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We analyze collective excitations in models of two-dimensional topological insulators using the
random phase approximation. In a two-dimensional extension of the Su-Schrieffer-Heeger model,
edge plasmonic excitations with induced charge-density distributions localized at the boundaries of
the system are found in the topologically non-trivial phase, dispersing similarly as one-dimensional
bulk plasmons in the conventional Su-Schrieffer-Heeger chain. For two-dimensional bulk collective
modes, we reveal regimes of enhanced inter-band wave function correlations, leading to characteristic
hardening and softening of inter- and intra-band bulk plasmonic branches, respectively. In the two-
dimensional Haldane Chern insulator model, chiral, uni-directional edge plasmons in nano-ribbon
architectures are observed, which can be characterized by an effective Coulomb interaction cross
section. Bulk collective excitations in the two-dimensional Haldane model are shown to be originated
by single-particle band structure details in different topological phases.

I. INTRODUCTION

Non-interacting models of topological insulators have
been studied to a great extend in recent years, and have
become one of the most active and rapidly growing re-
search areas in condensed matter physics1–28. However,
effects of electron-electron correlations in topological in-
sulators have not yet received equal attention. Nonethe-
less, measurements of collective electronic excitations
arising from long-range Coulomb interaction are experi-
mentally more accessible than probing directly single par-
ticle states, as it has been demonstrated e.g. for thin
micro-ribbon arrays of single layer graphene29 and three-
dimensional topological insulator thin films (Bi2Se3)30,31

using infrared spectroscopy. Recently, plasmons in the
one-dimensional (1D) Su-Schrieffer-Heeger (SSH) model
were analyzed in real space, where it was found that sin-
gle particle edge states appearing in the non-trivial phase
lead to strongly localized plasmon charge distributions32.
Furthermore, bilayer architectures composed of two un-
hybridized but Coulomb coupled massless Dirac electron
systems, realized on surfaces of three-dimensional (3D)
topological insulators, have been studied theoretically33.
Here, the typically large bulk dielectric screening was ob-
served to lock the low-frequency plasmon modes at en-
ergies above the particle-hole (p-h) continuum. In mag-
netically doped thin films of 3D topological insulators,
band-inversions were shown to enhance inter-band cor-
relations, which in turn lead to the appearance of inter-
band plasmonic responses in certain topological phases34.

In this paper, we report results for collective plasmonic
excitations in two-dimensional (2D) topological insula-
tors. Specifically, we investigate plasmonic responses in
real and reciprocal space, capturing their bulk and sur-
face properties, respectively. For the 2D extension of the
SSH model, we find that topological mid-gap edge states
open a quasi-1D plasmonic channel, which disperse like
their 1D SSH bulk plasmon analogues. In the 2D Hal-
dane model, chiral, uni-directional, quasi-1D plasmons
emerge in the topologically non-trivial phase, whose dis-

persion is characterized by the the quasi-1D Coulomb
cross section that effectively describes inter-band screen-
ing effects. In the 2D SSH model, we further identify
two distinct regimes, namely dimerized (D) and anti-
dimerized (AD), which depend on the choice of hop-
ping parameters and on the real space lattice modula-
tion and significantly influence the bulk plasmonic re-
sponse. We observe high-energy plasmons well above the
p-h continua in the AD phase, which are hence intrin-
sically undamped. We envision an experimental setup
on a momentum-space lattice35,36, allowing for manip-
ulation of the hopping parameters and real space lat-
tice structure, thus enabling access to the different plas-
monic excitation spectra, which can be observed via
electronic energy loss spectroscopy37 or electromagnetic
radiation combined with sub-wavelength grated surface
probes29,30. For the detection of high-energy, intrinsi-
cally undamped plasmons in the case of the 2D SSH
model, we propose a method analogous to the concepts
introduced in38, where it was argued that typical speckle
patterns produced by elastic scattering processes can be
observed via spatial near-field imaging in regimes where
Landau damping is quenched.

The paper is organized as follows. In Sec II, we intro-
duce the methods used throughout this work. In Sec. III,
bulk and surface plasmons in the 2D SSH model are an-
alyzed. In the Haldane model, we calculate collective
excitations in nanoribbon- and bulk-materials in Sec. IV,
after which we conclude our findings in Sec. V.

II. METHODS

We account for long-range Coulomb interactions via
the random-phase approximation (RPA). The complex
dielectric function, whose nodes yield a diverging dynam-
ical response to an external electric perturbation, is given
by

ε(ω,q) = 1− VqΠ0(ω,q), (1)
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where Vq = 2πe2/κq is the Fourier transformed Coulomb
potential in two spatial dimensions with background di-
electric screening κ, and Π0(ω,q) denotes the bare polar-
ization function. For a system with n sites per unit cell
and band index l = 1...n, the bare polarization bubble
can be evaluated39,

Π0(ω,q) =
gs
V

∑
k,l,l′

nF (Ek,l)− nF (Ek+q,l′)

ω + iη + Ek,l − Ek+q,l′
F ll

′

k,k+q. (2)

Here, gs = 2 is the spin degeneracy factor, V is the vol-
ume of the unit cell,

∑
k runs over the first Brillouin

zone (BZ), Ek,l are the single particle states, nF (x) =
(1 + exp[−(x − µ)/kBT ])−1 is the Fermi-Dirac distribu-

tion function at chemical potential µ, and F ll
′

k,k+q is the

overlap function of the corresponding pseudo-spinors40,

F ll
′

k,k+q = | 〈Ψk,l|Ψk+q,l′〉 |2. (3)

The plasmon dispersion can then be extracted from
the electronic energy loss spectrum (EELS) given by
EELS(ω,q) = −Im1/ε(ω,q). In real space, assuming
the system consists of M unit cells and thus N = nM
total sites, we calculate the N × N response matrix
ε(ω) = 1 − VΠ0, where V is the real space Coulomb
interaction matrix,

Vab =

{
e2/κ|ra − rb| a 6= b

U0/κ a = b
(4)

with U0 = 17.38 eV41 and

[Π0]ab = gs
∑
i,j

nF (Ei)− nF (Ej)

Ei − Ej − ω − iη
ψ∗iaψibψ

∗
jbψja, (5)

the bare polarization function in real space. Here, Ei,
nF (Ei) and ψia are the ith electronic eigenenergy, the
corresponding Fermi function at chemical potential µ and
the wave function coefficient of tight binding orbital a,
respectively. The real space non-interacting density re-
sponse is efficiently calculated using a Green’s function
approach based on fast Fourier transforms42–44. We then
extract the electronic energy loss function by choosing
the eigenvalue εn(ω) and eigenvector vmax of ε(ω) such
that EELS(ω) = −Im1/εn(ω) is maximized45,46. For
a qualitative picture of the induced charge distribution
ρ(ω) ∝ Π0vmax of the plasmon modes, we approximate
the tight binding orbital around site a as a 2D Gaussian
distribution φa(r, σ2) with variance σ2 and transform the
charge density distribution into the r-space representa-
tion via ρ(ω, r) =

∑
a ρa(ω)φa(r, σ2). Throughout our

computations, we set ~ = 1, T = 0 K, and use numerical
broadenings η = 0.01 eV and η = 0.08 eV in momentum
and real space, respectively.

III. 2D SU-SCHRIEFFER-HEEGER MODEL

We start by analyzing a two-dimensional extension of
the SSH model47,48, i.e., a square lattice with 2× 2 sites

FIG. 1. Topological insulator models analyzed in this arti-
cle. (a) Two-dimensional extension of the SSH model. Each
unit cell (light blue solid line) includes four sites, with intra-
cell nearest neighbor hopping w and inter-cell tunneling v.
Nearest neighbor distances within each unit cell plaquette are
given by δ, whereas inter-cell neighbors measure a distance of
L − δ. (b) Haldane model, a Chern insulator on the honey-
comb lattice consisting of nearest neighbor (black solid line)
and complex next-nearest neighbor hoppings (light and dark
blue solid lines) sharing the same chirality (indicated by ar-
rows). A staggered sublattice on-site potential ∆ (-∆) on A
(B) sites is further present.

per unit cell and intra-cell (inter-cell) hopping w (v),
Fig. 1 (a). The 4 × 4 Hamiltonian in reciprocal space
has the entries

H12 = H34 = w exp{ikxδ}+ v exp{−ikx(L− δ)}
H13 = H24 = w exp{ikyδ}+ v exp{−iky(L− δ)},

(6)

with their corresponding complex conjugate partners at
transposed matrix elements, L2 the surface of the unit
cell, and δ (L−δ) the intra-cell (inter-cell) nearest neigh-
bor distance. Having time reversal (TR) and inversion
symmetry, the Berry curvature vanishes throughout the
entire BZ, except at C4v invariant points |kx| = |ky|,
where oscillating divergences appear due to the degener-
acy of energy bands. These, however, integrate to zero
and thus result in a vanishing Chern number. Neverthe-
less, a non-trivial topological classification arises through
a finite 2D Zak-phase, resulting in a fractional wave po-
larization and topological edge states for w < v47, hence
resembling its analogue in one spatial dimension49,50.

Fig. 2 (a) depicts the real space results in a finite sys-
tem of 30×30 sites on a uniformly spaced square lattice,
i.e., δ = L/2. In order to energetically decouple the
contributions coming from the bulk and mid-gap topo-
logical edge states appearing in the non-trivial phase, we
here tune the chemical potential to lie inside the upper
bulk band gap, as shown in the inset of Fig. 2 (a). Fur-
thermore, a background dielectric constant of κ = 2.5 is
chosen. Examining the electronic energy loss spectrum,
using the leading eigenvalue method, we observe that for
plasmonic energies ω . 2.5 eV, a collective excitation
continuum arises in the topologically non-trivial phase,
with quasi-1D induced charge modulations localized at
the boundaries of the slab (upper row in Fig. 2 (a)).
Bulk plasmons (ω & 4.5 eV), on the other hand, have
similar loss spectra in both phases and are characterized



3

FIG. 2. (a) Real space: EELS(ω) and real space plasmonic charge distributions for a 30× 30 site system with uniform atomic
distance δ = L− δ = 1 Å. Center plot: EELS(ω) for the trivial (w = 1 eV, v = 3 eV, red solid line) and non-trivial (w = 3 eV,
v = 1 eV, blue solid line) phase. The second leading eigenvalue is also shown for the non-trivial phase (blue dashed line). The
inset illustrates the mid-gap edge states (black dots) in the upper band gap appearing in addition to bulk states (grey dots) in
the non-trivial phase, as well as the chemical potential µ = 3 eV (black dashed line). Top and bottom row: charge distributions
ρ(ω, r) of chosen peaks for the non-trivial and trivial regime, respectively. A background dielectric screening κ = 2.5 is used
and σ = 1 Å. (b) Edge plasmon dispersion read off from the real space calculation for system sizes 30 × 30 (stars, see (a)),
40× 20 (crosses), 50× 50 (triangles), and the 1D SSH bulk plasmon dispersion in momentum space using identical parameters
as in (a) and a Coulomb cross section σC = 1.1δ. (a)&(b) Momentum space: Electron energy loss spectra (log[EELS(ω,q)])
of the 2D SSH model for (c) the dimerized (w = ts = 3 eV, v = tl = 1 eV), and (d) the anti-dimerized regime (w = ts = 1 eV,
v = tl = 3 eV). Inset (a): single-particle energy dispersion (solid lines) and chemical potential µ = 1 eV (dashed line). Lower
plots show zooms of the low energy plasmon modes. The unit cell size is set to L = 2 Å, and δ = 0.1L.

by induced charge distributions delocalized throughout
the bulk of the system, cf. lower row of Fig. 2 (a). These
similarities in opposing phases are expected for δ = L/2,
since in that particular case the Hamiltonian, Eq. (6),
entering the polarization function is invariant under the
transformation w ↔ v. The appearance of localized col-
lective excitations in the non-trivial phase shows how sin-
gle particle transitions involving the mid-gap topological
edge states open a quasi-1D plasmonic channel, thus gen-
eralizing the results presented in Ref.32 to higher dimen-
sions.

Analyzing the wavelength of the plasmon waves ap-
pearing in the localized plasmonic spectrum, we extract
their dispersion ω(q) for various system shapes and sizes.
We further numerically evaluate the RPA bulk plasmon
dispersion of the 1D SSH model in reciprocal space with
identical hopping and environmental parameters and us-
ing the quasi-1D Coulomb interaction in Fourier space,
V (q) = 2e2K0(σC |q|)/κ. Here, K0(·) is the zeroth modi-
fied Bessel function of second kind, and σC is the effective
cross section of the 1D material embedded in 3D space51.
We find that the localized edge plasmon dispersion of
the 2D system matches its 1D analogue, with a Coulomb
cross section of σC = 1.1δ, independent of the system size
and shape, as illustrated in Fig. 2 (d). This highlights
the emergence of quasi-1D collective physics in the 2D
SSH model in topologically non-trivial phases, with the
plasmons being confined to a region of size ≈ δ. Further-
more, the independence of the edge plasmon dispersion

on the system size and shape suggests a full decoupling
of edge and bulk modes, whereby bulk screening effects
do not influence the quasi-1D collective excitations. Note
that certain similarities of the 1D SSH and quasi-1D edge
physics in the 2D model are expected, as the non-trivial
edge modes in 2D SSH nanoribbons disperse identically
to bulk 1D SSH bands, and the emerging edge states are
localized throughout the entire BZ, hence being decou-
pled from the bulk modes47,48.

The localized plasmonic peak at the lower border of the
bulk continuum (ω ≈ 4.2 eV), additionally appearing in
the non-trivial phase, shows a charge modulation perpen-
dicular instead of parallel to the surface, which leads to
a larger generated Coulomb energy and hence separates
it from the edge continuum. We further find that charge
responses that break C4v symmetry are degenerate, the
induced charge-density distributions differing from each
other only by a C4v symmetry operation, as indicated by
the second largest EELS(ω) in Fig. 2(a).

Let us now turn to bulk collective physics in the
2D SSH model. As already mentioned in the discus-
sion above, bulk plasmons do not differ in opposing
topological phases for a uniformly spaced square lattice.
However, when additionally tuning the intra-cell atomic
distances, interesting inversion effects can be observed,
which in turn strongly influence the bulk plasmonic re-
sponse. In our calculations, we fix the intra-cell nearest
neighbor distance to δ = 0.1L. For clarity, we refrain
here from using the terms topologically trivial and non-
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trivial, and instead use the following terminology: if the
tunneling amplitude ts associated with bond of length
min{δ, L − δ} is larger [resp. smaller] than the hop-
ping tl corresponding to two atomic sites separated by
max{δ, L− δ}, the phase is referred to as dimerized (D)
[resp. anti-dimerized (AD)]. For our choice of δ, phase
D (AD) corresponds to the topologically trivial (non-
trivial) phase of the 2D SSH model. A change between
the D↔AD regimes can then either be induced by a topo-
logical phase transition ts ↔ tl or by a change δ ↔ L−δ.
Figs. 2 (a) and (b) show the electronic loss functions of
the model in the dimerized and anti-dimerized phase in
momentum space, respectively. The inset of Fig. 2 (a)
illustrates the four single-particle energy bands through
high-symmetry points of the BZ, referred to as s, px, py
and dxy from lowest to highest energy. The chemical po-
tential is chosen to lie inside the py band, which opens
both intra- and inter-band polarization channels and thus
enables us to compute both gapless and gapped plas-
monic modes. Focusing first on the dimerized regime,
Fig. 2 (a), we see that the energetically lowest plasmon
branch governed by py intra-band transitions is charac-
terized by a steep dispersion, entering the p-h continua
for small momentum transfers close to the Γ point when
moving towards M . Inter-band plasmonic excitations,
on the other hand, feature flat energy dispersions, hy-
bridizing with the p-h continua and hence being Landau
damped throughout the BZ.

When tuning the bulk into the AD phase, the result-
ing collective excitation spectra are in stark contrast to
the D regime. The gapless plasmonic intra-band mode
is softened (i.e., red-shift), reaching up to only about
half of the maximum energy compared to its analogue
in the D phase, and then hybridizing with the p-h con-
tinuum. For high energy, gapped plasmons we observe
the opposite, namely a strong hardening (i.e., blue-shift)
of the inter-band modes. This sharp increase of collec-
tive excitation energies leads to intrinsically undamped
plasmonic modes already for small momentum transfers
q, whereby Landau damping via p-h excitations is al-
most entirely quenched. Note that the enhancement of
plasmonic energies into intrinsically undamped regimes
is reminiscent of what was found in flat-band Hamilto-
nians such as twisted-bilayer graphene due to large fine
structure constants38, which is, however, of a different
physical nature.

Sharing identical single-particle energy dispersions in
both phases due to the sublattice symmetry, the only
factor leading to different plasmonic excitation spectra
lies in the overlap of the wave functions F ll

′

k,k+q, which
store the real space and topological properties of the
system and hence influence the collective modes accord-
ingly. Indeed, we find that inter-band (intra-band) cor-
relations are greatly enhanced (suppressed) in the AD
regime. This, in turn, leads to larger (smaller) screen-
ing of the effective electron interaction, which ultimately
results in the observed softening (hardening) of the gap-
less (gapped) plasmon branches.52 All 16 overlap func-

tions for paths along high-symmetry points of the BZ in
both phases are shown in Appendix A. Note that, for the
standard tight-binding insulator model on a 2D square
lattice, only marginal differences are observed in the two
phases, such that the imbalance of hopping amplitudes
is necessary to achieve the observed effects. From an ex-
perimental point of view, we propose a 2D array of atoms
trapped in a periodic potential well, where the tunability
of the barrier width and height enables the realization of
the more uncommon anti-dimerized phase. This, as well
as a more fundamental analysis of the real space effects
on plasmonic spectra in 1D topological insulator mod-
els, is addressed in an upcoming work53. We would like
to stress that the observed tunability of bulk plasmons
should not be considered as a generic effect originating
from its non-trivial topology, but rather as an additional
property of the topological tight-binding model at hand.

IV. CHERN INSULATOR ON THE
HONEYCOMB LATTICE

We now analyze plasmonic excitation spectra in the
Haldane model54, the most prominent example of a quan-
tum anomalous Hall (QAH) insulator55 featuring the
quantum Hall effect with vanishing net-magnetic flux. It
is a tight binding model on a honeycomb lattice, allowing
for real nearest neighbor hoppings t, complex (TR sym-
metry breaking) next-nearest neighbor tunneling terms
it′ of uniform chirality, as well as a staggered (sub-lattice
symmetry breaking) on-site potential ∆ opening a gap.
Fig. 1 (b) illustrates the Haldane model. The Hamilto-
nian in momentum space takes the form

H(k) = HG +
(

∆ + 2t′
∑
i

sin(k · bi)
)
σz, (7)

where HG is the nearest-neighbor tight binding Hamilto-
nian for graphene56, and bi, i = 1, 2, 3 denote the three
different types of vectors connecting a site with its next-
nearest neighbors. At t′ = ±tcrit = ±∆/3

√
3, the gap

closes at one of the Dirac points (i.e., they become mass-
less and sources of Berry curvature) and the system un-
dergoes a topological phase transition. Different from the
2D SSH model, the topological invariant is given by the
Chern number, which can be calculated as C = −1, 0, 1
for t′ < −tcrit,−tcrit < t′ < tcrit, t

′ > tcrit, respectively.
Using ultracold fermionic atoms, the Haldane model has
been successfully realized and explored experimentally57.

We start by analyzing plasmonic responses in Haldane
nanoribbons with armchair edges (aHNRs), i.e., finite
strips with periodic boundary conditions in y-direction
and armchair edges at the sides. Fig. 3 (a) shows the
band structure of an aHNR in dependence of its 1D mo-
mentum q = qy. The form of the unit cell is shown in
the inset of Fig. 3 (b), resulting in a unit cell length of
L = 3a. The chiral edge states emerging in non-trivial
phases are localized only at one side of the HNR and
propagate in opposite directions, following the handiness
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FIG. 3. (a) HNR band structure. Up (down) moving chiral
edge states localized on the left (right) side of the ribbon are
illustrated in blue (red) color. Densely shaded areas corre-
spond to bulk bands. We set t = 2.7 eV, t′ = 0.2t, ∆ = 0.2t
and µ = 0 eV. (b) Up moving edge plasmon dispersion for
HNRs with 10 (orange) and 30 (blue) atoms in the unit cell.
The dashed area represents the p-h-continuum with upper
edge ωph = vF q. The theoretical prediction Eq. (9) with best
fitting effective cross section (σC ≈ 3.9a, 6.2a for 10-aHNR
and 30-aHNR, respectively) is shown in dotted/dashed-dotted
black lines. Inset: representative induced charge density dis-
tribution in the unit cell at a chosen plasmonic excitation.

of the complex next-nearest neighbor interactions. We
numerically find that the Fermi velocity of the chiral edge
modes around q = 0 is given by vF = 2t, and is thus in-
dependent of the parameters t′ and ∆. In order to make
theoretical predictions of the plasmonic response, we ap-
proximate the bands as fully independent, with energy
dispersions Ek,± = ±vF k, where the + (-) modes cor-
respond to unidirectional up (down) propagation of the
edge modes. With the usual approximation of uniform
intra-band correlations, the intra-band contributions to
the polarization function can straightforwardly be evalu-
ated,

Π0
intra,±(ω, q) =

gs
2π

∫
BZ

dk
Θ(Ek,± < 0)−Θ(Ek+q,± < 0)

ω + iη − vF |q|
(8)

=
1

π

|q|
ω + iη − 2t|q|

,

which in RPA results in the plasmon dispersion,

ω(q) =

{
2e2K0(σc|q|)

π
+ 2t

}
|q|. (9)

The cross section σC here defines an inverse momentum
scale which dictates the crossover region from logarith-
mic to linear dispersive behavior. There is, however, a
subtlety that has to be be addressed, as the two chiral
edge modes change localization and direction at the BZ
boundaries and are therefore correlated with the bulk

bands in this regime. This comes along with a strength-
ening of inter-band screening effects that cannot be ne-
glected. For our theoretical predictions, we here make
a rough phenomenological approach and account for the
screening by using an effective σC > σC in Eq. (9), which
enlarges the overall Coulomb scattering cross section and
hence qualitatively captures the delocalization effects at
the zone boundary. In our numerical calculations58, we
fix σC = a. However, note that the concrete choice of the
Coulomb cross section is only of minor importance for
the here considered ribbon sizes if all inter-band contri-
butions are accounted for, as is the case in the numerical
evaluation of Eq. (2). Fig. 3 (b) shows the computational
results of the plasmon dispersion for two different ribbon
widths with 10 and 30 sites per unit cell. By compar-
ing them to the theoretical approximation Eq. (9) using
the best fitting effective cross section σC , we see how the
numerical results including all inter-band screening and
overlap effects follow the rough phenomenological pre-
diction over a wide range of momenta surprisingly well.
In Appendix B, the inter-band screening effects are an-
alyzed and elaborated in more detail. Note that we ex-
pect measurable edge plasmons only for relatively small
ribbon widths, as larger HNR sizes lead to overscreen-
ing of the edge modes and hence quickly lock them to
the upper edge of the p-h continuum. For this reason,
it is desirable to reduce screening effects from the bulk
bands, which could e.g. be realized by tuning the sys-
tem deeper into the topologically non-trivial phase via a
strengthening of the complex next-nearest neighbor hop-
ping inducing magnetic fields. Due to the chirality of
the mid-gap topological edge states, the plasmons inherit
uni-directory. For positive momenta (hence, up-moving
plasmons), the induced charge density distributions are
strongly localized on the left side for our choice of t′, see
the inset of Fig. 3 (b). For q < 0, the quasi-1D plasmons
move downward and are localized on the right side of the
HNR. The topological phases C = ±1 are related to each
other only by a flip of the propagation direction of the
single-particle and collective modes.

Due to the symmetry of the edges, both up- and down-
moving plasmon branches have identical dispersions. In-
cluding symmetry breaking adatoms on one edge leads
to avoided level crossings and in turn results in different
Fermi velocities for the two edge modes. We therefore ex-
pect a certain control of the dispersions for q ≶ 0 via edge
manipulation, as already explored in the single particle
picture in Chern insulator nanoribbons59.

Let us finally discuss bulk plasmons in the doped Hal-
dane model, focusing on differences in different topolog-
ical phases. Numerical results of the electronic energy
loss spectra are shown in Figs. 4 (a) and (b) for C = 0
and C = 1, respectively. Examining the low energy col-
lective modes, we find that for C = 1, the plasmon dis-
persion is softened when comparing it to the trivial phase
while keeping the chemical potential constant. For the
energetically higher plasmonic branch, although the to-
tal energy of the non-trivial phase plasmon is slightly
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FIG. 4. Electron energy loss spectra of the Haldane model
for (a) C = 0 (t′ = 0) and (b) C = 1 (t′ = 2tcrit) with
∆ = 1, t = 2.7 eV and d = 1.42 Å. Insets: Single-particle
energy dispersions (solid lines) and chemical potential µ = 3
eV (dashed line). Zooms below (a) and (b) include the an-
alytical low q expansions (black dashed lines) for intra-band
plasmons. (c) and (d): inter- and intra-band overlap func-
tions for C = 0, respectively, along high-symmetry paths for
both k and q. (e) and (f): the same for C = 1.

enhanced, the bandwidth remains indistinguishable from
the C = 0 high-energy plasmon. Changing the chemical
potential into the gap and/or increasing the next-nearest
neighbor hopping strength to move the system further
into the C = 1 regime does not fundamentally change
these observations. Analyzing the intra- and inter-band
overlap functions, Figs. 4 (c)-(f), we see that they barely
vary when switching from C = 0 to C = 1. The term
dominating a variation of the plasmon dispersion is hence
identified as the change of single particle band structure
details, illustrated in the insets of Fig. 4. Indeed, we find
that the low-q expansion of the gapless plasmon mode is
given by (Appendix C),

ω2(q) =
2e2
[
µ−

(
∆2 + (3

√
3t′)2

)
/µ
]

κ
q, (10)

which is included in the lower parts of Figs. 4 (a) and (b).
The squared energy dispersion in the gapped system is
hence quadratically softened by the gap parameter and
the next-nearest neighbor hopping, in contrast to a linear
decrease when simply lowering the doping level in con-
ventional graphene, whose low energy plasmon mode is
given by ω2(q) = 2e2µq/κ60,61 (see also Appendix C).

V. CONCLUSIONS

Using complementary real and momentum space ap-
proaches, we have examined the plasmonic excitations
arising from long-range Coulomb interactions in two-
dimensional models of topological insulators, and found
several collective phenomena of interest. First, we found
that gapless, highly localized plasmons emerge in non-
trivial phases, whose dispersion we analyzed for two topo-
logical insulator models. In the 2D SSH model, we ob-
served collective modes that are localized on the bound-
aries and behave like bulk plasmons in a 1D system, with
a Coulomb cross section of about the size of the lattice
spacing. This suggests quasi-1D collective physics in a
2D material, coming with an additional layer of protec-
tion due to the underlying non-trivial topology. Fur-
thermore, the (non-chiral) edge plasmons were shown
to be stable against bulk screening effects, suggesting
their existence independent of the system size. In the
Haldane model, chiral, uni-directional localized plasmons
were found, which were, however, observable only in thin
ribbons, due to the chiral modes’ susceptibility to inter-
band oversscreening. The discussed tunability via edge
manipulation opens future research questions regarding
the control of quasi-1D plasmons in HNR architectures.
Moreover, it is of high interest to investigate the stabil-
ity of the edge plasmons against disorder. On the other
hand, our analysis of bulk 2D SSH excitation spectra
predicts strong dispersion hardening and softening when
tuning the system between dimerized and anti-dimerized
regimes, controlled by the intra- and inter-band wave
function correlations. The strong enhancement of inter-
band overlaps and plasmonic energies can be used to ac-
cess regimes where Landau damping is entirely quenched,
thus enabling applications based on dissipationless light-
matter coupling. Bulk plasmons in the Haldane model,
in contrast, were shown to almost entirely be controlled
by single-particle band structure details when changing
the system’s topological phase, which we investigated an-
alytically for small momentum transfers.
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Appendix A.

The overlap functions, often also called coherence or
form factors,

F ll
′

k,k+q = | 〈Ψk,l|Ψk+q,l′〉 |2, (A1)

are identified in the main text as the only actors influenc-
ing the plasmonic dispersion in the 2D SSH model when
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switching between the relevant regimes D↔AD. All 16
overlap functions for chosen values of momentum k and
transferred momentum q along high-symmetry points of
the BZ (for δ = 0.1L as in the main text) are shown in
Fig. A1 (a) and (b) for the dimerized and anti-dimerized
regime, respectively. Here, intra-band (inter-band) over-
lap functions are shown as diagonal (off-diagonal) ele-
ments. As a sanity check, note that for q = 0, i.e., at
the Γ point on the q-axis, the intra-band (inter-band)
overlap is one (zero) for all k, as the hermiticity of the
Hamiltonian demands. Generally, one can observe that
the overlap of inter-band (intra-band) wave functions is
greatly enhanced (suppressed) in the AD phase, Fig. A1
(b), compared to its analogue in the D regime, Fig. A1
(a). For the inter-band contributions, we hence observe
that single particle transitions of high energy difference
are enhanced (or, strictly speaking, less suppressed) in
the AD phase and thus lead to significantly larger contri-
butions to the polarization function when summing over
k for a given q. On the other hand, low energy intra-
band transitions are suppressed in AD regimes, result-
ing in smaller contributions to Π0(ω,q). This leads to
the observed hardening (softening) of the high energy
(low energy) plasmon mode, which is governed by inter-
band (intra-band) transitions. In the dimerized phase,
we further see that only inter-band transitions between p
bands play a significant role, such that one would expect
the upper energy plasmon mode to be further softened
when tuning the chemical potential to lie inside the gap
between the py and dxy band, hence prohibiting single-
particle transitions between the two p bands. The high-
energy plasmon modes in AD phases, on the other hand,
are not expected to alter by a considerable amount due
to strong contributions coming from all other inter-band
transitions. We confirmed this numerically.

Appendix B.

Here, we analyze the inter-band screening effects for a
30-aHNR. Fig. A2 illustrates the chiral plasmon disper-
sion when taking account succeedingly more inter-band
contributions to the polarization function. Only consid-
ering intra-band screening from the chiral edge band with
band energy Ek,+ results in the yellow dispersion. The
theoretical prediction Eq. (9) based on solely intra-band
contributions is added with a black dashed line (in this
case, σC = σC = a in Eq. (9)). For small momentum
transfers, there is good agreement with the numerics.
For larger momenta, the overlap function term in the po-
larization function softens the dispersion, consistent with
the delocalization of the chiral edge state band at the bor-
ders of the BZ. Increasing the inter-band screening contri-
butions to Π0(ω, q) further softens the quasi-1D plasmon
dispersion, as seen in Fig. A2 for chiral edge state screen-
ing (taking into account both mid-gap bands) in blue and
full bulk band screening in red. Introducing an effective
enlarged Coulomb scattering cross section σC in Eq. (9)

FIG. A1. All 16 overlap functions of the four-band two-
dimensional SSH-model for (a) the dimerized and (b) the anti-
dimerized regime. Intra-band overlaps (l = l′) are displayed
on the diagonal, whereas inter-band form factors (l 6= l′) fill
the off-diagonal elements of the grids. A path along the high
symmetry points M,X,Γ,M is chosen for both k and q to
illustrate the overlap functions. Between Γ and M we find
strong numerical noise if l = px, py ∨ l′ = px, py due to the
degeneracy of the p bands in this region.

can reproduce the fully screened dispersion over a large
range of momenta with surprising accuracy. We would
like to clarify that this correspondence even for larger
momentum transfers should, however, not be viewed as
a general statement for chiral plasmons in Chern insula-
tors, but does seem to effectively capture the inter-band
screening effects in this particular setting.
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FIG. A2. Screening properties of a 30-aHNR. Plasmonic re-
sponses using Eq. (2) are shown while taking into account (i)
only intra-band contributions with energy Ek,+ (yellow line).
(ii) screening from both chiral edge state bands (blue), and
(iii) taking into account the full inter-band screening (red).
The low-q expansion Eq. (9) for case (i) is displayed with a
black dotted line. Increasing the Coulomb cross section to
σC to effectively describe screening effects results in the black
dashed-dotted line.

Appendix C.

Here, we present an analytical approximation of the
low-energy

√
q bulk plasmonic mode in the Haldane

model. Let us start with the standard tight binding
model for graphene, for which

F ll
′

k,k+q =
1

2
{1 + ll′ cos(φk − φk+q)}, (A2)

where φk = arg{h(k)}. For finite electronic doping µ >
0, the low energy plasmon mode is formed by intra-band
transitions in the conduction band, for which the overlap

function can be approximated by F l=l
′=+

k,k+q = 1 + O(q2).
Denoting the conduction band energies by Ek and ex-
panding the Lindhard term in the bare polarization func-
tion in ω � |Ek − Ek+q|, one finds

Π0
intra ≈

gs
ω2

∑
k

nF (Ek){Ek+q − Ek−q − 2Ek}

≈ gs
ω2

∑
k

nF (Ek)(q · ∇k)2Ek.
(A3)

Approximating the conduction band as Ek = vF k
throughout the whole BZ and accounting for the ad-
ditional valley degeneracy factor gv = 2, one finds

(q · ∇k)2Ek = vF sin2(α)q2/k, with α being the angle
between q and k. Hence,

Π0
intra ≈

4vF q
2

(2π)2ω2

∫ 2π

0

sin2(α)dα

∫ kF

0

dk =
µq2

πω2
, (A4)

which within RPA results in the well known low-q plas-
mon square-root dispersion for graphene60,61,

ω2(q) =
2e2µ

κ
q. (A5)

When introducing a staggered sublattice potential and
complex next-nearest neighbor hoppings to the Hamil-
tonian, the valley degeneracy is broken and the (now
gapped) system can be approximated by two Dirac cones
with a corresponding mass term

EPk,± = ±
√

∆2
P + (vF k)2, (A6)

where ∆P = ∆ ± 3
√

3t′ at P = K ′ (+) and P = K
(-). Again keeping the chemical potential inside the con-
duction band and focusing on the intra-band transitions

(→ F l=l
′=+

k,k+q = 1 +O(q2)), we find that

(q · ∇k)2EPk,+ =
(vF q)

2

EPk,+
− (vF q)

2(vF k)2(
EPk,+

)3 cos2(α). (A7)

The polarization function hence reads

Π0
intra ≈

2q2

(2π)2ω2

∑
P=K,K′

∫ 2π

0

dα

∫ vF k
P
F

0

dk

{
k√

∆2
P + k2

− k3√
∆2
P + k2

3 cos2(α)

}
(A8)

=
µ−

[
∆2 + (3

√
3t′)2

]
/µ

πω2
q2,

where kPF is defined such that µ =

√
∆2
P +

(
vF kPF

)2
.

Within RPA, this results in the plasmonic energy dis-
persion,

ω2(q) =
2e2
[
µ−

(
∆2 + (3

√
3t′)2

)
/µ
]

κ
q. (A9)
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