
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Meron, skyrmion, and vortex crystals in centrosymmetric
tetragonal magnets

Zhentao Wang, Ying Su, Shi-Zeng Lin, and Cristian D. Batista
Phys. Rev. B 103, 104408 — Published  4 March 2021

DOI: 10.1103/PhysRevB.103.104408

https://dx.doi.org/10.1103/PhysRevB.103.104408


Meron, skyrmion, and vortex crystals in centrosymmetric tetragonal magnets

Zhentao Wang,1, 2 Ying Su,3 Shi-Zeng Lin,3 and Cristian D. Batista1, 4
1Department of Physics and Astronomy, The University of Tennessee, Knoxville, Tennessee 37996, USA

2School of Physics and Astronomy, University of Minnesota, Minneapolis, Minnesota 55455, USA
3Theoretical Division, T-4 and CNLS, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

4Neutron Scattering Division and Shull-Wollan Center,
Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

(Dated: February 16, 2021)

The recent experimental confirmation of a transformation between meron and skyrmion topological spin
textures in the chiral magnet Co8Zn9Mn3 [S.-Z. Lin et al., Phys. Rev. B 91, 224407 (2015); X. Z. Yu et al.,
Nature 564, 95 (2018)] confirms that the skyrmion crystals discovered in 2009 [S. Mühlbauer et al., Science 323,
915 (2009)] are just the tip of the iceberg. Crystals of topological textures, including skyrmions, merons, vortices
and monopoles can be stabilized by combining simple physical ingredients, such as lattice symmetry, frustration
and spin anisotropy. The current challenge is to find the combinations of these ingredients that produce specific
topological spin textures. Here we report a simple mechanism for the stabilization of meron, skyrmion, and
vortex crystals in centrosymmetric tetragonal magnets. In particular, the meron/skyrmion crystals can form even
in absence of magnetic field. The application of magnetic field leads to a rich variety of novel topological spin
textures that survive in the long wavelength limit of the theory. When conduction electrons are coupled to the
spins, these topological spin textures twist the electronic wave functions to induce Chern insulators and Weyl
semimetals for specific band filling fractions.

PACS numbers:

I. INTRODUCTION

Inspired by the work of Herman Hemholtz [1], William
Thompson proposed in 1867 that atoms could be vortices in
ether [2]. While later experiments put this proposal out of
business, thinking of topological solitons as emerging building
blocks or artificial atoms is very appealing. Indeed, more
recent developments, that started around the 1960’s [3, 4],
have demonstrated that nature has plenty of room for finding
updated versions of ether [5]. The “ether of quantummagnets”
is the vector field of magnetic moments, whose topological
solitons can be regarded as emergent mesoscale atoms [6].
Like real atoms, these solitons form crystal structures dictated
by symmetry, anisotropy and competing interactions.

Periodic arrays of topological spin textures typically arise
from the superposition of small-Q spirals propagating along
symmetry related directions (multi-Q ordering), whose wave-
length is dictated by the competition between ferromagnetic
(FM) and antiferromagnetic (AFM) interactions. In chiral
magnets, the FM interaction competes against the antisym-
metric component of the effective exchange tensor, known as
Dzyaloshinskii-Moriya (DM) interaction [7, 8]. However, the
selection of a small-Q spiral ordering is not enough to sta-
bilize topological spin textures because the superposition of
multiple spirals requires additional energetic considerations.
For instance, it is known that three-fold symmetric lattices
favor the formation of skyrmion crystals (triple-Q ordering)
induced by a magnetic field parallel to the c-axis, because
the Ginzburg-Landau (GL) free energy can include terms of
the form (S0 · SQ1 )(SQ2 · SQ3 ) (Q1 +Q2 +Q3 = 0 because the
three orderingwavevectors differ by 2π/3 rotations). This sim-
ple consideration explains why the vast majority of magnetic
skyrmion crystals have been found by applying magnetic field
along a three-fold symmetry axis of different materials [9].

While less common, square skyrmion and meron crystals
have been recently reported in chiral [10–12], polar [13, 14],
and centrosymmetric tetragonal magnets [15]. The obser-
vation of skyrmion crystals in four-fold symmetric lattices
forces us to think about alternative stabilization mechanisms.
Here, we report a new guiding principle for the formation of
meron cystals (MX), which are also skyrmion crystals (SkX),
in four-fold (tetragonal) lattices even in absence of magnetic
field. The merons form a square lattice and the magnetic unit
cell includes four merons with a net skymion charge nsk = ±1
(MX-I) or nsk = ±2 (MX-II). The phase diagram also includes
a field-induced vortex crystal (VtX). Remarkably, this rich
phase diagram is obtained from a very simple model for cen-
trosymmetric magnets that only includes competing easy-axis
and compass anisotropies.

The different phases of the phase diagram are obtained by
minimizing the energy over all the possible spin configura-
tions for a fixed magnetic unit cell, whose size is dictated by
the ordering wavevector. We also provide approximated ex-
pansions of the relevant spin configurations that include the
fundamental Fourier components q = Qν and a few higher
harmonics. Our analysis is complemented with the derivation
of the GL theory that describes the long wavelength limit of
the microscopic model, allowing us to demonstrate the uni-
versal character of the phase diagram. We also analyze the
anomalous Hall response of itinerant electrons coupled to the
local magnetic moments [16], and the possible realization a
magnetic Weyl semimetal [17] induced by the MX-II phase.

The rest of paper is organized as follows: in Sec. II we in-
troduce the microscopic model and compute the correspond-
ing T = 0 phase diagrams. In Sec. III we we introduce a
Ginzburg-Landau theory for the continuum limit of the model,
and discuss the stabilization condition of the MX-II phase.
In Sec. IV we analyze the topological Hall effect that results



from coupling theMX-I andMX-II spin textures to conduction
electrons. In Sec. V we discuss the generation of Weyl points
in vertically stacked layers of MX-II spin textures. In Sec. VI
we summarize the main conclusions of the work. Appendix A
provides details of the variational methods that were employed
to obtain the T = 0 phase diagrams. Appendix B includes the
analysis of the ordering wavevectors in the isotropic limit of
the model. A further analysis of the skyrmion charge in the
meron crystal phases is provided in Appendix C. Appendix D
includes the Fourier analysis of the states that were obtained
from the unbiased (fixed unit cell) variational method. Ap-
pendix E includes details of the stability analysis of the MX-II
phase. Finally, we present the symmetry analysis of the elec-
tronic bands in Appendix F.

II. MICROSCOPIC MODEL

We consider the classical Heisenberg model on the square
lattice:

H =
∑
〈i j 〉

Ji jSi ·S j −Γ
∑
i

(
Sx
i Sx

i+x̂ + Sy
i Sy

i+ŷ

)

−D
∑
i

(
Sz
i

)2−H
∑
i

Sz
i ,

(1)

where Ji j ={J1, J2, J3} are the Heisenberg interactions up to
the third nearest neighbor, Γ is the compass anisotropy, D is
the single-ion anisotropy, and H is the magnetic field along
the z-axis. In this work, we consider the case of FM nearest
neighbor Heisenberg exchange (J1 < 0). The magnitude of the
spins is fixed by the normalization condition |Si | = 1. The
compass anisotropy can either be generated by the spin-orbit
coupling or by the dipolar interaction.

The characteristic length scale of the spin structure is de-
termined by the competition between different symmetric ex-
change interactions [18–23]. In absence of anisotropies and
magnetic field, the ordering wavevector Q is obtained by min-
imizing the exchange interaction in momentum space:

J(q) = J1
(
cosqx + cosqy

)
+2J2 cosqx cosqy

+ J3
(
cos2qx + cos2qy

)
.

(2)

In the long wavelength limit we have:

J(q) ' I0− I1
2

q2+
I2
2

q4− I3q2
xq2

y, (3)

with I0 = 2(J1+ J2+ J3) and

I1 = J1+2J2+4J3, I2 =
J1+2J2+16J3

12
, I3 = I2− J2

2
. (4)

Depending on the sign of the quartic anisotropy, I3, the com-
peting exchange interactions lead to spiral phaseswith ordering
wavevectors Q = (±Q0,0) or Q = (0,±Q0) with Q0 =

√
I1/2I2

for I3 < 0, and Q = (±Q0,±Q0)/
√

2 with Q0 =
√

I1/(2I2− I3)
for I3 > 01. In both situations, the ground state can either

1 Such analysis is valid in the long wavelength limit. The corrections for
finite |Q | can be found in Appendix B.

be a single-Q spiral or a multi-Q structure depending on the
values of the spin anisotropies and the magnetic field. Once
these extra terms are included in the Hamiltonian, the opti-
mal value of Q can also change. We note, however, that this
change has been found to be negligible for several cases of
interest [19, 24].
The different rows of Fig. 1 include theT = 0 phase diagrams

of H for three different sets of exchange interactions, {J1,
J2, J3} that produce relatively small values of Q and quartic
anisotropy: I3 = 0.02|J1 |, I3 = 0 and I3 ≈ −0.037|J1 |. The
different columns correspond to four different values of the
compass anisotropy Γ. As shown in Fig. 2, the inclusion of
these extra terms indeed modifies ordering wavenumber.
Since I3 and Γ are the main sources of tetragonal anisotropy,

the first column of Fig. 1 [Figs. 1(a)(e)(i)] describes cases with
weak lattice anisotropy. Thus, it is not surprising that the
phase diagrams are similar to the ones obtained in the contin-
uum limit of the isotropic theory [20]. The ordering wavevec-
tors {Q1, Q2, Q3} differ by 120◦, implying that the skyrmion
crystal SkX(∆) has hexagonal symmetry in spite of the under-
lying tetragonal atomic lattice. The conical spiral (CS) is just
a canted cycloidal spiral induced by the effective easy-plane
anisotropy produced by the applied magnetic field. In con-
trast, the easy-axis anistropy term D > 0 favors a proper-screw
or vertical spiral (VS). The additional two phases, 2Q-conical
spiral [2Q-CS(∆)]2, and the vertical spiral with in-plane mod-
ulation [VS′(∆)] have also been reported for centrosymmetric
magnets with hexagonal symmetry [18–22, 24].
The phase diagram is qualitatively different for Γ/|J1 | ≥ 0.1

because the compass anisotropy term is strong enough to en-
force the tetragonal anisotropy on the spin textures. The prop-
agation wavevectors, Q1 = (Q,0) and Q2 = (0,Q) of the conical
and the vertical spirals are now pinned along the principal x
and y directions of the tetragonal lattice3. However, the most
remarkable effect of the Γ-term is the stabilization of double-Q
orderings that are superpositions of two proper screw spirals
with propagation wavevectors Q1 and Q2. In particular, the
MX-II,MX-I andVtX phases, shown in Figs. 3(a)–(c), have the
same intensity in the spin structure factor at both wavevectors;
while the vertical spiral with in-plane modulation (VS′) has
different intensities [Fig. 3(d)], implying that it is not invariant
under a 90 degree rotation.

The magnetic unit cell of the MX-II state includes four
merons [Fig. 3(a)], whose skyrmion charge adds up to |nsk | = 2
[Fig. 3(a), Fig. 8(a)], meaning that the MX-II phase is simul-
taneously a double-SkX state with net scalar spin chirality
χi jk = Si ·

(
S j ×Sk

)
. Note that the scalar chiralities of the

merons have the same sign because a change of sign in the
vector spin chirality ẑ · (S j ×Sk

)
(vorticity) is always accom-

panied by a sign change of Sz
i . The MX-I phase is induced

by magnetic field, but it can also exist at zero magnetic field

2 The name 2Q-CS(∆) follows the convention of refs. [19, 24], where S(q)
actually has intensity at all {Q1, Q2, Q3}, but the spectral weight at the
thirdQ can be quite small compared to the other two.

3 Note also that a new ↑↑↓↓ state appears for large enough anisotropy [see
Fig. 1(l)].
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Figure 1. Phase diagrams of the microscopic model Eq. (1) at T = 0. The values of {J1, J2, J3} are denoted on the right-hand side of each row
(see also Fig. 7), and the values of Γ are denoted on top of each column. The solid (dashed) lines indicate first (second) order phase transitions.
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Figure 2. Wavelength of the spin textures obtained from the microscopic model Eq. (1) at T = 0 (see Appendix A for details). Here we set
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sat are denoted on the corresponding panels in Fig. 1. Note that some of the points have
a small error bar, which can be inferred from the noise of the corresponding curves, because of the limited resolution of the minimization
algorithm.

[Fig. 1(l)]. Its magnetic unit cell includes four merons with
a total skyrmion charge |nsk | = 1 [Fig. 3(b), Fig. 8(b)], im-
plying that this phase is also a SkX. In this case, one of the
merons has opposite scalar chirality relative to the other three
because of a sign change in Sz

i near its core. It is interesting
to note that the MX-I state is topologically equivalent to the
spin configurations that have been observed in chiral crystals
[Fig. 1(e) of ref. [12]] and centrosymmetric magnets [Fig. 1(d)
of ref. [15]]. The finite skyrmion charges of the MX-I and
MX-II phases make them qualitatively different from the MXs

with nsk = 0 that have been reported in previous works [25, 26].

The VtX state can in principle exist all the way from zero
magnetic field up to the saturation (Fig. 1). Similarly to the
MX-I and MX-II states, this texture includes four vortices in
each magnetic unit cell. The main difference is that their
topogical charges cancel with each other: nsk = 0 [Fig. 3(c),
Fig. 8(c)]. The origin of this cancellation is easy to understand
at high fields, where Sz

i does not change sign and the net
scalar chirality becomes proportional to the net vector chirality.
Hexagonal versions of this VtX phase have also been reported
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Figure 3. Spin configurations of the double-Q states. The insets show the in-plane (S⊥) and out-of-plane (Szz ) static spin structure factors in
the first BZ (the intensities are colored in log scale). The solid (dotted) circles highlight the dominant (subdominant) peaks for q ≤ 2Q. On the
left part of each panel, we have also colored the scalar chirality χi jk in the magnetic unit cell.

for frustrated quantum magnets below the saturation field [27,
28].

The in-plane spin components are almost identical for
the MX-I, MX-II, and VtX states [Figs. 3(a)–(c)], making
them equally good candidates for the double-Q magnetic tex-
tures revealed by Lorentz transimission electron microscopy
(TEM) [12, 15]. We must then rely on other measurements
to discriminate between the three possibilities. As shown in
Figs. 3(a)–(c), the zz component of the static spin structure
factor, Szz(q), is different for the three double-Q orderings.
In other words, a polarized neutron or x-ray diffraction exper-
iment can identify the nature the double-Q state. We also note
that S(Q1 + Q2) ≈ 0 for the VtX state [Fig. 3(c)], meaning
that the spectral weight at the first harmonic, Q1 +Q2, is not
always a good criterion to distinguish a multi-domain single-
Q phase from a double-Q state. Recently, a double-Q state
has been reported in the centrosymmetric tetragonal magnet
GdRu2Si2 [15], which has substantial weight at the higher har-
monic position Q1 +Q2. This observation excludes the VtX,
but it is still consistent with the MX-I or MX-II phases.

III. GINZBURG-LANDAU THEORY

The universalGL theory (Q→ 0) is obtained via the gradient
expansion

Sr+δ ≈ Sr + (δ · ∇)Sr + 1
2
(δ · ∇)2 Sr + · · · , (5)

that leads to the continuum version of Eq. (1):

HGL =

∫
dr

{
− I1

2

[
(∂xSr )2+

(
∂ySr

)2
]

+
I2
2

(
∂2
xSr + ∂

2
ySr

)2
+
Γ

2

[ (
∂xSx

r

)2
+

(
∂ySy

r

)2
]

−(D−Γ) (Sz
r

)2−HSz
r − I3

(
∂2
xSr

)
·
(
∂2
ySr

) }
. (6)

The compass anisotropy and the last term of Eq. (6) are
the only terms of HGL that enforce the C4 anisotropy of the
original lattice model. In agreement with the phase diagram
of the microscopic model, the quartic exchange anisotropy
penalizes multi-Q states for I3 < 0 (bottom row of Fig. 1),
while it favors them for I3 > 0 (top row of Fig. 1). This point
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Figure 4. Phase diagrams of the GL theory Eq. (9) with I3 = 0 at T = 0. The values of Γ̃ are denoted on the top of each column. The solid
(dashed) lines indicate first (second) order phase transitions.

becomes clearer upon taking the Fourier transform of the I3
term:

− I3

∫
dq

(
q2
xq2

y

)
Sq ·S−q . (7)

The characteristic wavelength of the ground state is set by
the length scale

√
I2/I1. By adopting this scale as the unit of

length r →
√

I1/I2 r , I1 as the unit of energy and I2
1/I2 as the

unit of magnetic field, the GL energy functional Eq. (6) can be
re-expressed in terms of the dimensionless coupling constants,

Γ̃ ≡ Γ
I1
, D̃ ≡ I2(D−Γ)

I2
1

, H̃ ≡ I2H
I2
1
, H̃GL ≡ HGL

I1
. (8)

The resulting GL energy functional reads

H̃GL =

∫
dr

{
− 1

2

[
(∂xSr )2+

(
∂ySr

)2
]
+

1
2

(
∂2
xSr + ∂

2
ySr

)2

+
Γ̃

2

[ (
∂xSx

r

)2
+

(
∂ySy

r

)2
]
− D̃

(
Sz
r

)2− H̃Sz
r

}

− I3
I2

∫
dr

(
∂2
xSr

)
·
(
∂2
ySr

)
. (9)

The T = 0 variational phase diagrams for the GL theory
Eq. (9) with Γ̃ = {0,0.4,0.8,1.2} and I3 = 0 (see Fig. 4) are
qualitatively similar to the ones obtained for the microscopic
model (Fig. 1). This fact demonstrates the universal character
of the newly discovered multi-Q orderings. We can then use
the GL functional Eq. (9) to understand the general principle
behind the emergence of the MX and VtX phases.

The first observation is that the ordering wavevectors
Q1 and Q2 of the double-Q states remain parallel to the
principal x and y directions even for I3 > 0. The rea-
son is that the q-dependent part of the Γ-term favors
proper screw spirals, Sr = (0,cos (Q1 · r), sin (Q1 · r)) and Sr =
(cos (Q2 · r),0, sin (Q2 · r)), that propagate along these direc-
tions. Indeed, these principal directions become energetically
favorable for I3/I2 < Γ̃(1− Γ̃/8). This observation allows us
to understand the stabilization mechanism of the double-Q
MX-II phase that is approximately described by the equation

mx
r = ±a1 sin (Q2 · r), (10a)

my
r = ±a1 sin (Q1 · r), (10b)

mz
r = a0+ a2 cos (Q1 · r)cos (Q2 · r), (10c)

where Sr ≡ mr/|mr |. As it is clear from the phase diagram,
the competing zero field phases are the conical (cycloidal) and
vertical (proper screw) spiral orderings. A simple evaluation
of the energies of these competing phases, which does not
include the small higher harmonic components, produces a
rough estimate of the stability interval of the MX-II phase at
zero field (see Appendix E for more details):

− 1
2
+

5
32
(2− Γ̃)2− I3

4I2
. D̃ . − 1

12
+

I3
6I2

. (11)

Note that a positive quartic anisotropy 0 < I3/I2 < Γ̃(1−
Γ̃/8) lowers the exchange energy cost of the MX-II phase (the
first harmonics of this phase are ±Q1 ± Q2). According to
Eqs. (6) and (8), the q-independent contribution of the the Γ-
term can turn the single-ion term into an effective easy-plane
anisotropy D̃ < 0. This explains the suppression of the VS
phase in favor of the MX-II phase, which has stronger in-plane
(XY) spin components. The MX-II phase is also more stable
than the CS because of the q-dependent contribution of the Γ
term increases the energy cost of the CS phase by an amount
proportional to Γ̃Q2 (see Appendix E for more details).
For positive I3, the compass anisotropy Γ̃ must be strong

enough to guarantee that the ordering wavevectors remain par-
allel to the principal x and y directions. These conditions
can be naturally fulfilled by tetragonal metallic systems, such
as 4 f -electron materials, with dominant RKKY interactions
and a small Fermi surface. The combination of a small Fermi
surface and strong spin-orbit coupling can naturally lead to
0 < I3/I2 < Γ̃(1− Γ̃/8).

IV. ANOMALOUS HALL EFFECT IN 2D

The net scalar spin chirality of the double-Q states MX-I
and MX-II creates an effective U(1) gauge flux [29] for itin-
erant electrons that are coupled via exchange to the magnetic
moments Si . The resulting non-zero Berry curvature of the
(reconstructed) electronic bands leads to anomalous Hall ef-
fect (AHE). Unlike typical realizations of field-induced SkX,
the MX-I and MX-II states can be realized at zero field and
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and Berry curvature of the lowest electronic bands due to coupling
to the MX-II state. The MX-II states that we used here are obtained
for J1 = −1, J2 = 0.35, J3 = 0.15, Γ = 0.3, and D = 0.16 in the
L = 8 variational space (Appendix A), and J/t = 1. (a) Lowest four
reconstructed electronic bands due to coupling to H = 0 MX-II state
(red solid curves, doubly degenerate) and MX-II state distorted by
an in-plane field along [110] direction with H = 0.017 (blue solid
curves). (b) Transverse conductivities as a function of filling for the
four lowest bands in (a). Here the filling fraction ν = n indicates
the lowest n bands are filled. The inset in (b) shows the first BZ of
the magnetic superlattice. (c)(d) Berry curvatures of the two lowest
bands in (a), obtained with the MX-II state distorted by an in-plane
field along the [110] direction with H = 0.017. The black squares
enclose the folded first BZ.

produce a spontaneous topological Hall effect4.
This simple phenomenon can be illustrated by coupling the

local moments Si to the spins of itinerant electrons [16]:

HK = −t
∑
〈i j 〉,σ
(c†iσcjσ + h.c.)+ J

∑
i,αβ

c†iασαβciβ ·Si, (12)

where the first term is the nearest neighbor hopping, and the
second term represents the exchange interaction J between the
itinerant electrons and the local moments. By assuming that
the effective spin-spin interaction mediated by the conduction
electrons is much smaller than the relevant exchange energy
scales in Eq. (1), we can still use the magnetic phase diagram
obtained for H (Fig. 1). As discussed below, the topolog-
ical properties of the itinerant electrons are mainly dictated
by symmetry, so the choice of nearest neighbor hopping in
Eq. (12) is a matter of convenience.

4 In other centrosymmetric models, skyrmion crystals typically only exist for
finite magnetic field and the degeneracy of the skyrmion crystal solutions
with opposite chiralities can be lifted the orbital coupling to the external
field [30].

For long period (Q� 1) incommensurate states, the (folded)
first Brillouin zone (BZ) includes a large number of recon-
structed electronic bands. The transverse conductivity de-
pends on the filling fraction. For the purpose of illustration,
we will focus on the four lowest energy bands (our results
can be easily generalized to include more bands). Figure 5(a)
shows the reconstructed electronic bands for the MX-II state,
which turn out to be doubly degenerate at H = 0. This de-
generacy is protected by the combined symmetries O1 = IC2z

and O2 =
{
C2xMy | 12,0,0

}
(Appendix F). A finite magnetic

field along the z axis breaks O2 and partially lifts the degener-
acy except for the folded BZ boundaries, which are protected
by the non-symmorphic symmetries O3 =

{TMy | 12,0,0
}
and

O4 =
{TMx | 0, 1

2,0
}
[31] (Appendix F). The remaining de-

generacies can be fully lifted by applying an in-plane mag-
netic field along the [110] direction [Fig. 5(a)] that distorts the
MX-II state.
TheMX-II state produces anomalousHall conductivity even

in absence of magnetic field, implying that the Hall effect
is purely of topological origin. As shown in Fig. 5(b), a
value as large as |σxy | = 2e2/h can be achieved by completely
filling the four lowest bands. Figures 5(c)(d) show the Berry
curvatures of the two lowest bands depicted in Fig. 5(a). The
direct field-induced gap between these two bands reaches the
minimum value at the M point of the folded BZ [see inset of
Fig. 5(a)] producing a sharp increase of the Berry curvature
[Figs. 5(c)(d)] and a sharp peak ofσxy around band filling ν = 2
[Fig. 5(b)]5. The resulting Chern number of the lower (higher)
energy band is C = 0 (−1). Although the Berry curvature
of the lowest band is large and positive at the M point, it is
negative and small in the rest of the BZ [Fig. 5(c)], leading to
a cancellation of the Chern number. Consequently, the Hall
conductivity becomes quantized at σxy = −e2/h for filling
fraction ν = 2. Similarly, σxy = −2e2/h for filling fraction
ν = 4 because the total Chern number of the four lowest bands
is C = −2 [see Fig. 5(b)]. Note that the signs of C and σxy

are controlled by the sign of scalar chirality of the MX-II state,
which can be flipped without energy cost.

V. MAGNETIC WEYL SEMIMETAL IN 3D

Weyl semimetals are realized in crystals with broken time-
reversal or inversion symmetry [32]. In particular, it was
proposed that topological spin textures and Weyl points could
affect each other in the same material [33]. As we demon-
strate below, Weyl points can be systematically generated by
coupling the conduction electrons to vertically stacked lay-
ers of MX-II states. The On=1,2,3,4 symmetries of 2D MX-II
state can be generalized to 3D MX-II state as OnMz (Ap-
pendix F). In the H = 0 case, all the bands are doubly de-
generate in the whole BZ, and the degeneracy is protected by
the combined symmetries O1Mz and O2Mz (Appendix F).

5 Here the filling ν = n indicates that the lowest n bands are filled.

6



(a) (b)

kx

ky

kz

−1

+1

Г

kx

ky

kz

X
Y

M

Z

R
AU

A M A

−4.8

−4.7

−4.6

−4.5

−4.4

E
/t

(c)

ky kx

E

Figure 6. Nodal lines and Weyl points generated by coupling vertically stacked MX-II states to itinerant electrons. The MX-II states used in
this calculation were obtained with J1 = −1, J2 = 0.35, J3 = 0.15, Γ = 0.3, and D = 0.16 in the L = 8 variational space (Appendix A). (a) Nodal
lines at k = (kx, π/L,±π/2) are generated by distorting the MX-II state with an in-plane field Hy along the [010] direction, and a finite SOC
in the interlayer hopping tz . (b) Weyl points marked by red and blue spots with topological charges ±1, respectively, are generated by further
adding intralayer hopping tx with finite SOC. (c) Electronic dispersion of the four lowest bands along A→M→A direction, where the inset
shows a zoomed-in view near the Weyl points. The parameters used in (c) are J = t, Hy = 0.012, tz = 0.1t, and tx = 0.05t.

Weyl points can be generated by partially lifting this dou-
ble degeneracy, which can be done in different ways. For
instance, the distortion of the spin texture induced by an in-
plane field Hy along the [010] direction breaks the O1Mz ,
O2Mz , and O3Mz symmetries, leaving a nodal surface at the
BZ side k = (kx, π/L, kz) protected by O4Mz , where L is the
lattice constant of the magnetic superlattice. Further inclu-
sion of the spin-orbit coupling (SOC) in the interlayer hopping
tz

∑
i

∑
αβ

(
c†
i+ẑ,α

σx
αβciβ + h.c.

)
gaps out the nodal surfaces ex-

cept for two nodal lines at k = (kx, π/L,±π/2), where the dis-
tance between two nearest neighborMX-II layers is set as unity
[Fig. 6(a)]. The SOC-induced conversion of the nodal surface
into two nodal lines can be easily understood by noticing that
the Fourier transform of the SOC term vanishes at kz = ±π/2
(Appendix F).

Finally, a further inclusion of SOC in the intralayer hop-
ping, tx

∑
i

∑
αβ

(
c†
i+x̂,α

σx
αβciβ + h.c.

)
, lifts the degeneracy of

the nodal lines and generates pairs ofWeyl pointswith opposite
chirality in the folded first BZ [Figs. 6(b)(c)]. The chirality
of a Weyl point is characterized by the topological charge
that counts the total Berry curvature flux emitted or absorbed
by the Weyl point [34]. In our system, each pair of vertically
alignedWeyl points carry opposite topological chargesC =±1
[Fig. 6(b)]. Then 2D energy bands for fixed kz values between
the two Weyl points [highlighted in Fig. 6(b)] carry a nonzero
Chern number. Thus, the contribution of each pair of Weyl
points to the quantum anomalous Hall effect (σxy) increases
with their separation, which can be tuned by changing the ratio
tx/tz [35].

VI. SUMMARY AND DISCUSSION

Our work introduces a new guiding principle for the stabi-
lization of novel topological spin textures in centrosymmetric
tetragonal magnets. The magnetic unit cell of these crystals
comprises four merons, whose net skyrmion charge can be ±2
(MX-II), ±1 (MX-I) and 0 (VtX). The three phases are double-

Q orderings obtained from the superposition of two proper
screw (vertical) spirals that propagate along perpendicular di-
rections with awavenumberQ dictated by competing exchange
interactions (magnetic frustration). The key observation is
that the above-mentioned double-Q vertical spiral orderings
result from the competition between easy-axis and compass
anisotropies. The combination of these two terms can pro-
duce a relatively weak effective easy-plane anisotropy D̃ < 0
and a rather strong q-dependent component of the compass
anisotropy Γ̃, that penalizes the conical phase. An effective
easy-plane single-ion anisotropy favors the double-Q vertical
spiral orderings relative to the single-Q vertical spiral phase
because, on average, the MXs and the VtX have a stronger
in-plane component of the spins than the VS.

It is important to note that these double-Q phases could
be further stabilized by effective four-spin interactions that
are naturally generated in systems where the interaction
between local moments is mediated by conduction elec-
trons [22, 36, 37]. In this case, the compass anisotropy alone
(without the need of a bare single-ion anisotropy) should
be enough to stabilize the MX-I, MX-II and VtX phases.
Since these conditions can be naturally fulfilled by f -electron
mangets, our results indicate that tetragonal f -electron materi-
als with relatively weak single-ion aniotropy are natural candi-
dates to host these phases. This hypothesis is supported by the
recent experimental results in the centrosymmetric tetragonal
material GdRu2Si2 [15].

While we have focused on theT = 0 limit, all of the reported
phases break discrete symmetries, which should not be imme-
diately restored by thermal fluctuations. The finite temperature
phase diagram and its dependence on dimensionality are left
for future studies based on Monte-Carlo simulations [18].

Finally, the effective U(1) gauge flux [29] generated by the
MXs produces anomalous Hall effect in metallic systems even
at zero field. Moreover, a symmetry analysis reveals that
the reconstructed electronic bands can naturally include Weyl
points for 3Dversions of theMXphases, that lead to amagnetic
Weyl semimetal for certain filling fractions.
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Appendix A: Variational Methods

The variational methods used in this paper follow closely
ref. [24] except for some fine details.

We start by assuming that the ground state magnetic super-
cell contains L × L spins spanned by the basis {La1, La2},
where a1 and a2 are the basis of the square lattice. In other
words, the groud state ordering wavenumber Q is fixed by
Q = l |b1 |/L, where l is another integer satisfying l < L. We
first try several integer values of L which is given by

L ≈ 2π/Q0, 2π/Q0±1, 2π/Q0±2 . . ., (A1)

where Q0 is the wavenumber that minimizes Eq. (2). Clearly,
if the true ground state is incommensurate to the choices of L
(typically ranges from 4 to 10 for the parameters considered
in this work), a systematic error is introduced in the energy
calculation. To resolve this issue, we will relax this variational
constraint later.

The spin states are described by 2×L×L variational param-
eters {θr , φr} that parametrize the spin space with |Sr | = 1.
The total energy density of Eq. (1) is then numerically min-
imized in this variational space [38]. Finally, for any given
parameter set {J1, J2, J3, Γ, D, H}, we pick the lowest energy
solution among the different choices of L.
Such a variational calculation is unbiased, in the sense that

we are not making any assumption of the spin structure, ex-
cept for the size of the underlying magnetic unit cell. However,
the phase boundaries will not be very accurate since the orde-
ing wavenumber Q is generally incommensurate. To further
improve the phase boundaries, we will perform another calcu-
lation where Q is included as a variational parameter.
To prepare for the refined variational calculation, we first

perform a Fourier analysis of the phases discovered by the
“unbiased” variational method and parametrize them by a
few dominant Fourier components (Appendix D). With such
parametrization, we can relax the magnetic supercell assump-
tion, and include the ordering wavenumber as a variational
parameter. For each point in the phase diagrams, we compare
the optimized energies of different ansatze and pick the lowest
one.
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Figure 7. Phase diagram showing the positions of the ordering
wavevectors for the square lattice Heisenberg model with J1 < 0
(FM) at T = 0. The symbols correspond to the values of {J1, J2, J3}
used in Fig. 1 in the main text. The dashed line corresponds to I3 = 0.

The energy minimization of differnt ansatze are performed
on a finite 512 × 512 square lattice for the microscopic
model [38]. For the GL theory, we obtain the T = 0 phase dia-
grams by discretizing the real space continuum and replacing
derivatives by finite difference. Then, we optimize different
variational ansatze and find the lowest energy solution. The
linear dimension of the real space continuum is set to 200,
and we typically discretize it by a 200×200 mesh. Note that
the phase boundary between VS′(∆) and VS states [Fig. 4(a)]
requires a mesh as fine as 1600×1600 for a good convergence.

Appendix B: Ordering wavevectors of the Heisenberg exchanges

The ordering wavevectors of the square lattice Heisenberg
model (no anisotropy or magnetic field) can be determined by
minimizing the exchange interaction Eq. (2). The results for
J1 < 0 (FM) are presented in Fig. 7. Note that this analysis is
no longer valid in the presence of magnetic field (Zeeman) and
spin anisotropies because lowest energy state is not necessarily
a single-Q spiral ordering. Consequently, Q must be treated
as an additional variational parameter to determine the lowest
energy state (Appendix A).
Depending on the sign of 2J3 − J2, the incommensurate

ordering wavevectors are located on different principle axes
(Fig. 7):

• For 2J3 < J2, Q = (±Q0, 0) or (0, ±Q0), where Q0 =

arccos
(
− J1+2J2

4J3

)
;

• For 2J3 > J2, Q = (±Q0, ±Q0)/
√

2, where Q0 =√
2arccos

(
−J1

2J2+4J3

)
.

In Fig. 1 in the main text, we take three points in the region
withQ = (±Q0,0)/(0,±Q0), all ofwhich gives roughlyQ0 ≈ 2π

6
(see Fig. 7).
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In the long wavelength limit, we can expand Eq. (2):

J(q) ' I0− I1
2

q2+
I2
2

q4− I3q2
xq2

y, (B1)

with I0 = 2(J1+ J2+ J3) and

I1 = J1+2J2+4J3, I2 =
J1+2J2+16J3

12
, I3 = I2− J2

2
. (B2)

In this limit, the direction of the ordering wavevector Q is
determined by the sign of the quartic anisotropy I3 (see dashed
line in Fig. 7):

• For I3 < 0, Q = (±Q0, 0) or (0, ±Q0), where Q0 =√
I1/2I2;

• For I3 > 0, Q = (±Q0, ±Q0)/
√

2, where Q0 =√
I1/(2I2− I3).

Appendix C: Skyrmion charge of MX-I, MX-II, and VtX states

The skyrmion charge is defined by

nsk =
1

4π

∫
dr Sr ·

(
∂xSr × ∂ySr

)
, (C1)

which corresponds to the area spanned by the unit vector field
Sr (in units of the area 4π of the unit sphere) when the two
dimensional real space R2 ∪ {∞} is mapped to S2 via stere-
ographic projection. A single skyrmion “wraps” the sphere
only once and yields nsk = ±1 (the sign is defined by the sign
of scalar chirality). A meron corresponds to a half covering,
which yields nsk =±1/2, while the skyrmion charge of a vortex
is generally an arbitrary number different from 1 or 1/2.

Figure 8 shows the vector-contour plots of theMX-II, MX-I,
and VtX states. It is clear that the MX-II state contains four
merons in each magnetic unit cell. The skyrmion charge for
a magnetic unit cell can be read out directly from Fig. 8(a):
nsk = − 1

2 × 4 = −2. Note that the other choice of nsk = 2 has
the same energy for the model Eq. 1 considered in the main
text, which can be obtained by simply changing the sign of
Sy
r at every site. The MX-I state contains four vortices (or
equivalently, four overlapping merons) in each magnetic unit
cell [Fig. 8(b)]. Denote the skyrmion charge of the largest

vortex (Sz
r < 0 in the center) as α (1/2 < α < 1), then the

two vortices centered at the elliptical contours have skyrmion
charge roughly 1−α each, and the last vortex has skyrmion
charge −(1− α). Thus, the net skyrmion chage of MX-I is
nsk = α+ 2× (1−α) − (1−α) = 1. Same as the MX-II case,
the nsk = ±1 solutions have the same energy in MX-I. The
VtX state has four vortices in the magnetic unit cell, whose
skyrmion chargs cancel out with each other, giving nsk = 0
[Fig. 8(c)].

Appendix D: Fourier analysis of different states

The states that appear in this paper can be parametrized
by a few dominant Fourier components. We first focus on
the single-Q and double-Q states, which involve at most two
perpendicular wavevectors

Q1 = (Q, 0), Q2 = (0, Q), (D1)

and 0 < Q < π.
The normalized spin configurations Sr ≡ mr/|mr | of the VS

and VS′ states can be parametrized by

mx
r−r0 = a1 sin (Q2 · r)+ a2 sin (2Q2 · r)

+ a3 sin (3Q2 · r), (D2a)
my
r−r0 = a4 sin (Q1 · r), (D2b)

mz
r−r0 = a0+ a5 cos (Q2 · r)+ a6 cos (2Q2 · r)

+ a7 cos (3Q2 · r) . (D2c)

The difference between the VS and VS′ states is that a4 = 0 in
the VS while it is nonzero in the VS′.
The normalized spin configurations Sr ≡ mr/|mr | of the CS

state can be parametrized by

mx
r−r0 = a1 cos (Q1 · r)+ a2 cos (3Q1 · r), (D3a)

my
r−r0 = a3 sin (Q1 · r)+ a4 sin (3Q1 · r), (D3b)

mz
r−r0 = a0+ a5 cos (2Q1 · r) . (D3c)

The normalized spin configurations Sr ≡ mr/|mr | of the
MX-I, MX-II, and VtX states can be universally parametrized
by

mx
r−r0 = ±sin (Q2 · r) [a1+ a2 cos (Q1 · r)+ a3 cos (Q2 · r)+ a4 cos (2Q1 · r)+ a9 (1+2cos (2Q2 · r))], (D4a)

my
r−r0 = ±sin (Q1 · r) [a1+ a2 cos (Q2 · r)+ a3 cos (Q1 · r)+ a4 cos (2Q2 · r)+ a9 (1+2cos (2Q1 · r))], (D4b)

mz
r−r0 = a0+ a5 [cos (Q1 · r)+ cos (Q2 · r)]+ a6 [cos (2Q1 · r)+ cos (2Q2 · r)],

+ a7 cos (Q1 · r)cos (Q2 · r)+ a8 [cos (2Q1 · r)cos (Q2 · r)+ cos (2Q2 · r)cos (Q1 · r)], (D4c)

where the ± choice controls the sign of the skyrmion charge of each meron and vortex.
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Figure 8. Vector-contour plots of the MX-II, MX-I, and VtX states with the parametrization given in Eq. (D4). The arrows represent the xy
components of the spins, and the background colors represent the z component of the spins. The contours are taken at linear incremental level
with ∆Sz = 0.2. (a) The parameters used in MX-II are a0 = 0.025, a1 = 1, a4 = 0.016, a7 = 0.689, a9 = 0.056, and a2 = a3 = a5 = a6 = a8 = 0.
(b) The parameters used in MX-I are a0 = 0.288, a1 = 1, a2 = −0.345, a3 = −0.173, a4 = 0.067, a5 = 0.48, a6 = 0.044, a7 = −0.762, a8 = 0.081,
and a9 = 0.024. (c) The parameters used in VtX are a0 = 0.395, a1 = 1, a4 = −0.011, a6 = 0.162, a9 = 0.03, and a2 = a3 = a5 = a7 = a8 = 0.

We continue with the parametrization of the triple-Q states,
which are known to exist in the long wavelength limit from the
GL theory [20]. Note that these states are not favored by the
spatial anisotropy of the square lattice.

The ordering wavevectors {Q1, Q2, Q3} are parametrized
by a single parameter in the continuum limit because |Q1 | =
|Q2 | = |Q3 | and their directions differ by ±120◦ rotations. The
following parametrization

Q1 = (Qa cosα, −Qa sinα),
Q2 = (0, Qb),
Q3 = −(Qa cosα, Qa sinα),

(D5)

includes the three ordering wavevectors in the continuum limit
of the theory (very weak lattice anisotropy) as well as the
corrections by the square lattice anisotropy. The optimal values
from the minimization are found to beQa ≈Qb and α ≈ π

6 on a
finite square lattice (the approximated relations become exact
in the thermodynamic limit). Then, the parametrization of the
triple-Q states follow the ones in Refs. [19, 20, 24].

The normalized spin configurations Sr ≡ mr/|mr | of the

VS′(∆) state can be parametrized as

mx
r−r0 = a1 cosφ sin (Q2 · r)

+ a2 sinφ [cos (Q1 · r)+ cos (Q3 · r)], (D6a)
my
r−r0 = a1 sinφ sin (Q2 · r)

− a2 cosφ [cos (Q1 · r)+ cos (Q3 · r)], (D6b)
mz
r−r0 = a0− a1 cos (Q2 · r) . (D6c)

The normalized spin configurations Sr ≡ mr/|mr | of the
2Q-CS(∆) and 2Q-CS′(∆) states can be parametrized as

mx
r−r0 = a1 sin (Q1 · r)+ a2 sin (Q3 · r), (D7a)

my
r−r0 = a1 cos (Q1 · r)− a2 cos (Q3 · r), (D7b)

mz
r−r0 = a0+ a3 cos (Q2 · r), (D7c)

where a1 = a2 in the 2Q-CS(∆) state, while a1 , a2 in the
2Q-CS′(∆) state.

The normalized spin configurations Sr ≡ mr/|mr | of the
SkX(∆) state can be parametrized as

mx
r−r0 = a1

[
cos (ϕ)sin (Q1 · r)+ cos

(
ϕ+ κ

2π
3

)
sin (Q2 · r)+ cos

(
ϕ+ κ

4π
3

)
sin (Q3 · r)

]
, (D8a)

my
r−r0 = a1

[
sin (ϕ)sin (Q1 · r)+ sin

(
ϕ+ κ

2π
3

)
sin (Q2 · r)+ sin

(
ϕ+ κ

4π
3

)
sin (Q3 · r)

]
, (D8b)

mz
r−r0 = a0− a2 [cos (Q1 · r)+ cos (Q2 · r)+ cos (Q3 · r)], (D8c)

where κ = ±1 controls the sign of the skyrmion charge, and
ϕ controls the helicity. For simplicity, we have neglected
the phases {θ1, θ2} in Ref. [24], which are negligible when
|Qν | � 1.

Appendix E: Stability estimate of the MX-II phase

To understand the stabilization mechanism of the MX-II
phase at zero field, it is helpful to obtain rough estimates of
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the energies of the CS, MX-II and VS states. Here, we work
in the long wavelength limit with the rescaled GL functional.

The CS state at zero field can be approximated by

Sr = (cos (Q1 · r), sin (Q1 · r), 0), (E1)

whose energy density is

eCS = −Q2

2
+

Q4

2
+
Γ̃

4
Q2 = −(2− Γ̃)

2

32
, (E2)

where the optimal Q =
√

2−Γ̃
2 .

The VS state at zero field can be approximated by

Sr = (sin (Q2 · r), 0, cos (Q2 · r)), (E3)

whose energy density is

eVS = −Q2

2
+

Q4

2
− D̃

2
= −1

8
− D̃

2
, (E4)

where the optimal Q = 1√
2
.

The MX-II state at zero field is approximated by

mx
r = ±a1 sin (Q2 · r), (E5a)

my
r = ±a1 sin (Q1 · r), (E5b)

mz
r = a2 cos (Q1 · r)cos (Q2 · r), (E5c)

where Sr = mr/|mr |.
For a1 = a2, we obtain

Sx
q = ±

√
4
5
π
δ(q+Q2)− δ(q−Q2)

i
, (E6a)

Sy
q = ±

√
4
5
π
δ(q+Q1)− δ(q−Q1)

i
, (E6b)

Sz
q =

√
1
5
π
[
δ(q+Q1+Q2)+ δ(q−Q1−Q2)

+ δ(q+Q1−Q2)+ δ(q−Q1+Q2)
]
, (E6c)

after applying the sum rule in momentum space (note that we
are neglecting higher harmonics). The energy density of this
state is

eMX-II = −3
5

Q2+
2
5

(
2− I3

2I2

)
Q4− 1

5
D̃

= − 1
10
− I3

20I2
− 1

5
D̃, (E7)

where we have fixed Q = 1√
2
.

A comparison of the energies leads to an estimate of the
stability condition for the MX-II state at zero field

− 1
2
+

5
32
(2− Γ̃)2− I3

4I2
. D̃ . − 1

12
+

I3
6I2

. (E8)

Appendix F: Symmetry analysis of band degeneracy

In this section, we analyze the symmetries of the MX-II
state which put restrictions on the electronic band structures
of Eq. 12 in the main text.
The zero-field MX-II state has four important symmetries:

1. O1 = IC2z ;

2. O2 =
{
C2xMy | 12,0,0

}
;

3. O3 =
{TMy | 12,0,0

}
;

4. O4 =
{TMx | 0, 1

2,0
}
.

Here O2, O3, and O4 are nonsymmorphic symmetries with a
glide reflection operation. My is the space reflection operator
under which y→−y, whileMy is the reflection operator act-
ing on both space coordinate and spin as y→−y, Sx →−Sx ,
and Sz →−Sz . I is the inversion operator and T is the time-
reversal operator. C2x and C2z are two-fold rotation operators
with the rotation axis along the x and z directions, respectively.
{ 1

2,0,0} represents a translation along the x direction by half
a lattice constant of the magnetic superlattice.
As shown in the main text, the MX-II state is stable even in

the absence of magnetic field. The four symmetries are present
at zero field, resulting in double degeneracy of the electronic
bands over the full Brillouin zone (BZ) [see Fig. 9(a)]. To prove
this point, consider the symmetries O1 and O2. Because O2

1 =−1 and [O1,H(k)] = 0, we can label the Bloch eigenfunctions
of the Hamiltonian given in Eq. 12 by the eigenvalues ±i of
the O1:

H(k)|ψ±(k)〉 = E±(k)|ψ±(k)〉, (F1)

and

O1 |ψ±(k)〉 = ±i |ψ±(k)〉. (F2)

Meanwhile, [O2,H(k)] = 0 gives

H(k)O2 |ψ±(k)〉 = E±(k)O2 |ψ±(k)〉. (F3)

We then have two sets of eigenstates |ψ±(k)〉 and O2 |ψ±(k)〉
that have the same eigenvalues E±(k). Furthermore, since O1
and O2 anticommute, {O1,O2} = 0, we have

O1O2 |ψ±(k)〉 = −O2O1 |ψ±(k)〉 = ∓iO2 |ψ±(k)〉. (F4)

Therefore, O2 |ψ±(k)〉 is also the eigenstate of O1 with eigen-
value ∓i that is opposite to that of |ψ±(k)〉. Namely, |ψ±(k)〉
and O2 |ψ±(k)〉 are orthogonal states, implying that the energy
bands are doubly degenerate. This combined symmetry can be
broken by a net magnetization induced by an external magnetic
field.

For theMX-II state that is obtained in the presence of a finite
magnetic field along the z axis, the combined symmetry of O1
and O2 is broken. Consequently, the double degeneracy is no
longer present in the whole BZ. However, it is still present
along the boundary of the folded first BZ, which is protected
by the symmetries O3 and O4.
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Figure 9. Double degeneracy of the electronic bands coupled to 2D MX-II state. Blue shades mark the double degeneracy protected by the
corresponding symmetries.
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Figure 10. Double degeneracy of the electronic bands coupled to vertically stacked MX-II states. Blue shades mark the double degeneracy
protected by the corresponding symmetries.

The double degeneracy along the BZ boundary k =
(π/L, ky) is protected by O3, where L is the lattice constant of
the magnetic superlattice. Because O2

3 = e−ikxL , O3 becomes
an antiunitary operator at kx = π/L where O2

3 = −1. Moreover
k = (π/L, ky) is invariant under the action of O3 that changes
(kx, ky) → (−kx, ky). Therefore, there is a Kramers degener-
acy of energy bands along the BZ boundary k = (π/L, ky) [see
Fig. 9(b)]. This symmetry can be broken by a net magnetiza-
tion along y direction.
For the same reason, the double degeneracy along the BZ

boundary k = (kx, π/L) is protected by O4 [see Fig. 9(c)].
This symmetry can be broken by a net magnetization along x
direction.

We can further generalize the analysis to three-dimensional
(3D) systems, where we couple electrons to vertically stacked
MX-II states. Similarly to the 2D case, there are four relevant
symmetries at zero field: {O1Mz , O2Mz , O3Mz , O4Mz},
whereMz is the space reflection under which z→−z.

These symmetries protect the band degeneracy at different
parts of the 3D BZ:

1. O1Mz and O2Mz together protect the double degener-

acy of all energy bands over the whole BZ. The com-
bined symmetries can be broken by a net magnetization
or magnetic field in any direction [Fig. 10(a)].

2. O3Mz protects the double degeneracy of energy bands
over the BZ surface at k = (π/L, ky, kz). This symmetry
can be broken by a net magnetization or magnetic field
along y direction [Fig. 10(b)].

3. O4Mz protects the double degeneracy of energy bands
over the BZ surface at k = (kx, π/L, kz). This symmetry
can be broken by a net magnetization or magnetic field
along x direction [Fig. 10(c)].

Now we consider a transverse field in the y direction that
induces a net magnetization in the same direction and breaks
the O1Mz , O2Mz , and O3Mz symmetries. According to the
analysis above, the remaining O4Mz symmetry protects the
double degeneracy of the energy bands only at the surface of
the BZ: k = (kx, π/L, kz) [Fig. 10(c)]. Further inclusion of the
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spin-orbit coupling in the interlayer hopping

tz
∑
i

∑
αβ

(
c†
i+ẑ,α

σx
αβci,β + h.c.

)

=
∑
kz

2tz cos(kz)
∑
αβ

∑
γ

c†
kz,γ,α

σx
αβckz,γ,β, (F5)

breaks the O4Mz symmetry (γ is the index that labels differ-
ent sublattices of the magnet supercell). However, Eq. (F5)

vanishes at kz = ±π/2 resulting in two nodal lines at k =
(kx, π/L,±π/2) [Fig. 6(a) in the main text].
To further reduce the nodal lines to Weyl points, we also

include spin-orbit coupling in the intralayer hopping,

tx
∑
i

∑
αβ

(
c†
i+x̂,α

σx
αβciβ + h.c.

)
, (F6)

which leads to the Weyl points shown in Fig. 6(b) in the main
text.
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