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The dimer Mott insulator κ-(BEDT-TTF)2Cu2(CN)3 can be tuned into metallic and supercon-
ducting states upon applying pressure of 1.5 kbar and more. We have performed dielectric measure-
ments (7.5 kHz to 5 MHz) on κ-(BEDT-TTF)2Cu2(CN)3 single crystals as a function of temperature
(down to T = 8 K) and pressure (up to p = 4.3 kbar). In addition to the relaxor-like dielectric
behavior seen below 50 K at p = 0, that moves toward lower temperatures with pressure, a second
peak emerges in ε1(T ) around T = 15 K. When approaching the insulator-metal boundary, this peak
diverges rapidly reaching ε1 ≈ 105. Our dynamical mean-field theory calculations substantiate that
the dielectric catastrophe at the Mott transition is not caused by closing the energy gap, but due
to the spatial coexistence of correlated metallic and insulating regions. We discuss the percolative
nature of the first-order Mott insulator-to-metal transition in all details.

PACS numbers: 71.30.+h, 74.70.Kn, 72.90.+y, 77.22.-d

I. INTRODUCTION AND MOTIVATION

The quasi two-dimensional organic charge-transfer
salts (BEDT-TTF)2X became model compounds for in-
vestigating the interplay of strongly correlated electrons,
reduced dimensionality, spin-charge interactions and or-
dering phenomena [1–4]. Their molecular composition
enables fine-tuning of physical properties by modifying
the donor molecules bis-ethylenedithio-tetrathiafulvalene
(BEDT-TTF), varying the monovalent anions X , or by
applying comparably low pressures – usually a few kbar
induce drastic changes [5]. The dimerized κ-phase com-
pounds have been established as prime examples for the
bandwidth-tuned Mott insulator-metal transition (IMT)
and the quantum critical region above [6–11].

Since two decades, the dimer Mott insulator κ-(BEDT-
TTF)2Cu2(CN)3 attracted most attention as it has been
considered the prime candidate for a quantum spin liq-
uid [17, 18]. The nature of the low-temperature spin state
remains subject of intense studies and controversial dis-
cussions [19, 20], fueled by the recent finding of a spin
gap [21]. The absence of long-range magnetic order even
at lowest temperatures provides the opportunity to in-
vestigate the genuine Mott transition [9, 10, 22], which
is solely driven by Coulomb interactions, without break-
ing any symmetry. Nevertheless, recent studies revealed
that for these layered BEDT-TTF compounds the lattice
properties play an important role – in addition to disor-
der – and the interaction with the anions can be decisive
[23–25].

Besides these fundamental issues, there are some more
peculiarities observed in κ-(BEDT-TTF)2Cu2(CN)3,
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FIG. 1. 3D plot of ε1(p, T, f = 380 kHz) and phase diagram of
κ-(BEDT-TTF)2Cu2(CN)3. Strikingly, the dielectric permit-
tivity is strongly enhanced at the first-order Mott transition
(blue line around 1.8 kbar and T < Tcrit ≃ 16 K), ascribed to
metal-insulator phase coexistence, as predicted by dynamical
mean-field theory [12]. Above Tcrit, the first-order IMT be-
comes a gradual crossover (quantum Widom line) [9, 10, 13].
A relaxor-ferroelectric response in ε1(T ) is observed in the
Mott-insulating phase (p < 1.5 kbar) [14, 15]. The green
circles represent the bifurcation temperature TB that indi-
cates a change in the relaxation mechanism as discussed in
Sec. IIIA 1. The black solid circles correspond to TFL [16].

which are far from being understood. Around T ≈ 6 K
the thermal expansion exhibits a pronounced anomaly
[26] with related features observed in specific heat [27],
thermal conductivity [28], ultrasound propagation [29],
magnetic susceptibility [30], and microwave dielectric
properties [31]. Here, we add another striking phe-
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FIG. 2. Temperature-dependent dielectric constant ε1(T ) of
κ-(BEDT-TTF)2Cu2(CN)3 at low pressure values (p = 0–
1.22 kbar) plotted for frequencies 7.5 kHz–5 MHz. (a) At
ambient pressure and T < 50 K, the dielectric permittivity
exhibits a relaxor-type ferroelectric behavior with a peak that
diminishes in amplitude and shifts to higher T as frequency
increases. (b-e) In addition, we identify another, shoulder-
like feature at lower temperature. While traces are revealed
around T = 15 K already at p = 0, it forms a second peak
with distinct temperature dependence with increasing pres-
sure. Note the different ordinates.

nomenology, presented in Fig. 1, namely a collossal en-
hancement of the dielectric permittivity at the Mott
IMT, reaching up to ε1(T, p) ≈ 105 at the lowest frequen-
cies (see Fig. 3). This ‘dielectric catastrophe’ is assigned
to phase coexistence of spatially separated metallic and
insulating regions at the first-order transition [16]. Note,
this feature is distinct from the relaxor-type ferroelec-
tric response (see Fig. 2) that was observed at ambient
pressure in the audio- and radio-frequency range below
T ≈ 50 K [14, 15]. Previous attempts to link the latter to
charge disproportionation within the dimers due to inter-
site Coulomb repulsion, dubbed quantum-electric dipole
or paired-electron crystal [32–35], could not be verified in
experiment as various spectroscopic methods have unan-
imously proven homogeneous charge distribution on the
molecules [36–41].
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FIG. 3. (a-c) The dielectric permittivity of κ-(BEDT-TTF)2-
Cu2(CN)3 is shown from f = 7.5 kHz to 5 MHz in the
coexistence regime between pressure values p = 1.45 and
2.23 kbar. A strongly frequency-dependent, colossal enhance-
ment of ε1(T ) occurs at low temperatures, which is a result
of spatial phase separation between metallic and insulating
regions upon the first-order Mott IMT. (d,e) ε1 acquires neg-
ative values for p ≥ 3.37 kbar indicating the onset of metallic
transport. Note the different ordinates in panels (d,e).

In order to motivate our detailed experimental inves-
tigations and analysis, theoretical calculations and dis-
cussions, let us first give an overview on the tempera-
ture-dependent dielectric response of κ-(BEDT-TTF)2-
Cu2(CN)3 in the various regimes [16]. In Fig. 2 we
plot the real part of the dielectric permittivity ε1(T )
for selected frequencies and pressures as indicated. At
p = 0 and low pressures, the T dependence of the per-
mittivity is dominated by a pronounced peak. The max-
imum exhibits the characteristic frequency dependence
of a relaxor ferroelectric and moves to lower tempera-
tures with increasing pressure, as indicated by the dot-
ted lines in Fig. 2(a-e). Most prominent, however, are
the dramatic changes of the dielectric response close to
the IMT (pIMT = 1.45 kbar) [9]. At low temperatures,
T < 20 K, the dielectric constant is strongly enhanced
up to 2.2 kbar and acquires a frequency-dependent am-
plitude even exceeding ε1 ≈ 105 at the lowest mea-
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sured frequency [Fig. 2(a-c)]. We ascribe this observa-
tion to a phase coexistence around the Mott IMT, where
metallic regions grow in an insulating matrix and even-
tually form percolating clusters through the sample. For
p ≥ 3.37 kbar [Fig. 2(d,e)], ε1 acquires large negative
values as metallic behavior sets in.
After explaining the experiments, we analyze our ob-

servations on the insulating phase in detail, followed by
the colossal permittivity enhancement in the transition
region. In a next step, we present our theoretical mod-
elling of the percolative Mott IMT, using a hybrid DMFT
approach. Finally our findings and new insight on the
Mott transition are discussed comprehensively.

II. EXPERIMENTAL DETAILS

We synthesized high-quality κ-(BEDT-TTF)2-
Cu2(CN)3 single crystals by standard electrochemical
synthesis [13, 42]; sample 1 was grown at the Universität
Stuttgart while sample 2 was prepared at Argonne
National Laboratory. In this study we measured the
complex electrical impedance as a function of pressure,
temperature and frequency in order to obtain the
complex conductivity σ̂ = σ1 + iσ2 or, equivalently, the
permittivity ε̂ = ε1 + iε2. To that end, the crystals
are contacted with thin gold wires that are attached
by carbon paste to opposite surfaces of a single crystal,
such that the measurements were performed out-of-plane
with E ⊥ bc. The experiments were carried out by
measuring through two contacts in a pseudo four-point
configuration [43] with an Agilent 4294 impedance
analyzer. To make sure that we operate in the Ohmic
regime a small voltage of 0.5 V was applied. In order
to characterize the crystals, we have measured the
low-frequency resistivity as a function of temperature
and pressure.
Our pressure-dependent dielectric experiments were

performed utilizing a piston-type pressure cell as de-
scribed in detail in Refs. 16 and 44. Using a self-made
electrical feedthrough for coaxial cables, we could reach
up to approximately 10 kbar. Daphne oil 7373 serves as
the liquid pressure-transmitting medium, because it has a
good hydrostaticity, is inert to molecular solids, and stays
fluid at 300 K for pressures applied in this study. An
InSb semiconductor pressure gauge with negligible pres-
sure gradient below T = 50 K was employed for in-situ

determination of the inherent pressure loss upon cooling.
As a consequence, in the temperature range of particular
interest here, the data are collected in the same pressure
cycles; this is important for comparison. Unless indi-
cated otherwise, throughout the manuscript we state the
pressure reading at the lowest temperature T = 10 K.
The pressure cell was cooled down in a custom-made

continuous-flow helium cryostat that allows us to reduce
the total cable length to 50 cm enabling reliable measure-
ments at frequencies up to 5 MHz. The compact cryostat
design results in a rather steep thermal gradient limiting

the lowest reachable temperature to about 8 K. We kept
the cooling rate below 0.4 K/min for all measurements
and observed no cooling-rate dependence. Since good
agreement between the results of both samples was ob-
tained, we present here the data of sample 2. The results
obtained on sample 1 are added in Appendix A.

III. RESULTS AND ANALYSIS

A. Dielectric response in the Mott insulating phase

At reduced temperatures the ambient-pressure dielec-
tric constant ε1(T ) of κ-(BEDT-TTF)2Cu2(CN)3 reveals
a peak, as first reported by Abdel-Jawad et al. [14] and
later confirmed by Pinterić and collaborators [15]; here,
we label this feature as high-temperature (HT) peak.
When probing with a frequency of f = 100 kHz, for in-
stance, the maximum appears at T = 28 K, in other
crystals up to 40 K, in agreement with previous reports.
The observed sample dependence [15] is confirmed by
disorder studies, which reveal a shift of the maximum
in ε1(T ) to lower temperatures upon x-ray irradiation
[45]. Fig. 2(a) illustrates how the maximum moves to
low temperatures when probed at smaller frequencies; at
the same time, however, it gets more pronounced. This
behavior resembles the well-known phenomenology of re-
laxor ferroelectrics [46].
A closer look reveals a shoulder-like feature around

T = 15 K, which we denote as low-temperature (LT)
mode; it evolves into a small second peak for frequencies
between f = 53 and 200 kHz. As pressure rises, this LT
mode becomes a well-defined peak, it grows in amplitude
and eventually dominates the spectrum at p = 0.86 kbar,
as seen in Fig. 2(c). Although the HT feature seems to
maintain its amplitude and width, it becomes secondary.
Both modes shift to lower temperatures with pressure
(cf. Fig. 7).
For a better understanding of the physical background,

we analyze the frequency-dependence of the dielectric
response, plotted in Fig. 4 for the example of T =
14 K and p = 0 kbar. We should note that even
at these low temperatures the resistivity of κ-(BEDT-
TTF)2Cu2(CN)3 remains at moderate values; implying
that the dc-conductivity σdc gives a considerable contri-
bution to the imaginary part of the permittivity. Fol-
lowing the common procedure, we subtract this part:
ε2(ω) = [σ1(ω)− σdc] /ωε0 [15, 47]. In Fig. 4 we can dis-
tinguish two relaxation modes as roll-offs in the real part
ε1(f) and broad maxima in the imaginary part ε2(f).
Hence we fit our data by the sum of two Cole-Cole modes:

ε̂(ω)− ε∞ =
∆εmode 1

1 + (iωτ1)1−α1

+
∆εmode 2

1 + (iωτ2)1−α2

, (1)

wherein τ1,2 are the relaxation times, ω = 2πf the angu-
lar frequency of the applied electric ac-field, (1−α1,2) are
real-valued and the parameters describing the symmet-
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ric broadening of the relaxation time distribution func-
tions, ∆εmode 1 and ∆εmode 2 are real-valued and denote
the dielectric strengths of the corresponding modes, with
∆εmode 1+∆εmode 2 = εstatic−ε∞, wherein εstatic and ε∞
are the real values for low and high frequencies, respec-
tively. Ambient-pressure studies [15] previously identi-
fied only a single mode; similar to the related compounds
κ-(BEDT-TTF)2Ag2(CN)3 [40].
The parameters obtained from fitting the ambient-

pressure data are plotted in Fig. 5 as a function of inverse
temperature. The strength of the first mode ∆εmode 1(T )
shows a peak around T = 22 K, resembling ε1(T ) for low
frequencies. The second contribution ∆εmode 2 is approx-
imately one order of magnitude smaller, but increases
monotonously upon cooling. With reducing the temper-
ature, 1−α1(T ) decreases and the relaxation time τ1(T )
increases, providing evidence for significant broadening
and slowing down of the dielectric relaxation; in relaxor
ferroelectrics this is usually ascribed to cooperative mo-
tion and glassy freezing [46]. Interestingly, we observe a
kink in τ1 and a concomitant slight increase of 1 − α1

around T = 20 K. For the second mode, τ2 becomes
continuously larger as the temperature is reduced, and
1−α2 decreases; again indicating that the corresponding
relaxation freezes out.

1. Analysis of Low-Frequency Mode 1

When turning to the pressure dependence, Fig. 6 dis-
plays the fit parameters corresponding to mode 1 as a
function of inverse temperature; the presentation is lim-
ited to the insulating state with p ≤ 1.2 kbar. The peak
in dielectric strength ∆εmode 1(T ) shifts to lower tem-
peratures and increases in amplitude as pressure is ap-
plied. This corresponds to the evolution of ε1(T ) plotted
in Fig. 2, where the appearance of the LT feature broad-

2

FIG. 4. The real and imaginary parts of the dielectric con-
stant of κ-(BEDT-TTF)2Cu2(CN)3, ε1(f) and ε2(f), as a
function of frequency for T = 14 K at ambient pressure. The
dashed lines represent two Cole-Cole modes; the full lines cor-
respond to their sum of both, according to Eq. (1).

2

 i

FIG. 5. Arrhenius plots of (a) the dielectric strength
∆εmode 1,2(T ), (b) the distribution of relaxation times 1 −

α(T ) and (c) the mean relaxation time τ (T ) for both modes
obtained from the fits of dielectric data of κ-(BEDT-TTF)2-
Cu2(CN)3 measured at ambient pressure. The solid purple
symbols refer to mode 1 while the open orange squares indi-
cate the data of mode 2.

ens the relaxation. The resulting lower values of 1−α1 do
not indicate more cooperativity or glassy behavior com-
pared to ambient pressure. The kink in τ1(T ) broadens
with pressure and shifts to lower temperatures, the cor-
responding relaxation time gets shorter. A similar fea-
ture was previously observed at ambient pressure around
T = 17 K and attributed to a bifurcation temperature
TB [15]; here free charge carriers start to freeze out and
hopping-like conduction sets in.
In Fig. 7(b,c), ε1(T ) and τ1(T ) for f = 100 kHz are

plotted as a function of temperature at p = 0.86 kbar.
The HT and LT features in ε1(T ) are well described
by two Gaussian functions. Now it becomes clear that
the kink in τ1(T ) at TB (indicated by solid green cir-
cles in Fig. 1) corresponds to the transition from the HT
peak to the LT peak with a concomitant change in the
relaxation mechanism. We apply this procedure to all
pressures and plot the pressure evolution of TB in panel
(a) of Fig. 7 together with the positions of the peaks at
f = 100 kHz. The dashed lines represent extrapolations
to pIMT = 1.45 kbar [9, 13] according to

Ti(p)

T 0
i

=

(

pIMT − p

pIMT

)z

, (2)

with i = {HT,B,LT} the three characteristic tempera-
tures, T 0

i giving a intercept at p = 0 and z the critical
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TABLE I. Parameters of κ-(BEDT-TTF)2Cu2(CN)3 ob-
tained from fits of the pressure evolution of the high-
temperature peak THT, the bifurcation temperatures TB and
the low-temperature peak TLT according to Eq. (2) with
pIMT=1.45 kbar. T 0

i gives the respective ambient-pressure
temperature and z is a unitless exponent.

TLT TB THT

T 0
i (K) 13.0± 0.1 19.9 ± 0.2 27.7 ± 0.5

z 0.18 ± 0.01 0.26 ± 0.02 0.41 ± 0.08

exponent. The obtained parameters are listed in Table I.
For T > TB, we can describe the dependence of the

relaxation time τ1 on temperature by an activated be-
havior

τ1 = τHT exp {∆HT/T } , (3)

which is represented by the black line in Fig. 6(c). Also
the low-temperature regime can be fitted with an acti-
vated behavior in analogy to Eq. (3), which is illustrated
by the red line in Fig. 6(c).
The extracted fit parameters for the HT mode (T >

TB) and the LT mode (T < TB) are plotted in Fig. 8 as
a function of pressure; here we also include the qualita-
tively similar results obtained from sample 1 while the
corresponding plots are presented in the Appendix A.

m
o
d
e
 1

p

FIG. 6. Arrhenius plots of the Debye parameters of the low-
frequency mode 1 in κ-(BEDT-TTF)2Cu2(CN)3 for pressures
up to 1.22 kbar. (a) Dielectric strength ∆εmode 1(T ), (b) dis-
tribution of relaxation times 1−α1(T ) and (c) mean relaxation
time τ1(T ). The black and red lines represent fits with Eq. (3)
above and below the kink in τ1(T ) at TB, respectively.

FIG. 7. (a) Pressure dependence of the bifurcation tempera-
ture TB and the positions of the high and low-temperature
peak, THT and TLT, in κ-(BEDT-TTF)2Cu2(CN)3; here
pIMT=1.45 kbar denotes the critical pressure of the insulator-
to-metal transition [9, 13]. (b) For the example of p =
0.86 kbar and f = 100 kHz the temperature dependence of
the dielectric constant ε1(T ) is plotted together with the fits
of the HT and LT peak by two Gaussian functions (blue and
green lines). (c) The relaxation time τ1(T ) with the fits from
Fig. 6(c) according to Eq. (3) for the temperature range above
(black line) and below (red line) the kink at TB. The crossover
from the HT to the LT peak is located at TB.

TABLE II. Mean field parameters ∆0
i and z of ∆i(p) in anal-

ogy to Eq. (2) using fixed pIMT,2=1.45 kbar for sample 2 and
pIMT,1 = 1.05 kbar for sample 1.

sample 2 ∆HT ∆LT

∆0
i (K) 354 ± 19 84 ± 2

z 0.50 ± 0.09 0.30 ± 0.04

sample 1 ∆HT ∆LT

∆0
i (K) 355 ± 5 69 ± 4

z 0.46 ± 0.03 0.29 ± 0.05

Our findings are in line with previous ambient-pressure
studies [15]. ∆HT(p) decreases as pressure rises follow-
ing a mean-field behavior in analogy to Eq. 2. Best fits
were obtained by using fixed pIMT,2 = 1.45 kbar and
pIMT,1 = 1.05 kbar for sample 2 and sample 1, respec-
tively. The fit parameters are summarized in Table II
and show good agreement between the two samples for
the critical exponents.
∆LT(p) [Fig. 8(c)] is basically pressure-independent up

to 1.1 kbar, followed by a strong decrease when p is fur-
ther increased. The behavior is reminiscent of a first-
order phase transition and extrapolates to ∆LT = 0 at
pIMT = 1.45 kbar; in excellent agreement with the find-
ings in Fig. 7. For sample 1, it is difficult to pin down the
pressure dependence of ∆LT because the number of data
points is limited. Since ∆HT and TB both follow mean-
field behavior, we also apply rough tests for mean-field
behavior on ∆LT, represented by the solid lines.
Apart from a rather strong sample dependence, the

time scale τHT [Fig. 8(b)] becomes longer upon applying
pressure. On the other hand, τLT [Fig. 8(d)] decreases
upon applying pressure and sample dependence is less
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pronounced.

2. Analysis of High-Frequency Mode 2

In the Arrhenius plot of Fig. 9 we show the parame-
ters of the second mode: ∆ε2(T ), 1−α2(T ) and τ2(T ), as
obtained from the Cole-Cole fits. Throughout the whole
pressure-temperature range wherein mode 2 is observed,
its strength ∆εmode 2 stays an order of magnitude be-
low the one of the low-frequency mode 1. ∆εmode 2(T )
increases steadily as the temperature is reduced. With
rising pressure the mode shifts to lower temperatures
(Fig. 2) and correspondingly does the enhancement in
∆εmode 2(T ). A drop in 1−α2(T ) indicates a considerable
broadening of the mode. The temperature dependence of
τ2 is strongly influenced by pressure. While at ambient
pressure τ2(T ) monotonically increases, at p = 0.52 kbar
a minimum is observed that shifts to lower temperatures
and gets more pronounced at p = 0.86 kbar. In other
words, τ2(T ) depends on pressure in a non-monotonic
way. A similar relaxation dynamics has been widely ob-
served for confined systems as well as in the relaxor fer-
roelectric KTa0.65Nb0.35O3 when doped with Cu by ap-
proximately 0.1% [48].
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FIG. 8. Pressure dependence of the activation energy ∆
and relaxation time τ of κ-(BEDT-TTF)2Cu2(CN)3 obtained
from fits of the corresponding temperature behavior of τ1(T )
shown in Fig. 6(c). The upper panels (a,b) correspond to
the high-temperature regime; the lower panels (c,d) to the
low-temperature regime. The black symbols correspond to
sample 1, the red symbols to sample 2 while the solid lines
in (a,c) represent mean-field fits in analogy to Eq. 2. Most
importantly, ∆LT is rather constant and abruptly decreases
around 1.1 kbar, reminiscent of a first-order phase transition
with pIMT = 1.45 kbar.
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FIG. 9. Temperature dependence of the parameters describ-
ing mode 2 in κ-(BEDT-TTF)2Cu2(CN)3 at various pres-
sures. (a) Dielectric strength ∆εmode 2, (b) distribution of
relaxation times 1−α2 and (c) mean relaxation time τ2 in an
Arrhenius plot versus inverse temperature. Upon increasing
pressure, a pronounced minimum in τ2 develops, indicating
a non-monotonic relaxation dynamics in κ-(BEDT-TTF)2-
Cu2(CN)3.

B. Dielectric response at the insulator-metal
transition

While the relaxor-ferroelectric response from Fig. 2 has
been subject to much controversy and debate[14, 15],
the most striking observation of our present study is the
colossal enhancement of the dielectric constant around
the first-order Mott IMT, displayed in Figs. 1 and 3(a-
c). At low temperatures, ε1 acquires values of several
hundred up to 105 – increasing towards low frequencies –
in the pressure region 1.45–2.23 kbar, with a peak around
1.8 kbar at T = 10 K. Our thorough analysis of the di-
electric relaxation in Sec. III A clearly shows that this
behavior has a distinct origin. We interpret this phe-
nomenology as a result of percolating metallic clusters
embedded in an insulating matrix [16] – a situation sim-
ilar to other systems subject to a metal-insulator tran-
sition [49, 50]. On these grounds, we now estimate the
pressure dependence of the filling fraction from our ex-
perimental data.

If the pressure-driven IMT in our Mott system is a
first-order transition for T < Tcrit, two phases are ther-
modynamically stable in the coexistence region [12, 51]:
One represents the metallic state while the other corre-
sponds to the insulating phase. In the presence of weak



7

(a)

(b)

-(BEDT-TTF)2Cu2(CN)3�

x

FIG. 10. (a) Pressure dependence of ε2 of κ-(BEDT-TTF)2-
Cu2(CN)3 measured at T = 10 K using different frequencies
as indicated. The solid lines represent fits by Bruggeman’s
effective medium approximation [Eq. (4)] for spherical inclu-
sions with the metallic filling fraction as free parameter. (b)
Consistent for all frequencies, the metallic fraction x in depen-
dence of pressure exhibits a rapid change around percolation;
the grey line is a guide to the eye.

disorder, such a region will feature a mixture of ran-
domly distributed metallic and insulating domains, with
respective volume fractions that vary with pressure. The
IMT takes place when the volume fraction of the metal-
lic phase approaches the percolation threshold. The di-
electric properties of such a mixture can be modeled by
Bruggeman’s effective medium approximation (BEMA)
[52–54]:

x
εm − εeff

εeff + L(εm − εeff)
+ (1− x)

εi − εeff
εeff + L(εi − εeff)

= 0 ,

(4)
where x is the volume fraction of the metallic inclusions,
L is the shape factor, εi and εm are the complex per-
mittivities of the insulating and metallic phases, respec-
tively, and εeff is the effective permittivity of the com-
posite. In Fig. 10(a) the imaginary part of the dielec-
tric constant of κ-(BEDT-TTF)2Cu2(CN)3 is plotted as
a function of pressure measured at various frequencies
at the lowest accessible temperature. We find the step
in ε2(p) = σ1(p)/(ε0ω) becoming less pronounced with
increasing frequencies.

In order to estimate the metallic filling fraction x from
these data, we assume that for p = 0 the specimen is com-
pletely in the insulating phase, the properties resemble
εi; for p = 4.3 kbar the metallic state is fully established,
corresponding to εm. For each particular pressure, we
can now obtain a value of x that best describes the ex-

FIG. 11. (a) Dielectric constant ε1 of κ-(BEDT-TTF)2-
Cu2(CN)3 measured at f = 100 kHz for several tempera-
tures in dependence of the relative pressure (p − pc). The
solid lines represent fits according to Eq. 5. (b) Tempera-
ture dependence of the percolation threshold pc, as obtained
from the fits in (a). (c) Temperature dependence of the expo-
nents q. We attribute the drop of q above Tcrit to the change
from the first-order insulator-metal transition to a crossover
at higher temperatures. For clarity reasons, we also include
Tcrit = 16 K (dashed red line) and the predictions for q ac-
cording to the BEMA model (dashed blue line).

perimental data by the effective permittivity εeff calcu-
lated via Eq. (4) assuming spherical inclusions: L = 1/3.
In Fig. 10(a) the respective fits are shown by solid lines
for the various frequencies. The resulting filling fraction
x is plotted in Fig. 10(b) as a function of pressure. The
gradual increase follows a tanh-like behavior around the
IMT, supporting our assumption for the theoretical sim-
ulations [16].
We expect this crude method to severely overestimate

the extent of the coexistence regime because the pressure
dependence of the conduction properties is neglected. A
narrower region of around 1 to 2 kbar is more likely. In
Section III C we address this issue by a phenomenological
model utilizing an approach of hybrid dynamical mean-
field theory.
Now that we obtained the pressure-dependence of the

metallic filling fraction x(p), we are in the position to an-
alyze ε1(x). The corresponding plot for the 100 kHz data
is shown in Fig. 11(a). The static dielectric constant of a
percolating system is a function of x and its divergence
at the percolation threshold xc can be described by [55]

ε1(ω → 0, T → 0, x) ∝ (xc − x)−q , (5)

where the critical exponent q depends on the dimension
of the system; in three dimensions we expect q ranging
from 0.8 to 1 [50, 55–57], while q = 1.3 is calculated
for two dimensions [55]. The BEMA model predicts q =
1 independent of the dimensionality of the percolating
system [57].
The temperature dependence of the percolation thresh-

old xc and the exponent q obtained from the fits (solid
lines) in Fig. 11(a) is presented in panels (b) and (c),
respectively. Percolation is established at a critical fill-
ing fraction xc ≈ 0.35, in excellent agreement with the
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prediction of 1/3 for a three-dimensional system. From
our pressure-dependent dielectric measurements we find
q ≈ 1 up to Tcrit as expected within the BEMA frame-
work.

C. Theoretical analysis of the dielectric
permittivity at the IMT

We have just established a way to estimate εeff of this
percolative first-order insulator-metal transition (IMT)
provided we know the properties of the constituting
phases. Now we want go this avenue on purely the-
oretical ground. In particular, we determine the com-
plex permittivity of the mixed phase by calculating first
the pure phases, together with their full correlation de-
pendence, and then embedding them in a percolating
network according to Eq. (10). The technical details
and the results of our single-site dynamical mean-field
theory (DMFT) calculations of the optical conductiv-
ity [51, 58, 59] are described in full length in Ref. 16. The
resulting resistivities and permittivities in the dielectric
range (hf/W = 5 · 10−9) are compared to exemplary ex-
perimental data in Fig. 12. Panel (a) summarizes the
three main regimes of the phase diagram, with the corre-
sponding ρ1(T ) and ε1(T ) curves from experiment (left)
and hybrid DMFT (right) placed below each other.
Fig. 12(b-e) illustrate the dielectric response in the ho-

mogeneous (i.e. x = 0) Mott-insulating state. While
the resistivity exhibits a monotonic increase upon cool-
ing, the permittivity acquires small values between 1–
10 typical of a charge-gapped state. In the coexistence
regime around the IMT, plotted in panels (f-i), the tem-
perature dependence of ρ(T ) becomes metal-like as the
filling fraction exceeds the percolation threshold, forming
a conducting path through the entire sample [see bottom
sketches of frame (a)]. This is accompanied by a col-
lossal enhancement of ε1 by several orders of magnitude
at low temperatures; the ‘dielectric catastrophe’ is well
reproduced by our hybrid DMFT calculations. Also the
response of the pure metallic state (x = 1) in Fig. 12(j-m)
is captured well by theory. Here, Fermi-liquid behavior
with ρ1 ∝ AT 2 below TFL is followed by a bad metallic
state extending up to the Brinkman-Rice temperature
TBR where quasiparticles are ultimately destroyed [60–
62]. Accordingly, the dielectric constant turns negative
for T < TBR as expected for a metal.
Remarkably, our hybrid DMFT approach succeeds in

modeling the main features of low-frequency complex
transport properties throughout the Mott IMT, support-
ing our conclusions based upon optical conductivity work
that the main physics of κ-(BEDT-TTF)2Cu2(CN)3 is
captured by the single-band Hubbard model [10]. Having
said that, we note that the measured relaxor-ferroelectric
behavior in the Mott-insulating state is not reproduced
by theory, indicating that it does not originate from in-
trinsic Mott physics. This is corroborated by a pro-
nounced sample dependence indicative of the relevance

of impurities [15].

IV. DISCUSSION

A. Dielectric relaxation in the insulating state

1. High-temperature peak

Our pressure-dependent investigations unveil that the
dielectric response of κ-(BEDT-TTF)2Cu2(CN)3 con-
tains two dielectric contributions. The high-temperature
(HT) peak was first observed by Abdel-Jawad et al. [14],
but there is no consensus on its origin. The dimer ap-
proach takes the BEDT-TTF dimer as an entity, ne-
glecting the intra-dimer degrees of freedom; this leads
to a quasi two-dimensional electron system with a half-
filled conduction band, where on-site Coulomb repulsion
dominates, making κ-(BEDT-TTF)2Cu2(CN)3 a prime
example to study the physics of genuine Mott insula-
tors [10]. Alternatively, one considers a single BEDT-
TTF molecule with certain inter- and intra-dimer inter-
actions. As a consequence, κ-(BEDT-TTF)2Cu2(CN)3 is
regarded as a 3

4
-filled system, making it unstable to-

wards a charge-ordered state, which is competing with
the dimer-Mott state. Starting from the quarter-filled
extended Hubbard model, some theories predict fluctuat-
ing charge disproportionation within a dimer, resulting in
quantum electric dipoles [32, 33]. The dielectric response
in the audio- and radio-frequency range was interpreted
as a consequence of these electric dipoles [14, 32–35]; their
collective optical excitations should show up in the THz
region.
However, infrared and vibrational spectroscopy clearly

discards a sizable charge disproportionation on the
dimers [37]; a mixture of lattice and molecular vibra-
tions perfectly explains all the observed optical modes
even below 1 THz [23]. In a recent theoretical study
[63] Fukuyama et al. considered the crossover from a
quarter-filled system with charge-ordered ground state
to a dimer-Mott insulator due to strong dimerization.
At high energy (in the range of eV, i.e. optical fre-
quencies) the latter is stable, whereas at very low en-
ergy (10−10eV ≈ 10 kHz) extended domains of differ-
ent charge polarities arise. As a consequence, domain
walls form in the system, giving rise to the HT peak.
Very recently, Pouget and collaborators [25] thoroughly
investigated the crystal structure of κ-(BEDT-TTF)2-
Cu2(CN)3 and discovered a triclinic symmetry with two
inequivalent dimers in the unit cell. This implies a rather
weak charge imbalance between dimers in the whole tem-
perature range.
During the last years evidence has accumulated that

the interaction between the cationic (BEDT-TTF)+2 and
the anionic Cu2(CN)

−

3 layer is crucial for the understand-
ing of these charge-transfer salts [15, 23, 25]. The am-
biguity in the arrangement of the polar CN− linking
the triangular coordination of Cu atoms results in in-
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FIG. 12. (a) Phase diagram of genuine Mott insulators with first-order insulator-metal coexistence indicated at low temper-
atures. The bottom panels are grouped to illustrate the responses of the respective regimes, comparing our experiments on
κ-(BEDT-TTF)2Cu2(CN)3 and our hybrid DMFT calculations. (b-e) The Mott-insulating state yields thermally activated
resistivity and small, postive values of the permittivity. (f-g) While ρ1 indicates a reduction with cooling when metallic clus-
ters percolate, ε1 is strongly increased upon metal-insulator phase coexistence. (j-m) The correlated metallic state below the
Brinkman-Rice temperature TBR exhibits Fermi-liquid properties with a quadratic temperature dependence of the resistivity
at low temperatures, accompanied by large negative values of ε1. The dielectric permittivity ε1 was measured at f = 380 kHz
and calculated for hf/W = 5× 10−9. Note, there is no residual resistivity in the theory data plotted in panel (k).

trinsic disorder. Density functional theory calculations
estimate that flipping a CN link, which is mainly ori-
ented along the b-direction, costs 174 meV, whereas flip-
ping one that is mainly oriented along the c-direction is
only 10-15 meV [23]. The interaction via hydrogen bonds
maps the domains onto the BEDT-TTF layer, leading to
long-range charge inhomogeneities that are detected by
low-frequency probes in the kHz and MHz range [15].

The extension of the relaxation time τHT and decrease
of ∆HT as pressure rises indicate that the domains in-

crease in size and move more easily. On the other hand,
a decrease of τHT and barrier energy EVFT upon x-ray
irradiation, reported by Sasaki et al. [45], infer more do-
mains of smaller size. This can be explained by a larger
number of charged defects in the anion layer upon irradi-
ation which act as pinning centers. The qualitatively sim-
ilar but quantitatively slightly different behavior found in
our sample 1 (Fig. 14) corroborates these observations.

It is interesting to recall that also x-ray irradiation
leads to a shift of the HT peak to lower temperatures [45].
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High-energy irradiation produces crystal defects mainly
in the anion layer and is supposed to increase the num-
ber of charge carriers. Similar to the rising pressure,
the conductivity of the sample is enhanced compared to
the pristine case. This clearly indicates that the relaxor-
ferroelectric HT peak is influenced by screening due to
free charge carriers, disentangling it from an intrinsic ori-
gin related to the conduction electrons themselves, thus
rendering a scenario of intra-dimer dipoles unlikely.

2. Low-temperature peak

Let us come to the LT peak, which was not observed
in previous ambient pressure studies of κ-(BEDT-TTF)2-
Cu2(CN)3[14, 15, 45]. Consistently, in both samples un-
der inspection, we see a remarkable growth of the LT
peak with pressure and a shift in its position as shown
in Fig. 7. The clearly distinct pressure evolution of the
LT parameter compared to the HT peak (Fig. 8) indi-
cates a different origin. As can be seen from Fig. 7, the
peak appears only below the critical temperature Tcrit,
which establishes the upper bound of the coexistence
regime. Note that spatially separated metallic inclusions
can persist in an insulating host well before percolation
sets in. Starting from the LT peak at low p, the pressure
evolution of ε1(p) upon approaching the phase boundary
can be well fitted by Eq. (5) for T < Tcrit, as expected
for a percolating system (Fig. 11). Hence it is tempting
to assign this feature to ‘metallic quantum fluctuations’
previously concluded from optical spectroscopic studies
[10]. The LT peak grows towards the phase transition
and eventually becomes the dominant peak at the perco-
lation threshold, as seen in Fig. 2.
The energy ∆LT stays constant up to the IMT, where

ε1(p) follows the BEMA model (Fig. 10) – the latter does
not consider a capacitive coupling of the metallic inclu-
sions. Hence, we attribute the drop in ∆LT close to the
percolation threshold to an increased coupling between
the metallic inclusions. With values of τLT decreasing
from 10−6 to 10−8 s, the LT relaxation is clearly slower
than the HT peak; it hardens upon rising x. The ori-
gin of this intriguing behavior has yet to be clarified, i.e.
whether this can be assigned to changes in size and/or
shape of the metallic inclusions. Such a behavior was
revealed by ellipsometric studies of VO2 films [64].
At this point it is worth to mention that the LT peak is

reminiscent of the dielectric response in the related com-
pound κ-(BEDT-TTF)2Cu[N(CN)2]Cl [39, 65, 66], which
is very close to the metal insulator transition already at
0 kbar. This enables investigations of the LT peak and
the nature of the metallic inclusions at ambient pressure
via a broad spectrum of experimental techniques, such
as scanning near-field infrared microscopy [49]. Deuter-
ating κ-(BEDT-TTF)2Cu[N(CN)2]Br crystals is another
way to approach the metal-insulator transitions. In these
systems Sasaki et al. succeeded to spatially map microm-
eter size domains using infrared spectroscopy [67]. How-

ever, the insulating ground state is an antiferromagnet,
and hence the phase boundary has opposite slope due to
the Clausius-Clapeyron relation.

B. Dielectric catastrophe

The transition from insulating to metallic conduction
properties manifests in numerous forms in condensed-
matter physics [68]. Doping silicon with phosphorous,
for instance, turns it metallic as the amount of elec-
tron donors exceeds a critical concentration Nc = 3.5 ×
1018 cm−3 [69, 70]. The transition between localized
and metallic phases in disordered electronic systems is
known as Anderson transitions [71, 72]. Random systems
or networks form long-range connectivity when crossing
the percolation threshold; extended scaling theories have
been developed but the details strongly depend on the
particular lattice and dimension [53, 73, 74]. The for-
mation of density waves due to Fermi surface nesting
– in particular in low-dimensional solids – leads to the
opening of a gap in the density of states [75, 76]. In
the present case of a Mott transition, electron-electron
interaction causes the metal to become insulating. The
transition can be driven by either varying the electron
density N or the interaction strength U [77–79].
Besides the usual thermodynamic signatures of phase

transitions, the experimental hallmark of all of these
insulator-to-metal transitions is a drop in resistivity, of-
ten by many orders of magnitude, upon changing the
order parameter or temperature. In addition, a diver-
gency of the static dielectric constant is predicted by
classical percolation theory when approaching the tran-
sition from either side, with some characteristic scaling
behavior [55, 57, 80–82]. Experimentally, Castner et al.

first observed a strong increase of the static dielectric
constant at a critical concentration Nc when they mea-
sured n-doped silicon in the kHz range at low temper-
atures [83]; systematic studies of P:Si [84, 85] revealed
ε1−εhost ∝ (Nc/N−1)1.2. Most investigations deal with
material mixtures, such as microemulsions [86–89], com-
posites [90, 91] or percolating metal films [50, 57, 92, 93].
In many cases, the metal-insulator transition is only

crossed by lowering the temperature; here thermal fluc-
tuations and inhomogeneities may occur. The situation
is distinct from investigations of the phase coexistence by
tuning the effective correlation strength via pressure in
the limiting case of T → 0. Tanner and collaborators [94],
for instance, analyzed their temperature-dependent mea-
surements on the charge-density-wave transition in TTF-
TCNQ using a self-consistent effective-medium approxi-
mation [52]. Temperature-dependent near-field infrared
microscopy of Qazilbash et al. [49, 95] on VO2 films actu-
ally maps the spatial phase separation, and they extract
a divergence of the dielectric constant at the transition
temperature. In the case of the high-temperature Mott
transition of V2O3, Limelette et al. concluded the coexis-
tence region close to the critical endpoint at Tcrit = 458 K
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from the hysteresis in the pressure-dependent conduc-
tivity curves [96]. From transport measurements on κ-
(BEDT-TTF)2Cu2[N(CN)2]Cl similar conclusions were
drawn on the coexistence of Mott insulator and corre-
lated metal [7]. In addition, NMR experiments revealed
the coexistence of antiferromagnetism and superconduc-
tivity, as well as a hysteresis in susceptibility [6].
Considering the IMT in doped semiconductors, Sir

Nevill Mott termed the divergence of the electric sus-
ceptibility ‘dielectric catastrophe’ only in the second edi-
tion of his seminal monograph on the IMT [68]. Beyond
percolation and polarization issues, he pointed out the
importance of the localization length ξ and electronic in-
teraction. Aebischer et al. came back to this idea and
theoretically analyzed the ε1 ∝ ξ2 behavior when ap-
proaching the Mott transition from the insulating side
[97]. These situations are distinct from the present case,
where phase coexistence causes the permittivity enhance-
ment at the first-order IMT.
Record-high dielectric constants are observed when

low-dimensional metals undergo a spin- or charge-density
wave transition [75]. Due to nesting of the Fermi sur-
face, a gap ∆0 opens in the density of states, leading to
ε ∝ ∆−2

0 on the order of 106 to 108 [98]. In general, this
mechanism also holds for opening a Mott gap [97] and,
therefore, we estimate the impact of reducing the gap on
ε1 in the following.

1. Reducing the Mott gap

Let us assume that the Mott gap is already closed.
Then the real part of the conductivity follows σ1(ω) ≈
A |ω| β at low frequency, as shown in the inset of Fig. 13,
where A is a normalization factor. Any non-analytic be-
havior of the dielectric function ε1(ω → 0) can only re-
sult from a sufficiently singular form of σ1 also at low
frequency. The corresponding ε1(ω) can be directly ob-
tained from the Kramers-Kronig relations [98], yielding

ε1(ω) = 1 + 4

∫ +∞

−∞

σ1(ω
′)/ω′

ω′ − ω
dω′ . (6)

For a linear-in-frequency increase of the optical conduc-
tivity (β = 1), it is straightforward to analytically calcu-
late ε1(ω):

ε1(ω) = −2A log {ω}+B(ω) , (7)

where B(ω) is an analytic function that remains finite at
ω = 0. Fig. 13 displays the behavior of ε1(ω) for different
values β of the power law. For β = 1, the dielectric
constant ε1(ω) assumes a logarithmic divergence at zero
frequency, which is a very weak singularity. If β < 1, then
ε1(ω = 0) diverges more strongly; the static dielectric
constant is just a finite number as β gets larger than
unity.
Within DMFT, the precise exponent β is still un-

der debate [99], but it is at most of order unity, con-
sistent with our numerical results. This means that

Frequency (arb. units)

FIG. 13. Frequency dependence of the real part of the dielec-
tric constant, ε1(ω), for different power-law behavior of the
optical conductivity σ1(ω) ∝ ωβ as plotted in the inset.

the permittivity varies only little by reducing the Mott
gap as the transition is approached from the insulat-
ing side and cannot cause the enormous dielectric en-
hancement found in our experiments. The latter is well
described by microscopic dynamical mean-field theory
combined with macroscopic percolation theory [16]. In
the present case of κ-(BEDT-TTF)2Cu2(CN)3, optical
investigations at ambient pressure unambiguously show
that no clear-cut gap exists, despite the strongly insu-
lating behavior [100, 101]. In the THz and far-infrared
range the conductivity is rather well described by a lin-
ear frequency dependence, corresponding to β ≈ 1 [22].
The low-energy spectral weight actually increases upon
lowering the temperature, in contrast to the quantum
spin liquid compounds κ-(BEDT-TTF)2Ag2(CN)3 and
β′-EtMe3Sb[Pd(dmit)2]2, which are all far away from the
IMT boundary [10]. Low-temperature optical investiga-
tions on κ-[(BEDT-TTF)1−x-(BEDT-STF)x]2Cu2(CN)3
in the far-infrared range yield that around 1 THz ε1(x)
increases only slightly when spectral weight is transferred
to low frequency as the IMT is approached by substitu-
tion (see Supplementary Fig. 7 in Ref. [16]). Hence, we
conclude that the observed enhancement of the permit-
tivity upon approaching the Mott transition originates
from the first-order nature and the concomitant perco-
lating phase coexistence, and is not caused by closing
the Mott gap.

2. Phase coexistence at the genuine Mott transition in

organic spin liquids

The enhancement of ε1(U/W ) – respectively ε1(p) – is
sharply confined to the coexistence region, where it ex-
ceeds the values of the (homogeneous) Mott insulator by
orders of magnitude. In related studies on κ-[(BEDT-
-TTF)1−x-(BEDT-STF)x]2Cu2(CN)3 chemical substitu-
tion was utilized to increase the bandwidth in order to
tune the system across the Mott transition [16, 62]. The
dielectric permittivity exhibits a similar maximum when
approaching the phase boundary as correlations decrease.
In the coexistence regime, percolation and correlation ef-
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fects both contribute to the dielectric properties. It is in-
teresting to note that this peak appears in an abrupt fash-
ion, very distinct from the smooth and gradual increase
in disorder-driven IMTs [102]. Moreover, around the
first-order IMT below Tcrit, the permittivity exhibits a
pronounced frequency dependence beyond standard per-
colation theory [16].
Finally, we draw attention to recent DMFT calcula-

tions [99] revealing a crossover (non-asymptotic) power-
law behavior in the spectral function A(ω) and the self-
energy −Im {Γ(ω)} extending from low to elevated tem-
peratures. Concomitantly, consistent scaling of the re-
sistivity is found above and below Tcrit as well. Both
are traced back to the metastable insulating phase in
the coexistence region, suggesting local quantum critical-
ity of the Mott transition below Tcrit, which eventually
is also responsible for its well-known counterpart at ele-
vated temperatures. Besides these fundamental findings,
this study reveals a peculiar low-frequency behavior of
A(ω) in proximity to the Mott transition. Whether this
can be connected to the intriguing dielectric response ob-
served here has yet to be clarified, but might provide a
route to place the various features in ε1(p, T, ω) on the
same footing, such as the pressure evolution of the HT
peak and the anomalous power-law decrease of ε1(ω) in
the coexistence region. We remind at this point that the
HT peak is observed in several other organic dimer Mott
insulators [40, 103, 104] with triangular lattice, showing
that its emergence is independent of details in the crystal
structure.

3. Applicability of percolation theory

Percolation theory is applicable for systems consist-
ing of two distinct types of domains. One should keep
in mind, however, that in real materials domain walls
are always present with properties distinct from either
of the coexisting phases. The precise characteristics of
the domain walls reflect the specifics of the clean system
displaying phase coexistence and, as such, have partic-
ular dimensions (thickness) and occupy a finite volume
fraction. The effects of such domain walls can be ex-
pected to be negligible if their dimension (thickness) is
much smaller than the characteristic domain size, which
is what we expect for weak disorder. In contrast, when
disorder is sufficiently strong, it is expected [105, 106] to
produce nucleation centers for more and more droplets,
leading to the reduction of the domain size, which eventu-
ally becomes comparable to the thickness of the domain
walls. When this happens, a simplistic two-component
percolation picture is no longer of direct relevance, and
one may expect more gradual variations of all observ-
ables compared to simple percolation theory. We believe
that finite disorder is the main reason why the peak of
ǫ1(p) appears more narrow in theoretical results than in
experiments (cf. Fig. 4 in [16]).
We want to recall that in contrast to most other exam-

ples of percolative behavior, here we do not have different
materials mixed, not even the crystal structure or sym-
metry changes between insulating and metallic regions.
In the ideal case, the domains are distinct by the effect of
correlations on their physical properties. From thermal
expansion studies on the related compound κ-(BEDT-
-TTF)2Cu[N(CN)2]Cl in the vicinity of the critical end-
point, we know that metallic and insulating phases ex-
hibit a slightly different volume and distinct expansion
coefficients [107]. The particular arrangement is suscep-
tible to strain, impurities, etc. leading to domain bound-
aries with an intermediate lattice constant on a local
scale.

C. Phase diagram

The main results of our pressure- and temperature-
dependent dielectric spectroscopic studies on κ-(BEDT-
TTF)2Cu2(CN)3 are summarized in Figs. 1 and 12. The
former displays a three-dimensional plot of ε1(p, T ) mea-
sured at f = 380 kHz. The bottom area contains a
sketch of the phase diagram constructed on the projec-
tion of the ε1(p, T ) values with the corresponding color
code; the intense dark red area indicates the enhanced
values in the coexistence phase when spatially separated
metallic regions grow in the insulating matrix. The per-
colative behavior softens as temperature increases: the
maximum diminishes and eventually a gradual crossover
remains above Tcrit. Additionally, we include the quan-
tum Widom line from the data of Ref. 9 that agrees
with the results presented here. The bifurcation temper-
ature TB marks the change from the HT to the LT peak
and the concomitant modification in the relaxation dy-
namics. The Fermi-liquid temperature TFL was extracted
from the resistivity [16]; our findings are in accordance
with previous reports [9, 17].
Fig. 12 displays the phase diagram of a genuine Mott

insulator around the first-order phase transition to the
metallic state. For each of the three ranges we com-
pare experimental and theoretical results of the con-
ductivity and dielectri permittivity. Our data provide
first experimental evidence for the coexistence of the
Mott-insulating and the metallic phases, as predicted
by DMFT calculations on a disordered Hubbard model
for half-filling [12, 108]. This regime of metal-insulator
coexistence emerges from the insulating phase and par-
tially overlaps with the Fermi-liquid regime. When the
phase boundary is crossed, the metallic fraction grows
and quickly forms a continuous path through the speci-
men; the capacitive coupling of remaining metallic pud-
dles in the insulating regions leads to the large values of
ε1. The percolative behavior is strongly suppressed for
higher temperatures where the first-order Mott IMT be-
comes a smooth crossover and the contrast in conductiv-
ity between metallic and insulating fraction diminishes.
Approaching the phase boundary from the insulating

side, we determine a critical exponent q ≈ 1 in Eq. (5)
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that is consistent with Bruggeman’s effective medium ap-
proximation that allowed us to extract the metallic vol-
ume filling fraction as a function of pressure.

V. SUMMARY

Our dielectric measurements as a function of fre-
quency, temperature and pressure in the insulating state
of κ-(BEDT-TTF)2Cu2(CN)3 reveal that the relaxor-
ferroelectric peak below T = 50 K shifts to lower tem-
peratures as pressure increases because the screening by
free charge carriers becomes pronounced with increasing
bandwidth. A second peak emerges at lower temper-
atures and grows in amplitude with applying pressure.
We attribute this behavior to the sparse occurrence of
metallic puddles in the insulating host phase. Upon mov-
ing deeper into the phase coexistence region of the first-
order transition from the Mott-insulating to the metal-
lic phase, we discover a strong enhancement of ε1(p) up
to 105 at lowest frequencies (f = 7.5 kHz), which re-
sembles percolating behavior. We apply Bruggeman’s ef-
fective medium approximation to determine the metallic
filling fraction and obtain a critical exponent q ≈ 1 upon
approaching the threshold xc from the insulating side:
ε1(x) ∝ (xc − x)−q. Calculations by dynamical-mean-
field theory on a single-band Hubbard model reproduce
our comprehensive experimental findings in full breadth.
The divergency of the dielectric permittivity is mainly
caused by classical percolation physics of a strongly cor-
related electron system close to the Mott transition. Our
results provide compelling evidence for the coexistence of
metallic and insulating regions, and we demonstrate the
capabilities of dielectric spectroscopy as a ‘smoking gun’
to probe phase coexistence and spatial inhomogeneities
at metal-insulator transitions.
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Appendix A: Dielectric properties of sample 1

Most data presented in this article have been obtained
from dielectric measurements on sample 2; the conclu-
sions on phase separation at the Mott IMT are fully sup-

ported by similar findings on sample 1. Fig. 14 gives
an overview on the pressure evolution of its dielectric
response by plotting ε1(T ) for selected frequencies and
pressures as indicated. The position of the HT feature
at ambient pressure, for instance at 40 K when probed
at f = 100 kHz, is in good agreement with previous
ambient pressure reports [14, 15]. Unfortunately, only
a few measurements in the Mott-insulating phase could
be performed before the sample broke. Nevertheless, de-
spite the low pressure resolution, it is obvious that the
shift of the HT peak upon increasing pressure resembles
the findings for sample 2. In contrast, the LT peak for
sample 1 is barely visible up to p = 0.45 kbar and be-
comes evident only at 0.7 kbar around T = 10 K. The
strong enhancement of ε1 by several orders of magnitude
upon entering the coexistence regime is already observed
at p = 1.0 kbar and extends up to 1.9 kbar [Fig. 14(f)].
We emphasize that this is in accordance with the shift
of the IMT in sample 1. Interestingly, the plateau-like
shape of ε1(T ) is observed only for f ≤ 400 kHz whereas
for higher frequencies a slight downturn occurs. Upon
further pressure increase, metallic behavior with ε1 < 0
sets in.

In order to analyze the frequency-dependent permit-
tivity of these data, we have applied the same procedure
as presented in Section sec:insulator on sample 2. The
obtained fit parameters ∆εmode 1, 1−α1 and τ1 for mode
1 are plotted in Fig. 15 as a function of inverse temper-
ature. The peak in ∆εmode 1(T ) shifts to lower T and
increases in amplitude as pressure is applied. This be-
havior is reminiscent to what is observed for sample 2,
however, it is less pronounced for sample 1, for which
the LT peak is weaker and becomes apparent only at
p ≥ 1.0 kbar. This also explains the higher values of
1 − α1 and their restrengthening upon cooling, the lat-
ter most pronounced at ambient pressure, which indicate
less broadening in sample 1. In τ1(T ), a kink at TB is ob-
served, which shifts to lower temperatures while the cor-
responding relaxation time gets shorter, reproducing the
behavior observed in sample 2. The parameters obtained
by fitting τ1(T ) with the activated behavior [Eq. (3)] for
the HT mode (T > TB) and the LT mode (T < TB) are
already presented and discussed in Table II and Fig. 8
above.

Fig. 16 displays the parameters ∆εmode 2(T ), 1−α2(T )
and τ2(T ) of mode 2 for sample 1 of κ-(BEDT-TTF)2-
Cu2(CN)3. The dielectric strength ∆εmode 2 exhibits a
maximum around T = 30 K at ambient pressure, which
shifts towards lower temperatures and diminishes upon
increasing p. This is in contrast to sample 2, for which
∆εmode 2 monotonously grows upon cooling (cf. Fig. 9).
Throughout the entire pressure range ∆εmode 2 is smaller
than the one of mode 1 by approximately a factor of 2.
The mode shifts towards lower temperatures with ris-
ing pressure. A drop in 1 − α2(T ) indicates a consider-
able broadening of the mode upon cooling, which gets
less pronounced for increasing pressure. The tempera-
ture dependence of τ2 is strongly influenced by pressure
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FIG. 14. Plot of the dielectric permittivity ε1(T ) of κ-(BEDT-
-TTF)2Cu2(CN)3 sample 1 for several frequencies upon in-
creasing pressure. The results are qualitatively identical to
those obtained on sample 2, displayed in Figs. 2 and 3. (a)
At ambient pressure the relaxor-type ferroelectric peak starts
already around T = 70 K and reaches the maximum at low
frequencies at 30 K. (b-c) A shoulder-like feature is already
present at ambient pressure and develops into a second peak
upon pressurizing. (d-f) In the coexistence phase between
p = 1.0 and 1.9 kbar, an enormous increase of ε1 is observed
due to percolation. (g,h) Above p = 3.0 kbar, ε1 < 0 for
nearly all measured frequencies indicating metallic behavior.

and shows sample dependence. For sample 1, the mono-
tonic increase is much steeper and observed down to 15 K
at ambient pressure which saturates into a plateau upon
increasing pressure. In contrast to sample 2, only the
onset of a shallow minimum around T = 12 K is revealed
indicating non-monotonic relaxation dynamics.

Appendix B: Spurious effects

1. Contacts

Owing to the two-point configuration usually applied
in dielectric spectroscopy, the obtained data may include
contributions from polarization effects at the contacts,
which have to be conscientiously ruled out or determined.
Since the contacts are produced by amorphous carbon
(carbon paste) with metallic properties, Schottky con-
tacts may form at the sample-contact interfaces, result-

m
o

d
e

 1

FIG. 15. Arrhenius plot of the fitting parameters of mode 1
for sample 1 at different pressures as indicated. (a) Dielectric
strength ∆εmode 1(T ), (b) distribution of relaxation times 1−
α1(T ) and (c) mean relaxation time τ1(T ). The black and red
lines represent fits with Eq. (3) above and below the kink in
τ1(T ) at TB, respectively.

ing in a depletion layer at the interface with thickness

ddepl =

[

2ε1ε0
eNc

(Φm − Φs ± eU)

]1/2

, (B1)

wherein Φm and Φs the distances between the vac-
uum level and the chemical potential of the metal and
semiconductor, respectively, and U indicates the volt-
age of the applied ac signal. The charge-carrier density
Nc(T ) ∝ exp {−∆/kBT } is determined by thermal exci-
tations across the charge gap ∆. The modified charge
density in the depletion zone gives rise to an additional
capacitance

Cdepl ∝
1

dn
∝ C exp

{

−∆

2kBT

}

, (B2)

which eventually is responsible for the spurious effects
attributed to the contact contribution. On the right side
of Eq. (B2) we estimated the temperature dependence of
the contact contribution, which is governed by Nc(T ). In
Fig. 17(a) we exemplarily plot ε1(T ) up to room temper-
ature, probed at various frequencies as indicated. In the
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2

FIG. 16. Arrhenius plot of the fit parameters of mode 2 for
κ-(BEDT-TTF)2Cu2(CN)3 sample 1 at different pressures as
indicated. (a) Dielectric strength ∆εmode 2(T ), (b) distribu-
tion of relaxation times 1 − α2(T ), and (c) mean relaxation
time τ2(T ).

temperature range 75 K < T < 300 K, we observe a de-
crease of ε1(T ) upon cooling which is very well described
by Eq. (B2) (orange line) and hence is attributed to the
contact contribution.
Most importantly, the contact contribution is negli-

gible below 60 K [Fig. 17(b)] and does not influence the
analysis of the relaxor like dielectric response [Fig. 17(c)].
We also note, that this effect would be too weak to ex-
plain the huge enhancement of ε1(T ) close to the phase
boundary. If we inspect ρ1(T ) and ε1(T ) at 1.91 kbar
[16], for instance, we find that ρ1(p = 1.91 kbar, T =
10 K) ≈ ρ1(p = 1.91 kbar, T = 300 K), such that the
spurious contact contribution to ε1 should be the same
at 10 K and 300 K. On the other hand, we see that ε1(p =
1.91 kbar, T = 10 K) ≫ ε1(p = 1.91 kbar, T = 300 K)
(cf. Fig. 2), which cannot be explained by such a con-
tact contribution, corroborating our phase coexistence
scenario.

FIG. 17. (a) Temperature dependence of ε1(T ) plotted in
the entire temperature range, for an applied pressure of
p = 0.52 kbar measured at various frequencies f . In ad-
dition, we determine the contact contribution by fitting the
high-temperature part with Eq. (B2), as shown for the exam-
ple of f = 380 kHz (orange line). (b) Detailed view of the
relaxor-ferroelectric relaxation at low temperatures including
the contact contribution. (c) Relaxor-ferroelectric response
after the contact contribution has been subtracted: the con-
tact contribution is negligible below T = 60 K.
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S. Tomić, and J.-P. Pouget, Crystals 8 (2018).

[26] R. S. Manna, M. de Souza, A. Brühl, J. A. Schlueter,
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M. Dressel, Thin Solid Films 519, 2955 (2011).

[58] E. Economou, Green’s Functions in Quantum Physics,
3rd ed. (Springer-Verlag, Berin, 2006).

[59] B. M. Letfulov and J. K. Freericks, Phys. Rev. B 64,
174409 (2001), 10.1103/PhysRevB.64.174409.

[60] M. M. Radonjić, D. Tanasković, V. Dobrosavljević,
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Phys. JETP 43, 1050 (1976).

[81] D. J. Bergman and Y. Imry, Phys. Rev. Lett. 39, 1222
(1977); D. J. Bergman, Phys. Rep. 43, 377 (1978).

[82] L. Genzel and U. Kreibig, Z. Physik B 37, 93 (1980).
[83] T. G. Castner, N. K. Lee, G. S. Cieloszyk, and G. L.

Salinger, Phys. Rev. Lett. 34, 1627 (1975); T. G. Cast-
ner, Phys. Rev. B 20, 3505 (1979).

[84] T. F. Rosenbaum, R. F. Milligan, M. A. Paalanen, G. A.
Thomas, R. N. Bhatt, and W. Lin, Phys. Rev. B 27,
7509 (1983).

[85] M. Hering, M. Scheffler, M. Dressel, and H. v. Löhn-
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