbital magnetization 〈T zi 〉 or 〈T xi 〉 can be directly re-
lated to the intra-rung spin-spin correlations,

C
(i)
12 ≡ 〈Si1 · Si2〉 = − 1

4 + 〈T zi 〉 (5a)

C
(i)
3+ ≡ 〈(Si1 + Si2) · Si3〉 = − 1

2 − 〈T
z
i 〉 (5b)

C
(i)
3− ≡ 〈(Si1 − Si2) · Si3〉 =

√
3 〈T xi 〉 (5c)

where 〈...〉 denotes thermodynamic average. Equation (5a)
shows that 〈T zi 〉 measures whether the two leg spins (1,2) are
ferromagnetically or antiferromagnetically correlated. Matter
of fact, 〈τzi 〉 ≡ 2〈T zi 〉 measures the rung parity Z2, where
based on Eq. (5a), τzi acts like a swap operator for the two leg
sites. Conversely, 〈T xi 〉 measures the Z2 symmetry breaking
between the leg spins if present. As seen from Eq. (5c), a
non-zero value indicates a spontaneous breaking of the mirror
symmetry between the upper and lower leg.

As an aside we note that when the site-specific spin op-
erators themselves are fully projected into the low-energy
space, caveats apply, e.g., for sum rules. Since Si = Stot

i

is fully constrained to the S = 1/2 spin sector, one ob-
tains S2

i = 3
4 . However, if the site-specific spin operators

Sim themselves are fully projected to the low-energy S=1/2

space, then
∑3
m=1 S

2
im = 5

4 (and not 3 · 3
4 , as this misses

weight not of interest from intermediate excitations into the
high-energy S=3/2 multiplet), such that the sum rule becomes(
S1 · S2 + S1 · S3 + S2 · S3

)
i

= 1
2 ( 3

4−
5
4 ) = − 1

4 . In the ab-
sence of intermediate truncation in the spin operator products
as with Eqs. (5) above, this reads C12 + C3+ = − 3

4 , instead.
The effective Hamiltonian (3) only includes nearest-

neighbor terms derived from bare projection which, at first
glance, may be taken as indication for a uniform ground
state. In addition, one may also includes next-nearest neigh-
bor (NNN) interactions via second order perturbation. This
translates the local rung frustration of the original ladder into
frustration along the chain in the effective model. Such NNN
interactions, while they leave the effective Hamiltonian trans-
lationally invariant, can be expected to generate dimerization
as a relevant perturbation. This can give rise to spontaneous
breaking of the translational symmetry along the chain [8, 9].
Based on second order perturbation, such a symmetry break-
ing, however, should diminish in the limit of strong rung cou-
plings J2, J3 � 1.

Nevertheless, as will be seen in the DMRG analysis be-
low, the lowest-order projected Hamiltonian in Eq. (3) itself

already gives rise to dimerization. Being at lowest order,
the resulting dimerization also does not diminish but remains
sizeable in the limit of strong rung couplings J2, J3 � 1.
This suggests that spin and orbital degrees of freedom re-
main intrinsically entangled, and cannot be mean-field decou-
pled. The frustration of the spins on each rung in the original
model is present via the (near) degeneracy of the two multi-
plets |1/2〉±. One may argue that the decoupled spin chains
described by the first term only in Eq. (3b) are subjected to
relevant effective NNN order terms based on the remainder
of the interactions in Eq. (3b). Therefore, overall, frustration
is already intrinsic also to the effective projected Hamiltonian
(3b).

Interestingly, dimerization as found in our DMRG simula-
tions has been reported on an isotropic 3-leg Heisenberg lad-
der in [11]. Translated to our model, this would turn on the
coupling also for nearest-neighbor center sites (m = 3). Tak-
ing it equally strong as for the initial two legs having J1, then
following the same down-folding procedure above, one ob-
tains instead of Eq. (3b) the modified effective Hamiltonian in
the orbital sector,

T(3)
i,i+1 ≡ 3

8 + 3
(
T xi T xi+1 + T zi T zi+1

)
. (6)

As compared to the 2-leg case in Eq. (3b), the linear terms
in T z disappeared [hence one also expects no offset here to
the orbital magnetic field as estimated in Eq. (4)]. Also the
T zT z term got strengthened, making it equally strong as the
T xT x term which kept its prefactor unchanged. If one were
to analyze the orbital sector effectively decoupled from the
spin sector, this would result in plain Fermionic tight binding
chain after Jordan-Wigner transformation. On the contrary,
however, also the 3-leg ladder above features dimerization,
instead [11]. This emphasizes the strongly correlated inter-
play between spin and orbital degrees of freedom. We will
show below by continuously turning on the NN Heisenberg
coupling on the center spins [cf. Fig. 4] that the spin gap ob-
served with dimerization in the system never closes on the
way making an isotropic 3-leg ladder with the same coupling
J1 on all three legs. This suggests, that the underlying physics
is identical.

A. Preliminary discussion

We proceed to discuss the physics of the effective strong
coupling Hamiltonian. The symmetries which can be sponta-
neously broken in the ground state are the Z2 symmetry be-
tween the chains and the translational, or to be more precise,
the inversion symmetry along the chains. Qualitative consid-
erations suggest a possibility of the following T = 0 phases.
First, there are two diagonal, “orbital”-ordered phases with
〈T z〉 > 0 and 〈T z〉 < 0, respectively, which can coexist with
translational symmetry breaking. There is the possibility of a
nematic phase with spontaneously broken Z2 symmetry, hav-
ing 〈T x〉 6= 0. It is nematic, since with Eq. (5c) the local order
parameter would consist of Z2 symmetry-breaking variations
in the energy density described by scalar products of spins
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with the SU(2) spin symmetry itself preserved. The nematic
order may coexist with translational symmetry breaking.

The diagonal phases appear at strong effective field |α| � 1
[cf. Eq. (2)], while also J2, J3 � 1 (= J1). Then quantum
orbital fluctuations in the xy orbital plane are suppressed. For
α� 1, i.e., dominant J2 � J3, the effective field via the last
term in Eq. (3a) aligns 〈T zi 〉'− 1

2 . By Eq. (5a), this results in
the strongest possible antiferromagnetic correlation for the leg
spins (1,2), such that they form an approximate singlet (S =
0), while the center spin becomes nearly decoupled. Overall,
this is precisely the antisymmetric rung multiplet |1/2〉−. On
the other hand, for α � −1, i.e., dominating coupling to the
center spin, J3 � J2, the effective field in Eq. (3a) aligns
〈T zi 〉 ' 1

2 . Again by Eq. (5), this shows that here the leg spins
align ferromagnetically such that they form an approximate
triplet (S = 1) with antiferromagnetically aligned center spin.
This is nothing but the symmetric rung multiplet |1/2〉+.

In the latter diagonal phase for α� −1, the spin dynamics
inHeff is described by a simple single-chain spin-half Heisen-
berg model in terms of the symmetric multiplet |1/2〉+ and
coupling strength of order J1. As will be shown below, also
the first diagonal phase (α � 1) reduces to an effective spin-
half Heisenberg model in terms of the antisymmetric multi-
plet |1/2〉−. There, however, this translates into a Heisenberg
chain of weakly coupled center spins, such that in this case
the coupling strength, and with it the energy scale of the spin
dynamics, becomes vanishingly small for α� 1.

The above analysis indicates that there may exist a quan-
tum critical point (QCP) in the regime of weak |α| < 1 (i.e.,
strong spin frustration) that separates the two phases with an-
tiferromagnetic and ferromagnetic correlations, respectively.
Alternatively, there is also the possibility of a nematic phase
for small α whose phase boundaries would require two QCPs
where the nematic order vanishes. The latter is suggested by
a semi-meanfield approach as discussed in App. B. However,
based on the detailed DMRG analysis presented below, nei-
ther turns out to capture the low-energy regime. Instead, the
system favors a spontaneously broken translational symmetry
with dimerization along the ladder that smoothly connects the
regime α� −1 to α� 1, as will be demonstrated next.

B. Dimerization

In this section we present extensive density matrix renor-
malization group (DMRG [29, 30]) ground state simulations
on the two-leg ladder model in Eq. (1), as well as in its pro-
jected version in Eq. (3). The results are overall consistent,
e.g., in that the total weight in the reduced density matrix
for J3 = 4 in the local S = 3/2 rung multiplet remained
below 0.01, throughout. Here we use uniform ladders with
open boundary conditions for J = (1, J2, 4) where we scan
J2 and subsequently combine the data from the system cen-
ter for each DMRG run at fixed J2. Our results with focus
on dimerization are summarized in Fig. 2. Snapshots of the
NN spin-interactions are shown in Fig. 3 for J2 = 4, 4.3, and
5. The DMRG data for these snapshots was obtained for a
system size of L = 128 rungs, with very minor variations

as compared to L = 64, as seen in Fig. 2(a-c). For clarity,
we only show left end, center, and right end of the ladder,
with the intermediate regions cropped as indicated with the
lower axis sets. This demonstrates that the dimerization is
well-established and uniform along the entire system.

Figures 2(a,b) analyze the NN spin correlations along the
ladder, C(i,i+1)

mm′ ≡ 〈Sim·Si+1,m′〉, whereas Figure 2(c) shows
the perpendicular ones, i.e., within rungs. These interac-
tions are computed based on the actual sites (m=1, 2, 3), but
in Fig. 2(a,c) also in terms of the effective spin operator Si
(black line). By plotting data separately for even from odd
bonds in the system center of the ladders analyzed, dimeriza-
tion is absent if these curves lie on top of each other [e.g.,
Fig. 2(c)]. Dimerization develops where the curves split as in
Fig. 2(a), where Fig. 2(b) plots the actual difference. There-
fore for given parameter setting, dimerization starts around
J2 & J3 = 4 [cf. Fig. 2(a,b)]. It develops a pronounced max-
imum around J2 ∼ 4.3 [Fig. 2(b)] and drops again thereafter
up to J2 ∼ 4.6. The dimerization ‘bubble’ that opens between
even and odd bonds in Fig. 2(a) is absent for Fig. 2(c) which
analyzes the three bonds within a rung. The latter data is uni-
form when going from one rung to the next. Therefore dimer-
ization, and correspondingly spontaneous symmetry breaking,
only exist along the legs, but not within the rungs.

The dimerization observed in the spin-spin correlations for
J2 ∈ [4, 4.5] & J3, and therefore α ∈ [0, 0.5] & 0 goes hand
in hand with the appearance of a small but well-established
spin-gap ∆S . 0.15 as shown in Fig. 2(d). There by si-
multaneously targeting multiple lowest-energy states in var-
ious global SU(2) symmetry sectors, we find that both, the
singlet- and triplet gap is maximal for J2 ' 4.31 and is al-
ready well-converged to the aforementioned value for L = 64
(light colors) as compared to L = 128 (strong colors). While
the ground state evolves smoothly, the excited states feature
a sharp kink which suggests a crossing of state spaces. This
is natural bearing in mind that the many-body Hilbert space
can be partitioned into states that are either symmetric or an-
tisymmetric under rung inversion symmetry and where their
presence in the low-energy regime is expected to be reversed
for J2 significantly larger or smaller as compared J3.

The location of the maximal spin gap well coincides with
the crossing of weights for the symmetric and antisymmet-
ric rung-multiplet, as reflected by the crossing of the lines
in Fig. 2(c): that crossing exactly occurs at the point where
the symmetric and antisymmetric rung multiplet, |1/2〉+ and
|1/2〉−, gain equal weight, since with Eq. (5) for m 6= m′,
〈Sim · Si,m′〉 = −0.25 when 〈T zi 〉 = 0. As indicated with
Fig. 2(c), the crossing occurs at J2 ' 4.341, i.e., αDMRG

0 '
0.341 which thus slightly reduces the mean-field estimate for
α0 in Eq. (4). For J2 . 4.2 the gap diminishes and dissolves
within strong finite-size effects. The system appears critical
and non-symmetry broken for J2 . J3 = 4 [e.g. see cen-
ter region in upper panel of Fig. 3], even though based on the
DMRG data we cannot exclude that a small but finite gap per-
sists even for 1� (J2 < J3).

The situation for large J2 & 4.6 differs as compared to
the case of small J2 < J3 = 4. By looking at Fig. 2, one
notices two points: (i) the finite-size spacing in Fig. 2(d) is
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FIG. 2. Dimerization in the ladder model of Hamiltonian (1) in
the strong rung-coupling limit, having J=(1, J2, 4) vs. J2 based on
DMRG ground state simulations for arbitrary but fixed J2 forL = 64
(light thick lines) L = 128 (color matched thin dark lines). (a) NN
interaction energies along the chain in the system center, showing
even (odd) bonds around the system center separately as individual
curves in solid (dashed-dotted), respectively. The data includes NN
interaction in terms of the original spins w.r.t. to sites m = 1, 2, 3,
but also of Si ≡ Stot

i , as indicated with the legend. (b) Same as
(a), also sharing the same legend, but plotting the difference between
the even and odd bonds along the chain. The inset shows the average
over even and odd bonds, denoted by 〈〈..〉〉, vs. J2 for the 〈Si ·Si+1〉
data in (a). Here again the color matched black line refers to L =
128, whereas the lighter gray line (mostly underneath the black line)
refers to L = 64. The horizontal guide at the bottom of the inset
indicates the analytically known expectation value for a plain spin-
half Heisenberg chain, 1

4
− log(2) [cf. Eq. (4)]. (c) NN interaction

energies within a rung in the system center. Same analysis as in (a),
but here the data from even / odd rungs lies indistinguishably on top
of each other. (d) Targeting lowest-energy states in global SU(2) spin
sectors as indicated in the legend.

much smaller for large J2 & 4.6 as compared to J2 < 4,
and (ii) while the dimerization in Fig. 2(b) diminishes on the
actual legs of the ladder (m = 1, 2), the dimerization starts
to grow again for the center spins for J2 & 4.6 (see also
lower snapshot in Fig. 3 for J2 = 5). Point (i) is fully con-
sistent with the earlier discussion that for α � −1 (α � 1),
which in the present case roughly corresponds to J2 . J3 = 4
(J2 & 4.6), respectively, the symmetric rung multiplet |1/2〉+
(or antisymmetric |1/2〉−) dominate the rung state space. This
is clearly visible in the upper as compared to the lower snap-
shot in Fig. 3: the upper snapshots ties in all three spins on a
rung based on antiferromagnetic correlations routed through
the center spin. In contrast, the lower snapshot directly cou-
ples the leg spins hence resulting in a dominant |1/2〉−, which
eventually results in these orbitals to be gapped out, akin to
a rung singlet phase in the plain Heisenberg ladder [31]. The
residual center spins, however, only experience a very weak
indirect coupling amongst each other via higher-order pertur-
bative processes. Their effective spin-spin interaction dimin-

FIG. 3. Snapshots of NN bond strength C(i,i′)
mm′ ≡ 〈Sim·Si′,m′〉

in the ladder model of Hamiltonian (1) for J=(1, J2, 4) [same as in
Fig. 2] with J2 as specified with the panel. The NN bond strength
is drawn to scale proportional to the bond width (see value for the
bond at the upper right of each panel for reference). The NN interac-
tions between center spins is shown semitransparent (light colors) to
indicate that no interactions are present in the Hamiltonian for these
bonds. All bonds are of the same color, and hence of the same nega-
tive sign, thus being antiferromagnetically correlated. The data is for
an L = 128 ladder, showing left boundary, center, and right bound-
ary, with the intermediate ranges cropped as indicated with each hor-
izontal axis.

ishes to zero for J2 � J3, in qualitative agreement with the
finite-size level spacing see in Fig. 2(d).

Point (ii) is a-priori unexpected. While all our DMRG data
is very well-converged to start with, e.g., even also for all
the L = 128 data the ground state energy is converged to
well below 10−6 relative accuracy, throughout, there is room
to believe that the eventual increase of the dimerization with
the center spins in Fig. 2(b) is a numerical artifact. Matter
of fact, the DMRG simulations for J2 & 4.6 were difficult
to start with in that random initialization also randomizes the
(very) weakly coupled center spins. This becomes very dif-
ficult to get rid of towards a more uniform ladder later, in
that DMRG may be stuck within certain initial antiferromag-
netic spin clusters with domain walls in between. Hence for
J2 & 4.6, the DMRG was (also) initialized with a drastically
down-sampled ground state obtained for smaller J2 ∼ 4.3.
For the larger J2 values where a randomized starting state
could still be afforded, the resulting data was overall consis-
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FIG. 4. Lowest-energy eigenstates of model (1) in the strong rung-
coupling regime except that here, in addition, also a NN Heisenberg
coupling J ′1 ∈ [0, 1] (horizontal axis) between the center spins was
turned on. Therefore J ′1 = 0 well corresponds to the projected 2-leg
ladder in Eq. (3b). J2 was tuned with J ′1 as indicated in the panel,
such that J ′1 = 1 corresponds to the uniform 3-leg model with the
projected low-energy orbital Hamiltonian as in Eq. (6). While the
full, i.e., non-projected rung state space was present in the simula-
tions, the total weight of the S = 3/2 multiplet was . 0.01, through-
out. Light colors are for L = 64, whereas darker colors are for
L = 128, similar to Fig. 2(d). States are color-coded according to
their global SU(2) spin sectors as indicated in the legend.

tent. Nevertheless, as seen from Fig. 2(b), the L = 64 shows
a systematically smaller dimerization for J2 & 5 which may
be attributed to the fact the L = 64 data is still overall sys-
tematically somewhat better converged than L = 128. So one
may take this as a first indication that the dimerization seen
with the center spins for large J2 shows a tendency to become
smaller or even diminish altogether. Besides, the data for large
J2 also shows some minor irregular, noisy behavior vs. J2

for either system length L. This is mainly also attributed to
the quick decoupling of the center spins with increasing J2.
For similar reasons, the dimerization on the center spins may
also be strongly influenced still by the presence of the open
boundaries. The precise fate of the dimerization for large J2

therefore remains open, but there is room to believe that it di-
minishes for large J2 also for the center spins eventually. In
this sense, in what follows we only refer to the intermediate
range J2 ∼ J3 + [0, 0.5] with J3 � J1 = 1 as the (clearly)
dimerized regime with the precise boundaries of this phase
left for future studies.

The averaged correlations 〈〈Si ·Si+1〉〉 including both, even
and odd bonds is shown in the inset of Fig. 2(b). For J2 far
detuned from J3 = 4, this approaches the analytical value
known for the plain spin-half Heisenberg chain indicated by
the horizontal line. This clearly supports the overall picture
that in the strong rung-coupling limit, the system effectively
reduces to a plain spin-half Heisenberg chain, either in the
symmetric or antisymmetric rung multiplet, |1/2〉+ or |1/2〉−,
for J2 . J3 or J2 & J3 + 0.6, respectively.

C. Connection to dimerized regime in 3-leg tube

The model of interest in this work is the 2-leg ladder in
Eq. (1), or its projected version in Eq. (3). Nevertheless, in the
dimerized regime as in the center snapshot in Fig. 3, the center
spins virtually correlate the same way as the leg spins, despite
that there is no direct coupling in between the center spins in
the Hamiltonian at all [hence these bonds were depicted in
semitransparent (light) colors]. Based on this, one may sus-
pect that the dimerized phase persists even if a NN coupling
is explicitly turned on also in between the center spins in the
Hamiltonian. The resulting projected model results in the al-
tered orbital Hamiltonian (6).

Figure 4 tracks the spin gap while turning on an explicit
NN coupling J ′1 in between center spins, starting around the
maximal spin gap in the 2-leg model at J = [1, 4.3, 4] at
J ′1 = 0 [cf. Fig. 2]. Because the 3-leg Hamiltonian in (6)
has no linear offset to the orbital magnetic field as discussed
with Eq. (4), at the same time as turning on J ′1, J2 is tuned
linearly towards J3, i.e., α = 0, as indicated with Fig. 4. With
this, J ′1 = 1 = J1 corresponds to 3-leg ‘tube’ [10–12] with
three equivalent legs, having J = [1, 4, 4]. As evident from
Fig. 4, the spin gap never closes, it even gets enhanced as J ′1 is
turned on. Hence the dimerization of the 3-leg tube observed
in Ref. 11 has the same physical character as the dimerized
phase observed for the 2-leg model here. Ref. 11 analyzed the
3-leg tube for any J2 = J3 relative to J1, which in the present
case translates to αeff ≡ α − α0 = 0. They argued that this
model is always gapped and dimerized due to spin-frustration.
Therefore Fig. 4 shows that the dimerized regime seen in our
model has the same physical origin, namely a frustration in-
duced spin-Peierls transition [32]. As we will demonstrate be-
low, the spin-Peierls character of the dimerized phase is sup-
ported by the analytic calculations.

D. Dynamical properties and crossover of spinon continua

The dynamical structure factor (DSF) examines the ener-
getics of spin-spin correlations. Here we use it in the form,

Smm′(k, ω) =
∑
i

e−ikxi

∫
dt eiωt Smm′(xi, t) , (7)

where we only consider momentum k along the ladder, yet
site-specific, and hence with real-space resolution along the
‘vertical’ direction within a rung. Here xi refers to horizontal
distance along the ladder using unit lattice spacing, xi = i,
with m and m′ the local site indices within a rung, having
Smm′(xi, t) ≡

〈
Sim(t) · S0m′(0)

〉
with site spins Sim as in

Eq. (1) with SU(2) spin symmetry intact. Here S0m′ refers
to site m′ on a reference rung at location i′ = 0. In the
present DMRG context, using open BCs, this always refers
to a site on the center rung of the system. The DMRG pre-
scription is then as follows: one performs real-time evolution
[33, 34], followed by double-Fourier transforms. To be spe-
cific, we subtract a static long-time background, perform zero
padding in real space, followed by Fourier transform to mo-
mentum space. After careful linear prediction [35] of S(k, t)
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in time, the system is then also Fourier transformed to fre-
quency space, followed by a final weak broadening to remove
artificial speckles from pushing linear prediction. We em-
phasize that linear prediction in momentum space, and thus
mixed coordinates (k, t) is crucial, since for fixed k signifi-
cantly fewer frequencies occur within S(k, t). This is in stark
contrast to S(x, t) which has all frequencies from the entire
DSF spectrum present which then results in delayed, light-
cone like dynamics that is ill-suited for linear prediction.

The DSF obeys simple spectral sum rules. Frequency-
integration results in the static spin-spin correlation function,
whereas the fully integrated weight yields

S(S + 1) Imm′ ≡
∫

dk
2π

∫
dω
2π Smm′(k, ω) (8)

= Smm′(xi = 0, t = 0) =
〈
S0m · S0m′

〉
.

Here the prefactor was chosen such that in the present context
of S = 1/2 sites one obtains the normalized total weight,

Itot ≡
∑
mm′

Im′m = 4
3

〈
Stot

0 · Stot
0

〉
≡ 4

3

〈
S2

0

〉
& 1. (9)

In the strong rung-coupling regime, where the local S = 3/2
multiplet is effectively projected out, we have Itot ' 1, which
is assumed in the remainder of this section. The upper limit
given by Itot = 5 holds for the hypothetical case where the
S = 3/2 rung multiplet dominates. In the weak rung-coupling
regime discussed later, we will encounter 1 ≤ Itot . 2.

In the presence of dimerization, the structure factor as de-
fined in Eq. (7) becomes complex [while Smm′(x, ω) is still
real because the ground state can be taken real for our model,
the Fourier transform in real space becomes complex due to
the broken inversion symmetry]. In this case, we take the real
part of the r.h.s. of Eq. (7) which in the presence of dimer-
ization is equivalent to symmetrization of the structure factor
w.r.t. the location of site i′ ∈ {0, 1}. The resulting DSF then
is again symmetric for k → −k, and also conforms to the
standard momentum space definition and experimentally ac-
cessible DSF.

Within DMRG we start from real space, and hence full real-
space resolution. We explicitly compute

〈
Sim(t)·S0m′(0)

〉
=

〈0|Sim ·
[
e−i(H−E0)

(
S0m′ |0〉

)]
. Withm,m′, i′ = 0 fixed, the

data is computed from real-time evolution and collected vs. i.
For simplicity, we sum the resulting data over the site index
m. This corresponds to the spectral data at ky = 0 w.r.t. m,
which is equivalent to using Si. The resulting DSF

Sm′(k, ω) ≡
∑
m

Smm′(k, ω) (10)

then refers to the spectral data resulting out of having acted
with the initial spin operator on rung site m′. Since by the
preserved mirror symmetry in the ground state calculations it
follows S1 = S2, it suffices to compute S1(k, ω) and S3(k, ω)
[e.g. as shown in Fig. 5]. While much of Sm′(k, ω) is domi-
nated by m = m′ which results in a positive spectral density,
it also contains off-diagonal contribution m 6= m′. There-
fore if the local spin excitation induced at time t = 0 pref-
erentially propagates to a different rung site m 6= m′, then

due to the underlying antiferromagnetic NN correlation, the
spectral density of the DSF can turn negative for a particu-
lar range in momentum and frequency space. By properly
combining S1(k, ω) and S3(k, ω), however, the weighted av-
erage 2S1(k, ω)+S3(k, ω) again must result in a non-negative
spectral density throughout, as this represents the DSF now at
ky = 0 for both, m and m′ which is equivalent to computing
the DSF based on

〈
Si(t) ·S0(0)

〉
. Similarly, the respective to-

tal integrated spectral density is given by Itot ≡ 2I1 + I3 ' 1
[cf. Eq. (9)], which is well obeyed in the actual numerical data
in the strong rung-coupling regime [cf. Fig. 5].

All DSF spectra presented here for the limit of large
rung couplings are computed with the projected Hamiltoni-
ans which have the S=3/2 rung state space removed, as this
considerably speeds up calculations. This is justified given
that the total weight of the S=3/2 multiplet states is typically
below 1% in ground state calculations. Hence we only expect
minor effects as a result of this simplification here, as verified
in exemplary DSF calculations with the full rung state space
kept (data not shown). Since the S=3/2 multiplet lies at high
energy from the very outset here, having ∆0 & 5, this simply
means that faint spinon continua at high energy are absent,
thus only marginally affecting spectral sum-rules, while at the
same time the DSF in the low-energy regime is well captured.
Overall, the DSF results here are consistent with the ground-
state DMRG analysis above based on the unprojected Hamil-
tonians, but greatly compliment these by adding a dynamical
perspective.

Our results for the DSF in the strong coupling regime for
the two-leg ladder (3) are summarized in Fig. 5, where left
(right) panels show the DSF Sm′(k, ω) form′ = 1 (3), respec-
tively. As explained above, the DSF shown can turn negative,
but the combined total DSF, 2S1(k, ω)+S3(k, ω), is necessar-
ily positive, throughout, as verified (not shown). As a demon-
stration of the latter, we show that the total spectral density is
well-normalized, with well-obeyed spectral sum rule Itot ' 1
to good numerical accuracy, throughout.

The DSF for J2 = 2 [row Fig. 5(a)] shows the behavior of
a nearly pristine spin-half Heisenberg chain. Only a very faint
higher-lying band is visible around ω ∼ 5 in S3 (right panel).
The clearly visible, dominant part of the spinon continuum is
constrained within an upper bound of ω . 2.9 (dotted hori-
zontal line) which is already within 4% of the expected value
of (8/9)π for the limit 1� J2 � J3.

The very faint higher-lying band around ω ∼ 5 in Fig. 5(a)
actually relates to the state space of the symmetric rung multi-
plet |1/2〉−. Having the effective orbital magnetic field α−α0,
its ‘Zeeman’ splitting for Fig. 5(a) is 2|α − α0| ≈ 4.6 which,
indeed, coincides with the onset of the higher-lying band.
Conversely, the low-energy spinon continuum originates from
the symmetric rung multiplets |1/2〉+. Now increasing J2 (go-
ing to lower rows in Fig. 5), the faint |1/2〉− continuum at
high energies moves downward in energy, such that it starts
overlapping and interfering with the low-energy |1/2〉+ spinon
continuum.

Their different origin also qualitatively translates into dif-
ferent signs in the DSF S3(k, ω), and hence to different colors
in the right panels of Fig. 5. There the |1/2〉− spinon con-
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FIG. 5. Dynamical structure factor for the 2-leg ladder (3) in the
strong rung-coupling regime as in Fig. 2, having J=[1, J2, 4] for var-
ious J2 is indicated with the left panels top to bottom. The panel
labels (a-f) each refer to a row which shares the same J2. Left panels
show S1(k, ω), whereas the right panels show S3(k, ω) with the ini-
tial spin operator acting on site m′ = 1 or 3, respectively (see text).
The corresponding total integrated spectral density are also specified
(I1 and I3), as well as the resulting total Itot = 2I1 + I3. The col-
orbar at the top holds for all panels. The spectral data is smoothened
with δω = 0.05 to remove speckles from linear prediction, except
for J2 = 4.3, which only uses half that value and which also shows a
guide for the approximate spin gap at ω = 0.15 (dotted line). Panels
(a) show a guide at ω = 2.9 which approximates the upper bound of
the dominant spinon band. The weak superimposed wrinkly features
as in (f) are attributed to state space truncation within the DMRG,
and hence a numerical artefact.

tinuum appears positive (red-ish), yet the |1/2〉+ spinon con-
tinuum appears negative (blue-ish). Hence by following the
color coding in the right panels in Fig. 5 top to bottom, one
can observe with increasing J2 towards J3 and above, that the
the original |1/2〉− spinon continuum at high energies crosses

over with the |1/2〉+ spinon continuum at low energies, which
itself then starts lifting off to higher energies. For the case
where the orbital magnetic field is approximately zero, e.g. at
J2 = 4.3 in Fig. 5(e), both spinon sectors show a small but
finite gap due to dimerization, with the earlier estimate for the
spin gap ∆S ' 0.15 marked by the vertical dotted line, and
thus consistent with the dynamical spectral data. This sce-
nario of crossing state spaces is also supported by analyzing
ground state entanglement spectra vs. J2 (not shown).

For the largest J2 = 4.5 [Fig. 5], a different effective
spin-half Heisenberg continuum has developed at low ener-
gies (dark red feature at the bottom right panel). This newly
formed spinon continuum, however, now belongs to the anti-
symmetric rung-multiplet, and hence to the nearly decoupled
center spins. Its bandwidth does not saturate, but will dimin-
ish to zero when J2 is taken to J2 � J3. Since the leg spins
are gapped out, this low-energy spinon continuum lives pre-
dominantly on the center spins. Hence S3 is dominated by
m = m′ = 3 [cf. Eq. (10)] which is thus expected positive
(red-ish in color), indeed.

E. Mean-field theory for dimerized phase

If translational invariance was not spontaneously broken,
then a mean field arguments suggest that the low lying ex-
citations in the spin sector are as in the uniform Heisenberg
model. It is quantum critical and hence is susceptible to per-
turbations. The most likely relevant operator is the staggered
energy density. This emerges as a result of spontaneous break-
ing of the translational symmetry resulting in dimerization. In
the mean field scheme the staggered energy density in the spin
sector emerges simultaneously with the staggered component
of energy density in the orbital sector. The spin sector will
certainly lose energy by the dimerization. Therefore one has
to look for a balance to establish whether or not the dimerized
phase gains the overall lower energy.

In order to develop a mean field theory for the dimerized
phase, it is convenient to use Jordan-Wigner transformation in
the orbital (τ ) sector. Then with J1 = 1, Eq. (3) becomes

Heff
α =

∑
i

(
8
9 (Si · Si+1)⊗ T(2)

i,i+1 + iαχiρi

)
, (11)

T(2)
i,i+1 = 1

4+ i
2 (χiρi+χi+1ρi+1)+ 3i

2 χiρi+1︸ ︷︷ ︸
≡T̃(2)

i,i+1

−χiρiχi+1ρi+1,

where χi= 1√
2
(ci+c

†
i ) and ρi= i√

2
(c†i−ci) are Majorana and

thus real fermions that are subject to the anticommutation re-
lations {χi, χj} = {ρi, ρj} = δij . Due to reality of the Ma-
jorana fermions, Hamiltonian (3) is Hermitian as it stands, yet
may be symmetrized via Heff

α = 1
2 (Heff

α +Heff
α
†). To simplify

matters we will omit the four-fermion (last) term above that
corresponds to the T zT z term in Eq. (3b), as we do not aim
for precision here, leaving this to the numerical calculations.
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This results in the mean field approximation of Eq. (11),

HMF ≡
∑
i

βi (Si · Si+1) + i
∑
i

χi
(
− 3αi

2 ρi+1+hρi
)

︸ ︷︷ ︸
≡Hτ

(12a)

having

αi ≡ − 8
9 〈Si · Si+1〉 ≡α0 [1 + δ(−1)i] (12b)

βi ≡ 8
9

〈
T̃(2)
i,i+1

〉
≡β0 [1 + γ(−1)i] (12c)

h ≡ α− 1
2 (αi−1 + αi) =α− α0 (12d)

with α0 ≈ 0.394 [cf. Eq. (4)]. Here δ and γ are additional
parameters to describe the strength of dimerization in the spin
and orbital sector, respectively.

Further progress can be made assuming that the result-
ing spectral gap is small in comparison with the band width
which, as we will see, is consistent with the numerical cal-
culations. Under this assumption we can bosonize the spin
part of (11). The uniform part of the Heisenberg Hamilto-
nian becomes the Gaussian model and the staggered part is
(−1)i (Si · Sn+1) = A cos(

√
2πΦ) where one can conclude

from Ref. 36 that coefficient A ∼ 1. Then we obtain the fol-
lowing sine-Gordon Lagrangian:

LMF
s =

∫
dx
[

1
2v (∂τΦ)2 + v

2 (∂xΦ)2 − m2
0

2π cos(
√

2πΦ)
]
,(13)

where v = β0π and m2
0 = 2πAγ. This sine-Gordon model

has hidden SU(2) symmetry, its excitations are massive and
consist of one massive triplet (soliton, antisoliton and the first
breather) with mass mt ≈ 0.893m

4/3
0 as can be extracted

from [37], and the second breather with mass
√

3mt. Then
we have

δ ∼ 〈cos(
√

2πΦ)〉 ≈ 0.163
√
mt = 0.154 (Aγ)1/3 . (14)

Next we diagonalize the τ -part of the Hamiltonian where we
also aim to obtain a relation between the dimerization param-
eters δ and γ. In momentum space with a 2-site unit cell, the
Hamiltonian assumes the matrix form,

Hτ =
∑
k>0

Ψ†(k)Hτ (k) Ψ(k), (15)

Hτ (k) = 3iα0

4


0 h̃ 0 (1 + δ)

−h̃ 0 (1− δ)e−ik 0

0 −(1− δ)eik 0 h̃

−(1 + δ) 0 −h̃ 0


where h≡ 3α0

2 h̃ and ΨT=((χ, ρ)A,k(χ, ρ)B,k). Its eigenval-
ues ε(k) ≡ 3α0

4 ε̃(k) out of det(Hτ − ε) = 0 are given by

ε̃2 = 1 + δ2 + h̃2 ± 2δk , (16)

with δ2
k ≡ δ2 + h̃2

[
1 − (1 − δ2) sin2(k2 )

]
. The dimerization

δ shifts the critical field and renormalizes the velocity, as seen
by expanding around small k,

ε̃2 '
(

1±
√
δ2 + h̃2

)2

∓ (1−δ2)h̃2

4
√
δ2+h̃2

k2 (17)
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FIG. 6. The dimensionless function B(h̃) from Eq. (19b). Dashed
gray lines indicate asymptotic behavior. The inset shows a weak non-
analyticity at h̃ = 1 resulting in a vertical slope in main panel.

Now by making use of the Hellmann-Feynman theorem, we
also have from Eqs. (12) above,

∂
∂δ 〈Hτ 〉 = 〈∂Hτ∂δ 〉 = −α0

∑
i

(−1)i 3i
2 〈χiρi+1〉

= −α0
N
2

〈
T̃(2)

2,3 − T̃(2)
1,2

〉︸ ︷︷ ︸
=

9
8 (β2−β1)

= − 9N
8 α0β0 γ . (18)

Here in the orbital sector, δ is considered an external parame-
ter that gives rise to a finite orbital dimerization γ. Therefore,

γ = 8
9α0β0

(
− 1
N

∂
∂δ 〈Hτ 〉

)
= 1

9α0β0π
∂
∂δ

∞∫
−∞

dε

π∫
0

dk
2π ln det

[
Hτ (k)− iε

]
≡ B(h̃)

6β0
δ (19a)

where

B(h̃) ≡
π∫

0

2dk
π

∑
σ=±1

1+σ
1+h̃2 sin2(k/2)

h̃| cos(k/2)|(
1+h̃2+2σh̃| cos

k
2 |
)1/2 ≥ 0 , (19b)

where we expanded to linear order around δ=0. With Eq. (16),
〈Hτ 〉 is an even function in δ. Therefore, γ(δ) is necessar-
ily odd and hence, to lowest order, linear in δ. Therefore it
also holds B(h̃) ∝ − ∂2

∂δ2 〈Hτ 〉. With h acting like an exter-
nal magnetic field in the orbital sector, Eq. (19b) yields a lin-
ear relationship between the dimerization parameters γ and δ.
Matching this with the earlier relation in Eq. (14), γ ∝ δ3, we
get two solutions, (i) the non-dimerized phase at γ = δ = 0,
as well as (ii) the non-trivial dimerized solution where with
(Aγ)2/3 = Aγ/(Aγ)1/3 ' 0.154A · γ/δ, i.e.,

(Aγ)2/3 = 0.154 A
6β0

B( 2h
3α0

) (20)



10

As seen in the numerical evaluation of the function B(h̃) in
Fig. 6, it vanishes quartically at h̃ = 0, has a non-analyticity
with vertical slope at h̃ = 1, followed by a maximum at h̃c ∼
1.35, and then for large h̃ decays like 2/h̃. Hence there is
an area of the phase diagram where the assumption γ � 1 is
valid, and so the current calculation is self-consistent.

Having B(h̃) ∼ − 1
δ
∂
∂δ 〈Hτ 〉 > 0, it follows that an orbital

dimerization pattern that is aligned with the dimerization in
the spin sector (in the sense that γ and δ have the same sign),
this allows the orbital sector to lower its energy. Hence we
conclude that the system favors dimerization and in the strong
coupling limit a self-consistent dimerized solution always ex-
ists, at least for these somewhat simplified calculations with
the T zT z term omitted. This conclusion is consistent with
our DMRG data which shows a noticeable dimerization in the
vicinity of |h| � 1 [e.g. see Fig. 3].

IV. THE LIMIT OF WEAK RUNG EXCHANGE

In the limit of weak rung couplings, the full state space of
the rungs needs to be included. Specifically, the S = 3/2 sym-
metry sector can no longer be simply integrated out. In this
section, we start with the theoretical description, followed by
DMRG simulations of the dynamical structure factor. The re-
sults are mutually consistent. In contrast to the strong rung-
coupling regime above, we do not find any indication for
dimerization here. Instead, we find a low-energy coherent
branch. Consequently, there needs to be a quantum phase tran-
sition when decreasing J2, J3 � 1 to small values J2, J3 < 1,
the precise determination of which is left for future studies.
By comparison, it may be noted that a fermionic model on the
same lattice as in Fig. 1 in the weak rung-coupling regime also
features flat bands that are predominantly associated with the
weakly coupled center spins.

A. Field theoretic approach

If the interchain exchange interactions are small, J2, J3 �
J1 = 1 we can use the continuum limit description. In this
limit the chains are described by the critical SU1(2) WZNW
theories and the interchain interaction and the interaction with
the central spins are perturbations to this critical model. Both
perturbations are relevant, but the interaction with the central
spins is more relevant since it has scaling dimension 1/2 and
the interchain coupling of the staggered magnetizations has
dimension 1. We will consider the case when the interchain
exchange is zero first.

Our derivation is a strict generalization of the one for a sin-
gle chain coupled to dangling spins presented in [38]. We will
reproduce it below with the appropriate modifications. It is the
most convenient to combine the path integral representation
for the middle spins with the field theory description for the
legs. In this representation, the middle spins are replaced as
S0,j = S0Nj , where Nj is a unit vector field with the Berry
phase action. In the current context S0=1/2, but we prefer

to keep it arbitrary for the time being. As far as the Heisen-
berg chains are concerned, at energies � 1 we can use the
field theory description, which is given by the SU1(2) Wess-
Zumino-Novikov-Witten (WZNW) theory [39, 40]. The re-
sulting action for energies� 1 is given by,

S =
∑
j

S0A[Nj ] +W [g1] +W [g2]

+iγ
∑
j

(−1)j
∑
a=1,2

∫
dτNjTr[~σ(g+

a − ga)], (21)

where S0 = S0N, N2 = 1, ga(τ, x) are the SU(2) matrix
fields, and W [g] is the action of the SU1(2) WZNW theory,
A[N] is the Berry phase and γ ∼ S0J3. The Heisenberg spins
are related to the WZNW fields,

Sj,a = i
2πTr(~σga∂xg

+
a ) + i(−1)jCTr[~σ(ga − g+

a )], (22)

where C is a nonuniversal amplitude. The WZNW model
is a critical theory with a linear excitation spectrum, ω =
v|k|, v = πJ/2.

In the interaction term in (21) we kept only the most rele-
vant term, which describes the interaction of the central spins
with the staggered magnetization of the Heisenberg chains.
This action is not yet what we need since the central spin vari-
ables remain lattice ones. In order to obtain the continuum
limit, we have to integrate out the fast components of the cen-
tral spins. We assume that at low energies these spins have a
short range antiferromagnetic order, so we can write,

Nj = m(x) + (−1)j(1−m2)1/2n(x), x = a0j, (23)

where n2 = 1 and |m| � 1. The validity of this assump-
tion is justified by the final result which demonstrates that the
correlation length of the middle spins is much larger than the
lattice constant. Substituting this into (21) and following the
well known procedure [40, 41], we obtain

S =

∫
dτdx

{
iS0

2

(
n[∂τn× ∂xn]

)
+ iS0(m[n× ∂τn])

+iγ(1−m2)1/2 Tr
∑
a

[(~σn)(ga − g+
a )]
}

+W [g1] +W [g2]. (24)

Now notice that G = i(~σn) is an SU(2) matrix. Hence, ha =
gaG

+ is also an SU(2) matrix and we can use the identity [42],

W [hG] = W [h] +W [G] +

∫
dτdx
2π Tr(h+∂hG∂̄G+) (25)

with ∂, ∂̄ = 1
2 (∂τ ∓ iv∂x), so that the action (24) becomes

S = Smass+Sm+Sn +
∑
a

∫
dτdx
2π Tr(h+

a ∂haG∂̄G
+) (26)

where

Smass = W [h1] +W [h2] + γ
∑
a

∫
dτdxTr(ha + h+

a ) (27)

Sm =

∫
dτdx

{
D
2 m

2 + iS0(m[n× ∂τn])
}

(28)

Sn = 2W [i(~σn)] + S0(top-term) (29)

Stop =

∫
dτdx i

2

(
n[∂τn× ∂xn]

)
, (30)
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having

D = γ
∑
a

〈Tr(ha + h+
a )〉 ∼ γ4/3. (31)

The latter estimate follows from the fact that h-matrix oper-
ator in the SU1(2) WZNW model has scaling dimension 1/2.
In a (1+1)-dimensional critical theory, a relevant perturbation
with a scaling dimension d and coupling constant λ generates
a spectral gap, Λ ∼ λ1/(2−d). Consequently, the perturbation
itself acquires a vacuum expectation value,∼ Λd ∼ λd/(2−d),
giving rise to (31).

Integrating over m and taking into account that

W [i(~σn)] = 1
2π

∫
dτdx[v−1(∂τn)2 + v(∂xn)2] + 1

2Stop,

(32)

we obtain the effective Lagrangian density for the slow field
n:

L = 1
2

(S2
0

D + 1
πv

)
(∂τn)2 + v

2π (∂xn)2 + iS0

2

(
n[∂τn× ∂xn]

)
(33)

plus the action for the massive part for each a = 1, 2:

Smass = W [h] + γ

∫
dτdxTr(h+ h+)

+

∫
dτdxTr(JL[n× ∂̄n]). (34)

This theory without the last term is, in fact, equivalent to
the famous sine-Gordon model at the special value of the
coupling constant β2 = 2π. Indeed, the SU1(2) WZNW
model is equivalent to the Gaussian theory and Tr(h+ h+) ∼
cos(
√

2πφ) such that

W [h] + γ

∫
dτdxTr(h+ h+)

=

∫
dτdx

[
1
2 (∂µφ)2 − γ̃ cos(

√
2πφ)

]
. (35)

This theory is massive and the spectrum consists of an SU(2)
triplet with mass M ∼ γ2/3 composed of sine-Gordon kink
and antikink excitations and the first breather, and the second
breather with mass

√
3M .

Note that the contribution to the topological term from (32)
shifts the coefficient by one which is equivalent to zero. The
mass gap Λ serves as the ultraviolet cut-off for the sigma
model (33). The corrections to the sigma model generated
by the last term in (34) carry higher power of gradients of the
n-field and therefore can be discarded for momenta < Λv−1.

For the case relevant to this paper, the S0=1/2 sigma model
(33) has a gapless spectrum in the same universality class as
the S=1/2 Heisenberg chain [43]. This mode is slow since the
corresponding velocity is

c2 = v2

1+ πv
4D
. (36)

We emphasize that the above treatment is valid only in the re-
gion of energies much smaller than the excitation bandwidth.

As is evident from the DMRG calculations, indeed, for most
of the Brillouin zone the spectrum of the gapless mode is
rather flat which is consistent with the smallness of the ve-
locity (36). The linear spectrum holds only in the vicinity of
zero or π wave vectors. On the other hand models describing
rotated spins (34) have a spectrum with a gap ∆3

∼= J
2/3
3 (all

energies in units J1 = 1).
The spectral weight of the slow gapless mode is concen-

trated on the central spins which is fully consistent with the re-
sults of the DMRG calculations displayed in Fig. 8. As for the
spins located on the legs, they receive only a portion of it. The
spin-spin correlation functions of spins located on the legs of
the ladder are symmetric, and thus also in a phase with unbro-
ken Z2 symmetry. Substituting the expression for g = G+h
into (22) we get for the staggered magnetization,

Sstag ∼ n〈cos(
√

2πφ)〉+ [n×K] (37)

K =
(
sin(
√

2πφ), cos(
√

2πθ), sin(
√

2πθ)
)

(38)

where θ is the field dual to φ. The correlation functions of
the sine-Gordon model are well known, in particular, for this
value of β the lowest part of the spectral weight consists of a
coherent peak. As we can see from (37) in the spectral weight
of the leg spins this peak will be broadened by the emission of
soft excitations of the n-field. Such broadening cannot exceed
the bandwidth of these excitations. Such picture is consistent
with Fig. 8.

The solution presented above is valid when the spectral gap
of the “rotated” fields ∆3 ∼ J2/3

3 is much larger than the spec-
tral gap generated by the direct interchain exchange, ∆2 ∼ J2,
i.e., 1� J

2/3
3 � J2 (all energies in units J1 = 1), and holds

only in the vicinity of the wave vectors 0 and π. where excita-
tions of the n field are gapless in agreement with the DMRG.
Matter of fact, the opposite case, ∆3 � ∆2, would not qual-
itatively differ from this one. Indeed, the strong interchain
coupling would generate a spectral gap in the spin-half ladder.
Integrating out the gapped mode we would get an effective
exchange interaction between the central spins. These spins
than would form a spin S=1/2 Heisenberg chain with gapless
excitations. In both limits considered above the spin-spin cor-
relation functions of spins located on the legs of the ladder
are symmetric. From a topological perspective, the weak cou-
pling limit thus is also trivial with no hidden order.

B. Numerical analysis

In the weak rung-coupling regime, the legs of the ladder
in the model system (1) tend to be weakly coupled from a
static perspective. This is demonstrated via the static spin-
spin correlators C(i)

mm′≡〈Sim · Sim′〉 between the sites of the
same rung i = 0 in the system center in Fig. 7. For J2 =
J3 [Fig. 7(a)], the direct leg-spin correlation, C12 (blue line),
diminishes much faster than the correlation of the leg-spins
to the center spin (yellow line, same for both legs). For fixed
small but finite J2, tuning the coupling J3 [Fig. 7(b)] induces
a sign change of the direct leg correlation C12. Eventually,
it saturates to a finite negative value for J3 → 0 since J2 >
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FIG. 7. Static spin expectation values Cmm′ ≡ 〈Sim ·Sim′〉 within
the same rung i = 0 in the system center of L = 64 ladders with
open BC for (a) (J2=J3) ≤ J1 = 1, and (b) vs. J3 for fixed smaller
J2 � 1 as indicated in the legend. The color coding in the legend in
(a) holds for both panels.

0. At the same time, the correlation C13 to the center spin
(yellow line; same for both legs) needs to vanish there. Hence
the lines in Fig. 7(b) eventually cross for sufficiently small J3.

The dynamical behavior in the weak rung-coupling regime
is summarized in the DSF simulations presented in Fig. 8.
These calculations are considerably more demanding numer-
ically, since the full rung state space needs to be included.
Clearly, for J2, J3 . 1 the S=3/2 rung states are also expected
to pick up considerable weight, and hence cannot be ignored.
This is explicitly seen in Fig. 8 by having Itot > 1, with the
total weight in the S = 3/2 given by (Itot−1)/4 [cf. Eq. (9)].
Therefore the simulations here are constrained to shorter lad-
ders of length L = 64, except for row Fig. 8(f) which has
L = 128. The affordable time range prior to Fourier trans-
form is also more constrained which translates into less over-
all spectral resolution. With the help of linear prediction we
can sharpen certain physical features in the DSF, yet at the
price of also other ‘wrinkly’ artificial features. Neverthe-
less, we preferred smaller subsequent broadening (same as in
Fig. 5) over significant over-broadening of the data to com-
pletely smear out artifacts due to DMRG truncation. Also due
to the shorter system size, discretization artifacts are also seen
vs. momentum k. Bearing this in mind, we proceed to the
physical interpretation of the results.

Within our energy resolution, all spectra are gapless. The
low-energy regime of the DSF is dominated by a sharp coher-
ent branch below the spinon continuum. Its energy quickly di-
minishes with decreasing J2 ∼ J3 < 1, and develops a close
to flat dispersion over an extended momentum range [e.g., see
center rows in Fig. 5]. It is much sharper in energy, and does
not show the energy spread typically seen with spinon con-
tinua. In this sense, the weak rung-coupling regime is qualita-
tively different from the crossings of the two spinon continua
that was observed in the strong rung-coupling regime in Fig. 5.
Similar to the strong rung-coupling regime, however, the low-
energy branch here is also largely associated with the center
spins, as implied by the sign (color) in the spectral data in left
vs. right panels in Fig. 8. Specifically, we see a fainter neg-
ative (blue), yet a strong positive (dark-red) spectral weight
in the low energy branch in the right panels, which relates to

FIG. 8. Dynamical structure factor obtained via DMRG for the
2-leg ladder (1) in the intermediate to weak rung-coupling regime
for L=64 rungs [except for row (f) which has L=128]. The cou-
pling strength is specified with the panels (panel label and J hold per
row). Rows (a-c) have decreasing isotropic rung coupling J2 = J3.
Rows (c-e) have J2 < J3 � 1 with α = 0, α < 0, and α > 0,
respectively. The remainder of the rows have α > 0 then again with
increasing rung coupling. Exactly same analysis as in Fig. 5 other-
wise. In the present case, however, Itot > 1 indicates that there is
also a significant admixture of the S = 3/2 rung multiplet.

off-diagonal (m′ 6= 3) vs. diagonal (m′ = 3) correlations,
respectively.

The very flat branch close to zero energy as seen for
J2, J3 ∼ 0.2 in the middle panels of Fig. 8(c-e) nearly resem-
bles static scatterers. Due to frustration, and the spectral data
above, it can be argued that this is due to nearly decoupled
center spins. Conversely then, from an experimental point of
view, this coherent low-energy branch may be very difficult to
distinguish from the static background that arise from actual
impurities and imperfections in samples. In combination, it



13

may also give rise to spin freezing [13] with reference to the
magnetic moments on the center sites. Overall, the numerical
results presented here are in qualitative agreement with the an-
alytical discussion of the weak rung-coupling regime above.

V. CONCLUSIONS

We have studied the model of a spin S=1/2 Heisenberg lad-
der with trimer rungs in the antiferromagnetic regime. The
two legs of the ladder are coupled by a direct exchange, yet
also indirectly, via an additional center spin for each rung
which introduces frustration. Many results are consistent with
the general expectations. In particular, there is a significant
part of the phase diagram where the spectrum of the spin
excitations is gapless and critical belonging to the universal-
ity class of the spin S=1/2 Heisenberg antiferromagnet. The
novel feature is the presence of dimerization in the regime of
strong rung coupling. For reference, the model studied can be
considered as a version of a three-leg ladder with anisotropic
rung coupling and where the coupling along the third leg is
taken to zero. We numerically show that the dimerized phase

in our model smoothly connects to the dimerized phase that
has been previously reported on the isotropic three-leg lad-
der [11]. This provides support and further physical insight
into our findings, namely that the dimerization is driven by a
frustration-driven spin-Peierls transition [32].

In the regime of weak rung-coupling, we find a sharp co-
herent low-energy branch. It is largely associated with the
center spins which become nearly decoupled. This is consis-
tent with the experimental observation in the trimer magnet
Ba4Ir3O10 we started out from where the onset of AF order-
ing is deferred to extremely low temperatures as compared to
the estimated exchange energies [3]. Note that when return-
ing to the 2D hexagonal model system in Fig. 1(b), the center
spins in our quasi-1D reduction form an effective square lat-
tice where Néel order eventually may be expected.
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Appendix A: Matrix representation of many-body downfolding

Here we present a general method of many-body down-
folding in matrix representation. We show the method by
means of the specific example for the model Eq. (1). The ba-
sis set is given by the 23=8 states |Sz1Sz2Sz3 〉 ≡ |Sz1 〉|Sz2 〉|Sz3 〉
which form the direct product space of S1 ⊗ S2 ⊗ S3, where
Szm ∈ {↑, ↓} denote spin up and down in a spin-half state. The
orthonormal eigenvectors of Hrung

i are given by

|Ψ1〉 ≡ |12 ,
+1
2 〉

+ = 1√
6

[
|(↑↓ + ↓↑) ↑〉 − 2|↑↑↓〉

]
|Ψ2〉 ≡ |12 ,

−1
2 〉

+ = 1√
6

[
−|(↓↑ + ↑↓) ↓〉+ 2|↓↓↑〉

]
|Ψ3〉 ≡ |12 ,

+1
2 〉
− = 1√

2

∣∣(↑↓ − ↓↑) ↑〉
|Ψ4〉 ≡ |12 ,

−1
2 〉
− = 1√

2

∣∣(↓↑ − ↑↓) ↓〉
|Ψ5〉 ≡ |32 ,

+3
2 〉 = |↑↑↑〉

|Ψ6〉 ≡ |32 ,
+1
2 〉 = 1√

3

∣∣↑↑↓ + ↑↓↑ + ↓↑↑
〉

|Ψ7〉 ≡ |32 ,
−1
2 〉 = 1√

3

∣∣↓↓↑ + ↓↑↓ + ↑↓↓
〉

|Ψ8〉 ≡ |32 ,
−3
2 〉 = |↓↓↓〉 (A1)

where |1/2〉± are the low-energy doubly degenerate S = 1/2
multiplets with the eigenvalue of−∆0/2±αJ1/2, with ∆0 ≡
1
2 (J2 + 2J3). They are symmetric (+) or antisymmetric (−)
under rung exchange, i.e., exchange of sites m = 1, 2. They
merge into a four-fold degeneracy at α = 0. Otherwise, there
exists an “orbital” splitting of αJ1 ≡ J2−J3. The remain-
ing four states are the eigenvectors that form the high-energy
S = 3/2 multiplet with eigenvalue +∆0/2 which are symmet-
ric under rung exchange.

The excitation energy from the low-energy states to the
high-energy states is ∆(α) = ∆0 ± αJ1/2. For the low-
enough temperature T satisfying e−∆/T � 1 (i.e., vanish-
ing thermal population of the four high-energy states) and
∆/J � 1 (i.e., little quantum fluctuations between these
two groups), the high-energy states are irrelevant to the low-
energy physics. Therefore we project the Hamiltonian into the
space formed by the four low-energy states using the many-
body downfolding method [14–20] based on Hubbard oper-
ators [20]. For the Hamiltonian with spin only operators, it
is convenient to use the following matrix representation [18].
The eigenvectors in Eq. (A1) constitute the unitary transfor-
mation (also indicating the order of states to the left),

U =

↑↑↑
↑↑↓
↑↓↑
↑↓↓
↓↑↑
↓↑↓
↓↓↑
↓↓↓



0 0 0 0 1 0 0 0
−2√

6
0 0 0 0 1√

3
0 0

1√
6

0 1√
2

0 0 1√
3

0 0

0 −1√
6

0 1√
2

0 0 1√
3

0
1√
6

0 −1√
2

0 0 1√
3

0 0

0 −1√
6

0 −1√
2

0 0 1√
3

0

0 2√
6

0 0 0 0 1√
3

0

0 0 0 0 0 0 0 1


. (A2)

The projection for any operator Ô is done in the following pro-
cedure: PerformUT ÔU and retain the entries in the low-lying

4-dimensional Hilbert space as the zeroth-order approxima-
tion and/or use the canonical transformation to get the higher-
order terms [14–19]. The resulting 4× 4 matrices in the low-
energy regime can be conveniently described by introducing
two auxiliary spin S = 1/2 operators

Sa = 1
2σ

a ⊗ 1(2) (A3)

T a = 1(2) ⊗ 1
2τ

a (A4)

with σa and τa the Pauli matrices, having a ∈ {x, y, z}, and
1(2) the 2× 2 identity matrix. Assuming that σ represents the
fast index in σ ⊗ τ (aka., column major ordering), then given
the state ordering in Eq. (A1), the S operators are spin-like
because they operate within |Ψ1〉 and |Ψ2〉, or within |Ψ3〉 and
|Ψ4〉, referred to as orbital 1 or 2, respectively. Conversely, the
T operators connect these two “orbitals” split by the energy
αJ . Then, any projected operator Ô can be written in the basis
of the S and T operators,

Ôprojected = UT ÔU

= f(I,Sx,Sy,Sz, T x, T y, T z), (A5)

where I is the 4× 4 identity matrix.
Since the strengths of the zero- and first-order terms are

proportional to J and J2/∆, respectively, it suffices for
J/∆ � 1 to study the zeroth order, i.e., the plain projection
into the low-energy regime [18]. The projected inter-rung in-
teraction J terms in the zeroth-order approximation are given
in Eq. (3). They can be obtained by using the projected spin
operators in the zeroth-order approximation

Sa1 = 2
3 S

a
(

1
2I + T z +

√
3T x

)
,

Sa2 = 2
3 S

a
(

1
2I + T z −

√
3T x

)
, (A6)

Sa3 = 2
3 S

a
(

1
2I − 2T z

)
,

with a ∈ {x, y, z}. The spin operators Sa have the simple
interpretation, that they exactly represent the total rung spin,
i.e., S ≡ S1 + S2 + S3 ≡ Stot

rung. With the low-energy space
fully residing within the S = 1/2 symmetry sector, this is a
well-defined spin-half operator, indeed. However, we stress
that for the projection of the intra-rung and general physical
quantities, one should not use Eq. (A6). The correct way is to
follow Eqs. (A2) - (A5), i.e., first do the exact transformation
in the 8 × 8 space and then do the reduction as the very last
step. For example, in the correct way, S2

i,1 = 3
4 is correctly

reproduced in both the 8×8 and 4×4 matrix representations.
In contrast, S2

i,1 = 5
12I + 1

3T
z + 1√

3
T x in the said incorrect

way. This is a consequence of the special algebra of Hubbard
operators for on-site or intra-rung actions [20].

Appendix B: Mean field treatment with translational invariance
enforced

Here we show that a semi-mean-field (SMF) treatment as-
suming a uniform, i.e., non-dimerized state permits an entire
intermediate phase with 〈T x〉 6= 0 instead of a QCP at suffi-
ciently small α, as schematically depicted in Fig. 9. We stress,
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FIG. 9. Schematic phase diagram suggested by the SMF analysis vs.
J1/(J2+J3) and effective orbital field h̃ ∼ α ∼ J2−J3. The leg
spins are ferromagnetically (〈T z

i 〉 > 0) and antiferromagnetically
(〈T z

i 〉 < 0) aligned in the two phases α � −1 and α � +1, re-
spectively. They are separated by a phase with spontaneously broken
Z2 symmetry where 〈T x〉 6= 0.

however, that eventually this is not realized in the many-body
low-energy regime of the system, in that DMRG clearly finds
a gapped dimerized ground state, instead. Nevertheless, we
believe this still represents an interesting point of view, hence
we present this here in the appendix. To start with the SMF
treatment, we assume translational invariance, and perform a
mean-field decoupling of the spin from the orbital degrees of
freedom [cf. Eqs. (3)],

H̃ = H̃spin + H̃orb − Ẽ0 (B1)

where

H̃spin ≡
∑
i

J̃SSi · Si+1 (B2a)

H̃orb ≡
∑
i

(
−J̃T

(
T zi T zi+1 + 3T xi T xi+1

)
+ h̃T zi

)
(B2b)

Ẽ0 ≡ 8J1
9 N〈Si·Si+1〉〈T zi + T zi T zi+1 + 3T xi T xi+1〉 (B2c)

with the effective mean-field couplings

J̃S ≡ 8J1
9

〈
1
4 + T zi + T zi T zi+1 + 3T xi T xi+1

〉
≥ 0 (B3a)

J̃T ≡ − 8J1
9 〈Si · Si+1〉 = α0J1 > 0 (B3b)

h̃ ≡ J1

(
α+ 8

9 〈Si · Si+1〉︸ ︷︷ ︸
≡−α0

)
. (B3c)

Here Eq. (B2c) is just the mean-field reference energy, with
the various local expectation values assumed independent
of i = 1, . . . , N . The decoupled spin and orbital sectors,
Eq. (B2a) and Eq. (B2b), respectively, can be solved self-
consistently now given their respective quantum Hamiltoni-
ans (hence the terminology ‘semi-mean-field’). Having as-
sumed translational invariance, the spin Hamiltonian (B2a) is
always gapless. In contrast, for large |h̃|, the orbital Hamilto-
nian (B2b) is always gapped. Its ground state determines the
active orbital in the spin Hamiltonian (B2a).

The resulting schematic SMF phase diagram, assuming a
non-dimerized phase, is depicted in Fig. 9. We shall briefly
discuss its three phases. For the ground state of a spin-half
Heisenberg chain one has the exact result, 〈Si · Si+1〉 =
1
4 − ln 2 [27, 28]. Therefore assuming that the spin sector

is close to its ground state, one obtains α0 ≈ 0.394 for T = 0
[cf. Eq. (B3c)]. For the value α = α0 then, i.e., h̃ = 0, the
dominance of the symmetric or antisymmetric S = 1/2 rung
multiplet switch roles.

In the orbital sector, the Hamiltonian (B2b) has quantum
critical points in the same universality class as the quantum
Ising model with ferromagnetic interaction. The interaction
strength for the T xi T xi+1 term is three times as large as that
for the T zi T zi+1 term. In the continuum limit T z operator be-
comes a product of right and left moving Majorana fermions
and hence the term T zi T zi+1 ∼ ρiχiρi+1χi+1 ∼ ρ∂xρχ∂xχ
[cf. Eq. (11) in the main text] becomes highly irrelevant with
a scaling dimension of d = 4. In the absence of T zT z term,
the criterion for the emergence of the symmetry broken state
with finite 〈T z〉 can be estimated by [44]

∣∣ 2h̃
3J̃T

∣∣ = 2
3

∣∣α−α0

α0

∣∣ < 1, (B4)

given the critical field |h̃|cr ' (3J̃T )
2 [cf. Eq. (B2b)]. This cor-

responds to α ∈ α0

2 [−1, 5] ≈ [−0.197, 0.985]. The neglected
T zT z term is expected to shift these boundaries, as motivated
by a mean-field decoupling T z〈T z〉.

Right at h̃ = 0, the orbital Hamiltonian becomes a version
of XY model in zero magnetic field where exact results for the
magnetization are available: 〈T xi 〉 =

√
2

3 ≈ 0.471 [45]. The
state with a spontaneously broken Z2 symmetry can be under-
stood as the state where the center spins predominately form
singlets with a particular leg of the ladder which would trans-
late into an asymmetry of correlation functions that include
leg spins. When α increases, the system undergoes a phase
transition into the symmetric state with nonzero 〈T zi 〉 where
the above asymmetry disappears. For any finite temperature
T , the symmetry is restored by thermal average, i.e., having
〈T xi 〉 = 0, whereas 〈T zi 〉 is proportional to the effective field
when it is weak [44, 45]. As a result, it does not contain a
phase transition at finite temperature.

For large h̃ the orbitals become strongly polarized, as dis-
cussed in the main text. With 〈T zi 〉 ' ± 1

2 , the effective spin
coupling in Eq. (B3a) becomes J̃S ' 8J1

9 ( 2
4 ±

1
2 ), which thus

motivates the positive sign indicated with Eq. (B3a). For ex-
ample, for dominant J2, i.e., α � +1 with 〈T zi 〉 ' − 1

2 ,
the center spins become nearly decoupled, which thus cor-
responds to a spin-half Heisenberg chain with vanishing ef-
fective coupling J̃S ∼ 0 in the low-energy regime of the
system. Conversely, for dominant J3, i.e., α � −1 with
〈T zi 〉 ' + 1

2 , the low energy behavior is described by a sin-
gle effective Heisenberg chain with finite effective coupling
J̃S ' 8J

9 . Note that the same picture for large h̃, and hence
large α, already also applies in the original Hamiltonian (3) in
the main text, and hence is not constrained to the mean-field
analysis here.
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FIG. 10. Local DMRG expectation values as in Eqs. (C1) with
focus on the presence of a nematic phase for the full Hamiltonian (1)
for L = 64 and J = [1, J2, 4], as also analyzed in Fig. 2, having
S2 ≡ S1 + S2 + S3. Light colors use the full local spin operators
Sm, whereas strong colors use the projected spin operators Sm, as
reflected in Eqs. (C1). The ground state is the same in either case,
hence also includes the local S = 3/2 multiplet.

FIG. 11. Comparison of the orbital expectation value 〈T z
i 〉 vs. h̃

between DMRG and SMF: DMRG data as in Fig. 10, the exact mean-
field solution of Eq. (B3a) in the absence of the 〈T z

i 〉 term (i.e., the
Ising model in a transverse field [44]), and the self-consistent mean-
field theory for Eq. (B3a).

Appendix C: Absence of Z2 symmetry breaking in DMRG

In the strong coupling limit we have [cf. Eqs. (A6)]

Sm ≡ 〈Sm ·S〉i = 2s2

3

(
1
2 + 〈T zi 〉 ±

√
3〈T xi 〉

)
, (m = 1, 2)

S3 ≡ 〈S3 · S〉i = 2s2

3

(
1
2 − 2〈T zi 〉

)
, (C1)

where s2 is the spectral weight in the spin sector. Therefore
S1 can be negative only in the nematic phase, whereas S3 < 0
is permitted more generically, namely when 〈T z〉 > 1/4.

We evaluated the expectation values in Eq. (C1) using
DMRG, with the results summarized in Fig. 10. Given that
S1 and S2 stay positive, there is clearly no support for a ne-
matic phase. Besides, the data for S1 and S2 lies exactly on
top of each other, which thus also demonstrates that the rung
exchange symmetry is preserved. The local expectation value
S3 can become negative, but that simply reflects orbital polar-
ization. As already seen with Fig. 2 in the main text, dimer-
ization is only visible for expectation values that stretch along
the system. For expectation values within individual rungs,
this data is the same for even and odd rungs, i.e., does not dis-
play dimerization in itself. This also holds in the present case
for the data in Fig. 10.

Adding up the data, S1 + S2 + S3 = S2, this yields the
expectation value of the total spin operator (also labeled S2 in
Fig. 10) which is approximately constant, having S2 ≈ 0.75.
This demonstrates that the present parameter setting with
J3 = 4 is deep within the strong rung-coupling regime, in that
the local density matrix is overwhelmingly dominated by the
S = 1/2 multiplets. The S2 data in light color reaches slightly
above 0.75 which shows that it also includes a weak S = 3/2
component. The S2 data in strong color is slightly deficient of
0.75, because it refers to the projected spin operators.

Overall, our DMRG data here again finds no evidence for
the Z2-symmetry-broken phase with 〈T x〉 6= 0 near h̃ = 0, as
suggested by a semi-mean-field analysis on a uniform system.
Instead, bond dimerization is found. To evaluate what has
been missed in the SMF analysis assuming the translational
invariance, we compare thus obtained 〈T zi 〉 with the DMRG
result, as shown in Fig. 11. The vertical slopes that indicate
the phase boundaries of the intermediate Z2-broken phase in
the self-consistent SMF analysis, are entirely absent in the
DMRG data which evolves smoothly, throughout. The con-
siderably stronger 〈T zi 〉 values in the DMRG data near h̃ = 0
suggests that the semi-mean-field theory needs to allow for
bond dimerization, as discussed in the main text.
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