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Abstract

The unusual electronic and optical properties of armchair and zigzag graphene nanoribbons

(GNRs) subject to in-plane transverse electric and perpendicular magnetic fields have been sys-

tematically investigated. Our calculations were carried out within the generalized multi-orbital

tight-binding model based on a Hamiltonian which takes into account hopping integrals among the

(s, px, py, pz) atomic orbitals as well as the external electric and magnetic fields. The electronic

structure consists of π bands arising from the pz orbital and σ bands originating from the (s, px, py)

orbitals. The energy bands and optical spectra are diversified by both the nature of the edge of the

nanoribbon and strength of the external fields. Armchair GNRs display a width-dependent energy

gap in addition to low-energy σ bands while the zigzag system has the unfilled flat band with π

edge states at zero energy and partially filled wide-range σ bands. An applied in-plane electric field

leads to the splitting of energy bands and shifted Fermi level, thereby enriching the inter-band and

intra-band optical conductivities. The interplay between an external magnetic field and the edge

geometry gives rise to extraordinary quantized Landau levels and special optical spectra.

∗ Corresponding author: E-mail: phshih@phys.ncku.edu.tw
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I. INTRODUCTION

Graphene nanoribbons, which are narrow strips of graphene, have been receiving a con-

siderable amount of attention due to their acquired fundamental physical properties as well

as their wide range of potential applications. Unlike gapless graphene, GNRs open up band

gaps as a result of quantum confinement and edge effects 1–4. The quasi-one-dimensional

nature of GNRs plays a critical role in the exceptional characteristics, making the materials

appropriate for use in nanoelectronics, optoelectronics, spintronics, photodetectors, quan-

tum devices and others 3,6–12. So far, GNRs have been successfully synthesized by various

methods, including lithography 1,13–15, bottom-up 16–18, as well as unzipping carbon nan-

otubes 19–21. It is worth mentioning that the current experiment techniques to synthesize

GNRs, such as top-down and unzipping, might miss control over the edge passivation 17,22,23.

GNRs passivated with other atoms, such as hydrogen, oxygen, and metals on the edge, will

alter their fundamental properties, as already demonstrated by various research groups 24,25.

It is desired to investigate the electronic and optical properties of GNRs without removing

the σ-edge bands by the passivation. In our study of GNRs, we consider the pristine zigzag

and armchair GNRs, and compare our results with those reported previously for both pas-

sivated and nonpassivated GNRs. Our aim is threefold: (i) to comprehend the effects of

an in-plane transverse electric field on the electronic and optical properties, (ii) to explore

the rich and unique orbital quantization phenomena, one of the mainstream topics in phys-

ical science, and (iii) to thoroughly investigate the diversified magneto-optical excitations

accompanied by specific selection rules.

Up to now, a large number of theoretical and experimental studies on the properties

of GNRs have been performed. Especially, the electronic and optical characteristics of

GNRs have been demonstrated to be remarkably diversified by the ribbon width and edge

types 1–4,15,27. Theoretical calculations have suggested that the electronic structure of GNRs

displays the width-dependent energy gaps for armchair terminations and partially flat bands

with edge states for zigzag structures 1–4,27. Magnetic quantization is predicted to be sig-

nificantly suppressed by lateral confinement; Landau levels (LLs) compete with quantum

confinement and are only observed for sufficiently wide GNRs 28,29. The optical-absorption

spectra are sensitively affected by both the electric and magnetic fields, in terms of spec-

tral structure, intensity and frequency 27–29. From an experimental point of view, opening of
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energy gaps, the edge states and their dependence on the lateral confinement have been veri-

fied through measurements of temperature dependent conductance in the nonlinear response

regime 1, room-temperature on-off current switching 30, by scanning tunneling microscopy as

well as by scanning tunneling spectroscopy 31. Optical measurements have been conducted

for GNRs 16,32,33, in which the optical gap and the geometry-dependent shifts of the absorp-

tion peaks are examined.

However, previous calculations on the electronic and optical properties of GNRs under

electric and magnetic fields were limited to the tight-binding model (TBM) with only one

pz orbital per atom 27–29. Apparently, such a simple model is not able to capture the full

extent of the dynamics of the band structure and optical-absorption spectra due to the lack

of critically dispersive σ bands connected with the shift in the Fermi level. So far, the four-

orbital energy bands, including the π bands made of pz and σ bands made of (s, px, py), have

been reported in the literature.25,26 In addition to the π bands, the σ bands located near

E = 0 are also important in our understanding of the low-energy physics of GNRs. As far as

we know, there is still insufficient study of the magnetic quantization and magneto-optical

properties of four-orbital GNRs. Consequently, this topic deserves a careful investigation.

Motivated by recent theoretical and experimental progress on these materials, we have ex-

plored the role played by electric and magnetic fields on the electronic and optical properties

of four-orbital armchair and zigzag GNRs. The interplay between the external electric and

magnetic fields and the edge geometry yields distinctive band structures and LL features,

giving rise to peculiar inter-band and intra-band optical conductivities. We will show that,

the external electric and magnetic fields can separate the doubly degenerate σ-edge bands

differently, in addition to the edge passivation as reported previously. An E field evidently

modifies the absorption spectra through the shift of Fermi level. On the other hand, a B

field can only change the low-frequency spectral structures related to the weakly quantized

LLs. The interesting field-induced energy dispersion and the optical transitions associated

with them will be clearly discussed. The comparison between our results and the previous

theoretical and experimental reports will be carried out.

The rest of this paper is organized as follows. In Sec. II, we describe our generalized

TBM which we used for calculating the energy band structure for GNRs with armchair and

zigzag edges. Section III is devoted to numerical calculations and discussion of the electronic
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and optical properties of GNRs with armchair and zigzag edges in the absence and presence

of an in-plane electric field as well as a perpendicular magnetic field. We summarize our

results in Sec. IV.

II. METHOD

We have developed the multi-orbital nearest-neighbor TBM to investigate the electronic

and optical properties of GNRs with armchair and zigzag edges in an electric and a magnetic

fields. GNRs are composed of two equivalent sublattices, referred to as A and B, as shown in

Figs. 1(a) and 1(b) for armchair and zigzag edges, respectively. We choose x and y directions

for transverse and longitudinal directions with respect to a nanoribbon, respectively. The

primitive unit cells, marked by the red rectangles, consist of 2N carbon atoms where N is the

number of armchair or zigzag lines. The first Brillouin zone is determined by the requirement

that ky is within [−π/Ly, π/Ly], where Ly is the length of the periodic primitive unit cell.

The nanoribbon widths of the armchair and zigzag GNRs are defined as Wac = Ly(N −1)/2

(Ly = 3b with b = 1.42 Å being the C-C bond length) and Wzz = Ly(N/2−1/3) (Ly =
√

3b),

respectively.

The Hamiltonian, including the sp2 orbital bonding and an external electric field, is given

by 34,35

Ĥ =
∑
〈i〉,o

(εo + Vsc(xj))Ĉ†ioĈio +
∑

〈i,j〉,o,o′
t
Rij

oo′
Ĉ†ioĈjo′ . (1)

In this Hamiltonian, the Ĉ†io (Ĉjo′ ) operator could create (annihilate) an electronic state

with orbital o (o′) at lattice site i (j). Also, εo is the orbital-dependent on-site energy, t
Rij

oo′

is the nearest-neighbor hopping integral which depends on the two atomic orbitals of (o, o′)

and the translation vector Rij between two atoms. It is crucial to mention that applying a

voltage drop across the nanoribbon does not ensure a spatially-homogeneous electric field

in the system. Instead, a field domain will be induced self-consistently. By neglecting

insignificant screening contribution from edge-state electrons, we approximate the screening

by a static dielectric function εs(qx, qy) of quasi-one-dimensional graphene ribbon. The

statically-screened potential can be written as [38]
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Vsc(xj) ≡ Vsc(xj, y = 0) = A0 Re


∞∫
−∞

dqx e
iqxxj Uext(qx)

∞∫
−∞

dqy
εs(qx, qy)

 , (2)

where the dimensionless constant A0 is fixed by the constraint Vsc(W ) − Vsc(0) = −EW

in which E represents the applied uniform electric field across the width of a nanoribbon,

and W is the nanoribbon width. Here, different choices of y value only gives rise to a phase

factor. In addition, Uext(qx) is the Fourier-transformed external potential vext(xj) = −eExj,

given by

Uext(qx) =

W∫
0

dx′ e−iqxx
′
vext(x

′) = −ieE
q2
x

[
iqxWe−iqxW + eiqxW − 1

]
.

The dynamical dielectric function ε2D(qxy, ω) is calculated from the random-phase ap-

proximation as [37]

ε2D(qxy, ω) = εb − ν2D(qxy) |F(qx)|2
∑
c,v

∫
1stBZ

2
dky
2π

∣∣∣〈ky + qy; c
∣∣∣eiqyy∣∣∣ ky; v〉∣∣∣2

× f(Ec(ky + qy))− f(Ev(ky))

Ec(ky + qy)− Ev(ky)− (ω + iδ)
, (3)

where εb = 1 is the background dielectric constant, ν2D(qxy) = e2/(2ε0qxyW ) is the bare

potential, qxy =
√
q2
x + q2

y, and F(qx) represents the dimensionless form factor which can be

computed by

F(qx) =

W∫
0

dx |ψ(x)|2 eiqxx

with ψ(x) as the transverse envelope function for a nanoribbon obtained by integrating over

y. Moreover, we have εs(qx, qy) = ε2D(qxy, ω = 0).

The parameters used in our calculations are optimized numerically, following Ref. [39],

so as to reproduce the energy bands calculated previously by the first-principles method

and TBM 25,26. The application of an external perpendicular magnetic field is included in

the calculations by adding an extra position-related Peierls phase in the nearest-neighbor

hopping integral 28,40.
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When GNRs are irradiated by an electromagnetic field, there exist vertical optical exci-

tations from occupied to unoccupied states. The finite intensity of such excitations could

be determined from the absorption function 40,

A(ω) ∝ 1

(2π)2

∑
c,v

∑
m,m′

∫
1stBZ

d2k

∣∣∣∣∣〈Ψc(k,m′)

∣∣∣∣∣Ê ·Pme

∣∣∣∣∣Ψv(k,m)
〉∣∣∣∣∣

2

×Im
[
f0(Ec(k,m′))− f0(Ev(k,m))

Ec(k,m′)− Ev(k,m)− ω − iΓ

]
, (4)

where f0(x) = Θ(EF − x) with Fermi energy EF , Θ(x) is the unit-step function,〈
Ψc(k,m′)

∣∣∣ Ê·P
me

∣∣∣Ψv(k,m)
〉

is the velocity matrix element, and Im
[
f0(Ec(k,m′))−f0(Ev(k,m))
Ec(k,m′)−Ev(k,m)−ω−iΓ

]
is

the joint density of states. Γ is the lifetime broadening factor which is chosen to be suffi-

ciently small for free-standing systems (Γ = 1 meV). Previous work shows that this method

could yield highly accurate optical absorption spectra which are consistent with experimental

results 40.

III. RESULTS AND DISCUSSION

The band structures of armchair and zigzag GNRs calculated with the use of both pz and

multi-orbital TBMs are presented in Figs. 1(c) through 1(f) for comparison. The pz orbital

TBM gives only the π bands, as demonstrated in Figs. 1(c) and 1(d). The low-lying energy

dispersion forms the parabolic shapes and it varies with the ribbon edges. The conduction

and valence bands are symmetric about the Fermi level EF = 0. As for the zigzag GNRs, a

flat band appears at the Fermi level within the range 2π/3 ≤ ky ≤ π. On the other hand,

the armchair structure exhibits a width-dependent band gap between the edge bands at

ky = 0 which tends to zero as N is increased. It has been predicted by the π-bands TBM

and also the first-principle calculations that an armchair GNR is semiconducting except for

N = 3p+2 with p as a positive integer, where it becomes metallic. 1–4 The metallic behavior

of an armchair GNR has also been examined by experimental measurements. 5 Here, the

π band structures in our model study of GNRs with N = 150 are consistent with those

obtained in the previous works.1–4,27,28

Since the lattice symmetry is broken at the ribbon edges, the multi-orbital Hamiltonian

is necessary instead of just pz one. As a matter of fact, the σ-edge bands come into existence
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FIG. 1: (color online) Lattice structures of GNRs with (a) armchair and (b) zigzag edges for

N = 150. The calculated energy bands for both pz and (s, px, py, pz)-orbitals TBMs are presented

in (c), (d) and (e), (f), respectively.

when the four (s, px, py, pz) orbitals are included in the calculations. 25 Interestingly, the

σ energy bands are well separated from the π bands. They are mainly made of (s, px,

py) orbitals, unlike the π-edge bands which consist of only pz orbital. Figs. 1(e) and 1(f)

present the low-lying energy bands of armchair and zigzag GNRs, respectively. The weak
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energy dispersion of σ bands occurs near zero energy for armchair GNRs while its strong

dispersion enters into much deeper energy for the zigzag system. The σ bands are doubly

degenerate, corresponding to two identical ribbon edges. The relative position of the edge

σ and π bands determines the Fermi level, whereby EF is located above or below the π

bands for the armchair and zigzag GNRs, respectively. Our numerical calculations show

that EF = −0.0615 eV for armchair and EF = −0.3289 eV for zigzag terminations with

N = 150. Interestingly, the electronic characteristic of armchair GNR is gradually changed

from semiconducting to metallic when the ribbon width increases. We have confirmed that

the armchair GNRs with N ≤ 30 presents the semiconducting behavior, in consistent with

the previous reports 1–4. On the other hand, the N = 150 armchair GNR becomes metallic

as the Fermi level crosses the energy bands. This finding might be an important reference

for the future experimental verification.

When an in-plane transverse electric field is applied across the ribbon edges, the screened

potential causes the significant modification of the electronic structures, including the energy

dispersion and the band splitting. Figures 2(a) and 2(b) show the band structures with a

finite E field of the armchair and zigzag GNRs, respectively. The field conspicuously narrows

the separation between the conduction and valence π bands for both systems. The influence

due to the E field is more visible for the π- and σ-edge bands. One of the two degenerate

edge bands remains unchanged whereas the other is shifted upward which as a result of the

band splitting. Such an energy splitting is uniform along ky and it becomes wider when the

field is increased. The effect due to the electric field on the band structure gives rise to a

shift in the Fermi level. We observe that EF is shifted more upward for larger field, which is

consistent with the electric field-dependent energy dispersion. We also note that the presence

of the σ-edge bands strengthens the effect of the E field on variation of the Fermi level. It is

noticed that the feature of band structures under an electric field is quite different from the

passivated GNRs in which the hybridization between the σ-edge bands near the zero energy

and the passivated atomic orbitals gives rise to the separation between the original and

newly introduced edge bands. 25 The E-field-induced rich electronic structures significantly

alter the vertical optical transitions from the occupied to the unoccupied states which we

will discuss next.

The optical absorption function exhibits peak and shoulder-like structures, correspond-
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FIG. 2: (color online) Calculated energy bands of (a) armchair and (b) zigzag GNRs using the four-

orbitals TBM in the presence of an external in-plane transverse electric field E0 which generates a

band splitting between two degenerate σ bands. The dotted red and green lines represent the edge

bands which remain unchanged under the application of E0.

ing to vertical transitions between band-edge states or the multi-excitation channels. The

characteristics of the spectral structure strongly depend on the lateral confinement as well

as the frequency range, referring to the blue solid curves in Figs. 3(Ia) and 3(IIa) for the

armchair and zigzag GNRs at zero field, respectively. For the armchair edge, the pronounced

peaks correspond to vertical transitions from the occupied valence to unoccupied conduction

band states, as illustrated in Fig. 3(Ib). The vertical green arrows indicate the excitations
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FIG. 3: (color online) Calculated absorption spectra of (Ia) armchair GNR with and without an

E field (in V/Å). Results for pz and (s, px, py, pz)-orbital TBMs are represented by the dashed

and solid curves, respectively. The corresponding vertical transition channels are shown in (Ib)

and (Ic). Similar plots for zigzag edge GNR are presented in (IIa) through (IIc).

forming the threshold peak ω1. The four-orbital TBM yields similar spectral structures

compared with the single pz-orbital TBM (the dashed blue curve in Fig. 3(Ia)) except for

the disappearance of the P1 excitation. In fact, the P1 peak corresponds to the vertical tran-

sition from the highest valence state to the lowest conduction one, its frequency measures

the finite band gap of the armchair system. The lack of such a transition by including the

four orbitals is because of the emergence of the σ-edge bands which repositions the Fermi
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level. The zigzag-edge GNR displays remarkable differences between the absorption spectra

correlated with the single-orbital and multi-orbital model calculations. By including the

(s, px, py, pz) orbitals, the Fermi level is significantly lowered toward the valence bands.

Therefore, the weakened absorption peaks in the low frequency range are associated with

the multi-channel vertical transitions among the valence states, as demonstrated in Fig.

3(IIb). All of these peaks are not well separated since the closeness of electronic states in

the vicinity of EF gives rise to plenty of excitation channels with only slight difference in

frequency. This leads to the emergence of shoulder-like spectral structures, such as ω3 in

Fig. 3(IIa). It is worth noting that, the absorption spectra of both the single pz-orbital and

the four-orbital Hamiltonian matrices using the Fermi energy obtained by the four-orbital

TBM are equivalent. This is consistent with the optical selection rule in which the vertical

transition between the two σ-edge bands are forbidden.

The influence of finite electric field on the optical-absorption spectra is mainly attributed

to the shift of the Fermi level and the distortion of band edge states. The solid red curves

in Figs. 3(Ia) and 3(IIa) illustrate the spectral structures of (s, px, py, pz)-orbital armchair

and zigzag GNRs for E0 = 0.005 V/Å. An electric field brings out remarkable changes in

the spectra, including the alteration of the frequency and peak intensity, as well as the

enhancement of shoulder-like structures. The threshold structures ω′1 of both armchair and

zigzag GNRs arise at lower frequency compared with those for the zero-field spectra. They

are associated with the vertical transitions of the dense electronic states around the new

Fermi levels, as demonstrated by the vertical green arrows in Figs. 3(Ic) and 3(IIc). For

armchair GNRs, the low frequency spectral structures are formed by excitations within the

valence bands, differing from the above mentioned zero-field spectrum. Furthermore, the

band edge states of the parabolic bands are deformed or anti-cross due to band coupling,

as shown in Fig. 3(Ic). These are responsible for the lowering of spectral intensity and

the emergence of shoulder-like structures interspersed among the peaks. For zigzag GNR,

the low frequency absorption spectrum is correlated with the transitions among the valence

bands regardless of whether an electric field is applied or not. However, the Fermi level under

a field enters into deeper valence bands where the density of states becomes much higher. As

a result, the spectral intensity is increased by an E field, as shown in Fig. 3(IIa), in contrast

to that of the armchair system. It is worth mentioning that the absorption spectra of pz

orbital are also greatly enriched by a finite potential, including the enhancement of peaks
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with lower intensity and the shift of threshold structures, as shown by the dashed red lines

in Figs. 3(Ia) and 3(IIa). This is mainly attributed to the adjustment of the Fermi level and

the deformation of low-lying band edge states under an E field. The first few spectral peaks

of the four-orbital and pz-orbital systems are divergent due to the σ-bands-induced slight

difference in Fermi energies. The higher-frequency absorption spectra, which correspond

to the vertical transitions of the electronic states away from the Fermi level, become more

equivalent for the two models. For example, the (P ′5 and ω′3) peaks of the armchair GNR

(Fig. 3(Ia)) are located at the same frequency, and so are the further spectral region. Similar

behavior is also true for the absorption spectrum of the zigzag GNR, starting from the (P ′3

and ω′3) peaks (Fig. 3(IIa)).

We now explore in detail the magnetic quantization effect on σ-edge states by focusing

on the (s, px, py) orbitals. The typical behavior of the Landau bands (LBs) is sensitively

dependent on the ribbon edges. This reflects in the interplay between the magnetic field

and the lateral confinement. Figures 4(a) and 4(b) show, respectively, the quantized LBs of

armchair and zigzag GNRs. An external magnetic field lifts the degeneracy of the σ-edge

bands due to asymmetrical confinement with respect to the edge line for the same direction

of two Lorentz forces acting on electrons, leading to two distinct nondegenerate bands. This

phenomenon is more perceptible for ribbons with zigzag edges compared with the armchair

ones. The ky-dependent LBs of the σ-edge bands changes greatly with the field strength,

referring to the red (B0 = 10 T) and green (B0 = 20 T) curves. The energy splitting between

the two σ-edge bands, Eg, strongly depends on ky, the magnetic field strength, and the edge

types. The effect of B0 on Eg is stronger for larger magnetic field. Interestingly, the σ-

edge states at kyLy = nπ (n in an integer) remain doubly degenerate without splitting even

under the influence of magnetic field. This is because at these special momentum states, the

two Lorentz forces with equal magnitude but opposite directions point to the same side of

the edge-confinement and therefore they balance each other out. Nevertheless, their energy

can still vary with B0. Especially for the armchair-edge system, there exists band crossing

behavior in the vicinity of ky = 0, as illustrated in the zoom-in inset of Fig. 4(a). It is noticed

that the separation of the two degenerate σ-edge bands by a magnetic field is unlike that

caused by an electric field in terms of energy dispersion and ky-dependent band splitting.

Therefore, one might predict a remarkable differences in the influence between the two fields

on the optical absorption spectra.
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FIG. 4: (color online) Calculated ky-dependent Landau levels of GNRs with (a) armchair and (b)

zigzag edges for N = 150. Here, the doubly degenerate σ bands are split by an applied magnetic

field, as shown for B0 = 10 T and 20 T.

The magnetic quantization of the σ-edge bands is significantly modified by varying the

ribbon width. In fact, the inner side of the edge confinement is weakened for increasing

ribbon width, leading to a stronger asymmetry or a larger splitting of two σ bands. This

phenomenon is demonstrated for armchair and zigzag GNRs in Figs. 5(a) and 5(b), respec-

tively, for chosen N and B0 = 10 T. The separation between the two degenerate σ-edge

bands, (nac = 1, nac = 2) in Fig. 5(a) and (nzz = 1, nzz = 2) in Fig. 5(b), becomes clearer

for wider ribbons. Interestingly, the degenerate states at kyLy = nπ are barely affected
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FIG. 5: (color online) Calculated dispersion relations of σ-edge bands as functions of wave number

ky for both (a) armchair and (b) zigzag GNRs. nac/nzz =1 and 2 denote the lower and upper

non-degenerate Landau bands of the σ-edge states. Here, the strong dependence of dispersion on

the ribbon width is shown for various values of N .

by the ribbon width, and so is the band crossing of armchair edge systems near ky = 0

(a close look is inserted in Fig. 5(a)). The effect of ribbon width on zigzag GNRs in Fig.

5(b) becomes stronger than that on the armchair system because of an enlarged scale. It is

interesting to notice the σ-edge bands are moved away from zero energy for both armchair
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and zigzag GNRs with sufficiently large ribbon width. This conclusion also holds true for

the infinite width, i.e., graphene sheet, as demonstrated previously. 41,42 As a matter of fact,

the (s, px, py) orbitals only have minor impact on the low-energy band structures of wide

GNR systems.

The dependence of the Landau wave function distribution of the σ-edge states on the

multi-orbitals of A and B sublattices is presented in Figs. 6(a) and 6(b) for the armchair

GNRs and Figs. 6(c) and 6(d) for the zigzag ones. The Landau states of the σ-edge bands

exhibit some unique features which are different from those of the π bands. Both the

magnetic-field-separated Landau edge bands present the wave function probabilities that

are peaked at kyLy = 2nπ bound states. The width of the wave function mode in Fig.

6(a) is much smaller than the magnetic length, but it varies with the ribbon width or edge

confinement. Each Landau band is attributed to one of the two ribbon edges. The cases

with nac = 1 and nzz = 1 in Figs. 6(a) and 6(c) show the finite-amplitude modes localized

at the left edge (ky = 0) while the nac = 2 and nzz = 2 modes are localized at the right edge

(kyLy = 2π). Interestingly, the Landau wave functions of the A atom on the left-hand side

of the ribbon edge (nac = 1, nzz = 1) resemble those of the B atom on the right-hand side

of the ribbon-edge (nac = 2, nzz = 2). These unique characteristics are closely related to

the asymmetric geometry of GNRs, particularly the positions of the A and B atoms on the

two ribbon edges, as illustrated in Figs. 1(a) and 1(b).

The orbital compositions of the Landau wave functions are not equivalent. The LBs of

the σ edge bands only have finite modes on the (s, px, py) orbitals but vanishing amplitudes

on the pz orbital, which is opposite to those of the π bands. This is consistent with the

zero field energy dispersion in Fig. 1. The role played by each orbital in determining the

probability amplitude of the wave function depends on the ribbon edges. As for armchair

edge GNRs, the weights of LB wave functions on the (s, px, py) orbitals which the A and

B atoms are in also contribute of the same order, although the py orbitals have slightly

higher mode amplitude compared with the other two. On the other hand, the zigzag edge

system presents much more visible fluctuation of the LB wave function probability due to

the orbitals. In this case, the wave function of each LB is only dominated by the py orbital

of either A (nzz = 1) or B (nzz = 2) atom. In contrast, the contribution from px orbitals

to the Landau wave functions becomes negligible. The dependence of LL wave function
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FIG. 6: (color online) Calculated position dependence in the probability function |Ψ|2 of σ-edge

bands at ky = 2nπ/Ly for (a) nac = 1 and (b) nac = 2 LBs of armchair GNRs with N = 150.

Similar plots for zigzag GNRs are presented for (c) nzz = 1 and (d) nzz = 2 LBs. Eight displayed

columns capture the modes of (s, px, py, pz) orbitals on both A and B sublattices.

distribution on distinct orbitals is critical in understanding the inter-LB optical transition

which we discuss in the rest of this paper.

We now focus our attention on the magneto-optical properties of GNRs. For this, we

calculate the absorption spectra of GNRs in the absence and presence of a magnetic field, as

shown in Figs. 7(a) and 7(b) for armchair and zigzag GNRs, respectively. We observe that
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FIG. 7: (color online) Calculated optical-absorption spectra with B0 = 0 and B0 = 10 T are

presented for (a) armchair and (b) zigzag GNRs with N = 150. The vertical transition channels

are displayed in the inserts of (a) and (b).

the low-energy magneto-optical transitions are mainly attributed to the π bands. The reason

for this is two-fold: (i) the transition between the π and σ bands is forbidden and (ii) there

is no vertical transition between the two degenerate σ edge bands. The absorption function

exhibits the peak and shoulder-like structures. Overall, the spectral intensity is increased at

higher transition frequency ω due to superposition of high-energy side tails of the density of

states for different transitions. A magnetic field of B0 = 10 T only has significant impact on

the low frequency peak intensity. As a matter of fact, the higher frequency peak intensity

17



become equivalent to those in the absence of B0. It has been predicted that the spectral

intensity could be enhanced by increasing the magnetic field strength or the ribbon width

since the absorption peaks are mainly contributed from the π bands 28.

An applied magnetic field can shift the location of peaks, modify the spectral intensity,

and create new absorption structures due to asymmetry in edge channel confinement. The

optical thresholds of both the armchair (ω′0 in Fig. 7(a)) and zigzag GNRs (ω′1 in Fig. 7(b))

are generated by the finite field. The former is revealed as a relatively low shoulder-like

structure which is correlated with the vertical transition between the valence band-edge

states of the n = 2 and n = 3 LBs, as indicated by the vertical green arrow in the inset of

Fig. 7(a). On the other hand, the latter appears as a prominent peak, corresponding to the

multi-channel vertical transitions among the LBs of n = (1, 2, 3, 4, 5, 6), as illustrated in

the inset of Fig. 7(b). In addition to the thresholds, the other B0-induced extra spectral

structures include the special peak ω′2 of armchair GNR and the shoulder-like structures (ω′7,

ω′8, ω′10) of zigzag GNR. Nevertheless, they are not the dominant structures of the spectra

which might not be observable in optical measurements.

FIG. 8: (color online) Calculated Drude contributions to the optical conductivity for (a) armchair

and (b) zigzag GNRs for zero and finite electric or magnetic fields.

In addition to the inter-band transition, the Drude conductivity related to the intra-

band contribution is an important part of the optical conductivity at low frequencies. We

have employed Drude’s formula for the conductivity based on the Kubo formula from Ref.

[43] to calculate the intra-band conductivity of GNRs. In order to verify the accuracy
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of our physics model, we first computed the real and imaginary parts of the conductivity

for graphene. It turns out that our numerical results are in an excellent agreement with

the previous experimental and theoretical studies.44,45 In Figs. 8(a) and 8(b), we plot the

calculated Drude tails for both armchair and zigzag GNRs at zero electric and magnetic

fields, and at finite electric/magnetic fields. The intra-band transition only makes remarkable

contribution to the optical conductivity at zero frequency. Both the width and intensity of

the Drude tail strongly depend on the number of occupied energy bands across the Fermi

surface. For N = 150 GNRs, the Drude contribution is greatly enhanced by an electric field

in the armchair-edge system, which is consistent with the significant shift of EF . Explicitly,

the electric-field-induced shift of Fermi energy leads to the crossing between the Fermi level

and a large number of the energy bands, as demonstrated in Fig. 2(a). As a result, the

Drude conductivity which comes from the intra-band transitions is much larger for E0 =

0.005 V/Å than that of the zero field. As for the zigzag GNR, the number of energy bands

crossing the Fermi level are comparable for zero-field and E0 = 0.005 V/Å, therefore, the

Drude conductivities of both cases are quite similar, referring to Fig. 8(b). On the other

hand, a finite magnetic field can reduce the Drude conductivity of both the armchair and

zigzag GNRs, as shown by the red lines in Figs. 8(a) and 8(b). The field splits the two σ-edge

bands which pulls the Fermi level toward the zero energy where the density of electronic

states is lowest. As a result, the intra-band excitation for B0 = 10 T is relatively weaker

compared with that of the zero-field case.

IV. CONCLUDING REMARKS

In this paper, we have investigated the electronic and optical properties of GNRs with

armchair and zigzag edges using the TBM as well as the absorption function. By com-

paring our results for the single pz and four-orbital Hamiltonian matrices, we were able to

understand the significance of the σ-edge bands for the low energy physics of GNRs. The

contribution from the (s, px, py) orbitals to the electronic and optical properties of GNRs

is mainly attributed to the emergence of the doubly degenerate σ-edge bands as well as the

shift of the Fermi level.

We have also observed that an applied in-plane transverse electric field could alter the

energy dispersion which in turn modifies the inter-band optical transition and Drude con-
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ductivity. The presence of an external electric field results in the splitting of energy bands,

distortion of band edge states, and a shift of the Fermi level. These result in crucial changes

in the optical conductivity, alteration of the amplitude and frequency of absorption peaks as

well as the width and intensity of the Drude tail, and enhancement of shoulder-like structures

of the absorption spectra.

Finally, we carried out a careful investigation of the quantized Landau bands and the

magneto-optical properties, mostly focusing on the effect of the σ-edge states. The charac-

teristics of the Landau bands depend sensitively on the ribbon edge type, their width, and

the magnetic field strength. A magnetic field could split the two degenerate σ-edge bands

to create a kx-dependent band splitting between them. By analyzing the wave functions

of these two σ-edge states, we demonstrated that each of them is attributed to one of the

two ribbon sides. The low-energy magneto-absorption spectra, which are governed by the π

bands, exhibit peak and shoulder-like structures. The spectral intensity is greatly affected

by the frequency, ribbon width and edge type, as well as the field strength.
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