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We present an extension of constrained-path auxiliary-field quantum Monte Carlo (CP-AFQMC)
for the treatment of correlated electronic systems coupled to phonons. The algorithm follows the
standard CP-AFQMC approach for description of the electronic degrees of freedom while phonons
are described in first quantization and propagated via a diffusion Monte Carlo approach. Our
method is tested on the one- and two-dimensional Holstein and Hubbard-Holstein models. With a
simple semiclassical trial wavefunction, our approach is remarkably accurate for ω/(2dtλ) < 1 for
all parameters in the Holstein model considered in this study where d is the dimensionality, ω is the
phonon frequency, t is the electronic hopping strength, and λ is the dimensionless electron-phonon
coupling strength. In addition, we empirically show that the autocorrelation time scales as 1/ω for
ω/t . 1, which is an improvement over the 1/ω2 scaling of the conventional determinant quantum
Monte Carlo algorithm. In the Hubbard-Holstein model, the accuracy of our algorithm is found
to be consistent with that of standard CP-AFQMC for the Hubbard model when the Hubbard U
term dominates the physics of the model, and is nearly exact when the ground state is dominated
by the electron-phonon coupling scale λ. The approach developed in this work should be valuable
for understanding the complex physics arising from the interplay between electrons and phonons in
both model lattice problems and ab initio systems.

I. INTRODUCTION

The coupling of electrons to nuclear lattice distortions
is responsible for myriad important physical phenomena
in bulk materials.1 In particular, the thermodynamic and
transport properties of solids are crucially influenced by
electron-phonon (el-ph) interactions. Perhaps the most
spectacular consequence of el-ph interactions is the emer-
gence of superconductivity as described by the Bardeen-
Cooper-Schrieffer (BCS) theory. Here, the el-ph inter-
action mediates an effective electron-electron (el-el) at-
traction which results in the Cooper pairing of electrons
of opposite spin.2 The BCS theory provides a quantita-
tive framework for the description of conventional super-
conductivity such as that found at low temperatures in
simple metals.

A simple microscopic picture is unfortunately not
available for unconventional superconductors such as the
cuprates, whose critical temperature (Tc) can be above
90K at ambient pressure.3,4 It is believed that the el-
ph interaction alone cannot give rise to these high Tc
values.5 However, experimental evidence exists which in-
dicates that non-negligible el-ph interactions are present
in these materials.6–24 It remains unclear what role el-ph
interactions play in the cuprates and related materials,
and if a potentially delicate interplay between el-el and
el-ph interactions may influence their superconducting
properties.

The canonical model Hamiltonian used to capture
the physics of the cuprates is the two-dimensional (2D)
repulsive Hubbard model.25 The ground state of the
hole-doped 2D Hubbard model has been thought to
support d-wave superconductivity for many years.26 A
recent joint numerical study using two state-of-the-

art approaches, density matrix renormalization group
(DMRG) and constrained path (CP) auxiliary-field quan-
tum Monte Carlo (AFQMC), indicates that the ground
state of the standard 2D repulsive Hubbard model with
near-neighbor hopping supports modulated phases (e.g.
stripes) that are not superconducting over a range of
repulsion strengths and doping levels27 expected to de-
scribe the cuprates. This suggests that features beyond
those included in the simple Hubbard model, such as the
effects of multiple bands, longer ranged Coulomb inter-
actions, and/or the role of el-ph interactions, may be
needed to tip the balance of the ground state towards
superconductivity for realistic values of doping levels and
the magnitude of el-el repulsions.

Our work is motivated by precisely these consider-
ations, namely the development of a scalable and ac-
curate numerical approach that can treat el-ph effects
on the same footing as el-el correlations. This is a
challenging task, as treating the complex electronic de-
grees of freedom in the pure 2D Hubbard model is
already difficult, even with state-of-the-art numerical
approaches.27–29 The addition of el-ph effects, as con-
tained in, e.g., the 2D Hubbard-Holstein model, thus re-
quires non-trivial extensions of these approaches in order
to treat electrons and phonons on an equal footing.

Several methods have been formulated or extended
to coupled el-ph problems, including DMRG,30–35

variational exact diagonalization,36 variational Monte
Carlo,37–39 dynamical mean-field theory,40–44 density
matrix embedding theory,45,46 and coupled-cluster
theory.47–49 There are difficulties facing each approach.
For example, large el-ph couplings and/or small phonon
frequencies are challenging to handle in most methods
based on a second quantized representation of phonons,
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because of the necessity of truncating the phonon Hilbert
space. When a large number of phonons per site is re-
quired, the computational cost associated with treating
them can grow prohibitively expensive. In addition to the
demand of treating the phononic Hilbert space, there is
of course the interacting many-electron problem. Clearly,
the treatment of correlated el-ph coupled systems in two
and higher dimensions over a wide range of the parame-
ter space in an exact or near-exact manner is a forefront
challenge.

The method that we propose here is an extension of
the CP-AFQMC method developed and popularized by
Zhang and co-workers.50,51 For purely electronic prob-
lems, the CP-AFQMC approach is similar to the de-
terminant quantum Monte Carlo (DQMC) method52–59

in the sense that the two-body propagation is aided by
the Hubbard-Stratonovich transformation60 and is for-
mulated in the space of determinants. There, however,
are several key differences. CP-AFQMC reformulates
the imaginary-time propagation by working with open-
ended random walks. An exact boundary condition is
introduced in auxiliary-field space, which can be approx-
imately imposed using a trial wave function, to avoid the
notorious fermion sign problem. The open-ended ran-
dom walk approach allows easy access to zero tempera-
ture results, and is often much less prone to ergodicity
problems in the Monte Carlo sampling. Moreover, CP-
AFQMC can be naturally extended to ab initio Hamil-
tonians while coping with the fermionic phase problem
associated with these more complex models using the
phaseless approximation instead of the constrained path
approximation.61,62 Because of the constraint imposed
on walker trajectories, CP-AFQMC is no longer exact,
unlike DQMC. Furthermore, due to the constraint, the
ground-state energy computed via the usual mixed es-
timator is not variational.63 On the other hand, CP-
AFQMC can be used to access a wider range of interac-
tion strengths and doping regimes in which DQMC can-
not be used due to the inherent sign problem. It should
be noted that, in addition to its flexibility, CP-AFQMC
has been shown to yield excellent accuracy for strongly
correlated electrons.27,29

In this work we devise an extension of CP-AFQMC
to treat both electrons and phonons on an equal foot-
ing, while retaining its benefits for electrons. Our frame-
work is similar to the extension of Green’s function Monte
Carlo (GFMC) as formulated by McKenzie and others,64

where the phonons are treated in a first quantized space.
We present the formulation of this new CP-AFQMC ap-
proach, provide thorough benchmark results on the 1D
and 2D Holstein and Hubbard-Holstein models for vari-
ous phonon frequencies and el-ph couplings, and discuss
the current scope and limitations of the proposed ap-
proach.

The paper is organized as follows: In Section II we out-
line the model we study and the important parameters
that control its physics. In Section III we outline our
algorithm. Section IV is devoted to a discussion of trial

wave functions. Section V A and Section V B discuss dis-
tinct perturbative approaches to the problem outlined in
Section II. Section VI and Section VII present results for
the Holstein and Hubbard-Holstein models, respectively.
Section VIII discusses the extension of our approach to
realistic ab initio problems. In Section IX we conclude.

II. MODEL

A. The Hubbard-Holstein Hamiltonian

Although the approach we outline is general, we focus
on a paradigmatic model of a correlated system coupled
to phonons, namely the Hubbard-Holstein model.25,65

The Hubbard-Holstein model is defined by the following
Hamiltonian:

Ĥ = Ĥ(1)
el + Ĥ(2)

el + Ĥph + Ĥel-ph, (1)

where

Ĥel = Ĥ(1)
el + Ĥ(2)

el , (2)

Ĥ(1)
el = −t

∑
σ∈{↑,↓}

∑
〈ij〉

â†iσ âjσ , (3)

Ĥ(2)
el = U

∑
i

n̂i↑ n̂i↓ , (4)

Ĥph = ω
∑
i

b̂†i b̂i, (5)

(6)

and

Ĥel-ph = −g
∑
i

n̂i(b̂i + b̂†i ). (7)

with

n̂i =
∑

σ∈{↑,↓}

n̂iσ (8)

âiσ is the annihilation operator for electrons with spin

σ on site i, b̂i is the annihilation operator for bosons on
site i, and n̂i is the electronic number operator on site i.
The nearest-neighbor electronic hopping is controlled by
t and the on-site repulsion is characterized by the param-
eter U . The phonons are treated as harmonic oscillators
with a single frequency ω. The electronic density is cou-
pled to the phonon degrees of freedom characterized by
a coupling constant g.

There are three relevant dimensionless parameters to
define. The first is the adiabaticity ratio in units of the
hopping parameter

α =
ω

t
. (9)

The second is the effective on-site repulsion in units of
the hopping parameter

U

t
. (10)
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Lastly, we define the dimensionless el-ph coupling λ,

λ =
g2

2dtω
, (11)

where d is the dimensionality of the system. When U
is the dominant parameter, a spin density wave (SDW)
phase similar to that found in the Hubbard model is ex-
pected to arise. When λ dominates, a charge density
wave (CDW) phase similar to that found in the Hol-
stein model arises. A metallic or superconducting phase
can arise when the system transitions between these two
phases.58,66

B. Phonons in First Quantization

Since the Hamiltonian in Eq. (1) does not commute

with the phonon number operator b̂†i b̂i, the number of
phonons in the system is not conserved. Therefore, one
needs to work with an infinitely large phonon Hilbert
space in order to study eigenstates of the Hubbard-
Holstein model. Methods working in a second quantized
space such as DMRG30 generally require a specification of
the maximum number of phonons a priori for the sake of
computational tractability. Limiting the maximum num-
ber of phonons effectively truncates the infinite Hilbert
space, which may introduce significant errors, particu-
larly when α is small and/or λ is large.

For this reason we work within the framework of first
quantization, namely with position and momentum op-
erators on each site i,

X̂i =

√
1

2mω
(b̂†i + b̂i), (12)

P̂i = i

√
mω

2
(b̂†i − b̂i), (13)

and thus re-express

Ĥph =
∑
i

(
mω2

2
X̂2
i +

1

2m
P̂ 2
i −

ω

2
), (14)

Ĥel-ph = −g
√

2mω
∑
i

n̂iX̂i, (15)

in the Hubbard-Holstein Hamiltonian in Eq. (1). Here,
we introduced a fictitious mass m and throughout this
work we use m = 1/ω. Working in a first quantized
space allows one to work directly at the complete basis
set limit for the phonons and avoids the issues posed by
a truncated phonon Hilbert space.

III. CONSTRAINED-PATH AUXILIARY-FIELD
QUANTUM MONTE CARLO

AFQMC for mixed fermions and bosons was first
formulated and studied by Rubenstein, Zhang, and

Reichman.67 In their formulation, bosons are treated
within a second-quantized framework. Therefore, their
approach would naturally suffer from the truncation
of the infinite bosonic Hilbert space if applied to the
Hubbard-Holstein model. In this work, we will reformu-
late the procedure to treat fermions in a second-quantized
space and bosons in a first-quantized space. Such a for-
mulation is closely related to that of Ref. 64, however
our work allows the control of the sign problem and in-
troduces the full advantage of the CP-AFQMC approach
in treating the electronic degrees of freedom.

In AFQMC, as in other projector QMC methods,68 we
obtain the ground state via

|Ψ0〉 ∝ lim
τ→∞

e−τĤ|Φ0〉, (16)

where |Ψ0〉 is the true ground state, τ denotes imagi-
nary time, and |Φ0〉 is a trial wavefunction with non-zero

overlap with the true ground state. Since Ĥ involves
both fermions and bosons and so do the wavefunctions
|Ψ0〉 and |Φ0〉, we represent these global vibronic wave-
functions as a function of imaginary time τ in a mixed
basis

|Ψ(τ)〉 =
∑
i

ωi|ψi(τ),Xi(τ)〉, (17)

where |ψi〉 is the electronic wavefunction and |Xi〉 is a
set of coordinates that represents the phonon degrees of
freedom. In our algorithm, these basis states each take a
product form:

|ψi(τ),Xi(τ)〉 ≡ |ψi(τ)〉 ⊗ |Xi(τ)〉 , (18)

where |ψi〉 is a single Slater determinant. We will show
below that the projection process in Eq. (16) can be
turned into a random walk in the space of product states
of the form defined in Eq. (18). We note that it is also
possible to work in momentum space (|Pi〉),69 however it
is more convenient to work in position space here since it
makes the application of the e-ph coupling term straight-
forward.

We write the propagator for a finite timestep ∆τ as

exp(−∆τĤ) = e−∆τĤ(2)
el e−∆τ(Ĥ(1)

el +Ĥel-ph)e−∆τĤph

+O(∆τ2) (19)

using the standard first-order Trotter approximation. By
virtue of the Thouless theorem,70 |ψi(τ)〉 remains a sin-

gle Slater determinant after propagation via Ĥ(1)
el and

Ĥel-ph (note the latter is diagonal in |Xi〉 space). Ĥ(2)
el is

represented as a one-body operator coupled to Ising vari-
ables and therefore a single Slater determinant remains

in the same manifold after propagation by e−∆τĤ(2)
el . The

phonon propagation generated by Ĥph follows a com-
monly used diffusion MC (DMC) algorithm.71,72

Before elaborating on the propagation more concretely,
let us introduce importance sampling, using a trial vi-
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bronic wavefunction |ΨT 〉. We re-write the global vi-
bronic wavefunction in Eq. (17) in the following form,61

|Ψ(τ)〉 =
∑
i

ωi
|ψi(τ),Xi(τ)〉
〈ΨT |ψi(τ),Xi(τ)〉

(20)

to perform imaginary-time propagation, namely

|Ψ(τ + ∆τ)〉 = e−∆τĤ(2)
el e−∆τ(Ĥ(1)

el +Ĥel-ph)e−∆τĤph |Ψ(τ)〉.
(21)

In the propagation of the phonon degrees of freedom
we sample from the distribution

f [(X(τ + ∆τ)] ≡ 〈ΨT |ψ(τ),X(τ + ∆τ)〉
〈ΨT |ψ(τ),X(τ)〉

× 〈X(τ + ∆τ)|e−∆τĤph |X(τ)〉 , (22)

where we have omitted the walker index i in the sub-
script. One can derive the following MC move for the
updating of the variable X(τ) ≡ X:

X(τ + ∆τ) = X(τ) +N (µ = 0, σ =

√
∆τ

m
)

+
∆τ

m

∇X〈ΨT |ψ(τ),X(τ)〉
〈ΨT |ψ(τ),X(τ)〉

. (23)

Here N (µ, σ) is a normally distributed random number
with mean µ and variance σ2, and the last term is the
so-called drift term. Updates for the walker weights are
carried out as

w(τ + ∆τ) = w(τ)e−
∆τ
2 (Eph(τ+∆τ)+Eph(τ)−2Eshift), (24)

where Eshift is a constant shift that can be adjusted to
control walker weight fluctuations, and we define

Eph(τ) =
〈ΨT |Ĥph|ψ(τ),X(τ)〉
〈ΨT |ψ(τ),X(τ)〉

. (25)

This algorithm is the same as the standard diffusion
Monte Carlo algorithm.71–74

Propagation arising from Ĥel-ph is straightforward to
implement, since∑

i

n̂iX̂i|ψ(τ),X(τ)〉 =
∑
i

n̂iXi(τ)|ψ(τ),X(τ)〉. (26)

∑
i n̂iXi(τ) is thus a diagonal matrix in the single-

particle space with its i-th entry being Xi(τ). It is then
straightforward to exponentiate this matrix and apply it

along with Ĥ(1)
el to the Slater determinant.

Lastly, propagation generated by Ĥ(2)
el is the same as

that for the standard AFQMC algorithm for the Hubbard
model. We employ the discrete Hirsch spin decomposi-
tion for the two-body propagator60:

e−∆τUn̂i↑ n̂i↓ =
1

2
e−∆τU(n̂i↑+n̂i↓ )/2

∑
xi=±1

e
γxi(n̂i↑−n̂i↓) ,

(27)

where the constant γ is determined by

cosh(γ) = e−∆τU/2. (28)

For a given x, the action of Eq. (27) on a single Slater
determinant keeps the Slater determinant in the single
determinant manifold. In AFQMC we keep track of the
overlap between the walker wavefunction and a chosen
trial wavefunction. More specifically, we measure the
overlap ratio of the i-th walker,

ri =
〈ΨT |ψi(τ + ∆τ),Xi(τ + ∆τ)〉
〈ΨT |ψi(τ),Xi(τ + ∆τ)〉

. (29)

If ri is negative, the constraint condition is invoked and
we set the weight wi to zero, which then causes the walker
to be removed from the simulation. Furthermore, we ap-
ply heat-bath sampling51 using this ratio to importance
sample the Ising variables. This completes the descrip-
tion of our algorithm for the Hubbard-Holstein Hamilto-
nian.

The local energy evaluation at τ with the Hubbard-
Holstein model is straightforward via the one-body
walker Green’s function

Giσjσ (τ) ≡
〈ΨT |â†iσ âjσ |ψ(τ),X(τ)〉
〈ΨT |ψ(τ),X(τ)〉

, (30)

and the two-body walker Green’s function,

Γi↑i↓ =
〈ΨT |â†i↑ âi↑ â

†
i↓
âi↓ |ψ(τ),X(τ)〉

〈ΨT |ψ(τ),X(τ)〉
. (31)

We will also need the mixed estimator for the phonon
displacement,

〈X̂i〉(τ) ≡ 〈ΨT |X̂i|ψ(τ),X(τ)〉
〈ΨT |ψ(τ),X(τ)〉

= Xi(τ), (32)

and for the squared phonon momentum,

〈P̂ 2
i 〉(τ) = −

〈ΨT |∇2
Xi
|ψ(τ),X(τ)〉

〈ΨT |ψ(τ),X(τ)〉
, (33)

where∇2
Xi

can be applied to the left on |ΨT 〉. Using these
mixed estimators, the local energy can be evaluated as

EL = −t
∑
σ

∑
〈ij〉

Giσjσ + U
∑
i

Γi↑i↓

+
∑
i

(
mω2

2
X2
i +

1

2m
〈P̂ 2
i 〉 −

ω

2
)

− g
√

2mω
∑
i

(Gi↑i↑ +Gi↓i↓)Xi. (34)

IV. TRIAL WAVEFUNCTIONS

The choice of the trial wavefunction can affect the qual-
ity of the CP approximation in treating the electronic
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degree of freedom. It can also affect the computational
efficiency in treating the electronic and especially the
phononic degrees of freedom; in particular, a poor choice
of the importance function can magnify or even intro-
duce additional ergodicity issues, especially in an el-ph
system when multiple phonon modes are pronounced. It
is highly advantageous if an accurate trial wavefunction
allows the overlap ratio in Eq. (29), and the local energy
in Eq. (34), to be efficiently evaluated.

A. Semiclassical state

The simplest variational trial wavefunction that we
employ in this work takes a simple product form between
electronic and bosonic degrees of freedom,

|ΨT 〉 = |ψT 〉 ⊗ |φT 〉, (35)

where |ψT 〉 is a single determinant and |φT 〉 is a coherent
state (or a shifted harmonic oscillator state). This wave
function has been referred to as a “semiclassical state” in
literature.75,76 Due to its simple product form, there is
no explicit entanglement between electrons and phonons.
The electronic trial wavefunction, |ψT 〉, is parametrized
by orbital rotation θθθ,

|ψT (θθθ)〉 = eκ̂|ψ0〉, (36)

where

κ̂ =
∑
ij

(θij − (θji)
∗)â†i âj , (37)

and |ψ0〉 is some initial determinant (normally ob-
tained by diagonalizing the one-body electronic Hamilto-
nian). Single determinant trial wavefunctions have been
widely used in previous AFQMC studies of the Hubbard
model.28,29,77,78

The phonon trial wavefunction, |φT 〉, is parametrized
by coherent state displacements βββ,

|φT (βββ)〉 = e
∑
i βib̂

†
i−β

∗
i b̂i |0〉 ≡ D̂(βββ)|0〉, (38)

where D̂(βββ) is the displacement operator. We optimize
the energy of |ΨT 〉 in Eq. (35) variationally over θθθ and
βββ and use this as the final trial wavefunction. |φT (βββ)〉
technically contains infinitely many bosons, but it has a
convenient property which allows for an efficient AFQMC
algorithm

b̂i|φT (βββ)〉 = βi|φT (βββ)〉. (39)

Using this fact, one can show that the projection of
〈φT (βββ)| on to |X〉 is

〈φT (βββ)|X〉 =
∏
i

(mω
π

) 1
4

e−
mω
2 (Xi−

√
2
mω βi)

2

. (40)

Similarly, the numerator of Eq. (33) is straightforward to
evaluate as well using

− 〈φT (βββ)|∇2
Xi |X〉 = −∇2

Xi〈φT (βββ)|X〉. (41)

This semiclassical trial wavefunction therefore can be ef-
ficiently combined with the AFQMC algorithm.

We elaborate here on formal properties of this state.
We first note that the operator κ̂ is anti-hermitian, and
thus the orbital rotation operator eκ̂ is a unitary oper-
ator. Because κ̂ is an anti-hermitian operator, the vari-
ational parameters in θθθ are not all independent. For-
mally, one can represent the same wavefunction with only
M(M − 1)/2 parameters, where M is the number of lat-
tice sites. Similarly, the displacement operator is also a
unitary operator. While θθθ and βββ are in principle complex-
valued, we assume them to be real-valued for the rest of
this paper. A complex-valued θθθ can be useful for the de-
scription of certain strongly correlated systems,79–81 but
we do not focus on these cases here. A complex-valued βββ
introduces an average momentum to the coherent state
through its imaginary component. However, with vari-
ational optimization the imaginary component of βββ is
found to be zero.

The variational energy of the semiclassical state can
be obtained within the Born-Oppenheimer (BO) approx-
imation. After some algebra, it can be shown that the
lowest energy of a semiclassical state can be obtained by
minimizing

〈Ĥel〉 −
g2

ω
〈
∑
i

n̂2
i 〉 (42)

over the variational parameters in |ψT 〉. For a fixed λ,
variations in α do not change the energy of the semiclas-
sical state.

The semiclassical state is exact in (1) the limit g →∞,
(2) the adiabatic limit ω → 0 (for a fixed λ) with U → 0,
and (3) the atomic limit U → ∞. When λ → ∞ (or
g → ∞ for a fixed ω), the use of a single semiclassi-
cal state is not problematic even though the BO po-
tential develops into a well-separated double well po-
tential.This situation is physically similar to that of the
atomic limit of the Hubbard model (U →∞) where spin
flips do not cause an energy penalty and a degeneracy
occurs amongst all possible 2N spin flips where N is the
number of electrons. Similarly, in the Holstein model,
charge swapping does not cause an energy penalty and
the same macroscopic degeneracy occurs. In other words,
any one of the degenerate semiclassical states is equally
well-suited as an approximate wave function.

Aside from these limits, the semiclassical state it-
self can be inaccurate, but we find that the subsequent
AFQMC calculation with the semiclassical trial wave
function is often numerically exact. The most difficult
parameter regime for our AFQMC framework is when
the Holstein coupling strength g takes an intermediate
value. That is, g is large enough that the el-ph correla-
tion is strong but is small enough that the macroscopic
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degeneracy does not occur. A straightforward way to
probe these situations is to increase ω for a fixed λ value.
In this case, g can be much larger than t but is always
smaller than ω as long as 2dtλ < ω. In these situa-
tions, the semiclassical state can be a poor choice of a
trial wave function in AFQMC, as we shall see. This
is because no correlation between electronic and bosonic
degrees of freedom is built into this trial wave function.

From a different point of view, the difficulty of semi-
classical states was noted in the work of Proville and
Aubry, who defined the “quantumness” of the phonons
as82

ζ =
ω2

g2
=

ω

2dtλ
. (43)

As ζ increases, the semiclassical state qualitatively
fails.82 This is consistent with the picture described above
in that for a given λ, both g and ζ increase as ω increases.
We attribute the difficulties associated with semiclassical
states to the increase in correlation between electrons and
phonons instead of the quantal effect associated with the
phonons alone.

B. Multivibronic state

A linear combination of multiple semiclassical states
can be used to correlate electrons and phonons

|ΨMS〉 =
∑
i

ci|ψT (θθθi)〉 ⊗ |φT (βββi)〉, (44)

where one may determine c, θθθ, and βββ variationally. We
refer to this wavefunction as a multivibronic (MV) wave-
function. Similar to the multi-Slater determinant trial
states employed to study purely electronic systems.77

The MV wavefunctions of this form would need exponen-
tially many states for large systems. Nevertheless, due to
their simplicity, multivibronic states can be valuable for
the study of small systems.

A particular flavor of MV wavefunction that we focus
on in this work is closely tied to the underlying order en-
coded in the semiclassical states themselves. Let us con-
sider the two-electron, two-site Holstein model. It is well
known that for the Holstein model at a large coupling λ,
the BO surface develops into a double well potential.65,83

For the two-site problem, the BO potential energy sur-
faces (PESs) are characterized by

ĤBO(X1, X2) = Ĥel − g
√

2mω(n̂1X1 + n̂2X2)

+
mω2

2
(X2

1 +X2
2 ), (45)

where X1 and X2 are constant scalars denoting the co-
ordinates of the classical phonons. We can find the
ground-state electronic wavefunction of the Hamiltonian
in Eq. (45) by exactly diagonalizing it and forming a po-
tential energy surface for each combination of (X1,X2).

In Fig. 1, a representative example of the BO PESs is
given. Fig. 1(a) illustrates an example of the weak cou-
pling case, where the coherent states have the same cen-
ters for all sites and no charge modulation occurs. In
such cases, the minimum BO state (i.e. the semiclas-
sical state) is an excellent variational wavefunction. In
Fig. 1(b) there are two distinct minima with equal BO
energies. Here, a wave function of a single semiclassical
state with a Gaussian function centered at one of the two
BO minima in position space would not provide a good
description of the system. When used as an importance
function, it can introduce or exacerbate ergodicity prob-
lems in the Monte Carlo sampling and induce a large or
even infinite variance in the energy fluctuations.

We propose the following improved variational wave-
function in this situation for the Holstein model on a
bipartite lattice. At half-filling there are two exactly de-
generate semiclassical states. In particular, one state is
characterized by

β
(1)
i =

{
βe, if i on A sublattice

βo, if i on B sublattice,
(46)

where i is a site index. βe and βo are determined by
variationally optimizing semiclassical states. The perti-
nent orders in 2D are stripe orders, checkerboard orders,
etc. One can easily identify the bipartite sublattice sites
in such orders. The other degenerate solution is given
by switching the A and B sublattices. One can smoothly
interpolate between the two states by defining a convex
combination

βββ(α) = αβββ(1) + (1− α)βββ(2) (47)

for α ∈ [0, 1]. For each βββ(α), we find a single determi-
nant that minimizes the energy of a single semiclassical
state. One can take a linear combination of all of these
semiclassical states along the line that interpolates two
solutions to form a MV wavefunction. We refer this to
as the Thouless path (TP) wavefunction, |ΨTP〉,

|ΨTP〉 =
∑
α

cα|ΨT (β(α))〉, (48)

where cα is determined by variationally minimizing the
energy. The construction of the TP wavefunction can be
generalized to arbitrary filling fractions and number of
sites because different filling fractions simply give rise to
ordered states with different wavelengths. The cost for
its construction is negligible compared to the optimiza-
tion of a semiclassical state. Its use in AFQMC as a trial
wave function simply introduces a prefactor depending
on the number of states included in Eq. (48). We will re-
fer to a TP wave function with n interpolation values of
α as TP(n). While TP wave functions provide a simple
and accurate importance function for double-well poten-
tial energy surfaces, they also become inaccurate when
the correlation between electrons and phonons becomes
strong.
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FIG. 1. Born-Oppenheimer potential energy surfaces in units of t for the 2-electron and 2-site Holstein model: (a) ω = t,
λ = 0.1, and g = 0.447t and (b) ω = t, λ = 1, and g = 1.414t. The minimum in (a) is E = −2.40t at (X1=0.63, X2=0.63)
while the two minima in (b) are E = −8.25t at (X1=3.90, X2=0.10) and (X1=0.10, X2=3.90), respectively.

C. Variational Lang-Firsov trial wavefunctions

A simple, widely used way to incorporate correla-
tion effects between electrons and phonons is to use
the polaron transformation or the Lang-Firsov (LF)
transformation,84

|ΨLF〉 = ÛLF(ξξξ)|ψT (θθθ)〉 ⊗ |φT (βββ)〉, (49)

where

ÛLF(ξξξ) = e
1√
2

∑
i ξin̂i(b̂

†
i−b̂i), (50)

and the set ξξξ are referred to as the LF amplitudes which
are variational parameters along with θθθ and βββ. From
the wavefunction viewpoint, Eq. (49) provides a way to
explicitly build a wavefunction with non-perturbative el-
ph correlation on top of semiclassical states via a unitary
transformation. Typical LF implementations involve the
phonon vacuum state as opposed to the coherent state in
Eq. (49). We find that having the coherent state provides
additional variational flexibility and thereby yields lower
energies compared to those that use the vacuum state.
Since it does not complicate the underlying optimization
problem, we use the coherent state as written in Eq. (49).

While the details of the LF transformation and its vari-
ational optimization have been well-documented,84–87 we
briefly summarize them to provide a self-contained de-
scription. Our goal is to simultaneously determine ξξξ, θθθ,

and βββ variationally. To carry this out, we find that it is
simpler to work with the unitary-transformed Hamilto-
nian, ĤLF, based on ÛLF, and optimize the variational
energy of ĤLF evaluated with the semiclassical wavefunc-
tion. We start from

ÛLF(ξξξ)†a†iσajσ ÛLF(ξξξ) = a†iσajσe
(−ξi(b†i−bi)+ξj(b

†
j−bj))

(51)
and

ÛLF(ξξξ)†b†i Û(ξξξ) = b†i − ξin̂i, (52)

ÛLF(ξξξ)†biÛ(ξξξ) = bi − ξin̂i. (53)

The LF transformed Hamiltonian reads

ĤLF
el = −t

∑
σ

∑
〈ij〉

a†iσajσe
(− ξi√

2
(b†i−bi)+

ξj√
2

(b†j−bj))

+ U
∑
i

n̂i↑ n̂i↓ , (54)

ĤLF
ph = ω

∑
i

(b̂†i +
ξi√
2
n̂i)(b̂i +

ξi√
2
n̂i), (55)

(56)

and

ĤLF
el-ph = −g

∑
i

n̂i(b̂i + b̂†i +
√

2ξin̂i). (57)
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All of the energy terms are straightforward to evaluate
with semiclassical trial wavefunctions. The electronic ki-
netic energy is more complex than its bare Hamiltonian
counterpart due to the presence of exponential bosonic
operators, so we provide more details here. To utilize
Eq. (39), we write the exponential term in the kinetic
energy operator as

e
1√
2

(ξj(b̂
†
j−b̂j)−ξi(b̂

†
i−b̂i))

= e
1√
2

(ξj b̂
†
j−ξib̂

†
i )e

1√
2

(ξib̂i−ξj b̂j)e−
1
4 (ξ2

i+ξ2
j ), (58)

where we have used

e
1√
2
ξj(b̂

†
j−b̂j) = e

1√
2
ξj b̂
†
je
− 1√

2
ξj b̂je−

1
4 ξ

2
j . (59)

The expectation value of Eq. (58) is simple to evaluate
with the semiclassical state of Eq. (35)

〈ΨT |e
1√
2

(ξj b̂
†
j−ξib̂

†
i )e

1√
2

(ξib̂i−ξj b̂j)|ΨT 〉e−
1
4 (ξ2

i+ξ2
j )

= e
1√
2

(ξjβj−ξiβi)e
1√
2

(ξiβi−ξjβj)e−
1
4 (ξ2

i+ξ2
j ). (60)

The variational LF wavefunction is expected to be
more accurate than the semiclassical state due to the
explicit correlation between electrons and phonons. Fur-
thermore, the limit of ω → ∞ which is difficult for sim-
ple semiclassical wavefunctions to treat, can be exactly
treated by the LF wavefunction, because the el-ph cou-
pling term in ĤLF can be removed by setting ξi =

√
2g/ω.

Due to the fact that phonon displacements are signifi-
cantly penalized in this limit, the variational optimiza-
tion over βββ naturally yields βββ = 000. Therefore, the bosonic
operators in the hopping amplitude in Eq. (54) all vanish.
Provided that one can handle the remaining electronic
Hamiltonian terms exactly, the variational LF wavefunc-
tion should be exact in this limit. We note that for many-
electron systems in the ω →∞ limit, the LF Hamiltonian
takes the same form as the attractive Hubbard model,
which is another sign-free lattice model that can be effi-
ciently simulated in AFQMC.88,89

Despite these desirable properties, there seems to be
no simple and general way to use this wavefunction in
AFQMC without invoking a major increase in scaling.
As an exception to this, we mention here the work of
Hohenadler and co-workers69 where a QMC algorithm
with the LF Hamiltonian was formulated for single elec-
tron problems. It was demonstrated, however, that the
transformed electronic Hamiltonian in Eq. (54) creates a
complex phase problem.

Therefore, we briefly investigate a simpler linearized
LF (LLF) wavefunction of the form,

|ΨLLF〉 = (1 +
1√
2

∑
i

ξin̂ib̂
†
i )|ψT (θθθ)〉 ⊗ |φT (βββ)〉, (61)

where we have omitted a term that is proportional to n̂ib̂i
since the action of b̂i on |φT (βββ)〉 is trivial due to Eq. (39).
We variationally optimize ξξξ in Eq. (61) to maximize the

accuracy of the LLF trial wavefunction. The AFQMC
algorithm presented in Section III can be efficiently im-
plemented for Eq. (61).

It is possible to formulate a simple extension of the
LLF wavefunction in the spirit of the TP wavefunction:

|ΨTP-LLF〉 =

n∑
α=1

cα|Ψ(α)
LLF〉, (62)

where each of the |Ψ(α)
LLF〉 terms has its own variational

parameters. Following the discussion of the TP trial
wavefunction, it may be possible to determine these vari-
ational parameters via a convex interpolation of βββ and ξξξ
as in Eq. (47). We refer to this wavefunction as the TP-
LLF(n) wavefunction which goes beyond both the TP(n)
and the LLF wavefunctions in sophistication.

In contrast with the LF form, a trial wave function
with an el-ph Jastrow factor can be used more straight-
forwardly in AFQMC, since X̂i operators are involved in
the exponent instead of P̂i as in LF. The unitary trans-
formation in the LF wave function can be thought of as
a simple Jastrow factor that encodes correlation between
the electronic density and the phonon momentum on a
site. However, ÛLF(ξξξ) is unitary and we thus expect this
transformation to behave differently from Jastrow fac-
tors in el-ph problems.37–39 (It is also different from the
coupled-cluster operators considered in recent studies of
el-ph problems .47–49) Nonetheless, when linearized both

Jastrow and ÛLF(ξξξ) yield identical results. Given the
performance improvement with the LLF trial wave func-
tion (as discussed below), we expect an el-ph Jastrow
trial wave function will greatly reduce the difficulties in
parameter regimes with strong el-ph coupling, and re-
sult in a major improvement in our AFQMC approach.
We leave the implementation and systematic studies us-
ing an el-ph Jastrow trial wavefunction in AFQMC for
future work.

D. Additional details

The semiclassical state in Eq. (35) can describe two
competing phases, SDW and CDW. To obtain the varia-
tional wavefunction for these two distinct states, we em-
ploy the following protocol:

1. For a CDW state, we perform a variational
optimization of a semiclassical state with spin-
restriction. Due to the spin-restriction, any states
that arise from minimization are not capable of de-
scribing SDW order.

2. For an SDW state, we perform a variational
optimization of a spin-unrestricted Hartree-Fock
(UHF) wavefunction to minimize the electronic en-
ergy. Once a UHF state is obtained, we determine
the shift vector βββ variationally while fixing the elec-
tronic degrees of freedom. As long as the UHF state
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exhibits SDW order, such a coupled el-ph semiclas-
sical state with exhibit the same SDW order. We
have used an ad hoc effective repulsion strength
(Ueff/t) of 0.577 in our UHF calculations to obtain
SDW trial wavefunctions for the Hubbard-Holstein
model in this work. The CP-AFQMC results are
not sensitive to this particular choice. (We note
that it is possible to determine this effective repul-
sion strength via a self-consistent procedure with
CP-AFQMC90.)

V. PERTURBATION THEORY

A. Coherent State Møller-Plesset Perturbation
Theory

It is instructive to consider low-order perturbation the-
ory for comparison to numerically exact approaches. We
first note that

D̂(βββ)†b†i D̂(βββ) = b†i + βi, (63)

D̂(βββ)†biD̂(βββ) = bi + βi. (64)

Using this property, we write

ˆ̄Hph ≡ D̂(βββ)†ĤphD̂(βββ) = ω
∑
i

(b†i + βi)(bi + βi), (65)

(66)

and

ˆ̄Hel-ph ≡ D̂(βββ)†Ĥel-phD̂(βββ) = −g
∑
i

n̂i(b̂i + b̂†i + 2βi).

(67)

Thus we have

ˆ̄H = Ĥel + ˆ̄Hph + ˆ̄Hel-ph. (68)

We note that the following zeroth-order Hamiltonian nat-
urally has the semiclassical state of Eq. (35) as its ground
state

Ĥ0 = F̂ + ω
∑
i

(β2
i + b̂†i b̂i), (69)

where F̂ is the Fock operator defined as (for spin σ =↑
or ↓)

F̂σ = F̂el
σ − 2g

∑
i

n̂iσβi, (70)

with the electronic Fock operators:

F̂el
↑ = −t

∑
〈ij〉

â†i↑ âj↑ + U
∑
i

n̂i↑〈n̂i↓〉ψT , (71)

F̂el
↓ = −t

∑
〈ij〉

â†i↓ âj↓ + U
∑
i

n̂i↓〈n̂i↑〉ψT . (72)

where

〈n̂iσ 〉ψT =
〈ψT |n̂iσ |ψT 〉
〈ψT |ψT 〉

(73)

It is straightforward to show that |ΨT 〉 is an eigenstate of

Ĥ0. From this starting point, one can develop an order-
by-order perturbation theory to capture all of the corre-
lation effects among electrons and between electrons and
phonons built through

V̂ = ˆ̄H− Ĥ0

= (Ĥel − F̂el) +
∑
i

(ωβi − gn̂i)(b̂i + b̂†i ). (74)

We note that such a partitioning of the Hamiltonian re-
sembles the widely used Møller-Plesset (MP) perturba-
tion theory in quantum chemistry.91 We refer this pertur-
bation theory to as “coherent state Møller-Plesset pertur-
bation theory” (CSMP) since a coherent state (or a semi-
classical state) is an eigenstate of the zeroth-order Hamil-
tonian. This was also recently discussed in the work of
White and co-workers in the context of coupled-cluster
theory.49

Similar to MP, CSMP recovers the energy of the semi-
classical state with the first-order perturbation correc-
tion,

E(0) + E(1) = 〈Ĥel〉ψT + ω
∑
i

β2
i − 2g

∑
i

〈n̂i〉ψT βi,

(75)

where we have defined

〈n̂i〉ψT ≡ 〈ψT |n̂i↑ + n̂i↓ |ψT 〉. (76)

In this work, we are interested in comparing the second-
order perturbation theory (CSMP2) with AFQMC. The
evaluation of the CSMP2 energy is most natural in the
molecular orbital (MO) basis rather than in the site basis.
The MO basis is defined by a set of orbitals, {ψiσ}, that
satisfy

F̂σψpσ = εpσψpσ , (77)

where εpσ is the p-th MO energy and the p-th MO, ψpσ ,
is expanded via a set of site orbitals, {φµσ},

ψpσ =
∑
µ

Cµpσφµσ . (78)

We then transform Eq. (74) from the site basis to the
MO basis using the coefficient matrix C for each spin

ˆ̄V =
∑

σ∈{↑,↓}

∑
pq

∑
µ

(
(ωβµ − gpq)â†pσ âqσ b̂

†
µ + h.c.

)
+
∑
pqrs

Up↑q↓r↓s↑ â
†
p↑
â†q↓ âr↓ âs↑ , (79)
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where

gpq = g
∑
µ

(Cµp)
∗Cµq, (80)

Up↑q↓r↓s↑ = U
∑
µ

(Cµp↑)
∗(Cµq↓)

∗Cµr↓Cµs↑ . (81)

The CSMP2 energy expression follows in a spin-orbital
MO basis,

E(2) = −
M∑
µ=1

(ωβµ − g
∑
i(Cµi)

∗Cµi)
2

ω

−
∑
ia

−|gai|2

ω + εa − εi

−
∑
i↑a↑

∑
j↓b↓

|Ui↑j↓b↓a↑ |2

εa↑ + εb↓ − εi↑ − εj↓
, (82)

where the orbital energies {εp} are eigenvalues of the Fock

operator F̂ . We note that the first term in Eq. (82) is
zero if the semiclassical reference state is fully optimized.

B. Lang-Firsov Perturbation Theory

It may be useful to develop a second-order perturba-
tion theory from a reference state given by the Lang-
Firsov transformation84 in Eq. (49). In the spirit of the
original LF transformation,84 we set

ξi =

√
2g

ω
, (83)

which removes the Holstein coupling in the transformed
framework. With this choice of the LF amplitudes in-
stead of the variational LF amplitudes, the transformed
Hamiltonian is simplified to

ĤLF = ω
∑
i

b̂†i b̂i −
g2

ω

∑
i

n̂i + (U − 2g2

ω
)
∑
i

n̂i↑ n̂i↓

− t
∑
σ

∑
〈ij〉

â†iσ âjσe
(− g

ω (b̂†i−b̂i)+
g
ω (b̂†j−b̂j)). (84)

For convenience, we rewrite

e(− g
ω (b̂†i−b̂i)+

g
ω (b̂†j−b̂j)) = e−

g2

ω2 e−
g
ω (b̂†i−b̂

†
j)e

g
ω (b̂i−b̂j). (85)

Based on the approach of Bonca, Trugman, and co-
workers,92,93 we choose the zeroth order Hamiltonian as

ĤLF
0 = ω

∑
i

b̂†i b̂i−
g2

ω

∑
i

n̂i+(U− 2g2

ω
)
∑
i

n̂i↑ n̂i↓ , (86)

with the perturbing Hamiltonian

V̂ LF = −te−
g2

ω2

∑
σ

∑
〈ij〉

â†iσ âjσe
− g
ω (b̂†i−b̂

†
j)e

g
ω (b̂i−b̂j). (87)

For concreteness, we consider the specific case of
second-order perturbation theory for a two-electron, two-
site problem. The ground state of ĤLF

0 is either | ↑1↓1
〉 ⊗ |0, 0〉 or | ↑2↓2〉 ⊗ |0, 0〉 with an energy U − 4g2

ω . We
start from an unperturbed state,

|Ψ(0)
0 〉 =

1√
2

(| ↑1↓1〉 ⊗ |0, 0〉,+| ↑2↓2〉 ⊗ |0, 0〉), (88)

noting that an excited state which can be connected to
the unperturbed ground state via V̂ LF takes the form

|Ψ(0)
mn〉 =

1√
2

(| ↑1↓2〉 − | ↓1↑2〉)⊗ |m,n〉. (89)

It is then easy to show that the first-order energy correc-
tion to the unperturbed state is zero. The second-order
energy reads

E
(2)
LFPT = −2t2e−

2g2

ω2

×
∞∑
m=0

∞∑
n=0

(g/ω)2(m+n)

m!n!

1 + (−1)m+n

(m+ n)ω − U + 2 g
2

ω

. (90)

We numerically evaluate this expression in a brute-force
manner, observing that a maximum n of 200 is sufficient
to converge the energy to machine precision. We note
that this expression differs from that of Bonca, Trugman
and co-workers92,93 since in their work a single bipolaron
was considered in the continuum limit (infinite lattice)
whereas in our work we focus on a 2-site problem.

VI. THE HOLSTEIN MODEL

To study the behavior of the proposed AFQMC algo-
rithm with simple trial wavefunctions such as the semi-
classical, LLF, and TP wavefunctions, we shall investi-
gate the 1D and 2D Holstein models first, namely we set
U = 0 in Eq. (1).

For the Holstein model, the sign problem is absent,
as is well-known in the determinant quantum Monte
Carlo (DQMC) approach94. Similar to DQMC, the
overlap function 〈ΨT |ψi(τ),Xi(τ)〉 in Eq. (20) remains
non-negative throughout the imaginary-time propaga-
tion, since the phonon component, φT (X(τ)) (omitting
the walker index again), is positive everywhere, and the
electronic component, 〈ψT |ψ〉 = |〈ψT,↑|ψ↑〉|2 with a spin-
restricted form, is also non-negative. Thus, in the Hol-
stein model the difference between our approach and
DQMC is primarily in the way the Monte Carlo sampling
is conducted. AFQMC uses a branching random walk
with a population of walkers to construct the imaginary-
time path iteratively, as we have described, while DQMC
treats the entire path as a path integral or worldline, and
updates it by sweeping different imaginary-time locations
via a Metropolis-like algorithm. A second difference is
the introduction of an importance functions in our ap-
proach via the similarity transformation, as indicated in
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Eqs. (22) and (29). These factors can affect the behavior
of the Monte Carlo sampling, and yield different per-
formances in different regimes of the parameter space,
including efficiency, auto-correlation time, and possibly
different levels of difficulty with ergodicity. The exam-
ples in the Holstein model below serve as a first test of
the AFQMC method in this context.

A. 2-Electron 2-site model

We start with this small problem where we easily
can compare results against exact diagonalization (ED).
Since there are only two sites in our model, we com-
pute energies with open boundary conditions (OBCs).
In Fig. 2, we present the error in the total energy of
CSMP2, LFPT2 and AFQMC compared to ED. Under-
standing the behaviors of the two flavors of perturba-
tion theory helps gauge non-perturbative effects in our
system. In Fig. 2(a), it is clear that the CSMP2 en-
ergy becomes more inaccurate as we increase ω. This
is because the zeroth order wavefunction, a semiclassi-
cal trial wavefunction, starts to degrade when increasing
el-ph correlation. Perhaps the most striking behavior to
note concerning CSMP2 is that this approach performs
worst for intermediate λ values, (e.g. λ = 0.5) and is in
fact more accurate for larger λ values such as λ = 2.0.
This can also be understood in terms of the increase in
el-ph correlation as explained in Section IV A. On the
other hand, LFPT2 in Fig. 2(b) is comparatively more
accurate than CSMP2 for λ values larger than λ = 0.5.
The LF reference state (namely two electrons occupying
one site and with a phonon vacuum state) is qualitatively
incorrect when the el-ph coupling is small. In such cases,
we cannot treat the hopping term perturbatively. This
is clearly reflected in Fig. 2(b) as LFPT2 exhibits large
errors for small λ values. As LFPT2 is well known to pro-
duce accurate results for strong coupling, it is remarkable
that a weak coupling perturbation theory, CSMP2, per-
forms equally well even at λ = 2.0.

We also show the performance of AFQMC for the
same 2-site Holstein dimer. The error of AFQMC is
shown on a much smaller (100 times) scale. We have
tested both the single semiclassical state and TP(11),
i.e., the TP state with a superposition of 11 semiclassical
states, as trial wave function. These are referred to as
AFQMC/S and AFQMC/TP(11), respectively. Results
are shown in the figure, with AFQMC/S for smaller λ and
AFQMC/TP(11) for λ ≥ 0.5. Near-exact energies are
obtained for all parameters examined here. We observed
that results can become severely biased with AFQMC/S
for large λ, as a consequence of a poor importance func-
tion causing large, or even diverging, variances. Even
with an improved importance function TP(11), small
residual effects can be present (via underestimation of the
statistical error, or bias from population size). We also
note a large statistical error at ω = 2t which is maximized
at an intermediate value of λ = 0.5 (or g =

√
2t). Nev-

ertheless, with TP(11), the bias (if any) is smaller than
0.001 t for the Holstein dimer, which highlights the ac-
curacy and sampling efficiency of AFQMC/TP(11). We
discuss the issue of bias in AFQMC in sign problem-free
models further in Section VI B and Section VI E.

B. 1D 4-site model at half-filling

To further investigate the effect of the importance
function on the sampling result and any potential bias,
we consider a 1D 4-site Holstein model employing pe-
riodic boundary conditions (PBCs), at half-filling with
λ = 0.5, ω = 4t, and g = 2t. We compute the ground
state energies with AFQMC using the following trial wave
functions: a single semiclassical state (S); the TP wave-
function with 13 semiclassical states (TP(13)); the LLF
wavefunction; and the TP-LLF wavefunction with two
LLF states (TP-LLF(2)). With AFQMC/TP-LLF(2), a
ground-state energy of −10.293(2) is obtained, compared
to the exact result of −10.292 (obtained from DMRG us-
ing iTensor95, although ED can also be done here). In
contrast, a biased result is seen with each of the other
forms of the trial wave function. The bias is about 0.4%
relative to the exact result, using the computational pa-
rameters specified in Sec. X, and is essentially indepen-
dent of whether bifurcation is accounted for or not in the
trial wave function. These results suggest that, to remove
the sampling bias in this parameter regime, it is critical
to capture in the importance function both a means to
overcome the adiabatic potential bifurcation issue and
treat el-ph correlation.

C. 1D 20-site model at half-filling

Next, we discuss a 20-site 1D Holstein model at half-
filling employing PBCs. ED is no longer feasible for
systems of this size so we used the iTensor95 package
to perform DMRG calculations30. The DMRG calcula-
tions were carried out by placing alternating fermionic
and bosnic sites on a 1D lattice so that overall there are
twice the number of sites compared to the physical lattice
problem. While it is possible to use an optimized phonon
basis96 to handle larger el-ph coupling cases, here we em-
ployed the most primitive version of DMRG for simple
comparisons. The bond dimension we used was fixed at
1000 and the maximum number of bosons for each site
was taken to be 60.

We compare the total energy per site within
DMRG, CSMP2, variational LF, AFQMC/S, and
AFQMC/TP(11) in Fig. 3 for various λ and ω. Given
the discussion of Section VI B, it is desirable to employ
the TP-LLF(n) wavefunctions in general, but we leave
a more detailed study with this trial wavefunction for
a future study. Here, we focus on AFQMC with sim-
pler and less accurate trial wavefunctions (AFQMC/S
and AFQMC/TP(11)).
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Similarly to the two-site problem, we observe that
CSMP2 follows the (near-exact) answers given by DMRG
and AFQMC closely at small λ (e.g. λ = 0.1) as the fre-
quency of the phonon mode is varied. However, we see
a clear quantitative deviation of CSMP2 from the other
curves as ω increases. The deviation is again maximized
at an intermediate coupling λ = 0.8 and is smaller at
weak and strong couplings. The variational LF wave-
function works better than CSMP2 for all λ > 0.1. Its
strength over CSMP2 is highlighted as ω increases. This
clearly suggests that the variational LF wavefunction in-
cludes el-ph correlation beyond the second-order contri-
bution provided in CSMP2.

The performance of AFQMC/S is very good at all
coupling strengths considered here for ω ≤ 2.0. Sim-
ilar issues with biased final estimates from poor im-
portance functions are seen at λ = 0.3 and λ = 0.8.
AFQMC/TP(11) shows improvement over the simplest
semiclassical importance function in the case of λ = 0.3.
However its improvement for λ = 0.8 as ω becomes larger
is very small. For example, the residual bias is still vis-
ible at ω = 2.0. This points to the need to improve the
importance function over the forms we have used. We
expect that incorporating el-ph correlation directly, as
in the LF-type wavefunctions, will ameliorate this sam-
pling bias greatly, as observed in Section VI B. For the
rest of the paper, we focus on AFQMC with the sim-
plest trial wavefunction, namely a single semiclassical

trial wavefunction, because the observed sampling bias
is small enough that it does not affect the conclusions of
this work.

D. 2D 4x4 model at half-filling

We have established the expected behavior of AFQMC
with semicalssical wavefunctions as importance functions
from studying one-dimensional problems such as the Hol-
stein dimer and a 1D chain. Here, we explore higher di-
mensions by investigating a 2D square lattice problem
with a 4x4 geometry. We employed PBCs along x-axis
and OBCs along y-axis. The main reason for choosing
this boundary condition is to ease the convergence of the
DMRG calculations. We were able to converge DMRG
calculations only for 0.8 ≥ ω and λ ≤ 0.5 where we used
a bond dimension of 2500 and a maximum number of
bosons of 25.

In Fig. 4, the energy per site as a function of ω for
various λ values is presented for this 2D model. We ob-
serve conclusions similar to our previous one-dimensional
examples. CSMP2 quantitatively fails as ω increases.
Furthermore, for a fixed ω, CSMP2 performs worst for
intermediate λ values and is more accurate for small
and large λ values. Similarly to the 1D 20-site case,
the variational LF energy is more accurate than CSMP2
for λ > 0.1 and its improvement over CSMP2 becomes
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FIG. 3. Total energy per site in units of t for the 20-site 20-electron 1D Holstein model as a function of ω for various values of λ
values: (a) λ = 0.1 results, (b) λ = 0.3 results, (c) λ = 0.8 results, and (d) λ = 2.0 results. Note that all error bars for AFQMC
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of ω when λ = 2.0, and AFQMC/TP(11) is not presented for λ = 0.1 because the results for this trial wavefunction are nearly
identical to those of AFQMC/S. The inset shows energy differences from DMRG for AFQMC/S (blue) and AFQMC/TP(11)
(red) (EAFQMC − EDMRG).

larger as ω increases. AFQMC/S is well behaved in
the range ω ∈ [0.1, 2.0]. Its maximum error occurs at
λ = 0.3 and ω = 2.0, where clear indications of sampling
bias arises. Nevertheless, the range of parameters where
AFQMC/S can be reliably performed with the simplest
possible semiclassical trial wavefunction is quite broad
even in 2D, highlighting the utility and potential of this
approach.

E. Autocorrelation time and variance control

As we mentioned at the beginning of this section, in the
Holstein model the difference between our AFQMC ap-
proach and DQMC is mainly in the details of the Monte
Carlo sampling algorithm. The two methods can thus
have different behavior in terms of efficiency in different
regimes of the parameter space. Here we look into this
to help understand the domain of applicability. We note
that this is not the focus of our study, since in the most
general case where electron interactions are present, the
branching random walk approach must be adopted in or-
der to control the sign or phase problem.

The standard DQMC algorithm based on local up-
dates exhibits a long autocorrelation time in the Holstein
model for ω < 0.5 and for low temperatures. It has been

found that this is a consequence of an ergodicity prob-
lem. A careful mathematical analysis of the causes of this
problem can be found in the work of Hohenadler and co-
workers.69,97,98 These authors have shown that the con-
dition number of the bosonic action sampled in DQMC
for small values of ∆τ scales as 1/(ω∆τ)2. This poorly
conditioned action leads to a long autocorrelation time
that scales quadratically with increasing ω−1. There have
been attempts to ameliorate this problem based on global
moves such as the Langevin dynamics approach57,94,99

and the self-learning Monte Carlo approach.100 We also
mention that the work of Hohenadler and co-workers
removed the autocorrelation problem using the Lang-
Firsov transformation along with a principal component
analysis.69

Since AFQMC applies a projector to the entire set of
electronic and phonon degrees of freedom using a pop-
ulation of random walkers, it is less prone to ergod-
icity problems. The Monte Carlo time coincides with
the imaginary-time direction, with open-ended random
walks evolving along the worldines, which makes them
less likely to become trapped in particular configurations
of the phonon paths. There is a deep connection between
this fact and the necessity to resort to this sampling
approach in order to impose a CP or phaseless gauge
condition51,61. To quantify this, we directly compute the
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energy autocorrelation function,

cE(τ) =
1

N − τ

N−τ∑
n=1

(En − 〈E〉)(En+τ − 〈E〉), (91)

which gives an estimate of the integrated autocorrelation

time via

τac =

∞∑
τ=−∞

cE(τ)

cE(0)
. (92)

The summation in Eq. (92) needs to be performed within
some window instead of over the entire set of samples
since, for τ � τac, the summed noise becomes compara-
ble to the actual signal. We follow Sokal’s prescription
of the automated windowing procedure to handle this
issue.101,102 In Fig. 5, we present estimates of autocor-
relation times for λ = 0.1 and λ = 1.0 for the 4x4 2D
Holstein model. For both values of λ, we observe a near
linear behavior in the log-log scale correlation between
τac and ω as in Fig. 5. Empirically, we find that the
autocorrelation time scales as 1/ω0.9876 for λ = 0.1 and
1/ω0.8617 for λ = 1.0. This scaling is a significant im-
provement over that of the standard DQMC algorithms
where τac scales as 1/ω2.69

On the other hand, in AFQMC we use an importance
function to guide the random walks. If the quality of the
importance function is very poor, the variance can grow
and even become infinite.88 In cases where the trial wave
function suppresses certain regions of the Hilbert space
being sampled with a qualitatively incorrect functional
form, the autocorrelation time and thus the variance can
diverge, as mentioned earlier in this section. This situa-
tion was seen in the examples with the semiclassical wave
function where there is a strong bifurcation of the adia-
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batic potential in the Holstein dimer. Another example
occurs with the use of semiclasscial trial wave functions
where the lack of explicit el-ph correlation leads to large
sampling biases. In extreme cases, calculations will be
seemingly well-behaved in “normal-sized” runs, as the
Monte Carlo sampling is strongly biased by the wrong
importance function and the auto-correlation time grows
exponentially. These situations require careful analysis of
the variance and study of the dependence on the details
of the importance function to reveal the problem.88 Sep-
arate but related to the quality of the importance func-
tion is the issue of efficiently sampling of multi-modal
landscapes in the el-ph models, as we have only incor-
porated local moves in our random walks. In the worst
cases, AFQMC can, even with reasonable choices of im-
portance functions, experience difficulties with long au-
tocorrelations as occurs in DQMC. In AFQMC the use of
a population of open-ended random walkers with branch-
ing can help avoid the sampling being stuck.

VII. THE HUBBARD-HOLSTEIN MODEL

The focus of our CP-AFQMC method is on doped sys-
tems and more realistic Hamiltonians, where the sign
problem or phase problem will be present. In the pre-
vious section, we studied the 1D and 2D Holstein mod-
els with simple trial wavefunctions. In this section, we
present benchmark data using the same approach for the
Hubbard-Holstein model with U/t = 4. Because of the
competition between U and g, we carefully study trial
wavefunctions with both CDW and SDW order. Note
that the CP-AFQMC algorithm is no longer exact be-
cause the el-el repulsion will lead to a sign problem.
Karakuzu, Seki, and Sorella have presented an efficient
QMC algorithm which is free of the sign-problem at half-
filling as long as U > 2g2/ω.57 Within CP-AFQMC, we
can simulate any parameter regime efficiently by control-
ling the sign problem at the expense of introducing a
constraint bias. Since CP-AFQMC has been extensively
benchmarked for electronic systems in the past,78 we fo-
cus on any additional biases that may arise from the in-
terplay between electrons and phonons in this section.
We use an ad hoc Ueff = 0.5 t in the electronic mean-field
part to generate all the SDW trial wavefunctions for CP-
AFQMC in this section.

Below, we first examine the behavior of our algorithm
in 1D, and then in 2D both at half-filling and 1/8-
doping. We will focus on benchmarking the accuracy
of the computed ground-state energies. We note that
for the purely electronic cases with λ = 0, all of our
models in 1D and at half-filling in 2D are sign-problem-
free. However, CP-AFQMC can incur a systematic er-
ror in the energy in these cases, because of an “artifi-
cial node” in auxiliary-field space;51 this error can be
removed straightforwardly.77,78 Instead of invoking the
scheme to remove this artificial bias, we will perform the
CP-AFQMC calculation in the generic way as described

above, since our main focus in this work is the most gen-
eral situation of a doped Hubbard-Holstein model where
the sign problem is present.

A. 1D 20-site model at half-filling

We benchmark CP-AFQMC against DMRG for the
20-site 1D Hubbard-Holstein model at half-filling with
PBCs. Unlike for the case of the pure Holstein model,
CSMP2 and the variational LF approach are quantita-
tively and qualitatively inaccurate for all parameters ex-
amined here. This is not surprising because the on-site
repulsion term for U/t = 4 is not small, so the failure of
mean-field theories and a low-order perturbation theory
on the el-el interaction is expected. For this reason we
do not discuss CSMP2 and variational LF results here.

To study the CDW and SDW phases and the possibil-
ity of a phase transition between them, we carry out CP-
AFQMC calculations using two different mean-field trial
wave functions with the corresponding broken symmetry.
Comparison of the computed energies indicates which one
is the ground state at each Hamiltonian parameter choice
as well as the existence and location of a transition, al-
though the fact that our CP-AFQMC energies computed
from the mixed estimate are not variational63 adds a sub-
tlety to this procedure. Here the calculation leading to
the higher energy can be thought of as the constraint
acting to “hold” the projection to an excited state com-
patible with the broken symmetry of the trial wave func-
tion. In actual applications, we could use a self-consistent
CP-AFQMC procedure90 to tune the trial wave function
and reduce its effect on the result, but for the purpose of
benchmarks we will only perform one-shot calculations
here using UHF trial wave functions generated with a
fixed Ueff , and rely on comparison with DMRG results
to gauge the accuracy.

In Fig. 6, we compare two sets of CP-AFQMC results
at different ω values, one set with SDW trial wavefunc-
tions (denoted by CP-AFQMC/SDW) and another with
CDW trial wavefunctions (denoted CP-AFQMC/CDW).
The trial wave functions themselves show a SDW to
CDW transition at λ ∼ 0.5, given our ad hoc choice
of Ueff = 0.5. We see that CP-AFQMC/CDW leads to
higher energies than CP-AFQMC/SDW for λ ≤ 1.0. The
energy differences are large enough to make it straight-
forward to identify the correct phase.

We next make more quantitative comparison of the
total energy per site obtained from CP-AFQMC and
DMRG in Fig. 6. DMRG calculations are performed with
a bond dimension of 1000 and with the maximum num-
ber of bosons of 40. In Fig. 6 (c) and (d), we observe
that CP-AFQMC/SDW closely follows the DMRG ener-
gies from λ = 0.1 to λ = 1.0. At λ = 2.0, the energy
obtained from CP-AFQMC/SDW is significantly higher
than that from CP-AFQMC/CDW, with the latter in
good agreement with DMRG. The procedure described
above of combining the lowest energy curves between CP-
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AFQMC/SDW and CP-AFQMC/CDW produces quan-
titatively accurate results across the full range of param-
eters that we study. Variations in the value of the phonon
frequency do not change the qualitative conclusions.

In Fig. 7 we show a magnified view of the absolute
discrepancies between CP-AFQMC and DMRG ener-
gies. As a comparison, for the purely electronic Hub-
bard model (λ = 0), CP-AFQMC exhibits an error per
site of 0.00245(8) t with respect to the DMRG reference
values. Similarly in the Hubbard-Holstein model, CP-
AFQMC/SDW energies exhibit an error per site of ap-
proximately 0.002–0.003 t for λ = 0.1, 0.3, 0.8. When
the system reaches values as large as λ = 1.0, we ob-
serve a small increase in the error as ω increases. The
largest error found for λ = 1.0 is 0.0064(2) t at ω = 2.0,
which is slightly larger than the constraint bias found in
the purely electronic problem. The point at which the
largest error was observed coincides with the expected
phase transition point between SDW and CDW (see be-
low). At λ = 2.0, the discrepancy between CP-AFQMC
and DMRG is an order of magnitude smaller, with a max-
imum deviation of CP-AFQMC per site of -0.00040(2) t
at ω = 2.0.

It has been shown by several methods37,46,57,58 that
in the thermodynamic limit the Hubbard-Holstein model
undergoes a transition between SDW and CDW at

U ≈ 2g2

ω
= 4dtλ. (93)

This value of U is where the effective on-site interac-
tion changes sign as shown in Eq. (84). For U/t = 4
and d = 1, we expect the phase transition to occur at
approximately λ = 1.0. We find that in the 20-site
model, despite the expected finite size effects, the on-
set of the phase transition is captured quite well. In
particular, the crossover between CP-AFQMC/SDW and
CP-AFQMC/CDW occurs roughly at λ = 1.0 in Fig. 6.
While this is encouraging, detailed phase diagram stud-
ies with CP-AFQMC should be carried out in the fu-
ture. We note that CP-AFQMC often restores the sym-
metry breaking of the underlying mean-field trial wave
function,103,104 as would be expected of an exact many-
body computation. Therefore, a proper phase diagram
study with CP-AFQMC should involve a direct mea-
surement of correlation functions105 or order parame-
ters with explicit symmetry-breaking induced.27 Further-
more, there may be intermediate phases such as metallic
or superconducting phases near the onset of the phase
transition between the SDW and CDW phases. Studying
these putative intermediate phases is of great interest.58

B. 2D 4x4 model at half-filling and 1/8 hole-doping

Instead of comparing CP-AFQMC with other methods
for 2D Hubbard-Holstein systems, we simply report the
computed total energy per site using PBCs along both
the x and y directions, as shown in Fig. 8. Based on

the benchmark studies in the previous sections and on
experience from the purely electronic model, we expect
that our results will be of similar accuracy (or better
because of effective reduction of the el-el interaction from
the el-ph coupling) to that in the Hubbard model for
most parameters considered in this work. In Fig. 8, we
see that CP-AFQMC/CDW has a lower energy for λ >
0.5 at both frequencies (ω = 0.1 and ω = 2.0) at both
half-filling and 1/8 hole-doping. Based on Eq. (93), it is
expected that the onset of the crossover occurs around
λ = 0.5 in 2D, consistent with our numerical results.
(Note that our definition of λ includes dimensionality,
hence the change in the crossover value from 1D to 2D).

Consistent with our previous results, for λ = 0.1 and
λ = 0.3 at all frequencies up to ω = 2.0, the CP-AFQMC
error per site is approximately 0.009 t or slightly larger.
At the onset of the crossover between CP-AFQMC/CDW
and CP-AFQMC/SDW (λ ∼ 0.5), we expect the error to
be maximized and larger than that of the CP-AFQMC
bias for the electronic problem, similar to the 1D 20-
site model at half-filling. For λ = 0.8 and λ = 2.0,
we expect that our results will be nearly exact for the
ω values studied. For the purely electronic Hubbard
model (λ = 0), CP-AFQMC exhibits an error per site
of about 0.00901(9) t at half-filling and 0.00469(4) t at
1/8 hole-doping, using a UHF trial wave function. As
mentioned, the error at half-filling is “artificial” and can
be removed,77,78 but this is not done here. For λ ≤ 1 at
half-filling we expect an error of comparable size. Com-
paring two different fillings, we do not see qualitative
differences in physical behavior in our finite-sized lat-
tice, and the value of the phonon frequency does not
appear to make qualitative differences as well. We note
that the energy difference between CP-AFQMC/SDW
and CP-AFQMC/CDW noticeably shrinks as the phonon
frequency ω increases.

VIII. TOWARDS AB INITIO HAMILTONIANS

We briefly discuss the extension of the presented algo-
rithm for general ab initio Hamiltonians. The ab initio
Hamiltonian that describes el-ph problems typically in-
volves linear el-ph coupling. Therefore, the most widely
used ab initio Hamiltonian has the same form as Eq. (1)
with more general Hamiltonian matrix elements,

Ĥ(1)
el =

∑
σ∈{↑,↓}

∑
pq

hpσqσ â
†
pσ âqσ , (94)

Ĥ(2)
el =

1

2

∑
σ,σ′∈{↑,↓}

∑
pqrs

(pσrσ|qσ′sσ′) â†pσ â
†
qσ′
âsσ′ ârσ ,

(95)

Ĥph =
∑
I

ωI b̂
†
I b̂I , (96)

(97)
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results at half-filling, (b) ω = 2.0 results at half-filling, (c) ω = 0.1 results at 1/8 hole-doping, and (d) ω = 2.0 results at 1/8
hole-doping. Note that all error bars of CP-AFQMC are too small to be seen on the plotted scales.

and

Ĥel-ph =
∑

σ∈{↑,↓}

∑
pqI

gpσqσI â
†
pσ âqσ (b̂†I + b̂I), (98)

where we have suppressed other quantum numbers such
as k-point dependencies and have expressed everything
in terms of the electronic ({p, q, r, s, · · ·}) and phononic
bands({I, J,K,L, · · ·}). The computation of these ma-
trix elements at the level of density functional theory
has been well-documented1,106,107 so here we focus on
briefly describing the phaseless AFQMC (ph-AFQMC)
algorithm61 for these realistic el-ph problems.

The walkers take the same form as in Eq. (20). There-
fore, the essence of the propagation algorithm remains
unchanged. The only complication arises from the gen-

eralized form of Ĥ(2)
el which necessitates the use of a

continuous Hubbard-Stratonovich transformation.108,109

The continuous transformation leads to the fermionic
phase problem which can be removed via the phaseless
constraint.61 The propagation is carried out the same way
with appropriate modifications to the constraint to ac-
count for the phase problem. The ab initio generalization
of semiclassical states used in this work is also straight-
forward. The trial wavefunction still takes the form of
Eq. (35), Eq. (36), and Eq. (38). A variational mini-
mization of the total energy then leads to a trial wave-
function that can be used in ph-AFQMC. The projection
of the trial wavefunction onto phonon displacements |X〉
is identical to Eq. (40) except that the phonon mass and

frequency now depend on band indices {I}. The ab initio
generalization of the LF wavefunction may also be car-
ried out straightforwardly by extending the LF generator
in Eq. (50). We expect that the ab initio ph-AFQMC
approach will become a valuable tool for understanding
polaronic physics in realistic correlated materials in the
future.

IX. CONCLUSIONS AND OUTLOOK

In this work, we have introduced an extension of
CP-AFQMC to describe correlated systems with el-ph
coupling. Our approach utilizes a mixed first/second-
quantized representation where the phonons are propa-
gated in first quantization following the commonly used
diffusion MC algorithm, and the electronic degrees of
freedom are handled in second quantization via AFQMC.
The resulting algorithm is compared with numerically-
exact DMRG and low-order perturbation theories for the
Holstein model as a first test of the basic algorithm. We
have demonstrated that the autocorrelation time prob-
lems that arises in the commonly used DQMC methods
is greatly ameliorated in AFQMC, with autocorrelation
time that scales roughly as 1/ω.

While the Holstein model is sign-problem free,
AFQMC with the simplest trial wavefunctions, namely
semiclassical states, is found to introduce a small bias
when the underlying adiabatic surface develops into a
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double-well potential surface and/or g is larger than t
but smaller than ω (e.g., ω → ∞ for a fixed λ). Based
on a 4-site model, we have shown that this bias can be
removed by using an improved trial wavefunction where
both bifurcations and increased el-ph correlation are ac-
counted for. We have demonstrated the remarkable ac-
curacy of AFQMC for both 1D and 2D Holstein models
over a reasonably broad set of coupling and phonon fre-
quency parameters via direct comparison with DMRG.

We have tested CP-AFQMC on the finite sized ver-
sions of the 1D and 2D Hubbard-Holstein models with
U/t = 4, using the simplest form of trial wave functions
consisting of a semiclassical state with a single Slater de-
terminant. For the 1D Hubbard-Holstein model, we have
compared CP-AFQMC against numerically exact DMRG
results. When λ is small and the ground state is domi-
nated by the Hubbard U term, we find that the error of
our algorithm is roughly the same as that expected from
standard CP-AFQMC applied to the purely electronic
Hubbard model. Furthermore, when the ground state
is dominated by the el-ph coupling term and exhibits
charge density wave order, we find that the overall error
becomes remarkably small (smaller than that expected in
purely electronic systems). These facts have motivated
the production of what we believe are benchmark results
for the finite sized 2D Hubbard-Holstein model for vari-
ous values of λ and ω at half-filling and 1/8 hole-doping.

For U < 2g2/ω at half-filling and for all parameter
regimes at any hole-doping, standard QMC approaches
suffer from the sign problem.57 Therefore, our AFQMC
approach should become an essential tool for produc-
ing accurate results scalable to large system sizes for
this model. We have investigated the competing spin-
and charge-density wave orders in the Hubbard-Holstein
model. At the onset of the phase transition between
these phases, we observe a crossover in the energies be-
tween two AFQMC calculations targeting the two phases.
Lastly, we have briefly discussed the extension of the
presented algorithm to ab initio Hamiltonians that can
be easily formulated based on the phaseless AFQMC
method for general electronic Hamiltonians.61

Some immediate future directions include using this
framework to provide a detailed study of the phase di-
agram of the Hubbard-Holstein model and other lat-
tice models, and extending this framework to finite-
temperature problems based on the constrained path
approximation.110 As mentioned, a trial wave func-
tion with an el-ph Jastrow factor can be implemented
straightforwardly in AFQMC, which is expected to fur-
ther reduce the bias and improve sampling efficiency in
anti-adiabatic regimes with 2dtλ < ω. It will also be
valuable to further investigate the implementation of the
full LF trial wave function. Furthermore, application

of the proposed AFQMC approach to ab initio systems
will be of great interest as well. While there are several
algorithmic aspects that can be further improved, includ-
ing improved forms of importance functions and better
sampling in large phonon frequency regimes, we believe
that the algorithms and insights presented in this work
will serve as stepping stones towards simulating model
as well as ab initio systems with a non-trivial interplay
between electronic correlation and el-ph couplings, which
continue to be of great importance in modern condensed
matter physics.

X. COMPUTATIONAL DETAILS

Our algorithm was implemented in a public open-
source auxiliary-field quantum Monte Carlo package
called PAUXY.111 The blocking analysis was performed
with pyblock.112 The pair branching algorithm was used
for population control.113 Variational calculations were
aided by automatic differentiation using JAX.114 A total
of 640 walkers and a time step of 0.005 t−1 were used in
all calculations except for the Holstein dimer and the 4-
site 1D Holstein model. For the Holstein dimer, we used
a time step of 0.0005 t−1 for ω ≤ 1.6 and 0.00025 t−1 for
ω > 1.6 with 6400 walkers. For the 4-site 1D Holstein
model, we used 6400 walkers and a time step of 0.0005
t−1. The population control bias and time step error
were found to be smaller than 0.001 t in the absolute to-
tal energy per site. In calculations for ω = 0.1, we used a
very long β (∼3000 t−1) due to the long autocorrelation
time in this regime. This yielded about 100 statistically
independent samples after the blocking analysis. For the
DMRG calculations, we gradually increased the number
of bosons on each site to make sure that the reported
DMRG energies are converged up to 0.001 t per particle
in that increasing the number of bosons by 10 showed an
energy change smaller than 0.001 t per particle. This is
an energy scale that is small enough for the discussion in
this work.
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