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Using the recently developed time-dependent Landauer-Büttiker formalism and Jefimenko’s re-
tarded solutions to the Maxwell equations, we show how to compute the time-dependent electro-
magnetic field produced by the charge and current densities in nanojunctions out of equilibrium. We
then apply this formalism to a benzene ring junction, and show that geometry-dependent quantum
interference effects can be used to control the magnetic field in the vicinity of the molecule. Then,
treating the molecular junction as a quantum emitter, we demonstrate clear signatures of the local
molecular geometry in the non-local radiated power.

I. INTRODUCTION

Quantum transport properties of molecular struc-
tures have multiple applications in modern information-
processing technologies [1–3]. Molecular junctions also
provide important insights into a wide range of phys-
ical effects in nonequilibrium many-body systems at
very short timescales. In these systems, the steady
state response to externally applied fields can encode
information about quantum interference effects [4–8],
electron-electron interactions [9–16] and current fluctu-
ations [17, 18]. However, THz intramolecular trans-
port processes are increasingly relevant for determining
the operational frequencies of nanodevices beyond the
steady state, which may be related, for instance, to dy-
namical symmetries in periodically driven structures [19–
22], spin-flip processes [23, 24], transport statistics [25–
28], and electron traversal times [29, 30]. In addition,
the optical properties of irradiated molecular structures
have wide-ranging uses resulting from their photolumi-
nescence, photodetection and frequency conversion po-
tential [31–33].

Most studies on magnetic effects in nanojunctions have
focused on electron transport induced by external mag-
netic fields [34–37], with longstanding interest in the
Aharonov-Bohm effect and related phenomena [38–40].
However, there has recently been a growing interest in
electromagnetic fields induced by the electronic currents
and charge densities in the molecule [41–47]. Experi-
ments have been performed showing laser-induced circu-
lar currents and associated magnetic fields in the 1 mT
regime [48–50], and much higher field strengths (∼ 1 T)
appear to be possible in nanosolenoids [51–53]. This
makes a study of molecular current-induced magnetism
timely and useful. We note the recent studies by Zhang
et al. [47] of the steady-state angular momentum radi-
ation of molecular junctions which relate this non-local
observable to localized intramolecular transitions [54, 55].
However, a fully time-dependent framework for describ-
ing the radiative response to the current in such nanode-

vices is still lacking.
In principle, a fully self-consistent and microscopic

coupling of light and matter is needed to capture the
interplay of quantum dynamics and local electromag-
netic fields. Recently, this has been considered in the
context of quantum-electrodynamical density-functional
theory [56–59], coupled-cluster theory [59, 60], or the
nonequilibrium Green’s function (NEGF) approaches [47,
61, 62]. However, in many cases of interest to the experi-
mentalist, ballistic transport dominates, making a nonin-
teracting tight-binding approach sufficient for a descrip-
tion of quantum conductance [63–66]. The Landauer-
Büttiker (LB) formalism has provided an accurate theo-
retical description of the ballistic transport response to
static biases in the steady state regime.

Recently, a time-dependent extension of the LB ap-
proach based on NEGF has been developed incorporat-
ing transient effects resulting from the switch-on of a
bias, which may be an arbitrary function of time [67–
69]. This time-dependent Landauer-Büttiker (TD-LB)
method has been applied to the study of superconduc-
tivity [70, 71], impurity models [72, 73], double quan-
tum dots [74], nanowires [75, 76], energy currents [77–
79], systems with spatial and dynamical disorder [30, 80],
time-dependent quantum noise and electron traversal
times [30, 81] and periodically-driven molecular junc-
tions [22]. In all of these studies, the dynamical response
of charge and current densities to external fields was com-
puted. These generate local time-dependent electromag-
netic fields, with a small retardation in the response time
due to relativistic causality. Thus, the static Coulomb
and Biot-Savart laws for the E and B fields must be
replaced with causal expressions giving these fields in
terms of their sources. The correct formulas expressing
the time-dependent electromagnetic field components in
terms of their sources was published by Jefimenko in 1966
[82].

In this work, we use the Jefimenko formulas in combi-
nation with the TD-LB formalism to compute the time-
dependent electromagnetic fields in the vicinity of ben-
zene molecules coupled to metal electrodes within a tight-
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binding approach. In Section II A, we describe the TD-
LB method used for the calculation of Green’s functions
and electrode currents resulting from the switch-on of
a bias. Section II B contains a derivation of the exact
formal expression for the magnetic field generated in a
junction; this is then shown to reduce to an expression in
terms of interface currents in the electrodes and individ-
ual bond currents resulting from internal electron trans-
fer in the molecule, and then we show how to use these as
source terms for the local fields. Then, in Section III A we
apply this formalism to a molecular junction composed of
a benzene molecule coupled to the electrodes in the para,
meta and ortho configurations. We find quantitative and
qualitative differences between the time-dependent elec-
tronic behaviour of all three types of junction, which be-
come enhanced in the case of strong biases. In addition,
we show the detailed temporal relaxation of the mag-
netic field to a steady state value corresponding to the
constant applied bias in the vicinity of the benzene ring.
We investigate the steady-state transport properties of
the system in Section III B. There we show the step-like
current-voltage characteristics for both the electrode cur-
rents and ring currents, and we also plot the maximum
magnetic field as a function of voltage. In these plots we
see novel resonances in the ortho and meta cases, which
arise from quantum interference between electron path-
ways through the asymmetrically-coupled benzene ring.
Finally, Section III C includes a calculation of the Poynt-
ing vector for the rate of flow of electromagnetic energy
density out of the molecular region. We then map the de-
tailed angular distribution of radiated energy out of the
molecule. We find a novel dependence of the radiation
flux profile on quantum interference effects caused by the
local molecular geometry, and mediated by variations in
the local magnetic fields.

II. FORMALISM

A. The TD-LB Formalism

We consider transport in a generic lead-molecule-lead
junction driven out of equilibrium by the switch-on of a
bias at the quench time t0, described by a noninteracting
Hamiltonian [67, 83]:

Ĥ (z) =
∑
kασ

εkα (z) d̂†kασd̂kασ +
∑
mnσ

Tmn (z) d̂†mσd̂nσ

+
∑
m,kασ

[
Tm,kα (z) d̂†mσd̂kασ + Tkα,m (z) d̂†kασd̂mσ

]
.

(1)

The first term of Eq. (1) describes the electronic en-
ergy states of the leads, kα. In this paper, the leads
are denoted by α, which may take on the values S or
D to denote the source or drain, respectively. The sec-
ond term of the Hamiltonian describes the hopping be-
tween sites internal to the molecular region and the third
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FIG. 1. Schematic of the molecular junction where the cen-
tral region is a benzene molecule connected to semi-infinite
metallic electrodes. We consider three cases of source and
drain electrodes being attached in the para, meta, or ortho
configuration. The atomic sites within the molecule are la-
beled from 1 to 6. Transport direction in the para case is
assigned with the x coordinate and the molecule lies in the
xy-plane. The corresponding polar (θ) and azimuthal (φ) an-
gles of the underlying three-dimensional coordinate system
are considered in Sec. III C.

term describes the coupling between the molecule and
the leads. The argument z refers to times defined on the
Konstantinov-Perel’ time contour γ [84–87], composed
of an upper branch C− running in the direction of in-
creasing time from t0 to t, then along a lower branch C+

which runs backwards from t to t0. The equilibration of
the initial state is represented by the vertical imaginary
time branch CM which runs from t0 to t0 − iβ, where
β ≡ 1/kBT is the inverse temperature (we use units in
which ~ = 1).

We work in the partition-free quench framework, which
means that the lead-molecule coupling terms Tkα,m (z)
are nonzero for all values of z ∈ C, i.e. the molecule and
the leads are coupled during equilibration (t < t0) as
well as during the transport (t ≥ t0). For the purposes
of this paper, we also assume no contour-time depen-
dence in these couplings, i.e. Tkα,m (z) ≡ Tkα,m. We also
drop any time-dependence in the intramolecular hopping
integrals, Tmn (z) ≡ Tmn, although we have previously
considered time-dependent molecular energies within the
TD-LB formalism in Refs. [68, 80].

An example of a molecular junction described by Eq.
(1) is shown in Fig. 1, where the central molecular region
is a six-site benzene ring. We give a suitable parametriza-
tion for this type of molecule in Sec. III, accompanied by
numerical simulation results. Such configurations can be
realized experimentally in mechanically-controlled break
junctions [88, 89] or in lithographically etched transistors
[90, 91].

To model the bias switch-on process, we add a spa-
tially homogeneous time-dependent shift to the lead ener-
gies on the horizontal contour branches at time t0, which
mimics the switch-on of a time-dependent bias in the
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leads [69, 92]:

εkα (z ∈ C∓) = εkα + Vα (t) . (2)

On the vertical contour branch the system is propagated
by the Matsubara hamiltonian ĤM , which is equivalent
to Eq. (1) with shifted lead energies εkα (z ∈ CM ) =
εkα − µα, where µα is the chemical potential of lead α.
We assume that µα = µ is lead-independent so the en-
ergy gradient across the junction depends only on the
applied voltage.

The crucial object in the NEGF formalism is the
Green’s function on the contour:

G (z1, z2)ij = −i
Tr
[
e−βĤ

M

T̂γ

[
d̂i,H (z1) d̂†j,H (z2)

]]
Tr
[
e−βĤM

] .

(3)
In this expression, the two times z1, z2 may be located
anywhere on γ, and the operator T̂γ orders operator-
valued functions of contour time with the latest on γ
to the left. The Green’s function may then be projected
onto the central (molecular) region (denoted CC) to ob-
tain the matrix-valued function GCC , which satisfies the
Kadanoff-Baym integro-differential equations of motion
[86] with integral kernel given by the embedding self en-
ergy

[ΣCC (z1, z2)]mn =
∑
kα

Tm,kα [gαα (z1, z2)]kk Tkα,n, (4)

where gαα is the Green’s function of the decoupled lead
α. We now assume that the leads satisfy the wide-band
limit approximation (WBLA), i.e. we neglect the energy
dependence of the lead-molecule coupling. This assump-
tion enables us to write down all components of the ef-
fective embedding self-energy in terms of the level-width
matrix Γα, defined as [68, 69, 86]:

Γα,mn = 2π
∑
k

Tm,kαTkα,nδ
(
εFα − εkα

)
, (5)

where εFα is the equilibrium Fermi energy of lead α.
Within the WBLA, these equations are linearized in
terms of the effective Hamiltonian of the central region,

heffCC ≡ hCC −
i

2

∑
α

Γα. (6)

The detailed derivation of the Green’s function and self-
energy components was published in Ref. [81], and in-
cludes the following compact formula for the greater and
lesser Green’s functions:

G
≷
CC (t1, t2) = ∓i

∫
dω

2π
f (∓ (ω − µ))

∑
β

Sβ (t1, t0;ω) ΓβS†β (t2, t0;ω) , (7)

where the upper (lower) signs on the right hand side correspond to the greater (lesser) components, f (x) =
(
eβx + 1

)−1

is the Fermi-Dirac distribution, and we have introduced the matrix

Sα (t, t0;ω) ≡ e−ih
eff
CC (t−t0)

Gr
CC (ω)− i

t∫
t0

dt̄e−i(ω1−h
eff
CC )(t̄−t0)e−iψα(t̄,t0)

 (8)

defined in terms of the retarded Green’s function Gr
CC (ω) =

(
ωI− heffCC

)−1

. The time-dependent voltage in the

leads is contained in phase factors of the form:

ψα (t1, t2) ≡
t1∫
t2

dτ Vα (τ) . (9)

All components of the Green’s function (corresponding to different combinations of pairs of contour branch times)
can be calculated exactly in the two-time plane [69, 80]. The quantum statistical expectation value of the current
operator, setting the electronic charge q = −1, may be expressed in terms of the Sα, as [81]:

Iα (t) =
1

π

∫
dωf (ω − µ) TrC

2Re
[
iΓαe

iω(t−t0)eiψα(t,t0)Sα (t, t0;ω)
]
− Γα

∑
β

Sβ (t, t0;ω) ΓβS†β (t, t0;ω)

 . (10)

Eq. (10) is a closed expression for the time-dependent current within the WBLA, at the interface of the molec-
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ular device and the lead labelled byα. This expression
reduces to the traditional Landauer-Büttiker formula in
the case of a static bias in the long-time limit t→∞ [69].

B. Time-Dependent Electromagnetic Field
Components

We first wish to compute time-dependent magnetic
field B (r, t) defined at an arbitrary spatial position r
and time t. We note that the Biot-Savart law for the
static magnetic field due to a steady current density I (l)
flowing along a path P (described by the set of points
l ∈ P ) is given by:

B (r) =
µ0

4π

∫
P

I (l) dl× (r− l)

|r− l|3
, (11)

where µ0 is the vacuum permeability and dl is an ele-
ment of the path taken by the current. In most textbook
discussions of the relationship between the time depen-
dent components of the electromagnetic field and their
sources, the magnetic field is related to the time-varying
electric field, via the displacement current term in the
Ampère-Maxwell law:

∇×B = µ0J + µ0ε0
∂E

∂t
. (12)

Although correct, this expression should not be used
to derive the time-dependent generalization of Eq. (11),
even though it can be combined with Helmholtz’s theo-
rem to give a spatial integral formula for the magnetic
field [93]. This is because the electric field is not the
localized physical source of magnetic field. Instead, one
should use the formulation of Jefimenko, where the mag-
netic field is obtained from the relation B = ∇ × A
[82, 93, 94]. We define the corresponding vector potential
operator as

Â(r, t) =
µ0

4π

∫
all

ĵ (r′, tr)

|r− r′|
dr′, (13)

where tr ≡ t − |r− l| /c is the retarded time (with c
being the speed of light), properly reflecting the role of
the current density as a physical source of the field. The
integration in Eq. (13) is performed over the whole of
space and (ignoring the electron spin for simplicity)

ĵ(r, t) = −i
[
(∇r −∇r′) Ψ̂†(r, t)Ψ̂(r′, t)

]
r′→r

(14)

is the current density operator in the Heisenberg picture
directly related to the electronic field operators Ψ̂(r, t).
In Eq. (14) (and throughout) we consider atomic units
where the electron mass is set to unity.

Hence, the vector potential becomes an electronic oper-
ator. Correspondingly, the magnetic field is obtained by
taking the appropriate quantum statistical-mechanical

average of the magnetic field operator B̂(r, t) = ∇ ×

Â(r, t) to obtain the Jefimenko generalization of the Biot-
Savart law to the time-dependent regime,

B (r, t) =
µ0

4π

∫
all

[
r− r′

|r− r′|3
×
〈̂
j (r′, tr)

〉
+

1

c

r− r′

|r− r′|2
× ∂

∂t

〈̂
j (r′, tr)

〉]
dr′. (15)

The required average of the current density operator may
then be related to the electronic Green’s function〈̂

j (r, t)
〉

= −
∑
µ,ν

∈S∪C∪D

[φµ(r)∇φ∗ν(r)− (∇φµ(r))φ∗ν(r)]G<µν(t, t),

(16)

where {φµ(r)} represent an appropriate basis set in which
the Green’s function is expanded, e.g., atomic orbitals
centred on atoms of the molecule and on the leads.
Eqs. (15) and (16) enable one to obtain the exact mag-
netic field anywhere in the junction.

To simplify Eq. (15), we replace the spatial integrals in
this formula with a line integral along the path compris-
ing the molecular skeleton and the leads. To this end,
the integration path is broken up into a set of Ns − 1
segments Pn connecting Ns sites, and we can define the
bond current along each segment Pn (from site n to n+1)
as

In,n+1 (t) ≡ 4Im [Tn,n+1ρn+1,n (t)] , (17)

where the elements on the molecular density matrix are
defined as

ρn+1,n (t) = −iG<
n+1,n (t, t) (18)

and the lesser Green’s function is given by Eq. (7). The
bond currents are known to satisfy the relation [68]

∂tNn (t) =
∑
m

4Im [Tnmρmn (t)] =
∑
m

Imn (t) , (19)

so, since the bond current is assumed to be spatially ho-
mogeneous along the length of each bond, we can rewrite
equation (15) as a summation over the contributions
coming from each path Pn:

B (r, t) =
µ0

4π

Ns−1∑
n=1

∫
Pn

[
In,n+1 (tr)

|r− l|3

+
1

c

∂

∂t

In,n+1 (tr)

|r− l|2

]
dl× (r− l) .

(20)

Similarly, we can evaluate the time-dependent electric
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field [82]

E(r, t)

=
1

4πε0

{∑
n

[
r− rn
|r− rn|3

ρnn(tr) +
r− rn
|r− rn|2

1

c

∂ρnn(tr)

∂t

]

−
∑
n

∫
Pn

1

c2
∂

∂t

In,n+1(tr)

|r− l|
dl

}
, (21)

where ε0 is the vacuum permittivity. In deriving
Eq. (21) we used the fact that in our model the
charge distributions are perfectly localized, ρ(r′, tr) =∑
n ρnn(tr)δ(r

′, rn), around the atomic positions rn. It
is worth noting that the Jefimenko equation for the elec-
tric field, Eq. (21), includes effects from both charge and
current densities. Eqs. (20) and (21) can be evaluated
using Eqs. (17) and (18) and the formula for derivatives
of the lesser Green’s function:

∂G<
CC (t, t)

∂t
= i

∫
dω

2π
f (ω − µ)×∑

β

[
−iheffCCSβ (tr, t0;ω) ΓβS†β (tr, t0;ω)

−ie−iω(tr−t0)e−iψβ(tr,t0)ΓβS†β (tr, t0;ω) + h.c.
]
. (22)

Finally, we may use the derived results for the time-
dependent electric and magnetic fields to investigate the
energy flux and the radiated power due to the charge and
current sources within the molecule. This can be done
via the Poynting vector

S(r, t) =
1

µ0
[E(r, t)×B(r, t)]. (23)

The power radiated into a solid angle dΩ at distance R
in the direction of R̂ is then given by

dP = dΩR2S · R̂, (24)

and the total radiated power is obtained as a surface in-
tegral P =

∫
dP , with dΩ ≡ sin θdθdφ being represented

in terms of the polar (θ) and azimuthal (φ) angles, see
Fig. 1.

We emphasize that Eqs. (20), (21), and (23) can be
used to study time-resolved electromagnetic fields and
fluxes generated by charges and currents in the molec-
ular device described by Eq. (1). As the solution via
the TD-LB approach provides a closed analytical expres-
sion for the time dependence of the density matrix of the
molecular junction and the interface currents, the time-
dependent electromagnetic fields can be evaluated with-
out the necessity of numerically propagating individual
single-particle orbitals or Green’s functions in time.

III. NUMERICAL RESULTS

A. Transient currents and induced magnetic fields

We simulate transport in a benzene molecule described
by a single π-orbital tight-binding model. We set the hop-
ping integral between the nearest neighbor atomic sites m
and n as Tmn = −1.0 a.u. and zero otherwise, cf. Eq. (1).
The molecule is contacted from two sites to two metal-
lic electrodes (α = {S,D}) with a sudden voltage drop
VS(t) = −VD(t) ≡ V θ(t − t0) and we set the switch-on
time to t0 = 0, cf. Eq. (2). The overall bias window
is therefore VS − VD = 2V . We consider two cases of
weak (V = 0.1 a.u.) and strong (V = 1.0 a.u.) bias.
Only the coupling matrix elements between the nearest
sites of the electrodes and the molecule are set to nonzero
values. T1kS labels the coupling to the source lead (see
numbering of sites in Fig. 1) and TmkD labels the three
possible configurations of the drain lead, where m = 4 in
the para configuration, m = 5 in the meta configuration,
and m = 6 in the ortho configuration. The energy scale
in the electrodes is described by a hopping integral Tα,
defining the tunneling rate Γα = 2T 2

mkα/|Tα| such that
the level width matrix in Eq. (5) has the structure:

Γα,ij = ΓSδαSδijδi1 + ΓDδαDδijδim. (25)

We expect the WBLA to be a good approximation for
the embedding self-energy when |Tα| � |Tmkα| [95]. We
further set the inverse temperature to β = 100 a.u.−1 and
assume symmetry in the lead-molecule couplings, ΓS =
Γ = ΓD. This implies equal couplings of both leads to
the molecular sites, T1kS = TmkD.

We address the transient response of the molecular
junction by evaluating the time-dependent bond cur-
rents from the off-diagonal elements of the density ma-
trix, ρ(t) = −iG<(t, t), using Eqs. (17), (18) and (7).
We also evaluate the time-dependent current at the elec-
trode interface, Iα(t), using Eq. (10). Since we also
wish to address electromagnetic fields generated by the
current sources within the molecular junction, we con-
vert from the atomic units to SI units for current by
1 a.u. ≈ 6.624 · 10−3 A, and time 1 a.u. ≈ 2.419 · 10−17 s.
Figure 2 shows the time-dependent bond currents and
the interface currents in case of weak and strong bias
for the para, meta, and ortho coupling configurations.
In this calculation we have set Tα = −8.0 a.u. and
Tmkα = −0.2 a.u. resulting in Γ = 0.01 a.u., i.e., we
are justified in using the WBLA. Similarly, the charge
fluctuations within the molecular region could be inves-
tigated by the diagonal elements of the density matrix
using Eqs. (18) and (7).

We see in Fig. 2 that the currents generated are in
the micro-ampere regime, and they saturate towards sta-
tionary values in a few tens of femtoseconds. While the
interface current behaves rather regularly, the individ-
ual bond currents within the molecule exhibit a con-
siderable oscillatory character. These oscillations char-
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FIG. 2. Time-dependent currents through the benzene
molecule due to weak bias when V = 0.1 a.u. (left pan-
els) and strong bias when V = 1.0 a.u. (right panels), in the
para (top panels), meta (middle panels), and ortho (bottom
panels) configuration.

acterise the timescales of circular currents in the ring-
shaped molecule. Interestingly, in the meta and ortho
coupling configuration, the electrons within the molecule
seem trapped in a highly nonequilibrium state with per-
sistent oscillations even exceeding the total current to
the electrodes, see Figs. 2(d) and 2(f). In addition, the
overall relaxation of the bond currents in the meta and
ortho cases is slower than for the para configuration. We
attribute this to the longer traversal pathways, and there-
fore longer timescales for traversal of electrons across the
junction in the meta and ortho cases [30]. In addition,
we observe that the interface current is comparable in
strength to the individual bond currents, so both types
of current should be taken into consideration when cal-
culating the electromagnetic fields originating from these
current sources. It is worth noticing that the interface
current is positive from the source electrode to the molec-
ular region, IS > 0, while it is negative from the drain
electrode to the molecular region, ID < 0, i.e., the cur-
rent is flowing from the source to the drain.

The direction of the current can also be appreciated
from the bond currents I2,3 and I5,6. Since the bond
currents are of opposite sign in the para configuration,
see Fig. 2 panels (a)-(b), there are two current path-
ways through the molecule. Due to the symmetry of the
transport setup, cf. Fig. 1, the individual bond currents

for the para configuration satisfy I12 = I34 6= I23 > 0
and I45 = I61 6= I56 < 0. On average, the bond cur-
rents cancel each other out, and there is no circular cur-
rent for the para configuration. As seen in Fig. 2 pan-
els (c)-(f) this situation changes for the meta and or-
tho configurations. For the meta configuration, we have
I12 = I45 6= I23 = I34 6= I56 = I61 < 0 due to
symmetry, i.e. on average there is a negative bond
current which means a circular current in the counter-
clockwise direction. For the ortho configuration, in turn,
I12 = I56 6= I23 = I45 6= I34 6= I61 > 0, i.e. the circular
current is in the clockwise direction. We will investigate
the circular currents in more detail in Sec. III B.

For the calculation of the time-dependent fields in
Eqs. (20) and (21), we need the spatial coordinates
of the atomic sites, between which the bond currents
are calculated, for the parametrization of the line inte-
gral. We define these coordinates as rj ≡ (xj , yj , zj) for
j ∈ {1, . . . , 6} and specify the hexagonal structure with
lattice constant given by a = 1.4 Å. The point at which
the magnetic field is calculated, r ≡ (x, y, z), is constant
in the line integral. We parametrize the path between
the atomic sites j and k as ljk = (1 − τ)rj + τrk where
τ ∈ [0, 1]. Applying the chain rule we then get∫

Pjk

. . . dljk =

∫ 1

0

. . .
dljk
dτ

dτ =

∫ 1

0

. . . (rk − rj)dτ (26)

for each segment of the path. As we are dealing with
a planar molecule, we set the molecular coordinates in
the z direction to zero (see Fig. 1). This simplifies the
calculation of the cross product in Eq. (20). However,
the approach is completely valid for non-planar molecules
as long as full three-dimensional lattice coordinates are
employed.

The individual bond currents and their time deriva-
tives in Eq. (20) are to be evaluated at the retarded
time, tr = t − |r − l|/c. In atomic scale junctions, such
as those considered in this work, we have checked the
difference between the retarded time and the measure-
ment time to be maximally of the order of attoseconds,
falling well below the relevant time scales observed in the
time-dependent currents in Fig. 2.

We now take the results of the calculation of the time-
dependent bond currents and the interface currents re-
ported in Fig. 2, and show the induced magnetic field
response to a strong bias in Fig. 3 for the para, meta
and ortho coupling configurations. We take the interface
currents into account by adding dangling bonds in the
corresponding direction of the hexagonal lattice (see the
yellow bonds in Fig. 3), where Eq. (10) is used to compute
the current. This is because evaluating Eq. (20) requires
a vector l at which the current is flowing, so we must cal-
culate the line integral along these dangling bond paths.
The direction of this bond is specified by the hexagonal
lattice unit vectors, and it changes depending on the cou-
pling configuration. We first analyze the structure of the
magnetic vector field at one instant of time at t = 20 fs.
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FIG. 3. Induced magnetic fields due to strong bias at t = 20 fs
for (a) para, (b) meta, and (c) ortho configuration. The field
strength is indicated by the size and color (darkness) of the
arrows. The maximum absolute values for the field strengths
are (a) 3.5 mT, (b) 5.6 mT, and (c) 6.8 mT.

At t = 20 fs the individual bond currents have mostly
saturated to their stationary value. This means that the
induced magnetic field at this instant of time is also sta-
tionary like its current sources. In the para configuration
[Fig. 3(a)] the current flows in one direction globally, and
the molecule acts more as a current carrying wire. The
induced magnetic field respects this symmetry and shows
an overall circular form around the molecule in the trans-
port direction. The transport setup in the meta and or-
tho configurations is asymmetrical. Therefore, also the

induced magnetic field is asymmetrical with respect to
the molecular geometry, as shown in Figs. 3(b) and 3(c).
Interestingly, as we already saw in Fig. 2, for the ortho
case the first site of the molecule is coupled to the source
lead and the sixth site to the drain lead, and electronic
motion is observed in the clockwise direction. This fact
can be appreciated by the apparent right-hand rule for
the direction of the induced magnetic field in Fig. 3(c).
In the meta configuration, the current direction is oppo-
site to the ortho case, and this is also observed in the
induced magnetic field structure in Fig. 3(b). Overall,
the strength of the induced magnetic field is of the or-
der of milli-Tesla in this case of strong bias and weak
coupling.

FIG. 4. Snapshots of induced magnetic fields due to weak bias
at different instants: (a) t = 1 fs, (b) t = 10 fs, (c) t = 20 fs,
and (d) t = 50 fs. The molecule is coupled to the electrodes
in the ortho configuration. The maximum absolute value for
the field strength is (in chronological order) 53 µT, 14 µT,
10 µT, and 3.2 µT.

We display the temporal evolution of the magnetic field
in Fig. 4. This corresponds to the weak bias case in the
ortho configuration, cf. Fig. 2(e). At the initial tran-
sient (t . 10 fs) the magnetic field is strongly localized
around the sites of the molecule lying opposite to the
electrodes. This is due to strong focusing of the individ-
ual bond currents causing the vortical structure for the
induced magnetic field. As the currents start to relax
towards their stationary values (t & 20 fs) the induced
magnetic field first becomes more delocalized around the
whole molecule, and ultimately (t & 50 fs) focuses again
around the strongest currents at the molecule-lead inter-
face. In this case of weak bias and coupling, the induced
magnetic field strengths are in the micro-Tesla regime.
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B. Steady state interference effects

In this section we will focus on the long-time limit of
the transient observables, i.e., we look at the steady state
currents and induced magnetic fields at t → ∞. In ad-
dition to the weak-coupling case in the previous subsec-
tion (Γ = 0.01 a.u.) we now also look at the intermedi-
ate coupling regime (with respect to the intra-molecular
hopping) with Tα = −5.0 a.u. and Tmkα = −0.5 a.u.
resulting in the tunneling rate Γ = 0.1 a.u. In Fig. 5 we
show the steady-state current-voltage characteristics for
the setting considered in Fig. 2 for the interface current
IS and for the net circular current, which we define as the
average bond current Ic = 1/N

∑
i Ii,i+1, where N = 6

represents the number of sites in the molecule. As a gen-
eral observation, a notable current starts flowing through
the benzene molecule only when the highest-occupied
and lowest-unoccupied molecular orbitals (HOMO and
LUMO) at energies ±|Tmn| = ±1.0 a.u. are included
in the bias voltage window. We note that the uncon-
tacted benzene ring has degenerate energy eigenvalues at
± |Tmn| in addition to two non-degenerate eigenstates at
±2 |Tmn| [5]. The current response is more smeared out
when Γ is increased due to the correspondingly broader
spectrum of the unstable eigenmodes of the molecular
structure, cf. Eq. (6).

The interface current in Fig. 5(a) has steps at the eigen-
values of the benzene ring, due to the approximately arc-

tangent shape of the I − V characteristic at low tem-
peratures [69]. The steps gain a slope in Fig. 5(b) at the
stronger coupling Γ = 0.1, due to corresponding broaden-
ing of the transmission probability at molecular eigenval-
ues with increasing Γ. As expected, the circular current
in the para configuration is zero independently of the cou-
pling strength and for all voltages due to the complete
symmetry of the para transport setup. By contrast, at
|V | = 1.0 a.u. there is a strong resonance in the circular
currents for the meta and ortho configurations, see the
insets in Fig. 5(a). At this voltage, the circular currents
even exceed the interface current, cf. Fig. 2. For voltages
higher than the resonant voltage the circular currents
decrease in strength to a saturated value which is larger
for the ortho configuration. At this regime, there are
two current pathways through the molecule also for the
meta and ortho cases. For V values equal to the subse-
quent energy eigenvalues at ±2.0 a.u., the interface cur-
rent increases to a saturated value as there are no more
transport channels available at higher voltages. Interest-
ingly, the circular current is unaffected by the additional
transport channel at |V | = 2.0 a.u. The individual bond
currents do change at |V | = 2.0 a.u. but the change oc-
curs in opposite directions so that the circular current
remains unchanged, see the insets in Fig. 5(a).

To help interpret our results, we can analytically eval-
uate the source current (Eq. (10)) and bond current
(Eq. (17)) in the steady state limits:

IS = 2Γ2

∫
dω

2π
f (ω − µ)

[
|Gr1m (ω + V )|2 − |Gr1m (ω − V )|2

]
, (27)

In,n+1 = 4Γ

∫
dω

2π
f (ω − µ) Im

[
Tn,n+1

(
Grn+1,1 (ω + V )Ga1,n (ω + V ) +Grn+1,m (ω − V )Gam,n (ω − V )

)]
. (28)

Here we have used Eq. (25) to express the frequency in-
tegrands as a scalar product of Green’s function com-
ponents, where the indices 1 and m denote those sites
on the benzene ring which are coupled to the S and D
electrodes, respectively. This simplification helps us to
explain the antisymmetry in V – making the replace-
ment V → −V in the integrands of Eq. (27) or Eq. (28)
is equivalent to switching the indices 1 and m. Due to
the particle-hole symmetry for the model of the benzene
molecule, this is equivalent to reversing the direction of
the currents.

In Refs. [4, 5, 7] the impact of quantum interference
on the transport is analysed in terms of the the zeros
of Gr1m, which can be obtained from a cofactor matrix
method and which give zero transmission probability in
Eq. (27). However, the bond current in Eq. (28) de-
pends on different components in the Green’s function,
namely Grn+1,1, Ga1,n, Grn+1,m and Gam,n. The two terms
in the integrand of Eq. (28) represent a superposition of

bond current densities at the source and drain. The inter-
ference between these two terms explains the resonances
shown in Fig. 5. In the perfectly symmetrical case of the
para configuration, there is a total cancellation of terms
in the integrand which kills the resonant peak. We in-
clude plots of the integrands of Eqs. (27) and (28) around
the resonant voltage in the supplemental material [96] for
additional verification of this effect.

The structure of the current-voltage characteristics is
naturally reflected in the induced magnetic field. In
Fig. 6 we show the absolute value of the maximum in-
duced magnetic field around the molecular junction for
the same setting as in Fig. 5. Importantly, for the meta
and ortho configurations, the resonance at V = ±1.0 a.u.
is also clearly visible in the induced magnetic field. Sim-
ilarly to the current response, the resonance is not as
sharp when Γ is increased. In Fig. 5 we observed that
the circular current is unaffected by the additional trans-
port channel at |V | = 2.0 a.u., but the individual bond
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FIG. 5. The steady state current response to the bias for
para, meta and ortho configurations at (a) Γ = 0.01 and (b)
Γ = 0.1. We show the circular current Ic, defined as the aver-
age of the individual bond currents, and the interface current
IS , evaluated for different voltages at the steady state t→ ∞.
Insets in panel (a) show the individual bond-current orienta-
tion at specific voltages. The coloring of the arrows in the
insets is green for the interface currents, and red (blue) for
positive (negative) circular current.

currents vary at this point. This can be seen in the in-
duced magnetic field which is affected by the individual
bond currents even if the circular current (their average)
remains the same.

C. The quantum emitter

Finally, we consider the three-dimensional radiation
pattern around the molecular device, represented in
terms of the polar (θ) and azimuthal (φ) angles, with
the origin of coordinates located at the center of the
benzene ring, see Fig. 1. We evaluate the radially emit-
ted power using Eq. (24) at distance R = 10d where
d = 2a = 2.8 Å is the molecular diameter. The full
angular profile of the radiation flux for the three molec-
ular configurations is shown in Figs. 7 and 8. All of the
junction parameters in these plots are the same as in
Fig. 5 (a), and all fields are calculated in the steady state
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FIG. 6. The maximum magnetic field response to the bias
for para, meta and ortho configurations at (a) Γ = 0.01 and
(b) Γ = 0.1. We show the magnetic field resulting from the
bond currents alone (bond), and from the bond and interface
currents combined (bond+ifc), cf. Fig. 5.

limit. We include the full three-dimensional vector field
plots of E, B and S for the different configurations in
the supplemental material [96]. It is immediately appar-
ent from inspection of these plots that the electric field
is not strongly dependent on the molecular configura-
tion, whereas the magnetic field is a much more sensitive
probe of the local currents. Thus the differences in radia-
tion flux may be attributed to differences in the magnetic
field for the different molecular geometries.

We now consider the angular profile of the radiation
flux at the resonant point V = 1.0 a.u., shown in Fig. 7.
Firstly, all plots show zero flux in the θ = 0, π direction
perpendicular to the plane of the molecule. The para
configuration exhibits maxima at ±45 to the plane, with
positive and negative maxima in the energy flux along
the φ = 0,±π directions, respectively. Thus there is a
direct correspondence between the azimuthal direction
of current and energy flux, even though the relative de-
pendence on the polar angle is offset. The radiated power
is therefore extremely sensitive to the reversal in the sign
of the circular current. This explains the inversion in
the direction of radiated power seen in the meta config-
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FIG. 8. Same as Fig. 7 but with the bias voltage set by V = 2.0 a.u.

uration [Fig. 7(b)] relative to the para and ortho cases,
and the inversion of the sign on the flux about the point
θ = π/2, φ = π/6 in this plot. This corresponds to the
angle at which the drain lead is bonded to the benzene
molecule, where there is a switch in direction of circular
current flow.

In Fig. 8, the radiated power is shown for V = 2.0 a.u.
As shown in the inset to Fig. 5 (a), the circular currents
in the meta configuration are now running from source
to drain, which means the direction of power flux is re-
versed relative to the V = 1.0 a.u. case. We note that for
both voltages, additional hot (or cold) spots are seen at
the azimuthal angles φ = −2π/3, π/6 in the meta config-
uration and φ = −5π/6, π/3 in the ortho configuration.
These are the bonding angles to the drain leads. This
observation provides a clear signature of the molecular
geometry irrespective of the voltage.

We note that Figs. 7 and 8 show regions with negative
radiated power. These correspond to the situation when
the Poynting vector is directed towards the molecule, see
also the supplemental material [96]. We expect that in
the case of far-field radiation, the radiated power pat-
terns would reshape in such a way that there would be
no negative areas. This expectation can be based on the
distance dependency of the generated fields in Eqs. (20)
and (21): The time-derivative terms, which lead to a
far-field signal, survive only in the transient or with AC

driving, and there exists a long-range component to the
Poynting vector. In our nanojunction setting, the gen-
erated fields are fairly weak, and we do not find a large
enough energy flux at infinity to address this numerically.
Nevertheless, we have checked by surface integration that
in Figs. 7 and 8, the total radiated power is not more than
10−10 W, which corresponds to roughly 1 µeV/fs. This
means that during our transient dynamics (. 50 fs) the
energy loss due to radiation is extremely minimal com-
pared to other energy scales of the problem. Also, the
integrated power through any spherical surface around
the molecule is a constant due to energy conservation.

IV. CONCLUSIONS

We have studied time-resolved electromagnetic fields
due to transient current sources in molecular junc-
tions. We employed Jefimenko’s retarded solutions to the
Maxwell equations together with the TD-LB approach
to obtain a closed analytical expressions for B(r, t) and
E(r, t). Owing to the TD-LB approach, which is well-
supported by the underlying nonequilibrium Green’s
function theory, the methodology we have presented of-
fers a fast and accurate way of addressing macroscop-
ically emergent effects caused by microscopic quantum
transport phenomena out of equilibrium.
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We applied the formalism to a benzene-molecule junc-
tion coupled to electrodes in different coupling geome-
tries. We found symmetry-driven interference effects for
the transient current behavior which, in turn, translated
to a detailed temporal relaxation of the induced mag-
netic field in the vicinity of the molecule. To address
the quantum interference effects, we also investigated the
stationary current-voltage characteristics where we found
novel resonances in the ortho and meta coupling config-
urations. The resonant behavior, which can be identified
with interfering electron pathways through the molecule,
was also discovered in the induced magnetic field. Fi-
nally, we calculated the angular dependence of power ra-
diated from the benzene molecule for the different geome-
tries. We found strong non-local signatures of the type of
molecular coupling in the resonant regime, where quan-
tum interference has a qualitative effect on the radial flow
of electromagnetic energy density.

We have concentrated on a noninteracting picture al-
though many-body correlations could, in principle, influ-
ence the transport mechanisms leading to the local radia-
tion profile of the molecule [28]. For example, it would be
informative to study the image-charge effect, which can
affect the HOMO-LUMO gap and corresponding charge
oscillations [11]. We would expect this to alter the local
electromagnetic fields in a nontrivial way. These effects
could be addressed, e.g., using the generalized Kadanoff-
Baym ansatz for open quantum systems [97].

In future work, we will develop radiation profiles for
different molecular structures using the method detailed
here. Work done on nanoantennas to date has focused on
the impedance and frequency response to external time-
dependent driving fields [98], where additional quantum
effects such as photon-assisted tunneling become impor-
tant. We have already used the TD-LB approach to in-
vestigate the effects of such driving on the current [22]
and noise [81], but the non-local features of the surround-
ing electromagnetic fields can also be mapped for arbi-
trary time-dependent external biases. In addition, we
intend to use the TD-LB model as the foundation for
a fully quantum treatment of the electronic coupling to
the local field in the study of time-dependent quantum
emission [31, 47, 55].
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J. Kaushal, F. Morales, M. Ivanov, O. Smirnova, and
R. Drner, Nature Physics 14, 701 (2018).

[51] Z.-Y. Zhang, C. Miao, and W. Guo, Nanoscale 5, 11902
(2013).

[52] F. Xu, H. Yu, A. Sadrzadeh, and B. I. Yakobson, Nano
Letters 16, 34 (2016).

[53] E. P. Dyachkov and P. N. Dyachkov, The Journal of
Physical Chemistry C 123, 26005 (2019), publisher: ACS
Publications.

[54] T. Zhang, O. Dahlsten, and V. Vedral, arXiv preprint
arXiv:2002.10448 (2020).

[55] Y.-M. Zhang and J.-S. Wang, Journal of Physics: Con-
densed Matter 33, 055301 (2020).

[56] M. Ruggenthaler, J. Flick, C. Pellegrini, H. Appel, I. V.
Tokatly, and A. Rubio, Phys. Rev. A 90, 012508 (2014).

[57] M. Ruggenthaler, N. Tancogne-Dejean, J. Flick, H. Ap-
pel, and A. Rubio, Nature Reviews Chemistry 2, 0118
(2018).
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