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Topological band and superconductivity in UTe2
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UTe2 is a likely spin-triplet superconductor that also exhibits evidence for chiral Majorana edge
states. A characteristic structural feature of UTe2 is inversion-symmetry related pairs of U atoms,
forming rungs of ladders. Here we show how each rung’s two sublattice degrees of freedom play a
key role in understanding the electronic structure and the origin of superconductivity. In particular,
DFT+U calculations generically reveal a topological band near the chemical potential originating
from a band inversion associated with 5f electrons residing on these rungs, necessitating a mi-
croscopic description that includes these rung degrees of freedom. Furthermore, we show that a
previously identified strong ferromagnetic interaction within a U-U rung leads to a pseudospin-
triplet superconducting state that accounts for a non-zero polar Kerr angle, the observed magnetic
field-temperature phase diagrams, and nodal Weyl fermions. Our analysis may also be relevant for
other U-based superconductors.

I. INTRODUCTION

UTe2
1 is a paradigmatic superconductor exhibit-

ing unconventional behavior: Superconductivity sur-
vives to much higher magnetic fields than expected1–9

and shows a highly unusual re-entrant field in-
duced superconductivity10. Furthermore, there is
evidence for ferromagnetic fluctuations11–13, odd-
parity superconductivity14, multiple superconduct-
ing phases15–19, spontaneous broken time-reversal
symmetry16, and chiral Majorana edge and surface
states20,21, the nature of which are not yet understood.

Many important open questions remain, foremost is
the origin of the odd-parity superconductivity. There is
a consensus that ferromagnetic fluctuations are respon-
sible for the pairing in the related UGe2, URhGe, and
UCoGe compounds,22 but uncertainty as to the appropri-
ate underlying model has led to debate over the nature of
these fluctuations22. Recently, this question has been ad-
dressed in UTe2

23–25 where density functional theory plus
Hubbard U (DFT+U) and dynamical mean field theory
(DMFT) calculations lead to a family of band structures;
the consequences of these on superconductivity have been
explored, suggesting topological superconductivity25. In
addition, effective Heisenberg theories developed from an
itinerant electron description argue that the strongest
magnetic interaction, for all U values considered, is a
local ferromagnetic interaction between the two nearest-
neighbor U atoms on a ladder rung24, providing a po-
tential mechanism for superconductivity that does not
require a global ferromagnetic ground state.

Here we revisit the DFT+U calculations, finding good
agreement with previous results and newly identifying a
topological band that appears near the chemical potential
for all values of U . This topological band has its origin
in the rung sublattice degrees of freedom, in particular, a
band inversion between even- and odd-parity 5f orbital
combinations on the two U atoms of the rung. The non-
trivial topological nature implies that two Wannier func-
tions localized on the rung sites are needed to describe

this band to avoid a topological Wannier obstruction26.
The appearance of this topological band and the rung
ferromagnetic interactions reveal that the rung sublattice
degrees of freedom play a central role in the electronic de-
scription. Consequently, we construct a symmetry-based
electronic model that explicitly includes these rung sub-
lattice degrees of freedom and the ferromagnetic inter-
action between them. This model yields magnetic field-
temperature phase diagrams that agree with experiment,
allows a superconducting state with Weyl nodes, and pro-
vides an explanation for the observed surface chiral edge
states21, polar Kerr effect16, and low energy excitations
in the superconducting state27.

II. TOPOLOGICAL BAND

To develop an understanding of the origin of supercon-
ductivity in UTe2, a description of the underlying elec-
tron excitations is needed. Here, experiment provides
some insight. In particular, the development of Kondo
coherence and the size of the superconducting specific
heat anomalies1,2 imply itinerant f -electrons are impor-
tant. However, a low temperature renormalized Fermi
liquid cannot provide a complete description since the
magnetic susceptibility for the field along the â direc-
tion shows a strong upturn at low temperatures1, in-
consistent with a Pauli temperature independent sus-
ceptibility expected from a Fermi liquid. Here we take
the point of view that this magnetic response is a
consequence of quasiparticle interactions which is con-
sistent with the temperature scaling of the magnetic
susceptibility1,13. Consequently, a natural starting point
for the low-temperature electronic structure of UTe2 is a
renormalized interacting Fermi liquid in which U 5f elec-
trons participate, which is also consistent with scanning
tunneling microscopy21 and the observed Fermi pocket
about the X-point seen in ARPES data28,29 (called Z in
Ref. 29). This point of view has been adopted in recent
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FIG. 1. (a) DFT+U bands for U=1.2 eV (black solid lines)
and 7 eV (green dotted lines). For the former, the f j=5/2
component (orange) and even/odd parities (open/closed cir-
cles) are shown. A 81 meV band gap (grey shaded region)
separates a pair of topological 5f bands, indicated by red-
dotted boxes along the Λ direction. Density of states for (b)
U=1.2 eV and (c) 7 eV. (d) First BZ, with eight TRIMs and
equivalent X faces (green) shown; all three principal k lines
(Λ, Σ, and ∆) connect Γ and X. (e) Wave function schematics
of topological band at X point with odd parity. Thin/thick
shading of lobes represents their positive/negative sign. In ac-
cord with the wave vector k=(0,0,2π), the sign array of body-
centered orbitals is reversed from that of corner-centered. The
inter-rung U(1)-U(2) bonding (blue arrow) is retained at the
Γ point as well.

DMFT and DFT+U calculations23–25. The band struc-
ture depends strongly on the choice of U , suggesting that
any theory of the superconducting state needs to be de-
veloped for a range of band structures, emphasizing prop-
erties that are generic across the relevant possibilities.
Here, we have carried out DFT calculations of the band
structure of UTe2 using the full-potential linearized aug-
mented plane wave method30 and including a Coulomb U
to account for interactions of the U 5f electrons31. Our
results agree with those found earlier24,25. A key new
finding is that for a wide range of U , we find a topologi-
cal band at or near the chemical potential.

As reported earlier, the band structure differs signifi-
cantly along the three principal k axes due to the under-
lying quasi one-dimensional (1D) bands; these features
are most easily seen in the no-5f limit or, equivalently,
in the large U limit, c.f., Fig. 1(a). The quasi-1D bands
arise from the U 6d dimer state, which strongly disperses
along the kx (Σ) direction, and also the Te 5p linear chain
state which disperses along the ky (∆) direction. For re-
alistic values of U (e.g., U = 1.2eV in Fig. 1(a)), the 5f
states are able to hybridize with these bands, leading to
rather complicated dispersions along Σ and ∆. In con-
trast, the 5f dispersion along kz (Λ) is much simpler and
we can make the following observations for the j=5/2 sec-

tor: (i) Among the six Kramers-degenerate bands, two
are topologically nontrivial in the sense that the band
parity switches between Γ and X, while the other four
bands do not show such a parity change; (ii) these two are
well separated in energy; (iii) the lower energy band, lo-
cated near the chemical potential (energy zero), has even
parity at Γ and odd at X; and (iv) of the four trivial
bands, a set of odd- and even-parity bands are occupied.

These features persist regardless of U . The band struc-
ture and density of states (DOS), Figs. 1(b)(c), how-
ever, constrain the range of U that reproduce the ex-
perimental results such as the strong ARPES signals
around −0.5 eV28 or −0.7 eV29. In particular, for a
range of moderate U (1.1–2.0 eV), a band gap appears
just above the lower nontrivial band; the Hilbert space
below this gap (corresponding to the occupied levels of
a +2e doped system) is characterized by Z2 topologi-
cal invariants (ν0; ν1, ν2, ν3)32, which are found from the
band parities at the eight time-reversal-invariant mo-
menta (TRIMs). Due to a mirror symmetry duplica-
tion of R, S, and T [c.f., Fig. 1(d)], the index ν0 is de-
termined solely from the parity products at Γ and X,
(−1)ν0 = δΓδX for our choice of origin. The 5f band
with nontrivial parity switching leads to a strong topo-
logical state ν0=1. The other indices are all identical,
ν1=ν2=ν3=1, determined from (−1)ν1 = δXδRδSδT . In
a smaller U range that includes U=0 eV, the non-doped
system now has a genuine insulating band gap where ex-
actly the same 5f band provides ν0=1. This topological
5f band consists predominantly of y(5y2 − 3r2) orbitals
on each of the two U atoms forming a rung (note these
orbitals are hybridized with Te 5p orbitals). At Γ, the
wave function has opposite sign on these two atoms, and
hence has even parity; however, as sketched in Fig. 1(e),
at the X point the wave function has the same sign on
the two rung atoms and is therefore odd parity. Com-
mon to these states at Γ and X is the U(1)-U(2) bond
that connects different rungs. For the U used here (1.2
eV), this topological band gives rise to a Fermi surface
that is centered on the X-point, in agreement with the
Fermi pocket observed experimentally28,29. More details
of the band structure analysis, including the U depen-
dence, are in the Appendices.

III. MINIMAL SINGLE BAND HAMILTONIAN

The observation that the band nearest to the chemi-
cal potential is topological has important consequences
for constructing an effective theory of the superconduct-
ing state. This is not restricted to the possible inter-
play of the normal state topological edge states and odd-
parity superconducting edge states33. Rather, a minimal
model to describe the band nearest the chemical poten-
tial and its superconductivity requires two Wannier func-
tions, each localized on one of the two rung sublattice
degrees of freedom. This is necessary to avoid a Wan-
nier obstruction26. Surprisingly, this U atom sublattice
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rung degree of freedom has not been explicitly consid-
ered previously in understanding the low-energy physics
and superconducting state in UTe2, nor in the related
materials UGe2, URhGe, and UCoGe where a similar U
sublattice structure appears22. Here we consider the role
of this sublattice degree of freedom through the construc-
tion of a minimal model. In particular, motivated by the
DFT+U results, we assume Wannier functions centered
on the U sites encode the low energy electronic excita-
tions. These Wannier functions will in general consist of
U f -electron states hybridized with Te 5p states. The U
atoms sit on sites of C2v symmetry, for which only a single
spinor symmetry representation exists. A minimal model
therefore includes a single spinor pair centered on each of
the sublattices. While these spinors share the same sym-
metry properties as usual spin-1/2 fermions under C2v

symmetry, DFT reveals they are generally a linear com-
bination of j=5/2 states (hybridized with Te 5p orbitals).
This model includes two bands and we assume only one
of these cross the chemical potential. This is consistent
with ARPES measurements that observe only one Fermi
pocket associated with the U 5f electrons29, which are
responsible for the superconducting state, suggesting this
model is a reasonable description. The most general non-
interacting Hamiltonian including all symmetry-allowed
terms with sublattice and spin degrees of freedom is

HN =ε0(k)− µ+ fAg
(k)τx + fz(k)τy + fy(k)σxτz

+fx(k)σyτz + fAu
(k)σzτz (1)

where the functions fi(k) have symmetry properties given
by the label i: fAg (k) ∼ constant, fz(k) ∼ kz, fy(k) ∼
ky, fx(k) ∼ kx, and fAu(k) ∼ kxkykz. Here the Pauli
matrices σi (τi) describe the spin (rung) degrees of free-
dom. While our analysis below does not depend upon
the detailed form of the fi(k), for the y(5y2 − 3r2) Wan-
nier functions discussed above we obtain the following
tight-binding theory:

ε0(k) = t1 cos(kx) + t2 cos(ky)

fAg (k) = m0 + t3 cos(kx/2) cos(ky/2) cos(kz/2)

fz(k) = tz sin(kz/2) cos(kx/2) cos(ky/2)

fy(k) = ty sin(ky)

fx(k) = tx sin(kx)

fAu
(k) = tu sin(kx/2) sin(ky/2) sin(kz/2) . (2)

To replicate the nontrivial parity switching predicted
above, the magnitude of the inter-rung U(1)-U(2) hop-
ping t3 [see Fig. 1(e)] needs to exceed the intra-rung hop-
ping m0. Fitting to the DFT+U topological band gives
(µ, t1, t2,m0, t3, tz, tx, ty, tu) = (−0.129, −0.0892, 0.0678,
−0.062, 0.0742, −0.0742, 0.006, 0.008, 0.01) and yields
the Fermi surface shown in Fig 3.

IV. QUASIPARTICLE INTERACTIONS

Following spin-fluctuation theory34,35, we assume that
magnetic correlations among the quasiparticles drive su-

TABLE I. Pairing gap functions due to ferromagnetic inter-
actions between rung sublattice degrees of freedom. The first
column gives the local gap function and the last column gives

the corresponding ~d(k) in the band basis when the spin-orbit
coupling terms are vanishing (fx = fy = fAu = 0), with the

abbreviation f̃z(k) = fz(k)/
√
f2
Ag

(k) + f2
z (k).

Gap Irrep Interaction Momentum dependence

∆zτyσz Au Jx + Jy − Jz f̃z(k) ẑ

∆xτyσx B2u −Jx + Jy + Jz f̃z(k) x̂

∆yτyσy B3u Jx − Jy + Jz f̃z(k) ŷ

perconductivity. To gain insight into the nature of these
interactions, we use recent DFT + U results that find
lowest energy FM and AFM states24 using a Heisenberg-
like description of itinerant electron magnetic states. A
relevant result is that the largest magnetic interaction is
a local ferromagnetic interaction between the rung de-
grees of freedom, the lowest energy FM and AFM con-
figurations are consistent with this local configuration24

and may account for the two magnetically-ordered states
observed experimentally17. Consistent with these DFT
+U results, we assume that the dominant quasiparticle
interaction is

Hint = −
∑
i

(JxS
x
i,1S

x
i,2 + JyS

y
i,1S

y
i,2 + JzS

z
i,1S

z
i,2) (3)

where 1, 2 labels the two U atoms on the rung, i labels
a lattice point, and Si is the local quasiparticle spin; the
ferromagnetic interactions Jµ > 0 are in general unequal
due to the orthorhombic structure. Treating this as an ef-
fective coupling for superconductivity, we find three pos-
sible pairing states as listed in Table I. Due to the inter-
sublattice nature of the magnetic interactions, the gap
functions are necessarily proportional to a non-trivial τy
sublattice operator and take the form ∆iτyσi which de-
scribes a local, inter-sublattice, spin-triplet pairing func-
tion. While the interactions reveal the role of magnetic
anisotropy on the pairing, we will now set Jx = Jy = Jz
to examine the effect of HN on these pairing states.

A. Role of HN

Naively, the stable pairing state is determined by the
largest interaction parameter listed in Table I. However,
due to the spin-sublattice coupling in our model, HN also
influences the relative stability of the pairing states. The
effect of the distinct terms in HN on the transition tem-
perature Tc,i of the state ∆iτyσi can be quantified with-
out fully specifying the functions fj(k) using the concept
of superconducting fitness36,37: specifically, if the matrix
σiτj commutes with the gap function ∆iτyσi, then the
corresponding term in HN will enhance Tc,i; conversely,
Tc,i is suppressed by this term if it anticommutes with the
pairing potential37. This yields the result that the fAg
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term suppresses all the Tc,i and the fz term enhances
all the Tc,i. Consequently, if Jx = Jy = Jz, the spin-
orbit coupling terms will dictate which Tc,i is highest.
In particular, the largest Tc,i is given by the smallest of
〈f2
Au
〉 (Au stable), 〈f2

x〉 (B3u stable), or 〈f2
y 〉 (B2u sta-

ble), where 〈. . .〉 represents an average over the Fermi
surface. The terms in the tight-binding expression will
be altered by pressure, providing a potential explanation
for the appearance of different superconducting states.
HN also dictates the form of the pseudospin triplet

~d-vector on the Fermi surface. We do not give the de-
tails here but point out that generically, all three pseu-
dospin components x̂, ŷ, ẑ appear for each gap function.
As we argue below, there is one limit that can be mo-
tivated by experimental results. In particular, when
the momentum-dependent spin-orbit coupling terms are
small, that is f2

x , f2
y , f2

Au << f2
z then the orientation

of the spin-triplet ~d vectors is set by the spin part of
the gap function in Table I. In this case Table I provides

an approximately correct description of ~d (except near
kz = 0, 2π); in the following this is called the weak spin-
orbit coupling limit.

B. Relationship to experiment

At ambient pressure, two superconducting transitions
in zero field and a polar Kerr effect that can be trained
by a c-axis magnetic field have been observed16. The lat-
ter result implies a B3u + iB2u or a Au + iB1u pairing
below the second transition16. In the context of our the-
ory, the only possibility is the B3u + iB2u state. Such a
broken-time reversal symmetry state can be stabilized by
ferromagnetic fluctuations16,38,39. Assuming an isotropic
rung exchange, this situation arises in our model by re-
quiring that 〈f2

x〉 < 〈f2
y 〉 < 〈f2

Au
〉.

The weak spin-orbit coupling limit is consistent with
the field-dependence of the phase diagram for fields along

â and b̂ as a function of pressure15,17,40,41. In this limit

the B3u gap is primarily along b̂ and the B2u gap is pri-
marily along â, implying that the B3u (B2u) gap will ex-

perience paramagnetic limiting for a field along b̂ (â) and

not for the fields along â (b̂). It has been observed that
the two superconducting transitions cross at a critical
pressure Pc ≈ 0.2 GPa17. In our model such a crossing
should then be correlated with a switch in the upper criti-

cal field behavior for the field along the â and b̂ directions,
as shown in Fig. 2. This is indeed what is observed1,40,41.

In addition, the weak spin-orbit coupling limit natu-
rally explains why thermal conductivity exhibits nodal

behavior that is similar along both the â and b̂
directions27: When fx = fy = fAu

= 0, all the gap func-
tions have accidental line nodes when kz = 0, yielding

nodal thermal conductivity behavior along both â and b̂.
These accidental line nodes will be lifted when the spin-
orbit coupling terms are non-zero, but if they are small
we expect a local gap minimum near kz = 0, 2π which

FIG. 2. Qualitative temperature-field phase diagrams for
fields along the â and b̂ directions. The top two phase di-
agrams correspond to P < 0.2 GPa and the bottom two to
P > 0.2 GPa. HM corresponds to an observed metamagnetic
transition.

can mimic nodes in thermal conductivity.

C. Weyl Nodes

Using the tight-binding theory given above, we find
that Weyl nodes generically exist for a B3u + iB2u pair-
ing state. These nodes are topologically protected but
do not sit at high symmetry positions, instead the po-
sitions are determined by the relative amplitudes of the
B2u and the B3u order parameters. The evolution of
these nodes is shown in Fig. 3. We have also computed
the Weyl charge of these nodes. Generically, there exists
four Weyl nodes, two of charge +1 and two of charge
−1. These Weyl nodes imply the existence of surface arc
states which provide an explanation for the chiral edges
states seen with scanning tunneling microscopy21.

D. Polar Kerr Effect

Our multiband theory generically gives rise to an imag-
inary anomalous Hall conductivity, which is expected to
be proportional to the polar Kerr signal. By a sum
rule42 we have that the integrated imaginary anoma-
lous Hall conductivity is given by

∫∞
−∞ ω Im{σH(ω)}dω =

−iπe2〈[∂kxHN , ∂kyHN ]〉. The full expansion of the com-
mutator is very complicated and will be analyzed else-
where, but we note that the contribution (∂kxfy∂kyfx −
∂kxfx∂kyfy)σzτ0 is directly proportional to the so-called
time-reversal-odd bilinear of the B3u + iB2u pairing
state43,44. This implies that expectation value of the
commutator is nonzero, ensuring the existence of the
anomalous Hall conductivity and hence the polar Kerr
signal. The presence of two bands due to the sublattice
degree of freedom is critical; in a single-band model, the
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FIG. 3. (a) Evolution of Weyl nodes of B2u + iB3u pairing
states as the relative amplitude of the B2u gap to the B3u gap
is reduced. The gap amplitudes are chosen to be (∆x,∆y) =
1meV(cos θ, sin θ) where θ is a real parameter. The total gap
intensity 1meV is chosen small enough to keep the Weyl nodes
close to the normal state Fermi surface. Making this intensity
smaller does not change the qualitative behavior of the Weyl
nodes. The Fermi surface is obtained from the tight-binding
model fitted to the two DFT+U bands with U=1.2 eV. Red
and blue lines indicate trajectories of the nodes with +1 and
−1 Weyl charge. There are four nodes in a Brillouin zone and
they sit on the kx-kz or ky-kz plane. Two pairs with a same
charge sign meet at the kz axis when θ = π/4. (b)Weyl points
on kx-kz slice when θ = 0.254π. Triangles (blue) and circles
(red) indicate +1 and −1 Weyl charge. The circular line is a
cut of the Fermi surface and centered at the X-point.

commutator is vanishing, and a polar Kerr effect does
not appear in the clean limit45.

V. CONCLUSIONS

From DFT+U calculations, we have identified a topo-
logical band near the chemical potential in UTe2 that
stems from U 5f electrons. This result, together with
the importance of rung ferromagnetic interactions, sug-
gests that U atom rung degrees of freedom play an im-
portant role in the superconductivity of UTe2. We have
developed a model that includes these degrees of free-
dom and captures the topological bands. In addition, we
show that including the ferromagnetic rung interactions
allows a B3u + iB2u pairing state, accounting for Polar
Kerr measurements and yielding Weyl points, providing
a promising model with which to understand UTe2 in
more detail. Similar U sublattice degrees of freedom ex-
ist in UGe2, URhGe, and UCoGe, suggesting a unifying
motif for this class of materials.
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Apārangi.

Appendix A: Details of DFT calculations

DFT calculations of UTe2 were carried out by the
full-potential linearized augmented plane wave method30.
The experimentally determined lattice parameters11 are
used: space group Immm; a =4.1611, b =6.1222,
c =13.955 Å with fractional coordinates (0, 0, 0.13544),
(0.5, 0, 0.29750), (0, 0.2509, 0.5) for the U 4i site, Te 4j
and 4h sites, respectively. The muffin-tin sphere radii are
set to 1.35 Å, and the wave function and potential cut-
offs are 16 and 100 Ry, respectively. The Brillouin zone
is sampled with a 15×15×15 k-point mesh during the
self-consistent field cycle. To account for the Coulomb
correlation in U 5f states, a rotationally invariant ver-
sion of the local density approximation plus Hubbard U
(LDA+U) method31 is employed, with the full 14 × 14
5f occupation matrix and the Slater integrals other than
monopole term F0 = U are set to zero25.

It has been demonstrated that varying U causes drastic
changes to the Fermi surface (FS) of UTe2, including an
insulator-metal transition, FS volume change, and more
importantly, a FS topological Lifshitz transition25. We
reexamine here the U dependency, detecting the FS trend
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addressed before as well as finding important aspects for
the topological 5f band that is the focus of main text.
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FIG. 6. Λ-Σ-∆ band dispersion (U=1.2 eV) in the energy
range ±2 eV about the chemical potential. Each of five pan-
els shows different components of the wave function with a
fat-band representation (red) laid on top of the same band
dispersion plot (black lines). (a) and (b): U 5f j = 7/2 and
j = 5/2 components, respectively. (c) U 6d, (d) Te 4j site 5p,
and (e) Te 4h site 5p component.

Figure 4 shows the U variation of Λ-line band disper-
sion. Around the chemical potential (energy zero), there
is a 5f band that changes its parity from even (Γ) to
odd (X), which persists for all values of U (including
larger ones not shown here). At U=0 eV (pure LDA),
two entangled 5f bands are in the occupied levels; one is
trivial with odd parity (located around −0.1 eV) and the
other is the nontrivial band. There is a tiny insulating
bandgap of 13 meV. Above that, there is a trivial even-
parity band around 0.2 eV. Turning on U , these two triv-
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FIG. 7. Upper panels: Λ-Σ-∆ band dispersion (U=1.2
eV) in the energy range ±1 eV with atomic U 5f compo-
nent projection onto the ` = 3 cubic harmonics shown by red
dots. The topological band around the chemical potential has
predominantly T1y = y(5y2 − 3r2) orbital character. Lower
panels: three-dimensional and two-dimensional (y-z planar)
schematic view of the ` = 3 cubic harmonics.

ial bands shift down to deeper binding. At U=1.1 eV,
the energy ordering between the topological band and
the even-parity band is reversed compared to smaller U
values, which corresponds to the Fermi-surface Lifshitz
transition addressed in Ref. 25 that accompanies a dras-
tic increase of FS volume. The electron pocket thus made
by the topological 5f band at X and along the Λ line ex-
ists in a limited range of U values, 1.1 eV ≤ U ≤ 1.3 eV,
since this band is pushed upward with increasing U , pro-
ducing a hole pocket along ky direction from X, which
eventually becomes the large FS led by the quasi one-
dimensional Te 5p band25. Although the energy position
of the 5f bands is sensitive to U , Fig. 4 shows that the
band closest in energy to the chemical potential at X is
the topological 5f band.

Figure 5(a) shows the variation in the density of states
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FIG. 8. Λ-Σ-∆ band dispersion (U=1.2 eV) with the atomic
U 6d component projected onto ` = 2 cubic harmonics shown
by red dots.
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FIG. 9. Λ-Σ-∆ band dispersion (U=1.2 eV) with the Te
atomic 5p component (x, y, and z) shown by red dots. Note
that the energy range displayed is much wider than that of the
other figures to accommodate the large bonding-antibonding
splitting of Te(2) py state. Te(1) and (2) are abbreviation
for the Te site 4j and 4h, respectively. Note as well that
even-parity symbols are dropped.

(DOS) with U . For moderate U , 0 eV ≤ U ≤ 2 eV,
a strong peak in the occupied levels goes to the deeper
binding energy as U is increased. The photoemission
spectroscopy found intense 5f -originated signals around
0.5 eV28 and 0.7 eV29, which may be explained by this
peak. The DOS at the chemical potential, N0, is zero for
U=0 eV because of an insulating band gap. As shown
in Fig. 5(b), N0 is a drastic function of U with a large
peak around U=1 eV, which reflects the fact that the
topological 5f band located in the occupied levels at U=0
eV moves up in energy as U increases and passes through
the chemical potential; for higher U , N0 continuously
declines by losing 5f contributions. The formation of a
band gap is seen in Fig. 5(a) and its size is shown in
Fig. 5(c) as a function of U . For small U (≤ 0.8 eV),
an insulating gap ∼13 meV exists. After this gap closes
with increasing U , another gap is formed just above the
topological 5f band, which corresponds to an insulating
gap for +2e doped system. This gap exists for U in the
range 1.1 eV ≤ U ≤ 2 eV, with a maximum of 82 meV
at U=1.3 eV.

For the two U ranges of Fig. 5(c) that have a band gap,
Z2 topological invariants (ν0; ν1, ν2, ν3) are examined by
calculating the band parity product below the band gap
at the eight TRIM points. The parity product arrays
(δΓ, δX , δR, δS , δT , δR′ , δS′ , δT ′) is found to be invariant
within each of the U ranges and is shown in Table II.
This gives the Z2 invariants (1; 1,1,1) for both U ranges.

We analyze wave function component in terms of
atomic-like orbitals. Within muffin-tin spheres, partial
` wave is projected onto cubic harmonics. In Figures 6,
7, 8, 9, this atomic-orbital weight is provided in the fat
band representation along the Λ-Σ-∆ line.

Appendix B: Choice of origin and parity

For a system with inversion symmetry, the choice of
origin can affect the parity label of a state, but will not

affect the topological Z2 invariant. For a lattice choice
R =

∑
niai the TRIM points are kp = Gp/2 where

Gp =
∑
mjbj with nj = 0, 1, where ai and bj are the

primitive direct and reciprocal lattice vectors, respec-
tively. For a lattice vector R =

∑
niai, translational

symmetry (Bloch’s theorem) requires that

{ e|R}−1ψk(r) = ψk({ e|R}r) = eik·Rψk(r).

If k = kp, then eikp·R = eiG·R/2 = ±1. At a TRIM
point, inversion is an operation of the group of kp, and
hence if the origin is at an inversion center,

{ i|0}ψkp
(r) = ψkp

(−r) = λψkp
(r), λ = ±1, (B1)

where λ is the parity. With a shift of the origin to ro,
r′ = r−ro = { e|ro}−1 r, a wave function relative to the
new origin is

ψk(r′) = ψk({ e|ro}−1r) = { e|ro}ψk(r),

and still transforms under translations as k. Applying
{ e|ro} to the right-hand side of Eq. (B1), gives

λ { e|ro}ψkp(r) = λψkp(r′), (B2)

and to the left-hand side

{ e|ro} { i|0}ψkp(r) = { e|ro} { i|0} { e|ro}−1 { e|ro}ψkp(r)

= { e|ro} { i|0} { e|ro}−1 ψkp(r′)

= { i|2ro}ψkp
(r′) (B3)

The new origin is also a center of inversion if ro is half
a lattice vector, ro = R/2, and { i|R} is then a product
of inversion and translation. Thus, the left-hand side
becomes

{ i|R}ψkp
(r′) = { i|0} { e|R}−1 ψkp

(r′)

= { i|0} eikp·Rψkp
(r′)

= eikp·R { i|0}ψkp(r′) . (B4)

Combining Eqs. (B2) and (B4) (and rearranging),

{ i|0}ψkp(r′) = e−ikp·R λψkp(r′) = ±λψkp(r′). (B5)

This means that the parity of the wave functions at the
TRIM depends on the choice of origin, differing by a
factor of eikp·R = ±1 for all wave functions at a given
TRIM point. Then for the 8 TRIM points and ro =
R/2 =

∑
(ni/2)ai, the change in parity is:

Gp : eikp·R

(0, 0, 0) ; 1

(1, 0, 0) : (−1)n1

(0, 1, 0) : (−1)n2

(0, 0, 1) : (−1)n3

(0, 1, 1) : (−1)n2+n3

(1, 0, 1) : (−1)n1+n3

(1, 1, 0) : (−1)n1+n2

(1, 1, 1) : (−1)n1+n2+n3
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TABLE II. Parity product at each of the eight TRIMs Γi = (1/2)(n1b1 + n2b2 + n3b3). Our choice of primitive vectors is
b1 = (0, 1, 1), b2 = (1, 0, 1), b3 = (1, 1, 0) in units of the conventional reciprocal lattice vectors a∗, b∗, c∗. The inversion center
that defines the parity is set to the lattice point at the origin. Results are shown for two U ranges, where a band gap is formed
at the chemical potential for either +0e or +2e doping.

TRIM Γ X R S T R′ S′ T′

(n1, n2, n3) (0,0,0) (1,1,1) (0,1,0) (1,0,0) (0,0,1) (1,0,1) (0,1,1) (1,1,0)
Conventional (0,0,0) (0,0,1) (1,0,1)/2 (0,1,1)/2 (1,1,0)/2 (1,0,−1)/2 (0,1,−1)/2 (1,−1,0)/2

0 ≤ U ≤ 0.8 (+0e) + − − − − − − −
1.1 ≤ U ≤ 2 (+2e) + − − + + − + +

The Z2 is the product of these changes, which is
(−1)4(n1+n2+n3) = 1, i.e., it is independent of the choice
of origin. The choice of origin used in the paper allowed
the discussion to be completely in terms of the parity
at Γ and X. Using an origin at ( 1

4 , 1
4 , 1

4 ) in terms of the
conventional cell, changes the parity of the states at X,
which is compensated by the fact that the states at R
and R’ no longer have the same parity; this behavior is
related to the fact that the mirror plane is not through
this origin.

Appendix C: Tight-binding model fit to DFT band

Our tight-binding (TB) model is written as
Eq. (1-2) in the main text by nine parameters
(µ, t1, t2,m0, t3, tz, tx, ty, tu). First we select the 5f elec-
tron topological band participating in the Fermi surface
(FS) formation. Since the other paired topological band
is above the chemical potential we also select a lower
energy band from the TB model. To obtain a model
capturing physics near the FS we fit the TB model’s
lower energy band to the DFT band with weighting
factor 1/(|ε|+ ε0) where ε is a band energy and we set ε0
to be 0.033eV. Also we set momentum sampling points
on Λ-Σ-∆ and Γ-R-W-S line. Guided by a Slater-Koster
two center approximation, we take t3 = −tz. The
Γ-R-W-S line is needed to fix tx, ty, and tu because
they are vanishing or small on high symmetry lines, as
an example the tu term is zero everywhere on Λ-Σ-∆.
The band dispersion of the fitted TB model is shown in
Fig. 10. A comparison between 3D FS shapes for the
tight binding theory and the DFT +U results is also

shown in Fig. 11, showing that our simple tight binding
theory qualitatively captures the Fermi surface shape.

FIG. 10. Λ-Σ-∆ band dispersion of topological DFT calcu-
lation (U=1.2 eV) and the fitted TB model. The fit is for the
TB model’s lower band and weighted near FS. The TB band
has roots close to the DFT roots.

FIG. 11. 3D shapes of The FS. The left figure shows the FS
of the fitted TB model and the right figure shows the FS of
the DFT band.

1 S. Ran, C. Eckberg, Q.-P. Ding, Y. Furukawa, T. Metz,
S. R. Saha, I.-L. Liu, M. Zic, H. Kim, J. Paglione, and
N. P. Butch, Science 365, 684 (2019).

2 D. Aoki, A. Nakamura, F. Honda, D. Li, Y. Homma,
Y. Shimizu, Y. J. Sato, G. Knebel, J.-P. Brison,
A. Pourret, D. Braithwaite, G. Lapertot, Q. Niu,
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