
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Compositional patterning in irradiated alloys: Effective
potentials and effective interfacial energy

Qun Li, Robert S. Averback, and Pascal Bellon
Phys. Rev. B 103, 104110 — Published 26 March 2021

DOI: 10.1103/PhysRevB.103.104110

https://dx.doi.org/10.1103/PhysRevB.103.104110


 1 

 
 

Compositional Patterning in Irradiated Alloys: Effective Potentials and 
Effective Interfacial Energy 

 
Qun Li*, Robert S. Averback and Pascal Bellon 

 
Department of Materials Science and Engineering, 

University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
*Corresponding author 
E-mail address: qunli2@illinois.edu 
Phone number: 2178986918 



 2 

Abstract 
 

Compositional patterning (CP) in binary alloys during energetic particle irradiation is studied 

using a kinetic model that considers two competing kinetic processes, a thermally activated one 

promoting macroscopic phase separation (MPS) of the concentration field 𝑐(𝐫, 𝑡) and a forced one 

resulting in finite-range random atomic mixing. The forced mixing is modeled by a Gaussian 

relocation distribution with a characteristic distance R. A series of approximate kinetic models are 

introduced by expanding the mixing function into a series of n terms, thus replacing the non-local 

evaluations of the concentration field 𝑐(𝐫′ − 𝐫, 𝑡) by local derivatives of 𝑐(𝐫, 𝑡). This approach 

makes it possible to obtain exact effective potentials and build steady-state diagrams for each 

order-n model. Phase field (PF) simulations using these order-n models reveal that near the onset 

of patterning, phase evolution is accurately described using an order-3 model, which changes 

smoothly from an extended Cahn-Hilliard free energy in the MPS regime to a one-mode Swift-

Hohenberg functional in the CP regime. Deeper into the patterning regime, higher-order models 

are required to achieve convergence, yielding square-like concentration profiles characteristic of 

a strong segregation regime. These higher-order effective free energies are analogous to 

multimodal Swift-Hohenberg functionals. A new definition for the effective interfacial energy is 

proposed in the CP regime, since the interfacial area is no longer an excess quantity in that regime, 

precluding the use of the standard thermodynamic definition of interfacial energy. 
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1. Introduction  
A remarkable aspect of dissipative systems is their ability to self-organize into stable, non-

equilibrium microstructures [1-4]. In solid elements and alloys, for instance, irradiation with 

energetic particles can result in the formation of patterns comprised of voids [5,6], bubbles [7,8] 

and nano-precipitates [9], while sustained plastic deformation can lead to dislocation patterning 

[10] as well to chemical nanolayering [11]. Modeling and simulations have established that in 

many of these cases self-organization results from a dynamic competition between opposing 

kinetic processes. External forcing, irradiation or plastic deformation in the above cases, introduces 

structural and chemical disorder and drives the system into excited states while thermally activated 

processes tend to promote relaxation toward lower free-energy states. For non-equilibrium systems 

whose overall evolution is controlled by the minimization of a potential, which then serves as a 

Lyapunov potential [4], the challenge is in deriving expressions of the overall, effective potential 

in terms of the characteristics and parameters of the competing dynamical processes [12,13]. 

Furthermore, self-organization into patterns raises additional questions, in particular regarding the 

possibility of an apparent negative interfacial energy since patterning results in the spontaneous 

creation of interfaces [14]. 

Phase evolution in model alloys subjected to prolonged irradiation provides an excellent 

opportunity to systematically study these various issues, since the relevant elementary processes, 

such as the production of point defects and chemical disorder, are now understood on a quantitative 

basis, see e.g., Ref. [15]. Earlier work by Nelson et al. [9] indeed established that, at moderate 

irradiation temperature, Ni-Al alloys form steady-state compositional patterns whose mesoscopic 

length scale is independent of the microstructure of the initial state. It is now known in addition 

that irradiation of such g-g’ alloys at low temperatures, where forced mixing dominates the kinetics, 

leads to single phase solid solutions, and at very high irradiation temperatures, where thermal 

diffusion dominates, macroscopic phase separation ensues [16,17]. More recent experimental 

studies performed for a range of dilute Cu-X alloys [18,19], where the solute X is a transition metal, 

established that the temperature range for patterning scales with the solute diffusion coefficient, in 

agreement with the above picture of competing dynamics. Moreover, recent experimental and 

modeling results suggest that compositional patterning can also take place in irradiated Fe-Cr 

alloys [20-24]. We further note, as an aside, that the patterning regime is currently of interest from 

the practical perspective that the microstructure in this regime is immune to coarsening of 
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precipitates, and thus it can retain nanoscale features designed and introduced to improve the 

material’s properties [19,25]. 

Modeling and simulations have provided important insights into the origins and 

characteristics of compositional patterning. A generic approach is to implement a kinetic model 

with distinct dynamics acting in parallel, here adding forced chemical mixing to the thermally 

activated diffusion processes [26,27]. The latter dynamics can be included using the so-called 

model B [28], as composition is locally conserved by this dynamics. As for the mixing forced by 

irradiation, Martin proposed a model that randomly switched neighboring atoms, or “infinite 

temperature” dynamics [29], in recognition that energetic recoils are little affected by chemical 

interactions.  Molecular dynamics have confirmed the ballistic, i.e., random, nature of the forced 

mixing in alloys with moderately positive heats of mixing, e.g., ≈ 0.25 eV/atom or less [15,30,31]. 

Continuum modeling and atomistic simulations have furthermore revealed that if the jump distance 

for forced mixing is identical to that for thermal diffusion, i.e., one nearest-neighbor distance, 

compositional patterning is not possible since the outcome of the competition between the two 

opposing dynamics, the thermal one and the forced one, is trivially determined by the process with 

the largest rate. Molecular dynamics simulations of displacement collision cascades have shown, 

however, that when the primary recoil energies exceed ≈ 1 keV the forced mixing extends beyond 

the short distance of point defect diffusional jumps [15,30,31]. Extending Martin’s approach, 

Enrique et al. [32] used a phase field model with two competing dynamics to study the effect of 

the finite-range mixing: The thermal dynamics employed Model B, using a Ginzburg-Landau (GL) 

free energy, while the forced mixing was modeled using an exponential decay of recoil distances, 

with a decay length R. This modeling has made it possible to compute a generic steady-state phase 

diagram, see Fig. 1, identifying boundaries separating the regimes of macroscopic phase separation 

(MPS) and compositional patterning (CP), and those of patterning and solid solution (SS). Two 

parameters control the steady-state microstructure: (i) the relative forcing parameter 𝛾 = 𝛤/𝛭, 

where 𝛤 is the rate of ballistic relocation and 𝛭 the thermally activated mobility, accelerated by 

the supersaturation of point defects under irradiation, and (ii) the characteristic ballistic relocation 

range R. It confirmed that R must exceed a critical value Rc for patterning to be possible. 

Furthermore, close to the critical point (𝛾., 𝑅.) the steady-state compositional profiles take on a 

sinewave-like shape, corresponding to the so-called weak segregation regime (WSR), whereas 

deeper into the patterning regime, i.e., when 𝑅 ≫ 𝑅.  and 𝛾 > 𝛾2 but near the 𝛾2 boundary, the 
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profile resembles a square-wave, corresponding to the strong segregation regime (SSR) [32-34]. 

The scaling of the dominant patterning wave vector with 𝛾 is different in these two regimes. This 

driven system can be characterized by an effective potential that plays the role of a Lyapunov 

functional for the overall system, i.e.one that continuously decreases with time [4].  

Recent works have provided additional insight into the nature of such effective potentials. 

By linearizing the non-linear term in the homogeneous GL free energy density, Simeone and 

coworkers were able to obtain analytical solutions of the long-time evolution of the structure factor 

[35,36] using an asymptotic analysis. The resulting steady-state phase diagrams, see for instance 

Fig. 3 in Ref. [35], are overall very similar to that shown in Fig. 1. Moreover, these authors were 

able to derive an expression for the effective potential in the patterning regime by performing a 

second-order Taylor expansion of the so-called response function around the patterning wave 

vector: It was found that the effective potential reduces to a Swift-Hohenberg (SH) one [36], thus 

establishing a direct connection between patterning in alloys driven by irradiation and a broad 

family of self-organizing systems, see for instance Ref. [3] for a review. It also allowed these 

authors to calculate steady-state phase diagrams for 2D and 3D systems, which are similar to those 

expected for a conserved SH model, and to determine the nature and symmetry of patterning states 

as a function of forcing parameters and alloy composition [36,37]. Several questions however 

remain unanswered for the case of alloys under irradiation. First it is not known whether an SH 

effective free energy is adequate throughout the whole patterning regime since the derivation relies 

on a linearization of the chemical free energy density and on a second-order Taylor expansion of 

the response function. Second, this derivation assumes first that the system is in patterning regime–

and thus it is not known what this effective potential becomes when the control parameters are 

varied in such a way that the system is taken outside of the patterning regime, for instance into the 

macroscopic phase separation regime. Around that boundary, which denotes a discontinuous 

transition between steady states, it would be intriguing in particular to determine how the 

interfacial energy evolves and whether patterning can be associated with a negative interfacial 

energy, as suggested for other systems self-organizing into patterns, see for instance Refs. [38,39]. 

Lastly, insights into effective potentials for self-organizing dynamical systems can be obtained by 

considering frustrated equilibrium systems. Indeed, it has been shown that finite-range forced 

mixing is equivalent to introducing effective finite-range repulsive interactions between like atoms 

[12]. These effective interactions then compete with the (physical) attractive short-range chemical 
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interactions present in a phase separating system. From that perspective, a parallel can be drawn 

between patterning in such a dynamical system and the formation of modulated phases in 

equilibrium systems with frustrated physical interactions [40,41]. 

In this work, we specifically address the above questions using phase field modeling based 

on a Model B dynamics with a Cahn-Hilliard (CH) free energy for the thermal dynamics and a 

finite Gaussian mixing for the forced mixing. The manuscript is organized as follows: The details 

of forced and thermal dynamics are introduced in Section 2, and we define a series of order-n 

kinetic models based on an expansion and truncation of the mixing terms up to order 2n. In Section 

3 we use the simplest of such models, the order-3 model, to determine the corresponding steady-

state phase diagram, and we introduce a new definition for interfacial energy in the patterning 

regime. We also show that the effective free energy for that order-3 model encompasses both the 

CH free energy in the MPS regime and a one-mode SH free energy in the CP regime. In Section 

4, we show that far from the critical point (𝛾., 𝑅.), higher-order kinetic models are required to 

reproduce the strong segregation regime. These results are then discussed in Section 5.  

 

2. Phase field modeling of ion-beam mixing under irradiation 

2.1 A local model for finite-range mixing  

As outlined in the introduction, a necessary condition for irradiation induced patterning is that 

forced atomic mixing extends beyond a characteristic jump distance, R > Rc in Fig. 1. We consider 

here an A-B binary alloy described by its concentration field 𝑐(𝒓, 𝑡), defined as the atomic fraction 

of species B. The finite-range mixing rate was expressed in Ref. [32] using a non-local term, 

specifically the convolution of 𝑐(𝒓, 𝑡) by the relocation distribution 𝜔5(𝒓): 

6.(𝐫,7)
67

|9:;:<= = − 𝛤(𝑐(𝐫, 𝑡) − ∫𝜔5 (𝐫 − 𝐫@)𝑐(𝐫@, 𝑡)𝑑𝐫@)      (1) 

We introduce here an alternate formulation that expresses the finite-range forced mixing as a local 

term involving the concentration field 𝑐(𝒓, 𝑡) and its spatial derivatives. We will show in Section 

2.2 that this alternate formulation offers novel physical insight, in particular regarding the question 

raised in the introduction about the nature of the effective potential governing the system once the 

thermal dynamics is included. Additionally, this approach makes it straightforward to evolve phase 

field equations using finite element method-based solvers, as will be illustrated in Section 3.2.  
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We consider here the case of a Gaussian relocation distribution 𝜔5(𝒓). We note that 

Gaussian mixing is a natural model to capture atomic relocations during thermal spikes, as 

indicated in the MD studies on atomic mixing in displacement cascades for Cu [42], Ni [42] and 

NiAl [43]. Furthermore, a Gaussian model is advantageous for mathematical reasons that become 

clear below. The forced relocation distribution is thus taken as (m is the dimension of the space): 

𝜔5(𝐫 − 𝐫@) = B 9
CD5E

F
G
E 𝑒I

GJ𝐫K𝐫LJ
E

EME          (2) 

The main idea here is to re-express the mixing term by using the spatial derivatives of 𝑐(𝒓, 𝑡). A 

simple way to do so is to consider the Fourier transform of the mixing rate, 

6.̂(𝐤,7)
67

|9:;:<= = − 𝛤 P1 − 𝑒
KMERE

EG S 𝑐̂(𝐤, 𝑡)        (3) 

where 𝑐̂(𝐤, 𝑡) represents the Fourier transform of the concentration field, and then to expand the 

k-space Gaussian in a Taylor series, 

6.̂(𝐤,7)
67

|9:;:<= = 𝑐̂(𝐤, 𝑡) ∑ 𝐷VW
VX2 (−𝑘C)V       (4) 

where the coefficients Dp are defined as:  

𝐷V = 𝛤 5EZ

(C9)ZV!
            (5) 

Next, we transform Eq. (4) back to real space to obtain the time evolution equation, 

6.(𝐫,7)
67

|9:;:<= =   ∑ 𝐷VW
VX2 ∇CV𝑐(𝐫, 𝑡)         (6) 

It is then instructive to consider successive approximations of the mixing term by 

truncating the summation in Eq. (6) and retaining terms only up to p=n. We will refer to these 

approximations as order-n mixing models. This truncation is motivated by the fact that, in phase 

field modeling, the compositional profile is expected to be a smooth function of position and 

therefore the higher-order derivatives should become increasingly less relevant. This point will be 

illustrated by phase field simulations for a particular alloy model in Sections 3 and 4. The order-1 

model corresponds to the case of a purely diffusive forced mixing, as for instance assumed in 

Martin’s effective temperature model for alloys under irradiation [29]. D1 in this case would be the 

analog to Martin’s ballistic mixing diffusion coefficient. As noted in earlier work and in the 

Introduction, compositional patterning does not take place in this order-1 model [44]. Higher-
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order terms in Eq. (6) capture the finite range of the forced mixing introduced by the relocation 

distribution 𝜔5  given by Eq. (2). Note from Eq. (4) that these additional contributions should be 

added in pairs, so that the term with the highest power in k has a negative coefficient, ensuring that 

a homogeneous ideal solid solution remains stable against fluctuations of arbitrary large wave 

vectors. After the order-1 model, the next physically meaningful approximation to Eq. (6) is thus 

an order-3 model, which will be discussed in Section 3. 

We note that Eq. (6) was derived by taking advantage of the simple form of 𝜔5  in k-space. 

Alternatively, one can derive Eq. (6) by performing a Taylor expansion of 𝜔5  in real space, then 

iteratively applying the divergence theorem and assuming that the boundary conditions imposed 

on the physical domain are such that boundary integrals are null. The derivation through k-space 

(Eqs. (3)-(6)) is more direct and it highlights the role played by the radius of convergence of the 

Taylor series for a Gaussian, which is infinite; Eq. (4) is thus valid for all wave vectors k. In 

contrast, if one were to consider a decaying exponential mixing function for 𝜔5 , as in Refs. [32,45], 

its Fourier transform is a Lorentzian, i.e., 1 (1 + 𝑅C𝑘C)⁄ . This function cannot be expanded into a 

single Taylor series with a radius of convergence spanning the full range of possible wave vectors, 

i.e., from  0 < 𝑘C𝑅C < +∞, thus making the present approach impractical for this mixing function. 

Our use of a Gaussian mixing function, however, is not a serious limitation as other mixing 

distributions with similar physical characteristics could be used. In particular a mixing distribution 

that has a unique relocation distance R, i.e., 𝜔5(𝐫 − 𝐫@) = 𝛿(|𝐫 − 𝐫@| − 𝑅) could be employed 

with an order-n expansion since its Fourier transform is proportional to 2(1 − cos(𝑘𝑅)), whose 

Taylor expansion in k-space has an infinite radius of convergence. This series is in fact very similar 

to the one obtained for the Gaussian mixing function, Eq. (4). Any physical mixing model, 

including a decaying exponential, could therefore be considered by simply decomposing it into, or 

approximating it with, a series of Dirac mixing distributions with suitable relocation distances. 

 

2.2 An order-n extended Cahn-Hilliard model for alloys under irradiation  

We add the thermal component to the evolution equation using the standard Cahn-Hilliard model 

[46]: 

6.(𝐫,7)
67

= 6.(𝐫,7)
67

|7ghi9jk +
6.(𝐫,7)
67

|9:;:<=        (7) 
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6.(𝐫,7)
67

|7ghi9jk = 𝛻 ⋅ 𝑀(𝑐)𝛻 op
o.

         (8) 

𝐹(𝑐) = ∫ 𝑓(𝑐)s + t
C
|𝛻𝑐|C𝑑𝑉         (9) 

𝑀(𝑐) is the atomic mobility, which in general depends on 𝑐(𝒓, 𝑡). In this work, the atomic mobility 

is assumed to be a constant so that compact analytical results can be obtained. 𝐹(𝑐), the free energy 

functional of the system, is comprised of a mean-field bulk free energy 𝑓(𝑐) and a gradient energy 

term accounting for diffuse interfaces. A regular solution model is used, 𝑓(𝑐) = 𝐺w𝑐 +

𝐺x(1 − 𝑐) + 𝛺 𝑐(1 − 𝑐) + 𝑘w𝑇 [𝑐𝑙𝑛𝑐 + (1 − 𝑐)𝑙𝑛(1 − 𝑐)],	to describe a binary immiscible alloy 

system. 𝐺w (resp. 𝐺x) is the molar Gibbs energy for pure element B (resp. A), Ω is the interaction 

parameter in kJ/mol, kB the Boltzmann constant, T the absolute temperature.  

With an order-n approximation for the forced mixing, the evolution equation in real space 

and its linearized form in Fourier space are: 

6.(𝒓,7)
67

= 𝛻 ⋅ 𝑀𝛻 B6�
6.
− 𝜅𝛻C𝑐F + 𝐷2𝛻C𝑐 + 𝐷C𝛻�𝑐 + 𝐷�𝛻�𝑐 + ⋯+ 𝐷<𝛻C<𝑐   (10) 

�(�)
�

= − 6E�
6.̂E

𝑘C − 𝜅𝑘� − ��
�
𝑘C + �E

�
𝑘� − ��

�
𝑘� +⋯+ ��

�
(−𝑘C)<     (11) 

We refer to such a model as an order-n extended Cahn-Hilliard (ECH) model for alloys under 

irradiation. This terminology generalizes the one already used for thermal systems, where the 

addition of an inhomogeneity penalty proportional to a Laplacian square, resulting in a k6 term in 

the kinetic equation in Fourier space, has been referred to as an “Extended Cahn-Hilliard model 

[47]”. 

An effective free-energy-like quantity can be derived for the driven system in the form 

𝐹h�� = 𝐹 + 𝛾𝐺 with	𝛾 = 𝛤/𝛭 defines a forcing intensity. 𝐺 is the additional free energy due to 

forced mixing. The time evolution of the system is then governed by: 

6.(𝐫,7)
67

= 𝛻 ⋅ 𝑀𝛻 op���
o.

           (12) 

The effective free energy for an order-n ECH model takes the following form, 

𝐹h�� = ∫ �𝑓(𝑐) − ��
C�
𝑐(1 − 𝑐) +

tI�E�
C
|𝛻𝑐|C + ��

C�
|𝛻C𝑐|C + ⋯+ ��

C�
(−1)<I2|𝛻<I2𝑐|C�s 𝑑𝑉 (13) 

while the effective chemical potential 𝜇h��  is given by: 
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𝜇h�� =
6�(.)
6.

− 𝜅𝛻C𝑐 + ��
C�
(2𝑐 − 1) + �E

�
𝛻C𝑐 + ��

�
𝛻�𝑐 +⋯+ ��

�
𝛻C(<I2)𝑐   (14) 

The existence of an effective free energy will make it possible to assess the relative stability 

of different metastable states generated by the phase field simulations presented in the next 

sections. Note that in the above model, point defects are not explicitly considered. It is assumed 

that the vacancies and interstitials created by irradiation quickly reach steady state, and thus the 

resulting excess of point defects can be captured by simply rescaling M, see for instance Refs. 

[48,49]. Elimination of these fast variables, however, excludes any possible coupling between 

defects and solute fluxes; these effects will be considered in future work. 

 

3. Compositional patterning close the critical point: an order-3 extended CH 

model  

As indicated in Section 2.1, the diffusive order-1 model does not predict patterning, and higher-

order compositional inhomogeneity terms in the order-n ECH model should be added for pattern 

formation. In this section we focus on the order-3 ECH model as it is the simplest model that 

predicts compositional patterning; plus, it yields simple analytical expressions for the phase 

boundaries between CP, MPS and SS, namely expressions for γ1 and γ2, the critical point of the 

onset of patterning (γc, Rc) and the wave vectors k1, k2. We also show that its effective free energy 

reduces to a one-mode SH potential inside the patterning regime. We first investigate this order-3 

ECH model using a linear stability analysis in Section 3.1, and then employ phase field simulations 

in Sections 3.2-3.4 to study the long-term evolution of the system and its steady-state 

microstructures. We also report on how the form of the effective free energy changes as the 

operating point of the system moves from MPS to CP, and we introduce a new definition for the 

effective interfacial energy in the patterning regime. 

 

3.1 Linear stability analysis  

The evolution equation for the order-3 ECH model is given by: 

6.(𝒓,7)
67

= 𝛻 ⋅ 𝑀𝛻 B6�(.)
6.

− 𝜅𝛻C𝑐F + 𝐷2𝛻C𝑐 + 𝐷C𝛻�𝑐 + 𝐷�𝛻�𝑐    (15) 
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By grouping together terms with the same order of spatial derivative in the RHS of Eq. (15), an 

effective bulk free energy 𝑓��k�
h�� (𝑐) , an effective 	coefficient of gradient energy 𝜅2

h�� , and an 

effective second-order inhomogeneity coefficient 𝜅C
h�� ,  are defined as follows: 

𝑓��k�
h�� (𝑐) = 𝑓(𝑐) − ��

C�
𝑐(1 − 𝑐)         (16) 

𝜅2
h�� = 	𝜅 − �E

�
           (17) 

𝜅C
h�� = ��

�
           (18) 

The effective free energy and chemical potential are: 

𝐹h�� = ∫ �𝑓��k�
h�� (𝑐) + t�

���	
C
|𝛻𝑐|C + tE

���

C
|𝛻C𝑐|C�s 𝑑𝑉      (19) 

𝜇h�� =
6����R

��� (.)
6.

− 𝜅2
h��𝛻C𝑐 + 𝜅C

h��𝛻�𝑐       (20) 

A linear stability analysis is performed to evaluate the response of Eq. (15) to small 

perturbations of the form 𝑐(𝑟, 𝑡) = 𝑐̅�1 + 𝜖𝑒�7�:𝐤∙𝐫¡. The amplification factor 𝜔	is given by: 

�(�)
�

= − 6E����R
���

6.̂E
𝑘C − 𝜅2

h��𝑘� − 𝜅C
h��𝑘�       (21) 

In the absence of irradiation, 6
E�
6.̂E

 is negative as the temperatures and compositions studied here are 

always such that the alloy is inside its spinodal, and 𝜅 is positive. The contributions of ��
�

 and �E
�

 

to 6
E����R

���

6.̂E
  and 𝜅2

h��  will reduce these values significantly or even change their signs. i.e., moving 

the initial condition out of the spinodal decomposition region and reducing 𝜅2
h��  or even making 

it negative. In contrast, the sign of 𝜅C
h��  is always positive, ensuring that unstable wave vectors 

remain bounded. A general evolution of the dispersion equation 𝜔(𝑘) is shown in Fig. 2: for small 

values of γ, 𝛾 < 𝛾2, the linear instability can be classified as a stationary type II instability [3], the 

characteristic wavelength of patterning diverges to infinity, as expected for macroscopic phase 

separation. For intermediate γ, 𝛾2 < γ < 𝛾C, there exists a band of unstable wave vectors (𝑘2, 𝑘C) 

suggesting compositional patterning with a characteristic wavelength near 2π/𝑘., where 𝑘. is the 

wave vector maximizing 𝜔(𝑘) . For larger values of γ ( γ	~	𝛾C ), the system undergoes a 
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supercritical pitchfork bifurcation and is reminiscent of a stationary type-I instability in the 

analysis of the Swift-Hohenberg equation [3].  

Starting from the linearized evolution equation (Eq. (21)), expressions for the important 

boundary parameters marked in Fig. 2 can be directly derived (the superscript “linear” is added to 

distinguish these values from the ones pertaining to the full steady-state diagram, as in Fig. 1). 

First, the boundary between MPS and CP regime, 𝛾2k:<hji, is derived by ¤�
¤�
	changing sign at 𝑘 =

0. The boundary between CP and SS, 𝛾Ck:<hji, is determined by ¤�
¤�
|�X�¥ = 0 and 𝜔(𝑘.) = 0. The 

onset of patterning (𝛾., 𝑅.) is obtained by setting 𝛾2k:<hji = 𝛾Ck:<hji . In the patterning regime, the 

boundaries of the range of wave vectors with positive growth rates (𝑘2, 𝑘C) are the two positive 

real roots of Eq. (21) (see Appendix A for details). While the above linear stability analysis 

provides analytical expressions defining the compositional patterning regime, it necessary to 

include non-linear effects to determine the exact domain of existence of compositional patterning 

as well as to investigate defective patterns. We thus turn to numerical simulations of the full order-

3 ECH model in the next sections. 

 

3.2 Simulation methods 

The phase field (PF) equation Eq. (15) lends itself to integration by finite element method (FEM) 

based solvers since it is only a function of the local composition and its spatial derivatives. Eq. 

(15) can be rewritten with dimensionless units (here 𝑚 is the dimension of the space): 

6.
67§
= 𝛻̈C𝜇h��©           (22a) 

𝜇h��© = (1 − ª«5̈E

�9
)(1 − 2𝑐) + 𝛵̈𝑙𝑛 .

2I.
− 𝜅̃𝛻̈C𝑐 + ª«5̈®

(C9)EC!
𝛻̈C𝑐 + ª«5̈¯

(C9)��!
𝛻̈�𝑐   (22b) 

where 

𝑡̃ = 7�°
j±E

; 𝛻̈ = 𝑎³𝛻; 𝛾́ = µj±E

¶°
= 𝛾 j±

E

°
; 𝑅̈ = 5

j±
; 𝑇̈ = �·¸

°
; 𝜅̃ = t

°j±E
;	    (22c) 

𝑎³  is the grid spacing in PF simulations. The dimensionless form of the effective chemical 

potential has four independent parameters, 𝛾́, 𝑅̈, 𝑇̈ and 𝜅̃, and thus helps to assess the effects of 

model parameters on the evolution equation; note that (i) 𝑇̈ is proportional to the usual reduced 

temperature 𝑇 𝑇.⁄  in phase transition phenomena, and (ii) M is a function of T so 𝛾́  will be 
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temperature dependent as well. In this work we focus on the effect of forcing parameters 𝛾 and R. 

This choice was guided by the fact that no qualitatively significant effects were observed in the PF 

simulations when varying 𝑇̈ and 𝜅̃ around the values considered here. In particular no new steady 

state or new compositional patterning regime were detected.  

In the present work we use the FEM framework MOOSE [50] with adaptive meshing and 

time stepping to solve the PF Eq. (10), see Supplementary Material [51] for more information 

about adaptive meshing and a detailed description of weak forms and solver options in Appendix 

B. The atomic mobility and the coefficient of gradient energy are taken from Ref. [52] for the 

spinodal decomposition of Fe-Cr. The interaction parameter Ω is chosen so that the spinodal 

temperature for the equiatomic alloy is Tc = 1022 K. The complete list of materials parameters is 

compiled in Table I. Since the present study focuses on the equiatomic composition, it is sufficient 

to perform two-dimensional simulations as the most stable steady states in the patterning regime 

are lamellar microstructures. We refer to the A-rich and B-rich phases as α and β, respectively, 

Furthermore, for simplicity, we vary 𝛾 and R but keep here the temperature fixed at 700 K (0.68 

Tc). At that temperature, the equilibrium atomic fractions of B in α and β phases are 0.0786 and 

0.9214, respectively. Separate simulations at other temperatures, from 0.5 Tc to 0.75 Tc, did not 

reveal any qualitatively different evolutions. Lastly, since we are not interested here in effects of 

surfaces or other boundaries, we use periodic boundary conditions.  

 

3.3 Determination of steady states by minimization of Feff 

We present in this section the results of phase field simulations of an irradiated A50B50 binary alloy 

using an order-3 ECH model. We focus on the patterning regime and pattern morphology near (𝛾c, 

Rc), the onset of patterning since, as we will show in Section 4, the order-3 ECH model becomes 

inaccurate away from this point. We thus choose R = 1.1 Rc and use a 𝛾 value between 𝛾2k:<hji  and 

𝛾Ck:<hji . The simulation domain is 30 nm	×	30 nm. The initial conditions (ICs) of the simulations 

are either a solid solution or a phase-separated bi-layer structure in order to sample broadly 

possible steady-state microstructures. For IC = solid solution, the nominal concentration of B is 

0.5 everywhere in the domain, but local random fluctuations (with amplitude ≈ 0.05) are 

introduced to trigger phase decomposition. For IC = phase separation, two stripes of α and β phases 

are separated by a straight interface of width 0.5 nm. Under irradiation, the solid solution 



 14 

decomposes and forms a defective lamellar structure with dislocation-like defects, see Fig. 3a, 

while for phase separated system decomposes through a series of instabilities into thinner layers, 

also forming a defective microstructure, in this case with a transverse long-wavelength (zigzag) 

instability, see Fig. 3b. 

As observed in patterning systems by both experiments [53-55] and simulations [56,57], 

final states are often found to be sensitive to the initial conditions and the size of the simulation 

cell. This is illustrated by Figs. 4a-b, where a single bilayer with a large initial composition 

difference between the two layers can evolve into a perfect layered structure, while increasing the 

number of initial bilayers from 1 to 2 and/or modifying the composition contrast between initial 

layers can result in defective layered structures, here with “grain boundaries”. Starting from solid 

solutions, changing the random seed for the initial composition fluctuations also produces different 

defective layered structures, see Figs. 4c-d. In addition, changing the dimensions of the simulation 

cell can also affect the final state, see Fig. 4e, which has the same IC as in Fig. 4a but a larger 

simulation cell dimension that leads to a zigzag instability. The exact details of the final state are, 

of course, also affected by the numerical tolerance used in the simulations to define convergence 

(see Appendix B). The diversity of layered morphologies depicted above thus points to the fact 

that there exists many metastable structures in the patterning regime and that the system can be 

trapped in any of those structures since the evolution equation used here is deterministic. 

In order to determine the true steady state under specific irradiation conditions, we compute 

the density of effective free energy 𝐹h��/𝐴 (using Eq. (19), A is the area of simulation domain). 

The minimum in the effective free energy density is found to correspond to a system with 

periodically aligned straight stripes, which as shown in Fig. 4a are characterized by a uniform 

wavelength. We set this state as the reference state 𝑓h��
ih�  and report relative free energy densities  

𝑓h��¼½ = 𝐹h��/𝐴	 − 𝑓h��
ih�  for other defective metastable states. The values of 𝑓h��¼½  of metastable 

states shown in Figs. 3 and 4 are listed in Table II. The effective free energy penalty is observed 

to increase as more defects/sources of inhomogeneity are present. For example, in Fig. 4c there is 

a closed circle of β phase on the upper right corner, which results in a small increase of 𝑓h��¼½  

compared to Fig. 4d. A grain boundary in Fig. 4b causes the largest 𝑓h��¼½  whereas zigzag 

instabilities in Figs. 3b and 4e introduce only a small energy penalty. 



 15 

It is also informative to analyze the compositional profiles in these layered structures. In 

all cases one finds profiles that are diffuse with no plateau regions in the middle of the layers, see 

for example the compositional profile of B in Fig. 4a. In fact, sampling over a wide range of γ in 

the CP regime indicates that all compositional profiles can be well fitted by a sinusoidal function, 

which is characteristic of the so-called weak segregation regime. This is not surprising since we 

have chosen an R value close to Rc, R=1.1Rc. Additional simulations for larger values of R, e.g. 

R= 1.5Rc and R=2Rc, however, indicate that the order-3 ECH model only generates patterns 

belonging to the weak segregation regime. This point will be considered in more detail in the 

Discussion section.  

 

3.4 Effective interfacial energy   

While effective free energies and chemical potentials were introduced in a straightforward manner 

in Section 3.1, the existence of a patterning regime calls for a different approach when defining an 

effective interfacial energy. Let us consider first the case of systems where macroscopic phases 

coexist, starting with systems at thermodynamic equilibrium. The standard thermodynamics 

approach defines the interfacial energy as an excess quantity [46,58] since the energy penalty 

introduced by the presence of one isolated interface vanishes in the thermodynamic limit. In this 

classical analysis, A is the interfacial area, 𝜎 is the interfacial free energy (unit is energy per unit 

area), and 𝜎	 = 	 B6¿
�À¥

6x
F
¸,½,Á

, where 𝐺h;.  is the Gibbs free energy difference between an infinite 

physical system with a planar interface and that of a hypothetical system comprised of two semi-

infinite phases with compositions set by the bulk phase diagram. In a two-phase binary alloy AxB1-x 

described within a Cahn-Hilliard model, the interfacial free energy takes the following expression 

[46], 

∫ 𝜎𝑑𝐴Â = 	∫ Ã𝑓(𝑐) + t
C
|𝛻𝑐|C − 𝑐𝜇wh − (1 − 𝑐)𝜇xh Äs 𝑑𝑉	     (23a) 

𝜇xh  and 𝜇wh  are the equilibrium chemical potential of A and B species. Considering now a system 

with a constant cross-section A and variable length L, containing one planar interface parallel to 

A, the above equation can be rewritten as: 

𝜎𝐴 = 	𝐴𝐿 × 2
s ∫ Ã𝑓(𝑐) + t

C
|𝛻𝑐|C − 𝑐𝜇wh − (1 − 𝑐)𝜇xh Äs 𝑑𝑉	     (23b) 
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We then introduce an excess free energy density 𝑓h;.  as: 

𝑓h;. = 	 2
s ∫ Ã𝑓(𝑐) + t

C
|𝛻𝑐|C − 𝑐𝜇wh − (1 − 𝑐)𝜇xhÄs 𝑑𝑉 = 2

s ∫ 𝜅|𝛻𝑐|Cs 𝑑𝑉   (23c) 

where the last equality derives from the stationarity of the interface [46]. Combining Eqs. (23b) 

and (23c), one obtains: 

𝑓h;. = 	 2
Æ
𝜎           (23d) 

The interfacial energy can thus be simply determined from PF simulations by calculating 𝑓h;.  for 

systems of increasing lengths L and using the expression: 

𝜎 = lim
Æ→W

𝐿𝑓h;.           (23e) 

With the parameters used in the present PF model, one finds that at T = 700 K, 𝜎 ∙ 𝑉9 = 577	𝐽 ∙

𝑛𝑚/𝑚𝑜𝑙, where 𝑉9 is the molar volume for 3D simulations, or the molar area for 2D simulations. 

We can extend the above approach to the order-3 ECH model. Following an analysis of 

sharp interface limit of an extended Cahn-Hilliard equation [59-61] (see also Appendix C), the 

effective excess free energy density 𝑓h��h;.	and the effective interfacial energy 𝜎h��  are now given 

by: 

𝑓h��h;. = 	
2
s
	∫ �𝜅2

h��|𝛻𝑐|C + 2𝜅C
h��|𝛻C𝑐|C¡s 𝑑𝑉      (24a) 

𝜎h�� = lim
Æ→W

𝐿𝑓h��h;.           (24b) 

Eqs. (23) and (24) have been used to calculate the effective interfacial energy in order-1, 2, 3 ECH 

models, using the compositional profiles obtained from PF simulations of microstructures with 

planar interfaces, concentrating first on values of γ and R for which  𝜅2
h��  remains positive. The 

patterning case will be studied in the last part of this section. Figs. 5a-c display 𝜎h��  as a function 

of γ for the above three ECH models, normalizing 𝜎h��  by the thermal equilibrium value 𝜎7g at the 

same temperature, and normalizing γ by 𝛾2k:<hji  for the R value used here. As we can see from the 

plots, 𝜎h��/𝜎7g decreases for all three cases as γ increases. In the order-1 model, phase coexistence 

under irradiation can be described by an effective interaction term Ωh�� = Ω − γRC/12, see Eq. 

(16), and 𝜎h��/𝜎7g → 0  as 𝛾/𝛾2k:<hji → 1  since the latter limit imposes that 𝑇/𝑇.
h�� → 1 ; 
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furthermore the reduction in 𝜎h��/𝜎7g  as 𝑇/𝑇.
h��  increases is the one expected for a regular 

solution model, see for instance Fig. 3 in Ref. [46]. It is also of interest to extend this interfacial 

energy analysis in the MPS regime to the order-2 model, even though that model does not provide 

a physically correct behavior in the patterning regime. In the order-2 model, phase coexistence 

under irradiation involves an effective interaction term Ωh��  and an effective gradient energy 

coefficient, 𝜅2
h�� , see Eq. (17), which is reduced as γ increases. As a result, the interfacial energy 

decreases faster than in the order-1 model, and 𝜎h��/𝜎7g → 0 when 𝜅2
h�� → 0 as seen from Eq. 

(17). In the order-3 model (Fig. 5c), the reduction rate of 𝜎h��/𝜎7g is intermediate between the 

previous two cases because of a positive compensation from 2𝜅C
h��|𝛻C𝑐|C. Notice that the PF 

simulations yielded compositional patterning for 𝛾 < 𝛾2k:<hji , and the transition to patterning takes 

place at a small but non-zero positive interfacial energy (see inset). This is expected as the 

transition from MPS to CP is a first-order transition, but weakly first-order here as the system is 

very close to the critical point (𝛾c, Rc). The interfacial energy then gradually decreases to negative 

values, before increasing again to zero when system enters solid solution regime. The validity of 

𝜎h��  given by Eq. (24) is however problematic in the patterning regime as discussed next. 

In contrast to systems at thermodynamic equilibrium where macroscopic phases coexist, 

the interfacial area is an extensive quantity in the CP regime since this area scales with the volume 

of the system, and therefore one cannot define the interfacial free energy as an excess quantity. 

Furthermore, that approach may be flawed due to the absence of the well-defined bulk, or far-field, 

concentration values needed to describe the hypothetical system with a dividing surface used as 

reference [62]. In the present work, for instance, all compositional profiles generated by the order-

3 ECH model in the patterning regime have a sinewave-like shape, see Fig. 4a, and it is found that 

the compositions at the minima and maxima are not independent from the period of the layered 

microstructures, so these extrema values cannot serve as proxies for far-field solutions. 

A modified approach is thus proposed, where we consider the dependence of the effective 

free energy density with the period of layered structures. Specifically, we employ small simulation 

cells of constant cross section A and of variable length l, which is chosen to be close to the periods 

of layered structures observed in large-cell simulations for the considered values of g and R, see 

for instance Fig. 4a. These small simulation cells were initialized with one straight bilayer and 
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evolved to reach steady state. A small cross section was used, so as to prevent any interface 

instability of the straight interface, and l was varied only around an estimated optimum period so 

that no additional bilayer would nucleate, i.e., to suppress an Eckhaus instability. The effective 

free energy density was measured at steady state by normalizing the total effective free energy 

𝐹h�� defined by Eq. (19) by the area (or volume in 3D) of the simulation cells, i.e., 𝐹h��/𝐴. The 

relative effective free energy density 𝑓h��¼½ , defined previously in Section 3.3, was observed to 

display a near parabolic dependence with 1/l, see for instance Fig. 6, reaching a minimum at 1/lc. 

We propose to define the effective interfacial free energy in the CP regime as: 

𝜎h��¼½ =
6����

ÑÒ 	

6(2 Ó⁄ )
            (25) 

While Eq. (25) bears some similarity with the definition used in the MPS regime, see Eqs. (23d-

e), we stress that 𝑓h��¼½  is not an excess quantity in the thermodynamic sense. Furthermore, a 

consequence of this definition is that the most stable periodic layered structure is the one for which 

𝜎h��¼½ = 0. When 1/l is smaller (resp. larger) than 1/lc, the effective interfacial energy is negative 

(resp. positive), capturing the fact that the system can lower its total effective free energy by 

increasing 1/l (resp. decreasing 1/l).  

The near parabolic shape of the plot of 𝑓h��¼½  vs. 1/λ in Fig. 6 can be rationalized by 

considering the fact that in the weak segregation regime, steady-state compositional profiles are 

near sinewave functions. It is proposed that stretching or compressing the patterned structure by ± 

dλ results in a similar increase of the effective free energy density, and thus a symmetric plot for 

𝑓h��¼½ B
2
l
F near its minimum. This rationalization was tested by deriving an analytical expression of 

𝑓h��¼½ (
2
Ó
) using a one-mode approximation, i.e., assuming that the compositional profiles are sine 

waves of amplitude 𝑎 and wave vector k. One modification however had to be made to the order-

3 ECH model for deriving such an expression: The regular solution free energy density, 𝑓(𝑐) had 

to be replaced by a Landau free energy as in previous analytical works [32,45], since the 

logarithmic terms in the configurational entropy in 𝑓(𝑐)  preclude the derivation of explicit 

analytical expressions. As shown in Appendix D, one then obtains the following expression for 

𝑓h��¼½ (𝑘),  
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����
ÑÒ

jE
= tE

���

�
(𝑘C − 𝑘.C)C         (26a) 

𝑘.C = − t�
���	

CtE
���	           (26b) 

Clearly, between 𝑓h��¼½  and 𝑘C there exhibits a parabolic relationship which scales with the square 

of amplitude. At 𝑘. , the effective free energy density reaches the minimum. As expected, the 

effective free energy expression in k-space for the order-3 ECH model in the patterning regime, 

Eq. (26), is identical to that expected for the corresponding one-mode SH model [61]. 

 

4. Compositional patterning away from the critical point 

PF simulations are next employed to investigate the steady states of patterning further away from 

the critical point (γc, Rc). As we will show, this requires higher order-n ECH models. 

 

4.1 Convergence of the order-n ECH models with increasing higher order 

We consider here the effect of the number of inhomogeneity terms on the steady-state phase 

diagram. It will be shown that the further away from the critical point (γc, Rc), the slower the 

convergence. We first investigate the question of convergence of the order-n ECH model using a 

linear stability analysis, before employing PF simulations. 

A stability phase diagram is first built in the R-γ space through linear stability analysis of 

the full dispersion relation (the full model, see Eq. (3)) and the dispersion relation of the order-n 

model (see Eq. (11)). The 𝛾2k:<hji boundary and critical point are the same for both the full model 

and the order-n model since they are determined by the same equation, so only 𝛾Ck:<hji  needs to be 

determined. The analytical expression of 𝛾Ck:<hji of the full model is collected in Appendix A; for 

	𝛾Ck:<hjiof the order-n model there is no simple analytical expression so we resort to numerical 

methods. The resulting phase diagram is shown in Fig. 7a. It is seen that the order-3 model matches 

the full model only very close to the critical point. When R becomes larger, higher-order models 

are required, as illustrated with order-11 and order-17 models in Figs. 7a and 7b.  
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We then use PF simulations to study the effect of order-n on steady-state microstructures 

in the patterning regime by investigating the effective free energy density, characteristic 

wavelength λ and concentration profile. We conclude that convergence has been achieved when 

the above three measures remain essentially unchanged upon further increasing n. Similar to what 

was reported in Section 3.4, we use a bilayer structure as the initial condition and we systematically 

change the width of bilayer as a way to change the steady-state wavelength λ. We compare 

different order-n models of R = 1.65Rc for γ values covering the entire range of CP regime but for 

simplicity we discuss below the simulation results obtained for one representative point, 

corresponding to a value of γP2, see point P2 in Fig. 7a.  

The relationships between effective free energy density 𝐹h��/𝐴	 and λ from order-n (n = 

11, 13, 15, 17, 19) ECH models are shown in Fig. 8. All curves are somewhat U-shaped, indicating 

𝐹h��/𝐴	of each order-n model reaches a global minimum at different critical wavelength λc. While 

all these models agree well with each other at both ends of the range of λ values considered here 

(λ = 3.5 nm or λ = 5.5 nm), these curves deviate significantly in the central region (3.5 nm < λ < 

5.5 nm). As n increases, both the minimum of 𝐹h��/𝐴	 and λc shift to smaller values until a 

saturation point is reached at λc = 4.43 nm. From model order-15 to order-17, λc is reduced by 

3.8 %, from 4.6 nm to 4.43 nm, the minimum of 𝐹h��/𝐴		is reduced by 0.28 %. From order-17 to 

order-19, there is no change in λc and the minimum of 𝐹h��/𝐴	 is reduced by only 0.047 %. We 

therefore conclude that convergence for the minimum of 𝐹h��/𝐴	 and λc requires an order-17 

model for R = 1.65Rc.  

In addition, the steady-state microstructures of patterning in order-n models are examined 

and the corresponding line profiles of species B along one period of patterning are compared in 

Fig. 9. All profiles belong to the strong segregation regime (SSR) of patterning as there are plateau 

regions within α and β phases. In agreement with the results shown for the minimum of 𝐹h��/𝐴	and 

λc, the steady-state compositional profiles evolve until order-17, and they remain unchanged upon 

further addition of higher-order terms. This can be rationalized by noting that in the strong 

segregation regime, higher frequencies are required to accurately reproduce square-wave shaped 

profiles. Despite the fairly large number of inhomogeneity terms in these high order-n ECH 

models, FEM solvers are found to be very effective in solving the corresponding weak form of the 
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phase field equations. For instance, the computational time to reach steady state with the order-19 

model is only ≈ 3 times that of the order-3 model at point P2.  

Based on the analysis and results above, we build the full dynamical phase diagram, which 

includes four possible steady states, namely MPS, SSR of CP, WSR of CP, and SS as γ is increased, 

see Fig. 10. The kinetic evolutions of the system under various irradiation conditions are presented 

in Fig. S1 of Supplementary Material [51]. In contrast to results on patterning near the critical 

point (γc, Rc) presented in Section 3, the main difference is the presence of a strong segregation 

regime of patterning. The order-3 ECH model, or equivalently kinetic models driven by a one-

mode SH free energy functional, fails to produce this patterning regime. This point will be 

considered further in the Discussion.  

Another interesting observation is the evolution of interfacial width as a function of γ and thus 

as the system transitions through different steady states. We used the 10%-90% criterion to 

determine the interfacial width, and plotted its relationship with normalized γ in Fig. 11. We also 

measured the steady-state domain size – the distance between the center of neighboring α and β 

phases, and plotted the ratio of interfacial width to the domain size as a function of γ in Fig. 11 as 

well. In the MPS regime, as γ increases, the interface becomes more diffuse but the ratio of 

interfacial width to domain size remains zero because the domain size is infinite in this regime. In 

SSR, larger γ leads to a substantial increase in both the interfacial width and the ratio. Entering 

WSR, however, the interfacial width starts to decrease as γ increases. And since the compositional 

profile in WSR is approximately a sine wave, the ratio of interfacial width to domain size should 

stay very close to a constant, ~0.5903 for a sine wave. Indeed the last three data points shown in 

Fig.11 correspond to values of 0.5889, 0.5924 and 0.5934, respectively. We thus propose that the 

interfacial width over domain size ratio can be used to distinguish experimentally the weak and 

the strong segregation regimes. This point is further discussed in the Discussion section. 

 

4.2 Dependence of effective interfacial energy with γ in patterning regime 

We next extend the results presented in Section 3.4 for the effective interfacial energy in the 

patterning regime with the order-3 ECH model. It is found that in the strong segregation regime 

the dependence of 𝑓h��¼½  with 1/λ around 1/λc becomes asymmetric, see Fig. 12, in contrast to the 

symmetric behavior measured in the weak segregation regime (Fig. 6), as well as derived 
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analytically (Eqs. (26a) and (26b)). Specifically, we present in Fig. 12 results from an order-17 

ECH model for R = 1.65Rc, and four γ values at points P2, P3, P4  and P5, see Fig. 12a. Since P1 is 

in WSR regime, the plot of 𝑓h��¼½  versus 1/λ is similar to that in Fig. 6 for the order-3 ECH model 

so it is not discussed further. Decreasing γ to P2, which brings the system into the SSR regime, the 

shape of plot has become asymmetric around 1/λc, see Fig. 12b. For 1/λ < 1/λc, the absolute value 

of the gradient is smaller than for 1/λ > 1/λc, indicating that 𝑓h��¼½  is less sensitive to the change in 

λ. Upon further decreasing γ to points P3 and P4, which are well within the SSR regime, the plots 

become even more asymmetric, see Fig. 12c and Fig. 12d. For point P5, which is in the MPS regime, 

the curve does not display a U-shape, instead, the effective free energy density monotonically 

increases as 1/λ increases. These results can be rationalized considering the following points: First 

in the MPS regime, i.e., at P5, Eq. (24b) predicts that in the limit of infinitely small 1/λ (or 1/L), 

the slope of effective free energy density versus 1/λ approaches 𝜎h�� , and should thus be positive, 

since 𝑓h��h;.  is related to effective free energy density through: 

𝑓h��h;. = 	
2
s ∫ Ô𝑓��k�

h�� (𝑐) + 𝜅2
h��|𝛻𝑐|C + 2𝜅C

h��|𝛻C𝑐|C − 𝑐𝜇w
h�� − (1 − 𝑐)𝜇x

h��Õs 𝑑𝑉 = 𝐹h��/𝐴	 − 𝜇w
h��(27) 

The slope measured at point P5, 24.3	𝐽 ∙ 𝑛𝑚/𝑚𝑜𝑙, is indeed in good agreement with the value 

measured from Eq. (24b), 22.5 𝐽 ∙ 𝑛𝑚/𝑚𝑜𝑙. Second, in the SSR, since the compositional profiles 

reach plateau values within each phase, see Fig. 9, it is expected that, when interfaces are farther 

apart from each other than the optimum distance λc/2, the corresponding increase in effective free 

energy should be much smaller than the increase brought about by overlapping interface profiles 

in the case 1/λ > 1/λc, and therefore that the plot of 𝑓h��¼½  versus 1/λ should no longer be symmetric. 

 

5. Discussion 

In this work, we have calculated the evolution of the concentration field 𝑐(𝐫, 𝑡)  in a phase-

separating binary alloy subjected to irradiation where forced atomic replacements are described by 

an athermal Gaussian mixing term. For most irradiation collisions, the characteristic length of these 

forced displacements, R, extends beyond that of thermal diffusion, i.e., one nearest-neighbor 

atomic distance. This separation of length scales makes it difficult to derive an exact explicit 

expression of the effective potential governing the overall evolution of this system with two 

competing dynamics. This issue has usually been addressed by relying on approximations 
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involving linearization of the thermodynamic free energy density either in reciprocal space [32] or 

in real space [36]. In this work, we have proposed a different approach: Using an expansion of the 

forced mixing kinetics, finite-range mixing is expressed by a series of derivatives of 𝑐(𝐫, 𝑡) 

evaluated at position 𝐫, instead of evaluations of 𝑐(𝐫′, 𝑡) at positions 𝐫′ far from 𝐫. Truncating this 

expansion yields a series of approximate mixing models, see Eq. (6). These differential terms can 

then be directly incorporated into the Cahn-Hilliard evolution equation used for the 

thermodynamics-controlled dynamics, yielding a series of extended Cahn-Hilliard (ECH) models, 

see Eq. (10), referred to order-n ECH models. As a result, for each of these order-n ECH models, 

exact expressions for the corresponding effective free energies were obtained, see Eq. (13). In 

contrast to past works, our approach yields a unique explicit real-space expression of the effective 

free energy for all three steady-state regimes. Steady-state concentration profiles were then 

calculated using phase field simulations, see Figs. 4 and 9, and used to build steady-state phase 

diagrams, see Figs. 7 and 10. It was found that an order-3 model is sufficient to capture the onset 

of patterning, where concentration profiles are close to sinewaves, i.e., in the weak segregation 

regime. Higher-order models, however, were required to generate the strong segregation regime 

expected deep into the patterning regime, as illustrated in Fig. 9. We specifically discuss in this 

section two key points: (i) the definition of an effective interfacial free energy in the above driven 

alloy system, and (ii) the connection between the present effective free energies with those 

obtained in previous models of alloys under irradiation, and more broadly of systems undergoing 

patterning. 

Defining an effective interfacial free energy for systems that display a transition between 

steady states of macroscopic phase separation and compositional patterning is problematic. In the 

MPS steady state, i.e., at low forcing intensity γ, one can extend the standard thermodynamic 

approach to calculate the interfacial free energy by simply using the effective free energy defined 

in Eq. (19). The resulting effective interfacial energy 𝜎h�� , defined through Eq. (24b), is found to 

decrease as γ increases and to reach negative values for γ values nearly equal to the one 

corresponding to the transition to CP, see Fig. 5(c). The fact that the patterning regime be 

associated with a negative interfacial energy may not be too surprising at first since an initially 

macroscopic system operating in that regime will spontaneously create new interfaces until 

reaching the optimum lamellar structure. Negative interfacial energies have been used or 
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calculated in other systems self-organizing into mesoscopic patterns, for instance in active matter 

[38,39], although this topic remains controversial [63].  This definition for the effective interfacial 

energy, however, cannot be used in the present patterning regime. Firstly, the interfacial area is no 

longer an excess quantity. Instead, in the patterning regime, the interfacial area scales with the 

volume, i.e., it is now an extensive quantity. Secondly, the steady-state compositional profile does 

not admit constant “far-field” solutions as the interface width and phase co-existence length scale 

are no longer decoupled. For the nearly sinewave concentration profiles found in the weak 

segregation regime, for instance, these two scales are identical, up to factor 2. In contrast, the 

existence of far-field solutions that are constant over distances much larger than that of the 

interface width is an essential requirement for the derivation of interfacial free energy from phase 

field models using a sharp interface limit, see for instance Refs. [59,64] and Appendix C.  

We thus introduced in this work an alternative definition of the effective interfacial energy in 

the CP regime, 𝜎h��¼½ . Since the patterning period 𝜆 is an internal degree of freedom of the system, 

an effective interfacial energy should be related to the dependence of the effective free energy 

density with respect to that period. Specifically, we define 𝜎h��¼½  as the partial derivative of the 

effective free energy density with respect to 1 𝜆⁄ , see Eq. (25), so that 𝜎h��¼½  is properly 

dimensioned, i.e., in energy units per (𝐿)(¤I2), where L is a system length and d the system spatial 

dimension. We find that the effective free energy density of a steady-state lamellar phase varies 

continuously with its period 𝜆, see Fig. 6, thus ensuring that this partial derivative is well-defined 

for the systems of interest here. An important consequence of this definition is that 𝜎h��¼½ = 0 for 

the most stable lamellar steady state. This approach is in fact consistent with other approaches used 

to study related systems. For example, we already noted in Section 3 that the order-3 ECH free 

energy is very similar to the functional form used in some phase-field crystal (PFC) models 

[65,66]. Atoms in PFC simulations correspond to spherical precipitates in our work, and 

equilibrium PFC states with crystalline order to a patterning regime with periodic structures. Fig. 

6 is thus the counterpart of a plot of the system energy per atom as a function of inverse lattice 

parameter in PFC. This suggests that the curvature 𝜕C𝑓h��¼½ 𝜕(1 𝜆⁄ )C⁄  evaluated at 𝜎h��¼½ = 0 , 

defining an effective “interfacial modulus”, could be used to characterize the compliance of the 

lamellar phase in response to changing its wavelength. Another correspondence can be made with 

the concept of defactant introduced by Kirchheim [67,68] and used in particular to rationalize the 
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stabilization of nanocrystalline materials to a finite grain size by doping grain boundaries with 

suitable solute atoms. Although there is no direct model correspondence here, in part because 

including grains of distinct crystallographic orientations in phase field modeling requires the 

addition of non-conserved order parameters, Kirchheim reaches a similar conclusion, i.e., that the 

effective grain boundary energy should be zero for the most stable nanocrystalline state.  

We next turn to the effective free energy potentials derived from order-n models and to their 

comparisons with potentials obtained in previous publications on systems undergoing patterning, 

in particular alloys under irradiation. As noted above, in the compositional patterning regime, our 

order-3 effective free energy, see Eq. (19), is equivalent to the one-mode SH potential [3,61] since 

𝜅2
h�� < 0 in that regime (note that Eq. (19) differs slightly from the standard one-mode SH free 

energy because of the entropic terms in 𝑓(𝑐)). Such an effective potential was recently obtained 

by Simeone et al. [36] for alloys under irradiation with an exponential-decay forced mixing, by 

performing a second-order expansion of the k-space response function around the dominant 

patterning wave vector (see Ref. [36] for details). Our order-3 effective free energy is however 

more general since it encompasses both the traditional extended CH model in the MPS regime, 

where the γ values are low enough that 𝜅2
h�� > 0, to an SH free energy once the system enters the 

patterning regime, i.e., at higher γ values. It is intriguing to note that a potential analogous to the 

order-3 effective free energy was used to model shape instability in a static but frustrated system, 

where phase separation competes with dipole-dipole repulsion. One limitation of those potentials 

for alloys under irradiation is that they can only generate patterns that belong to the weak 

segregation regime. Higher-order ECH models overcome this limitation by including higher-order 

derivatives of the concentration field 𝑐(𝐫, 𝑡). This is rationalized by considering that higher-order 

compositional inhomogeneity terms are able to capture higher-order harmonics, which are required 

to generate the square-wave-like profiles of the strong segregation regime. While we not aware of 

any systematic parallel with other effective potentials for patterning under irradiation, it is 

interesting to note that our order-5 model is very similar to the two-mode SH potential, as detailed 

in Appendix D: both potentials include terms up to |∇�𝑐|C, and in both cases the signs of the 

coefficients of  |∇<𝑐|C alternate from negative to positive for n = 1, 2, 3, 4 (see Appendix D for 

details). Such two-mode SH potentials have been employed recently for PFC models, in part to 

provide more flexibility and accuracy in generating crystalline phases with face-centered cubic 
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and close-packed hexagonal lattices [69,70]. Extending further this comparison between the order-

5 model and the two-mode SH potential, we suggest that our order-n effective potentials could be 

alternatively defined as multimodal SH potentials with (𝑛 − 1) 2⁄  patterning modes. 

Next, the present work suggests that, when investigating experimentally compositional 

patterning, it would be useful to determine whether the system is in a weak segregation or a strong 

segregation regime. This would also help determine whether experimental ballistic relocation 

distances can be large enough to stabilize the strong segregation regime. Existing data obtained 

from atom probe tomography point to fairly diffuse interfaces, typically ≈ 1-2 nm wide, in the 

compositional patterning regime for Fe-Cr [20-23], Cu-Fe [71] and Cu-V [72]. These observations 

alone are however not sufficient to conclude that these alloys were in the WSR, since diffuse 

interfaces can be found in the SSR, see Fig. 11. A conclusive test however is to determine the ratio 

of the interfacial width to the precipitate radius at steady state as a function of the forcing intensity, 

as shown in Fig. 11. This sequence of steady states could for instance be obtained by decreasing 

the irradiation temperature. In the WSR, this ratio is expected to remain a constant, ~ 0.5903 for a 

sine wave; while in the SSR this ratio decreases continuously upon approaching the γ1 boundary, 

where the ratio becomes zero in MPS regime.  

Lastly, we point to potential extensions of the present work. In light of the recent steady-state 

phase diagram obtained by Luneville et al. [37], it would be interesting to use order-n ECH models 

to study non-equiatomic compositions and contrast the evolution of precipitate shapes in the WSR 

and SSR regimes. Secondly, since deterministic evolution equations were used in this work, spatial 

and temporal correlation events in mixing events were not considered. These correlations could 

however be introduced by treating forced mixing events as a stochastic source term, similarly to 

what Dubey and El-Azab did for capturing point defect production by displacement cascades [73]. 

In fact, another significant extension would be to explicitly include the point defects created by 

irradiation, as well as the microstructural defects that serve as sinks for those point defects, e.g., 

grain boundaries. This extension would make it possible to include in PF simulations radiation-

induced segregation and precipitation driven by the kinetic coupling of chemical and defect fluxes 

to sinks [74]. This is of interest because systems driven by non-zero net fluxes can undergo 

nonequilibrium phase transitions distinct than those with zero net fluxes [75,76].  



 27 

Conclusion  
 
In this paper we studied macroscopic phase separation (MPS) and compositional patterning (CP) 

in a binary alloy subjected to irradiation where finite-range mixing is modeled using a Gaussian 

distribution. Using an expansion and truncation of this Gaussian distribution to order n, we 

introduced a series of approximate models and were able to define exact effective potentials for 

each order-n model. This is in contrast to past approaches that retained an exact expression for 

their mixing function, but they could only obtain approximate explicit expressions for the effective 

potential governing the overall evolution of the alloy under irradiation. Interestingly, our lowest-

order effective free energy, the order-3 one, yields a one-mode Swift-Hohenberg functional in the 

CP regime, in agreement with recent results by Simeone et al. [31] after linearization of the 

thermodynamic free energy density. As the irradiation forcing intensity is reduced, the coefficient 

of the gradient square inhomogeneity term in this order-3 potential changes sign, from negative to 

positive at the transition from CP to MPS, and the effective free energy becomes an extended 

Cahn-Hilliard functional. The order-3 effective potential thus provides a unified description of the 

effective free energy for the system across the MPS and CP regimes. Phase field simulations for 

equiatomic compositions in 2D systems yield regular lamellar phases at steady state in the CP 

regime, as expected. Simulations using the order-3 potential, however, generate only sinewave-

like concentration profiles, which are characteristic of the weak segregation regime. Furthermore, 

analysis of the convergence of these profiles as the order n increases shows that the order-3 

potential is only valid near the onset of patterning, specifically near the critical point (γc, Rc) of the 

steady-state phase diagram, see Fig. 10. Deeper into the patterning, higher-order models are 

required, and near the MPS-CP boundary, they produce square-wave-like profiles, characteristic 

of the strong segregation regime. Drawing from the two-mode SH functionals developed for phase 

field crystal models, we showed that our order-n functionals are analogous to multimodal SH 

functionals. A second key result from this work concerns effective interfacial energies. Defining 

effective interfacial energies for systems in the CP steady state requires a novel approach: In that 

regime the interfacial area is no longer an excess quantity as it becomes proportional to the 

system’s volume, i.e., an extensive quantity, thus precluding the use of the traditional approach 

employed for systems where macroscopic phases co-exist at thermodynamic equilibrium. A new 

approach was introduced, defining the effective interfacial energy in the CP regime as the partial 
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derivative of the effective free energy density with respect to the inverse of the pattern period. 

Using this approach, the most stable lamellar steady state is one for which the effective interfacial 

energy is zero. It will be interesting to extend the present work to non-equiatomic compositions 

and 3D systems, in order to further assess the influence of the order n on steady-state 

microstructures and precipitate composition. 
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APPENDIX A: BOUNDARY PARAMETERS BY LINEAR STABILITY ANALYSIS 

 

Derivations of important boundary parameters of steady-state regimes in the dynamical phase 

diagram are presented in this appendix. We use Eq. (21) in Section 3.1 to derive boundary 

parameters for the order-3 ECH model: 𝛾2k:<hji , the boundary between MPS and CP regime, is 

corresponding to ¤�
¤�
	changing sign at 𝑘 = 0, so 

𝛾2k:<hji = −��LL

5E
  

𝛾Ck:<hji , the boundary between CP and SS, is determined by ¤�
¤�
|�X�¥ = 0 and 𝜔(𝑘.) = 0, 

𝛾Ck:<hji =
9𝜅𝑅� + 𝑓@@𝑅� − Ù(9𝜅𝑅� + 𝑓@@𝑅�)C + 135𝜅C𝑅Û

− 5
24𝑅

Û
	 

The onset of patterning (𝛾., 𝑅.) is obtained by setting 𝛾2k:<hji = 𝛾Ck:<hji , so we have 

𝛾. =
(�LL)E

Ct
  

𝑅. = 2Ý �t
I�LL
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In patterning regime, the boundaries of the range of wave vectors with positive growth rates 

(𝑘2, 𝑘C) are the two positive real roots of Eq. (21), 

𝑘2 =
ÞIt�

���Iß(t�
���)EI�tE

���	à
E����R
���

à¥E

CtE
���   

𝑘C =
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����ß(t�
���)EI�tE

���à
E����R
���

à¥E

CtE
���   

For patterning regime away from the critical point, in Section 4.1, Eq. (3) is used to derive 𝛾Ck:<hji  

of the full model: 

𝛾CI��kk	9á¤hkk:<hji =
16𝜅C + (𝑓
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9

4
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APPENDIX B: NUMERICAL METHODS 
 

Numerical simulations of phase field equations are obtained via an open source, massive parallel 

finite element method (FEM) framework, MOOSE. The FEM scheme is fully coupled and fully 

implicit featured with adaptive meshing and timing. For FEM discretization, the residual equation 

of the partial differential equation and its variational Galerkin weak form are constructed. 𝜓9 is 

used as the test function for the weighted integral residual, and divergence theorem is applied 

to lower the order of the derivatives in the usual manner. Since in Eq. (10) there are many higher-

order gradient terms, to avoid the use of computationally expensive higher-order basis functions 

for both trial and test functions, we introduce a number of intermediate variables instead to 

systematically represent these higher-order gradient terms. This operation can significantly 

improve the efficiency of solve convergence but does not impact the accuracy of solution. 

Residual equations in a split weak form are (i stands for species of the system): 

𝑅äå = P
𝜕𝑐:
𝜕𝑡 , 𝜓9S +

(𝑀:𝛻𝜇:, 𝛻𝜓9) − 〈𝑀:𝛻𝜇: ∙ 𝑛,ççç⃗ 𝜓9〉 
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𝑅.å = êP
𝜕𝑓��k�
𝜕𝑐:

− 𝜇:S , 𝜓9ë + (𝛻𝑐:, 𝛻(𝜅:𝜓9)) − 〈𝛻𝑐: ∙ 𝑛,ççç⃗ 𝜅:𝜓9〉 

(∗,∗) operator represents a volume integral with an inner product and the ⟨∗,∗⟩ operator 

represents a surface integral with an inner product. 𝑐:  is the conserved variable and 𝜇:  is the 

chemical potential. For periodic boundary condition, boundary integral terms are neglected so 

we omit the surface integrals: 

𝑅äå = P
𝜕𝑐:
𝜕𝑡 , 𝜓9S +

(𝑀:𝛻𝜇:, 𝛻𝜓9) 

𝑅.å = êP
𝜕𝑓��k�
𝜕𝑐:

− 𝜇:S , 𝜓9ë + êP𝜅: −
𝐷C
𝑀:
S 𝛻𝑐:, 𝛻𝜓9ë + P

𝐷2
𝑀:
𝑐: −

𝐷2
2𝑀:

, 𝜓9S − (𝛻𝛼:2ð7, 𝛻𝜓9) 

𝑅ñå�òó = (𝛼:2ð7, 𝜓9) + P
𝐷�
𝑀:
𝛻𝑐:, 𝛻𝜓9S + �𝛻𝛼:C<¤, 𝛻𝜓9¡ 

𝑅ñåE�ô = �𝛼:C<¤, 𝜓9¡ + P
𝐷�
𝑀:
𝛻𝑐:, 𝛻𝜓9S + �𝛻𝛼:�i¤, 𝛻𝜓9¡ 

… 

𝑅ñå(�K�)óö
= B𝛼:

(<I�)7g, 𝜓9F + P
𝐷<I2
𝑀:

𝛻𝑐:, 𝛻𝜓9S + B𝛻𝛼:
(<IC)7g, 𝛻𝜓9F 

𝑅ñå(�KE)óö
= B𝛼:

(<IC)7g, 𝜓9F + P
𝐷<
𝑀:
𝛻𝑐:, 𝛻𝜓9S 

𝜇: =
𝜕𝑓(𝑐:)
𝜕𝑐:

− 𝜅𝛻C𝑐: +
𝐷2
2𝑀:

(2𝑐: − 1) +
𝐷C
2𝑀:

𝛻C𝑐: + 𝛻C𝛼:2ð7 

𝛼:
(<I�)7g =

𝐷<I2
𝑀:

𝛻C𝑐: + 𝛻C𝛼:
(<IC)7g 

𝛼:
(<IC)7g =

𝐷<
𝑀:
𝛻C𝑐: 

 

𝛼:2ð7  to 𝛼:
(<IC)7g  are intermediate variables to split the higher-order equations. First-order 2D 

Lagrange shape functions are used for all variables, and volume integrals are discretized by 

setting the reference elements type as four-node quadrilateral in 2D (QUAD4). The interfacial 

thickness (2ξ) is resolved by more than 10 grid points (much finer than the usual 2ξ=6Δx criterion), 

for a good balance between computational efficiency and numerical accuracy. The method for 
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time integration is backward Euler. Solve type for the non-linear system is Newton’s method. The 

method carried out to manipulate preconditioning matrix is Additive Schwartz Method (ASM) 

which is the only option that works well with the split Cahn-Hilliard equations, and sub-

preconditioning is performed by using LU factorization. The simulations are solved with a non-

linear relative tolerance of 1e-8 and a non-linear absolute tolerance of 1e-9. Adaptive mesh 

refinement and timing are implemented to accommodate the large concentration variation 

across the interface and to reduce computational time. Parallelism by Message Passing Interface 

(MPI) is applied to all simulations, the average degrees of freedom (DOFs) per core is targeted to 

be 20,000 for the best computational performance with various domain sizes.  

Note that the mixing coefficient 𝐷< in Eq. (5) has different form if the dimension of the 

problem changes. For example, in 2D, the denominator becomes 4V𝑝!, and in 1D it is 2V𝑝!. We 

can express the forcing parameters γ and R based on their relative distance from the critical point, 

so that the steady-state phase diagram is not affected by the dimension of the problem.  

 
 
APPENDIX C: DERIVATION OF INTERFACIAL ENERGY BY SHARP INTERFACE LIMIT OF PF MODEL 
 

This appendix derives interfacial energy in an order-3 ECH model from the sharp interface limit 

of PF models of one conserved order parameter with notations used in Refs. [59,61]. Interested 

readers are suggested to read the referenced papers for a thorough understanding of the 

description of methods shown below. 

The free energy functional of an order-3 ECH model is expressed in the form, 

 

	𝐹 = ø �𝑓(𝑐) +
𝜅2𝜀C

2
|𝛻𝑐|C +

𝜅C𝜀�

2
|△ 𝑐|C�

s
𝑑𝑉 

 

where c is the fractional concentration of one component in a binary system, 𝑓(𝑐) is the bulk free 

energy, ε is a constant that sets the scale of the interfacial energy, 𝜅2 and 𝜅C are coefficients of 

gradient and Laplacian terms. The outer expansions of field variables c, chemical potential μ and 

diffusion flux J follow the treatment in Ref. [59] except no subscripts are needed since there are 

only two components in this system. A curvi-linear coordinate (r,s) is used to describe the physical 
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interface. In the inner region the derivatives of all fields with respect to r (interface normal) are 

much larger than derivatives with respect to s (interface tangent) when curvature vanishes, so a 

stretched variable 𝑧 = 𝑟/𝜀  is introduced. The spatial and time derivatives are expressed in their 

transformed form accordingly. One can then express the solutions and fields of the inner and 

outer regions by their asymptotic series, and a tilde is used to denote the inner expansions. 

In coarsening regime, when driving force or the interface velocity is small, the steady-

state diffusion field is allowed to form in front of the interface. The time derivative operator  𝜕7  

can be replaced by a slow time scale, 𝜕72, so the outer equation is,  

𝜀𝜕72𝑐 = −𝛻 ⋅ 𝐉,     x	in outer region 

For the leading order O(1), 

0 = −𝛻 ⋅ 𝐉³ 

The leading order terms of 𝜇³  and c³  are close to equilibrium, so 𝜇³ = 𝜇x³ − 𝜇w³ = 0 and 𝑐³ =

𝑐hÿ³  for x in the outer region of the matrix and precipitate phases. For the next-to-the-leading 

order, 𝑂(𝜀), we have, 

𝜀𝜕72𝑐³ = −𝜀𝛻 ⋅ 𝐉2 

where 𝐉2 = 𝑀³∇𝜇2 + 𝑀2∇𝜇³ = 𝑀³∇𝜇2  since 𝜇³ is 0. Therefore, the first-order terms in the bulk 

phases are in steady state. 

In the inner region, we expand the fields with t replaced by t1 and use κ as the mean 

curvature, so the Laplacian and bilaplacian operators in curvi-linear coordinates are, 

𝛻 ⋅ 𝛻 =
1
𝜀C 𝜕"

C +
1
𝜀 𝜅𝜕" + 𝛻ð

C 
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� −
1
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�𝜕" + 𝛻ð� 

and 

𝜇³# = 𝑓,.̃�𝑐³#¡ − 𝜅2𝜕"C𝑐³#+ 𝜅C𝜕"�𝑐³# 

  

𝜇2# = 𝑓,..̃#�𝑐³#¡𝑐2$ − 𝜅2𝜕"C𝑐2$ − 𝜅2𝜅𝜕"𝑐³#+ 𝜅C𝜕"�𝑐2$ + 2𝜅C𝜅𝜕"�𝑐³# 

The inner equations can be written as,  

𝜀�𝜕72𝑐̃ − 𝜀C𝜕72𝑟𝜕"𝑐̃ = 𝜕"�𝑀$𝜕"𝜇́¡ + 𝜀𝑀$𝜅𝜕"𝜇́ + 𝜀C𝛻ð ⋅ �𝑀$𝛻ð𝜇́¡ 
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For the leading order O(1), we have 𝜕"�𝑀$𝜕"𝜇́¡ = 0 which yields 𝜇³# = 0 so the same steady-state 

conditions are satisfied on the front as they are in the outer expansion, and 𝜇³ = 0 applies 

everywhere in the domain. For the next-to-leading order 𝑂(𝜀), recall that 𝜇³ = 0, so we have 

𝜕"�𝑀³# 𝜕"𝜇2#¡ = 0. Clearly, 	𝜇2 is independent of z, which is the interface normal direction, so we 

have 𝜇2# = 𝐴(𝑠, 𝑡). We can conclude, by matching the outer and inner expansions at O(1)and 

𝑂(𝜀), that: 

1. 𝜇³ = 0  everywhere in the domain (both inner and outer region). 

2. 𝜇2# = 𝐴(𝑠, 𝑡). 

Knowing the relation between 𝑐³	#and 𝑐³, and that 𝑐³	# is the equilibrium concentration at 

planar interface so its first, second and higher-order derivatives at infinity have to be zero, we 

apply the same projection method to 𝜇2# to show: 
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The last term can be replaced by, 
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The summation of other three κ-independent terms on the RHS is zero when all orders of 

concentration gradient terms at infinity are assumed to be zero: 

ø 𝑓,..̃#�𝑐³#¡𝑐2«
�W

IW
𝜕"𝑐³#𝑑𝑧 = ø

𝜕
𝜕"
B𝑓,.̃�𝑐³#¡F 𝑐2«

�W

IW
𝑑𝑧 

= 𝑓,.̃�𝑐³#¡𝑐2$ ∣IW�W− ø 𝑓,.̃�𝑐³#¡𝜕"
�W

IW
𝑐2$ 𝑑𝑧 

= −∫ 𝑓,.̃�𝑐³#¡𝜕"
�W
IW 𝑐2$ 𝑑𝑧     (C1) 

 

−ø 𝜅2
�W

IW
𝜕"C𝑐2$ 𝜕"𝑐³#𝑑𝑧 = −ø 𝜅2

�W

IW
𝜕"𝑐³#

𝜕
𝜕"
�𝜕"𝑐2$ ¡𝑑𝑧 
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= −𝜅2𝜕"𝑐³#𝜕"𝑐2$ ∣IW�W+ø 𝜅2
�W

IW
 𝜕"C𝑐³#𝜕"𝑐2$ 𝑑𝑧 

= ∫ 𝜅2
�W
IW 𝜕"C𝑐³#𝜕"𝑐2$ 𝑑𝑧      (C2) 

 

ø 𝜅C
�W

IW
𝜕"�𝑐2$ 𝜕"𝑐³#𝑑𝑧 = ø 𝜅C

�W

IW
𝜕"𝑐³#

𝜕
𝜕"
�𝜕"�𝑐2$ ¡𝑑𝑧 

= 𝜅C𝜕"𝑐³#𝜕"�𝑐2$ ∣IW�W− ø 𝜅C
�W

IW
𝜕"�𝑐2$ 𝜕"C𝑐³#𝑑𝑧 

= −𝜅C𝜕"C𝑐³#𝜕"C𝑐2$ ∣IW�W+ ø 𝜅C
�W

IW
𝜕"C𝑐2$ 𝜕"�𝑐³#𝑑𝑧 

= 𝜅C𝜕"�𝑐³#𝜕"𝑐2$ ∣IW�W− ø 𝜅C
�W

IW
𝜕"𝑐2$ 𝜕"�𝑐³#𝑑𝑧 

= −∫ 𝜅C
�W
IW 𝜕"𝑐2$ 𝜕"�𝑐³#𝑑𝑧         (C3) 

Eq. (C1) + Eq. (C2) + Eq. (C3) = 

ø Ô−𝑓,.̃�𝑐³#¡ + 𝜅2𝜕"C𝑐³#− 𝜅C𝜕"�𝑐³#Õ𝜕"
�W

IW
𝑐2$ 𝑑𝑧 = ø −𝜇³#𝜕"𝑐2$ 𝑑𝑧

�W

IW
= 0 

Therefore,  

ø 𝜇2#𝜕"𝑐³#𝑑𝑧
�W

IW
= 𝜇2#Ô𝑐³#(+∞) − 𝑐³#(−∞)Õ = −𝜎𝜅 

𝜎 = ø [𝜅2(𝜕"𝑐³#)C + 2𝜅C(𝜕"C𝑐³#)C
�W

IW
]𝑑𝑧 

In the order-3 ECH model, for straight interfaces with concentration variation along for example, 

only the z direction, the interfacial energy σ can be expressed as ∫ �𝜅2
h��|𝛻𝑐|C +"

2𝜅C
h��|𝛻C𝑐|C¡ 𝑑𝑧. This corresponds to Eq. (24) in the main text. 

 

 
 

APPENDIX D: FREE ENERGY FUNCTIONAL IN ORDER-3(5) MODELS AND ONE(TWO)-MODE 
SWIFT-HOHENBERG MODELS 

 
This appendix describes similarities and differences between the order-3(5) models and the 

one(two)-mode Swift-Hohenberg (SH) models.  



 35 

D.1 Comparison between the order-3 model and one-mode SH model 

The free energy functional of one-mode SH model is given by [66], 

𝐹 = ø{
𝜙
2
[𝛼 + 𝜆(𝑞³C + 𝛻C)C]𝜙 +

𝑔
4 𝜙

�}
s

𝑑𝑉 

Where 𝛼 , 𝜆 , g are constants, 𝑞³  is the magnitude of critical wave vector, and 𝜙  is the field 

variable related to the density field of the system. This free energy functional constitutes the one-

mode SH equation and it results in the minimization of energy by the formation of periodic 

structures with a critical wave vector. Its dimensionless form is: 

𝐹 = ø �−
(𝜀 − 1)𝜓C

2 +
𝜓�

4 − |𝛻𝜓|C +
1
2
|𝛻C𝜓|C�

s

𝑑𝑉 

Here 𝜀 is a reduced parameter and is equal to − ñ
Óÿ±®

, the field variable is 𝜓 = 𝜙Ý
=

Óÿ±®
. For the 

order-3 model, in order to compare with the one-mode SH model, a Landau polynomial is used 

as the bulk free energy instead of regular solution model. Therefore, the total effective free 

energy of the order-3 model is, 

𝐹h�� = ø �−𝐴𝑐C + 𝐵𝑐� −
𝐷2
2𝑀 𝑐(1 − 𝑐) +

𝜅2��� 	
2

|𝛻𝑐|C +
𝜅Ch��
2

|𝛻C𝑐|C�
s

𝑑𝑉 

We now use a one-mode approximation as the compositional profile to derive the 

analytical expression of free energy as a function of wave vector 𝑘 in patterning regimes of the 

two models. In patterning regime we assume a 1D parametric function 𝑐 = 𝑐̅ + 𝑎𝑠𝑖𝑛(𝑘𝑥) as the 

local composition of B, 𝑎 is the amplitude and 𝑐̅ is the nominal composition of the system. We 

then derive the effective free energy per unit length 𝑓h��(𝑘) and the minimum of 𝑓h��(𝑘.) at 𝑘. . 

The difference between these two terms, in one-mode SH model (𝑘.C = 1): 

∆𝑓(𝑘) = 𝑓(𝑘) 	− 𝑓(𝑘.) =
𝑎C

4
(𝑘C − 1)C 

In the order-3 model: 
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𝛥𝑓h��(𝑘) = 𝑓h��(𝑘) 	− 𝑓h��(𝑘.) =
tE
���jE

�
(𝑘C − 𝑘.C)C  

𝑘.C = −
𝜅2
h��	

2𝜅C
h�� 

Assuming amplitude 𝑎 is independent of the wave vector and remains a constant, they both show 

a parabolic relation between free energy density and 𝑘C. This expression corresponds to Eq. (26) 

in the main text. 

D.2 Comparison between the order-5 model and two-mode SH model 

To improve the accuracy of solid-liquid interface properties obtained from quantitative PFC 

models, a two-mode SH model was proposed, including a second critical wave vector in addition 

to the primary one [77], 

𝐹 = ø{
𝜙
2 {𝛼 + 𝜆(𝑞³

C + 𝛻C)C[(𝑞2C + 𝛻C)C + 𝑟2]}𝜙 +
𝑔
4 𝜙

�}
s

𝑑𝑉 

where 𝑞2 is wave vector of the second-mode, and 𝑟2 is a constant. By varying 𝑟2, the relative 

amplitude between the primary and secondary modes can be adjusted. The dimensionless two-

mode SH model has a free energy potential of the form: 

𝐹 = ∫ Ãx5
E

C
+ 5®

C
− 𝛣|𝛻𝜓|C + ¼

C
|𝛻C𝜓|C − �

C
|𝛻�𝜓|C + 2

C
|𝛻�𝜓|CÄs 𝑑𝑉	     (D1) 

where 𝐴 = −𝜀 + 𝑅2 + 𝑄2� , 𝐵 = 𝑅2 +  𝑄2C + 𝑄2� , 𝐶 = 1+ 𝑅2 +  4𝑄2C + 𝑄2� , 𝐷 = 2 +  2𝑄2C , 

ε= − ñ
Óÿ±9

, 𝑅2 =
i�
ÿ±9
	and 𝑄2 =

ÿ�
ÿ±

. 𝑅2 and 𝑄2 give the freedom to change the relative amplitude 

and wave vector of the primary and secondary modes. For the order-5 model, the effective 

potential is, see Eq. (13): 

𝐹h�� = ∫ �𝑓��k�
h�� (𝑐) + t�

���	
C
|𝛻𝑐|C + tE

���

C
|𝛻C𝑐|C − �®

C�
|𝛻�𝑐|C + �:

C�
|𝛻�𝑐|C�s 𝑑𝑉    (D2) 

Comparing Eq. (D1) and Eq. (D2), it is noted that all coefficients of the compositional derivative 

terms in two-mode SH model and the order-5 model have the same signs (recall that 𝜅2
h�� < 0 in 

the patterning regime). A direct mapping of our order-5 model onto the two-mode SH model is 
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however not possible. In the two-mode SH model, coefficients are dependent on the relative 

amplitude and wavelength of the secondary and the primary modes, and such a constraint is not 

applied to the order-5 model. Furthermore, this later model uses more independent parameters 

than the two-mode SH model. 
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Figures and Tables 

 

 Atomic 
mobility 

Nominal 
composition of B  

Gibbs energy of 
pure B/A 

Interaction 
parameter  

Temperature Coefficient of 
gradient energy 

Symbol 𝑀 𝑐 ̅ 𝐺w = 𝐺x 𝛺 𝑇 𝜅 
Value 2.2841e-26 0.5 -20 17 700 8.125e-16 
Unit 𝑚C𝑚𝑜𝑙/𝐽/𝑠 – 𝑘𝐽/mol 𝑘𝐽/mol 𝐾 𝐽𝑚C/𝑚𝑜𝑙 

 
TABLE I. Materials parameters used in the order-n ECH model. 
 
 
 

Type of ICs 
IC=MPS  IC=SS 

 Fig. 4a  Fig. 4b Fig. 3b Fig. 4e Fig. 4c Fig. 4d 

𝑓h��¼½  (J/nm2/mol) 0 0.69±0.006 0.23±0.004 0.10±0.002 0.44±0.001 0.27±0.004 

 
TABLE II. Relative effective free energy density 𝑓h��¼½  of defective final states in Figs. 3 and 4 compared to 

the perfect lamellar structure in Fig. 4(a) which is set to be the reference state.  
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FIG. 1. (a) Steady-state phase diagram in R-γ space of an irradiated A50B50 alloy. R and γ are normalized 

by the critical values. γ1 is the boundary between MPS and CP regime, two dashed lines are asymptotics 

of γ1 in (b) for R >> Rc, where CP is in SSR and compositional profile is fitted by a square wave and in 

(c) for R ~ Rc, CP is in WSR and compositional profile is fitted by a sine wave. γ2 is the boundary between 

CP and SS. Insets in (a) are cuts of microstructures of 3D KMC simulations, after Ref. [27].  
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FIG. 2. (Color online) Effect of γ on growth rate ω(k) of perturbation wave vectors k to a homogenous 

solution. CP regime is corresponding to a window of growing wave vectors (k1, k2).  
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FIG. 3. (Color online) Time evolution of concentration field of an A50B50 alloy using the order-3 ECH 

model. α and β phases are regions in red and blue, respectively. (a) IC=solid solution with small 

fluctuation. Snapshots are taken at a fraction of total time t indicated at the top. A topological defect 

analogous to “dislocation” is encircled. (b) IC=bi-layer. “Zigzag” instability marked by dashed lines.  

 

 

(a)

(b)
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FIG. 4. (Color online) Selected initial and final states with the order-3 ECH model. The final state shown 

in (a) is a defect-free lamellar structure with alternating phases characterized by a fixed wavelength λ. 

Compositional profile of B along the dashed line is shown next to final state. (b) IC=two bi-layers. A 

topological defect analogous to “grain boundary” separating two domains of different orientations is 

marked. (c) and (d) with IC=solid solution. “Disclinations” are encircled in final state. (e) Same IC as 

(a) but in a larger domain.  
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(b) (c)

(d) (e)
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FIG. 5. The relationship between 𝜎h��	/ 𝜎7g and 𝛾	/	𝛾2k:<hjiin order-1, 2 and 3 ECH models. Random 

mixing decreases interfacial energy in all three cases. (a) Results of the order-1 model. 𝜎h�� approaches 

zero at the effective critical temperature 𝑇.
h�� .  (b) The order-2 model. 𝜎h�� approaches zero when 

𝜅2
h��becomes zero. (c) The order-3 model. Steady state enters CP regime when 𝜎h�� becomes a small 

positive value, see the inset for a magnified view of the transition region.  

 

(a) (b)

(c)
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FIG. 6. Relative effective free energy density 𝑓h��¼½  vs. 1/λ in WSR of patterning with the order-3 ECH 

model. The true steady state of CP has the lowest 𝑓h��¼½  and null 𝜎h��. 
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FIG. 7. (a) Boundary parameters of the order-n ECH model and the full model (marked by solid lines) in 

a steady-state phase diagram obtained by linear stability analysis. 	𝛾2k:<hjiis the same for all models, but 

𝛾CIái¤hiI<k:<hji  deviates a lot from 𝛾CI��kk	9á¤hkk:<hji . (b) A zoom-in view of the rectangular region marked in (a).  

 

(b)

(a)
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FIG. 8. The relationships between 𝐹h��/𝐴 and λ of order-n (n = 11, 13, 15, 17, 19) ECH models, using 

operating point P2 in Fig. 7(a). The red dashed line connects the set of minima of 𝐹h��/𝐴 from these 

order-n models. The minimum of 𝐹h��/𝐴  and λc converge to fixed values for n=17.  
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FIG. 9. Line profiles of species B across one period of patterning in order-n (n = 11, 13, 15, 17, 19) ECH 

models, using operating point P2 in Fig. 7(a). Insets are magnified views of the interior of each phase, 

showing that convergence of the steady-state profiles occurs at n=17.  
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FIG. 10. (Color online) Steady-state phase diagram of an irradiated A50B50 alloy. Five selected 

irradiation conditions at R=1.65Rc are marked by dots and connected to their steady-state 

microstructures. Color is rescaled based on the solubility range in each steady state.  
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FIG. 11. (Color online) Interfacial width of steady-state microstructures (MPS and CP) as a function of 

forcing parameter γ by an order-17 ECH model at R=1.65Rc. The ratio between interfacial width and 

domain size is plotted to the right. Note that unlike the discontinuous transition from MPS to SSR, the 

change from SSR to WSR is a gradual one, and thus this gradual change is here represented by a dashed 

zone. 
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FIG. 12. (a) Steady-state phase diagram highlighting five operating points: P1 (WSR), P2 (SSR), P3 (SSR), 

P4 (very close to the border of SSR and MPS), and P5 (MPS). Using the order-17 ECH model, plot of 

relative effective free energy density 𝑓h��¼½  vs. 1/λ in patterning regime in (b) at P2; (c) at P3; (d) at P4, 

respectively. (e) Effective free energy density as 1/λ for P5 in MPS regime.  
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