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Abstract 14 

We present an ab initio study of the thermodynamic properties of cubic CaSiO3 perovskite 15 

(CaPv) over the pressure and temperature range of the Earth’s lower mantle. We compute the 16 

anharmonic phonon dispersions throughout the Brillouin zone by utilizing the phonon 17 

quasiparticle approach, which characterizes the intrinsic temperature dependence of phonon 18 

frequencies and, in principle, captures full anharmonicity. Such temperature-dependent phonon 19 

dispersions are used to calculate ab initio free energy in the thermodynamic limit (𝑁 → ∞) within 20 

the framework of the phonon gas model. Accurate free energy calculations enable us to investigate 21 

cubic CaPv’s thermodynamic properties, e.g., thermal expansivity, Grüneisen parameter, bulk 22 

modulus, heat capacity and thermal equation of state, where anharmonic effects are demonstrated. 23 

The present methodology provides an important theoretical approach for exploring phase 24 

boundaries, thermodynamic, and thermoelastic properties of strongly anharmonic materials at high 25 

pressures and temperatures.  26 
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I. INTRODUCTION 27 

CaSiO3 perovskite (CaPv) is believed to be the third most abundant mineral in the Earth’s lower 28 

mantle (LM), which constitutes 7 vol% of a pyrolitic LM [1,2]. As opposed to MgSiO3 perovskite 29 

(MgPv) and MgO periclase (Pc), the first and second most abundant phases of the LM, of which 30 

thermodynamic [3,4] and thermoelastic [5,6] properties have been systematically investigated at 31 

high pressures (P) and high temperatures (T), CaPv’s thermal properties have not been well 32 

characterized [7–10], mainly because of its strong anharmonicity. At low temperatures, e.g., T < 33 

500 K [11,12], CaPv adopts a variety of tetragonal or orthorhombic phases [13]. At high 34 

temperatures, CaPv is dynamically stabilized by anharmonic interactions, and a cubic structure 35 

develops [11,12,14,15]. Although the exact P-T conditions under which the phase transition to 36 

cubic CaPv happens are still under debate [14,16], it is widely believed that under the LM 37 

conditions, 23 < P < 135 GPa and 2000 < T < 4000 K [5,17], the cubic phase with 𝑃𝑚3'𝑚 space 38 

group is adopted [11,12].  39 

Measurements of cubic CaPv’s thermodynamic and thermoelastic properties are challenging 40 

because experiments are required to be performed at high P-T and cubic CaPv is unquenchable to 41 

ambient conditions [11]. Noguchi et al. [15] and Sun et al. [18] measured P-V-T data of cubic 42 

CaPv up to 150 GPa and 2600 K [18], but the compression curves under high P-T conditions have 43 

relatively large uncertainties. Recently, Gréaux et al. [19] and Thomson et al. [12] measured 44 

compressional wave (𝑣!) and shear wave (𝑣") velocities of cubic CaPv up to 23 GPa and 1700 K 45 

[19], whereas their reported thermoelastic parameters under LM conditions are based on 46 

extrapolations. Ab initio studies of cubic CaPv’s thermodynamic and thermoelastic properties also 47 

encounter difficulties. The quasiharmonic approximation (QHA), which has been successfully 48 

applied to MgPv and Pc [3–6], is invalid for cubic CaPv because of the presence of unstable 49 

phonon normal modes with imaginary frequencies at all pressures using harmonic phonon 50 

calculations [7,11]. Kawai and Tsuchiya [20,21] conducted ab initio molecular dynamics (MD) 51 

simulations to study the thermodynamic and thermoelastic properties of cubic CaPv. However, 52 

whether the thermodynamic properties [20] are fully converged is questionable due to the finite-53 

size effect inherent in the MD approach [11]. Recently, Prentice et al. [22] applied the self-54 

consistent vibrational field (VSCF) method to investigate the anharmonic vibrational properties of 55 

CaPv, and the cubic phase was confirmed at LM conditions. A more in-depth and systematic 56 
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investigation of cubic CaPv’s thermal properties is required for a complete understanding of the 57 

dynamic state of the deep Earth. 58 

In this study, we report the anharmonic thermodynamic properties of cubic CaPv at LM 59 

conditions by using the well-established phonon quasiparticle approach [23]. The phonon 60 

quasiparticle approach is a hybrid approach combining ab initio lattice dynamics and MD 61 

simulations, which fully accounts for anharmonic effects. In other words, it treats phonon 62 

anharmonicity to all orders in principle. It has been successfully applied to strongly [11,24] and 63 

weakly [23] anharmonic systems, metallic [24] and non-metallic [11,23] anharmonic systems, and 64 

used to compute anharmonic phonon dispersions [11,23–25], anharmonic free energies [11,23], a 65 

pre-melting phase transition [24], and lattice thermal conductivities [26,27]. Here the phonon 66 

quasiparticles of cubic CaPv are first extracted from mode-projected velocity autocorrelation 67 

function (VAF) obtained by ab initio MD simulations. Next, the phonon quasiparticle frequencies, 68 

known as renormalized frequencies, are Fourier interpolated over the Brillouin zone (BZ). Then 69 

the thermodynamic properties in the thermodynamic limit (𝑁 → ∞) are obtained within the 70 

framework of the phonon gas model (PGM) [28,29].  71 

The PGM always serves as a paradigm in calculating the thermodynamic properties of 72 

crystalline materials, which uses the phonon spectrum to compute vibrational entropy, free energy, 73 

and, thus, thermodynamic quantities. For weakly anharmonic systems, a commonly used 74 

simplification of the PGM is the QHA, which neglects the intrinsic temperature dependence of 75 

phonon frequencies and treats phonon frequencies as explicitly volume-dependent only. The QHA 76 

works well for materials of this class because it accounts for the extrinsic temperature dependence 77 

of the phonon frequencies caused by volume change. The QHA fails in strongly anharmonic 78 

systems, whereas the PGM in general still applies as long as the phonon quasiparticles are well-79 

defined, i.e., with well-defined frequencies and lifetimes [30]. The ab initio MD-based direct free 80 

energy method, e.g., thermodynamic integration (TI) [31], is another widely used method in 81 

dealing with strong anharmonicity. However, to approach the thermodynamic limit, conducting TI 82 

using ab initio MD with a sufficiently large supercell is beyond the current computational 83 

capability. The VSCF method can investigate the vibrational free energy of strongly anharmonic 84 

crystals without conducting ab initio MD. Nevertheless, vibrational calculations with a dense q-85 

mesh can still be expensive [22]. The advantage of the present PGM approach is that it uses the 86 

phonon quasiparticle spectrum obtained on a sufficiently large q-mesh to compute well converged 87 
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thermodynamic quantities [11,23]. Furthermore, here we correct the total energy error originating 88 

in the density functional theory (DFT) calculations [32,33] by making reference to previously 89 

reported experimental P-V-T data [15,19] of cubic CaPv. 90 

 91 

II. METHOD 92 

In the present approach, a phonon quasiparticle of normal mode (q, s) is numerically defined 93 

by the VAF [11,23], 94 

)𝑉𝐪"(0) ∙ 𝑉𝐪"(𝑡)0 = lim
$→&

'
$ ∫ 𝑉𝐪"∗ (𝑡))𝑉𝐪"(𝑡) + 𝑡)𝑑𝑡′

$
* ,                                 (1) 95 

where 𝑉𝐪"(𝑡) = ∑ 𝑉(𝑡) ∙ 𝑒+𝐪∙𝐫! ∙ 𝐞<𝐪".
+/'  is the (q, s)-mode-projected velocity. q is the phonon wave 96 

vector, and s labels the 3n phonon branches of an n-atom primitive cell. 𝑉(𝑡) =97 

𝑉 =>𝑀'𝐯'(t), … ,>𝑀.𝐯.(t)D  is the mass-weighted velocity with 3N components, where 98 

𝐯+(𝑡)(𝑖 = 1,… ,𝑁)  is atomic velocity produced by ab initio MD simulations of an N-atom 99 

supercell, and 𝑀+ is the atomic mass of the 𝑖01 atom in the supercell. 𝐞<𝐪" is the harmonic phonon 100 

polarization vector of mode (q, s), which is calculated by the density functional perturbation theory 101 

(DFPT) [34]. For a well-defined phonon quasiparticle, its power spectrum, 102 

𝐺𝐪"(𝜔) = I∫ )𝑉𝐪"(0) ∙ 𝑉𝐪"(𝑡)0𝑒+20𝑑𝑡
&
* I

3
                                         (2) 103 

should have a Lorentzian-type line shape with a peak at 𝜔J𝐪" and a phonon linewidth of 1/(2𝜏𝐪") 104 

[23,30], 𝜔J𝐪"  being the (q, s)-mode renormalized frequency and 𝜏𝐪"  being the lifetime. Phonon 105 

lifetimes can be used to investigate the lattice thermal conductivity [26,27]. Here we rely on the 106 

renormalized frequencies to compute anharmonic thermodynamic properties. 107 

As reported by the previous studies, the effective harmonic dynamical matrix can be constructed 108 

as [11,23,24], 109 

𝐷O(𝐪) = [𝐞<𝐪]Ω𝐪[𝐞<𝐪]4,                                                      (3) 110 

where the diagonal matrix Ω𝐪 = diag[𝜔J𝐪'3 , 𝜔J𝐪33 , … , 𝜔J𝐪5.3 ]  contains 𝜔J𝐪"3  in the diagonal, and 111 

[𝐞<𝐪] = [𝐞<𝐪', 𝐞<𝐪3, … , 𝐞<𝐪5.] is the matrix of harmonic eigenvectors. The effective harmonic force 112 

constant matrix, ΦO(𝐫), can be obtained from the Fourier transform of 𝐷O(𝐪), where the anharmonic 113 

interaction is effectively captured. Therefore, 𝜔J𝐪)" at any wave vector 𝐪′ in the BZ can be obtained 114 

by diagonalizing, 115 

𝐷O(𝐪′) = ∑ ΦO(𝐫) ∙𝐫 𝑒6+𝐪)∙𝐫,                                                   (4) 116 
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from which the anharmonic phonon dispersion and vibrational density of states (VDoS) at finite 117 

temperatures are computed. 118 

Here, ab initio MD simulations were carried out in the NVT ensemble using the DFT-based 119 

Vienna ab initio simulation package (VASP) [35] employing the local density approximation 120 

(LDA) and the projected-augmented wave method (PAW) [36]. Cubic CaPv was simulated with a 121 

2 × 2 × 2 (40 atoms) supercell with adopting a shifted 2 × 2 × 2 k-mesh and a kinetic energy 122 

cutoff of 550 eV. Our previous study has shown that 2 × 2 × 2 supercell of CaPv is sufficient to 123 

converge anharmonic interaction and anharmonic phonon dispersion [11], since anharmonic 124 

contributions of interatomic forces have shorter ranges than the harmonic ones. MD simulations 125 

were conducted on a series of volumes (V), 44.39, 40.26, 36.77, 34.34, and 32.49 Å3/primitive cell, 126 

corresponding to densities (𝜌), 4.35, 4.79, 5.25, 5.62 and 5.94 g/cm3, respectively. The temperature 127 

ranging from 1500 to 4000 K was controlled by Nosé thermostat [37]. Each simulation ran for 128 

over 60 ps with a time step of 1 fs. Harmonic phonon normal modes were calculated using DFPT 129 

[34] implemented in the VASP package. Throughout the V, T range investigated, phonon 130 

quasiparticles were well-defined, and the cubic phase of CaPv was confirmed. 131 

 132 

III. RESULTS AND DISCUSSION 133 

The renormalized phonon frequencies, 𝜔J𝐪" , are first extracted from phonon quasiparticles 134 

sampled by the MD simulations. In order to converge thermodynamic properties, it is desirable to 135 

obtain 𝜔J𝐪" on a much denser q-mesh to approximate the thermodynamic limit. Eq. (4) enable us 136 

to obtain 𝜔J𝐪"  at any q-point throughout the BZ, hence the anharmonic phonon dispersion and 137 

VDoS [11,23–25]. The obtained temperature-dependent phonon dispersions of cubic CaPv at 𝜌 = 138 

5.25 g/cm3 are showcased in Fig. 1(a), where the intrinsic temperature-dependence of 𝜔J𝐪" in the 139 

BZ is clearly exhibited. The corresponding temperature-dependent VDoS obtained on a 140 

20 × 20 × 20 q-mesh approximating the thermodynamic limit are shown in Fig. 1(b). Except for 141 

the acoustic branches centered at wave vector 𝐑('
3
, '
3
, '
3
), which only accounts for a small portion 142 

of the phonon dispersion, frequencies of most phonon modes are weakly temperature-dependent. 143 

This is counterintuitive since CaPv is strongly anharmonic. The acoustic modes at R correspond 144 

to the soft modes with imaginary frequencies from harmonic phonon calculations. The coupling 145 

of the cubic phase stability with the phonon concept’s validity has been carefully checked in our 146 
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previous study [11]. Once the cubic phase is stabilized, and the phonon picture is valid, the 147 

frequencies of most of the other phonon modes are not strongly temperature-dependent in the 148 

temperature range studied (1500 < T < 4000 K). 𝜔J𝐪" of most phonon branches show nonmonotonic 149 

temperature-dependence, while only optical modes with 𝜔J𝐪" above ~800 cm-1 display discernible 150 

frequency shift down with increasing temperature. Nevertheless, such temperature-dependence is 151 

comparable to that of MgPv, which is weakly anharmonic [23,26], at the same P-T conditions [27]. 152 

The anharmonic phonon dispersions are further used to compute vibrational entropy (S) and free 153 

energy (F) within the framework of the PGM [28,29]. 154 

When using the temperature-dependent phonon dispersions to compute thermodynamic 155 

properties, the QHA free energy formula is no longer valid. Nevertheless, the entropy formula 156 

[11,23,24,30], 157 

𝑆(𝑇) = 𝑘7 ∑ [_𝑛𝐪" + 1a ln_𝑛𝐪" + 1a − 𝑛𝐪"ln𝑛𝐪"]𝐪" ,                             (5) 158 

where 𝑛𝐪" = [exp	(ℏ𝜔J𝐪"(𝑇)/𝑘7𝑇) − 1]6' , is still applicable. 𝜔J𝐪"(𝑇) at arbitrary temperatures 159 

were obtained by fitting a second-order polynomial in T to 𝜔J𝐪"  [23,24] calculated at several 160 

temperatures and constant volume. The obtained 𝑆(𝑇) at different densities are shown in Fig. 2(a). 161 

The Helmholtz free energy can be obtained by [24], 162 

𝐹(𝑉, 𝑇) = 𝐸(𝑉, 𝑇*) − 𝑇*𝑆(𝑉, 𝑇*) − ∫ 𝑆(𝑇))𝑑𝑇)8
8"

,                                (6) 163 

where the reference temperature 𝑇* = 1500 K, and 𝐸(𝑉, 𝑇*)  is the time-averaged internal energy 164 

obtained from the MD simulation at 𝑇*. The obtained 𝐹(𝑉) at different temperatures are shown as 165 

dashed curves in Fig. 2(b). The present PGM approach relying on renormalized phonon 166 

frequencies to compute vibrational entropy, free energy and thermodynamic quantities overcomes 167 

the deficiencies of QHA in dealing with strongly anharmonic materials in two aspects. First, the 168 

intrinsic anharmonic effects arise from phonon-phonon interaction, and the phonon frequency is 169 

explicitly temperature-dependent instead of implicitly dependent on volume only. Second, the 170 

crystal structure is stabilized by anharmonic interactions only at high temperatures while being 171 

dynamically unstable at low temperatures. Our previous studies have shown that the present PGM 172 

approach gives consistent anharmonic entropy with that provided by TI using the same supercell 173 

[11,23]. Besides, by Fourier interpolating the renormalized phonon frequencies over the BZ, the 174 

PGM also overcomes the finite-size effect inherent in TI [11,23], the simulation cell size of which 175 

is limited by the computational capability of ab initio MD. The difference between well converged 176 
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free energy in the thermodynamic limit and the one obtained from a finite size supercell is 177 

significant for determining phase boundaries [23,24]. 178 

Cubic CaPv’s isothermal equations of state (EoS) are computed by fitting the 𝐹(𝑉, 𝑇) to a third-179 

order finite strain expansion at each temperature. For practical applications of these results to 180 

Earth’s interior modeling, errors in the total energy originating in the exchange-correlation 181 

functional used, the LDA, and possibly also in the PAWs adopted are undesirable. Here we 182 

introduce an additional correction to 𝐹(𝑉, 𝑇) to bring the calculated EoS into full agreement with 183 

experimentally measured high-temperature EoSs [12,15,18,19]. Anharmonicity, in principle, is 184 

adequately addressed by the quasiparticle approach. To obtain theoretical isothermal compression 185 

curves in good agreement with experiments, it is desirable to provide proper constraints at both 186 

low and high pressures. Here we adopted Gréaux et al.’s [19] and Noguchi et al.’s [15] 187 

experimental P-V-T data for cubic CaPv to impose such constraints at low and high pressures, 188 

respectively. As for other recently reported experimental results, Thomson et al. [12] conducted 189 

measurements up to ~16 GPa and therefore provides the same constraint of the compression curve 190 

by Gréaux et al. [19] at low pressures. Sun et al.’s [18] and Noguchi et al.’s [15] measurements 191 

have relatively significant uncertainties in pressure. Noguchi et al. [15] performed both laser 192 

heating and external heating diamond-anvil-cell (DAC) experiments, and their data are consistent 193 

with Gréaux et al.’s [19] data obtained in multi-anvil. The experimental data by Sun et al. [18] 194 

were obtained using a laser-heated DAC, while multi-anvil and resistance-heated DAC should 195 

have better temperature control. Therefore, Sun et al.’s [18] measurements were not used in the 196 

energy correction procedure. The reference temperature, 𝑇9:;, chosen to make the correction was 197 

1600 K since experimental P-V data is available near this temperature. Noguchi et al.’s 198 

measurements were conducted at ~1600 K [15] and Gréaux et al.’s measurements at ~1500 and 199 

~1700 K [19]. The calculated compression curve was corrected by adopting the generalized Kunc-200 

Syassen scheme (KSr) [32,33], 201 

Δ𝑉(𝑃) = <"
#$%

<"&'(
𝑉 l="

&'(

="
#$% 𝑃, 𝐾:>!) n − 𝑉?@8(𝑃),                                  (7) 202 

where 𝑉*
:>! , 𝐾*

:>!  and 𝐾:>!)  are parameters obtained from measurements at 𝑇9:; , while 𝑉*?@8 , 203 

𝐾*?@8  and 𝐾?@8)  are parameters obtained from 𝐹(𝑉, 𝑇)  at the same 𝑇9:; . 𝑉* , 𝐾*  and 𝐾′  are 204 

isothermal EoS parameters, i.e., equilibrium volume, bulk modulus and pressure derivative of the 205 

bulk modulus, respectively, obtained at 𝑇9:;. Δ𝑉(𝑃) can then be easily inverted to give Δ𝑃(𝑉). In 206 
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this way, the correction to 𝐹(𝑉, 𝑇) at 𝑇9:; can be obtained as ∆𝐹(𝑉) = ∫∆𝑃(𝑉)𝑑𝑉 [33]. Note the 207 

choice of the integral lower bound is not unique and can shift the energy value. However, this 208 

energy shift does not change any thermodynamic quantities since they are obtained by taking free 209 

energy derivatives. Only how energy varies as a function of temperature and volume matters in 210 

this study. Once the 𝐹(𝑉) was corrected at 𝑇9:;, the same correction ∆𝐹(𝑉) was then applied to 211 

other temperatures, i.e., 1500 K < T < 4000 K. The corrected 𝐹(𝑉) at different temperatures are 212 

shown as solid curves in Fig. 2(b). Note the temperature-independent energy correction is made 213 

only to the DFT energy, while the temperature-dependent vibrational energies, including 214 

anharmonicity, should be adequately addressed by the phonon quasiparticle approach combined 215 

with the PGM. In this study, thermodynamic quantities obtained before (dashed curves) and after 216 

(solid curves) adding the correction term are both given. By fitting the corrected 𝐹(𝑉, 𝑇) to a third-217 

order finite strain expansion at each temperature, the resulting pressure-volume EoS isotherms are 218 

shown as solid curves in Fig. 3, along with uncorrected ones shown as dashed curves. The 219 

corrected EoS are in good agreement with measured data within experimental uncertainties. At 𝑇* 220 

= 1500 K, the EoS parameters obtained are 𝑉* = 46.39 Å3/primitive cell, 𝐾8* = 264 GPa, and 𝐾8*)  221 

= 3.1, where 𝑉* is the equilibrium volume, 𝐾8* is the isothermal bulk modulus at 𝑉*, and 𝐾8*)  is 222 

the pressure derivative of the isothermal bulk modulus at 𝑉*, respectively. 223 

With 𝑉(𝑃, 𝑇) and 𝑃(𝑉, 𝑇) obtained, cubic CaPv’s thermal expansivity (𝛼) and isothermal bulk 224 

modulus (𝐾8) are readily calculated as, 225 

𝛼 = '
<
=A<
A8
D
B

,                                                             (8) 226 

and, 227 

𝐾8 = −𝑉 =AB
A<
D
8
.                                                         (9) 228 

The obtained 𝛼(𝑇) and 𝐾8(𝑇) at a series of LM pressures are displayed in Figs. 4(a) and 4(b), 229 

respectively. Compared with 𝛼 of MgPv [3] and Pc [4] obtained using the QHA, the inclusion of 230 

intrinsic anharmonic effects for cubic CaPv gives a slow and approximately linear temperature-231 

dependence of 𝛼 at low pressures [4]. With increasing pressure, 𝛼 decreases, and the effects of 232 

temperature become less and less pronounced, resulting essentially in temperature-independent 𝛼 233 

at constant pressure. The 𝛼 by Kawai and Tsuchiya 2014 [20] is also shown for comparison. 234 

Compared with our results before EoS correction, their 𝛼  has a rather rapid temperature-235 

dependence and is larger than ours at low pressures and high temperatures. The overestimation of 236 
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𝛼, especially at low pressures and high temperatures, is an indication of the inadequacy of the 237 

QHA [4,38]. Hence it is likely also a hint of not fully accounting for anharmonic effects in the 238 

work by Kawai and Tsuchiya 2014 [20]. Apart from the anharmonic effects, the EoS correction 239 

also contributes to the discrepancy in 𝛼 between the present study and Kawai and Tsuchiya 2014 240 

[20]. 241 

The thermodynamic Grüneisen parameter (𝛾) is a very important quantity often used to quantify 242 

the relationship between thermal and elastic properties. It is defined as 243 

𝛾 = <C=(
D)

,                                                             (10) 244 

where 𝐶<  is the isochoric heat capacity. It is also a useful indicator of the importance of 245 

anharmonicity, increasing with the latter [4]. The calculated 𝛾(𝑇) at a series of pressures are shown 246 

in Fig. 5. Similar to 𝛼, cubic CaPv’s 𝛾 is nearly independent of temperature at all LM pressures. 247 

In some cases, 𝛾 of CaPv slowly decreases with temperature, as opposed to the monotonically 248 

increasing behavior reported by Kawai and Tsuchiya 2014 [20], and those of MgPv [3] and Pc [4] 249 

obtained by QHA. Unlike 𝛼, the discrepancy in 𝛾 between our study and Kawai and Tsuchiya 250 

2014 [20] originates mainly in whether anharmonicity being fully accounted for. The EoS 251 

correction plays a minor role. The volume dependence of 𝛾 is often expressed by a parameter, 𝑞 =252 

(𝜕	ln	𝛾/𝜕	ln	𝑉)8. At P = 20 GPa and T = 1500 K, we find 𝑞 = 0.80. At 20 GPa and with increasing 253 

temperature, 𝑞 decreases to 0.38 at 4000 K. At 1500 K, with increasing pressure, 𝑞 decreases to -254 

0.16 at 140 GPa.  255 

𝐶< of cubic CaPv is calculated from temperature-dependent anharmonic phonon dispersions by, 256 

𝐶< = 𝑇 =AE
A8
D
<

,                                                         (11) 257 

within the PGM. Figure 6(a) compares the 𝐶<  calculated this way accounting for full 258 

anharmonicity, with that derived from temperature-independent anharmonic phonon dispersion 259 

obtained only at the reference temperature 𝑇* = 1500 K. With increasing temperature, the latter 𝐶< 260 

converges to the Dulong-Petit classical limit, 3𝑛𝑘7 , which is also the high-temperature limit 261 

within the Debye model [39] for harmonic crystal with temperature-independent phonon 262 

frequencies. While the 𝐶< obtained with temperature-dependent phonon spectra accounting for full 263 

anharmonicity can be higher than such classical limit at high temperatures [40,41] (see the solid 264 

black curve in Fig. 6(a)). The anharmonic contribution to CaPv’s 𝐶< at constant volume increases 265 

nearly linearly with temperature [40]. Hence, 𝐶< is another important and straightforward indicator 266 



 

 11 

of anharmonic effects inherent in the phonon frequencies. The isobaric heat capacity (𝐶B) is given 267 

by  268 

𝐶B = 𝐶<(1 + 𝛾𝛼𝑇),                                                         (12) 269 

the temperature and pressure dependence of which are summarized in Fig. 6(b). 𝐶B is valuable for 270 

experimentally determining CaPv’s lattice thermal conductivity, 𝜅 = 𝐷𝜌𝐶B , where 𝐷  is the 271 

measured thermal diffusivity.  272 

The adiabatic bulk modulus (𝐾E) is related to the isothermal one (𝐾8) by, 273 

𝐾E = 𝐾8(1 + 𝛾𝛼𝑇).                                                         (13) 274 

The obtained 𝐾E(𝑇) at different pressures are displayed in Fig. 7(a), compared with a previous 275 

study by Kawai and Tsuchiya 2014 [20]. At all pressures, 𝐾E is nearly temperature-independent 276 

and slightly decreases with temperature. The 𝐾E(𝑃) along several isotherms are shown in Fig. 7(b), 277 

compared with previous studies by Kawai and Tsuchiya 2015 [21], and Thomson et al. [12]. 278 

Thomson et al. conducted measurements for cubic CaPv’s 𝑣! and 𝑣" in a narrow pressure range, 279 

i.e., up to ~16 GPa, and extrapolated its thermoelastic properties to LM conditions using literature 280 

P-V-T data [12]. The different experimental literature data used in the present study [15,19] and 281 

Thomson et al. [12,15,18,42,43] results in a discrepancy in the pressure dependence of 𝐾E. Besides, 282 

the present study makes DFT energy correction with reference to the literature data at 𝑇9:; = 1600 283 

K, while anharmonicity is adequately addressed by the phonon quasiparticle approach at higher 284 

temperatures. Note that Kawai and Tsuchiya 2014 [20] obtained 𝐾E in the thermodynamic way via 285 

Eq. (13), while Kawai and Tsuchiya 2015 [21] obtained 𝐾E  by calculating the thermoelastic 286 

parameters, which slightly differs from the former. The discrepancy in 𝐾E between our study and 287 

Kawai and Tsuchiya 2014 [20] results from the lack of EoS correction using experimental P-V-T 288 

data by them and the accumulated differences in 𝛼 and 𝛾 accounting for anharmonicity. As for 289 

Kawai and Tsuchiya 2015, our calculated 𝐾E  before EoS correction agrees with their results 290 

relatively well, meaning the anharmonic effects on 𝐾E  are properly addressed by Kawai and 291 

Tsuchiya 2015 [21]. The discrepancy between our corrected results and theirs originates in our 292 

EoS correction process. 293 

The Mie-Grüneisen EoS [44,45] is a commonly used relation to determine the high-temperature 294 

pressure in shock-compressed solids. It can be described as, 295 

𝑃(𝑉, 𝑇) = 𝑃*(𝑉) + 𝑃01(𝑉, 𝑇),                                               (14) 296 
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where 𝑃*  is the pressure at the reference temperature, 𝑇* , and 𝑃01  is the thermal pressure. In 297 

principle, 𝑃* is well described by the third-order Birch-Murnaghan EoS, 298 

𝑃*(𝑉) =
5
3
𝐾8* v=

<
<"
D
6F/5

− =<
<"
D
6H/5

w x1 + 5
I
(𝐾8*) − 4) v=<

<"
D
63/5

− 1wz.             (15) 299 

𝑃01 is expressed by the difference of thermal energy, 𝐸01, between 𝑇 and 𝑇*, 300 

𝑃01(𝑉, 𝑇) =
J*+(<)

<
[𝐸01(𝑉, 𝑇) − 𝐸01(𝑉, 𝑇*)],                                    (16) 301 

where 𝛾MN  is the Mie-Grüneisen EoS Grüneisen parameter. 𝐸01  is related to the Debye 302 

temperature, 𝜃, 303 

𝐸01(𝑉, 𝑇) = 9𝑛𝑅𝑇 =O(<)
8
D
65
∫ >,

:$6'
𝑑𝑥O(<)/8

* ,                                    (17) 304 

where 𝑛 is the number of atoms per formula unit, and 𝑅 is the gas constant. 𝛾MN(𝑉) is expressed 305 

as, 306 

𝛾MN(𝑉) = 𝛾MN* =
<
<"
D
P*+

,                                                  (18) 307 

where 𝑞MN is a volume-independent parameter. 𝜃(𝑉) is expressed as, 308 

𝜃(𝑉) = 𝜃*exp l−
J*+6J*+"

P*+
n,                                              (19) 309 

where 𝛾MN* and 𝜃* are the Mie-Grüneisen EoS Grüneisen parameter and Debye temperature at 310 

(𝑉*, 𝑇*), respectively.  311 

Here we chose 𝑇* = 1500 K and adopted the obtained isothermal EoS parameters, 𝑉*, 𝐾8* and 312 

𝐾8*) . Then we fit the calculated P-V-T data at higher temperatures to the Mie-Grüneisen EoS 313 

relation to obtain the remaining EoS parameters, 𝜃*, 𝛾MN* and 𝑞MN. We found 𝛾MN* and 𝑞MN to 314 

be insensitive to the variation of 𝜃*, which is consistent with previous reports [15,18]. Also, it is a 315 

common practice to fix 𝜃* [18,20,42,43], and fit for 𝛾MN* and 𝑞MN. Therefore, we first evaluated 316 

𝜃* from the Debye model [39,46], 317 

𝜃 = 1
Q-
=5R..S
ITU

D
'/5

𝑣M,                                                   (20) 318 

where ℎ, 𝑁V and 𝑀 are Plank constant, Avogadro number, and molecular mass per formula unit. 319 

𝑣M is the average wave velocity integrated over several crystal directions [46], 320 

𝑣M = v'
5
l '
W%,
+ 3

W/,
nw
6'/5

.                                                   (21) 321 
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Here we adopted 𝑣! = 9.28 km/s and 𝑣" = 5.17 km/s of cubic CaPv at 0 GPa and 1500 K from 322 

Gréaux et al. [19]. The resulting 𝜃* is 815 K. Finally, by fixing 𝜃* and allowing 𝛾MN* and 𝑞MN to 323 

vary, we obtained the fitting parameters 𝛾MN*  = 1.49, and 𝑞MN  = 0.68. The obtained Mie-324 

Grüneisen EoS parameters perfectly describe the calculated P-V-T data shown in Fig. 3, which are 325 

summarized in Table I and compared with several previous studies [12,15,18,20,42,43]. We did 326 

not express the Mie-Grüneisen EoS at low reference temperatures, e.g., 300 K, for two reasons. 327 

First, cubic CaPv is unquenchable to ambient conditions and unstable at low temperatures. Second, 328 

anharmonicity addressed by phonon quasiparticles cannot be extrapolated to low temperatures at 329 

which quasiparticles are not well-defined and the stable structure is different. 330 

An interesting fact to note is that the thermodynamic Grüneisen parameter, 𝛾, defined by Eq. 331 

(10) and displayed in Fig. 5, differs from the Mie-Grüneisen EoS Grüneisen parameter, 𝛾MN. For 332 

example, at 1500 K and 30 GPa, our calculated 𝛾 = 1.48, while 𝛾MN = 1.40. At 1500 K and 140 333 

GPa, 𝛾  = 1.24, while 𝛾MN  = 1.20. The two quantities coincide with each other [44,45] when 334 

satisfying three criteria. First, the system is within the framework of QHA, so that 𝛾  can be 335 

approximated by 𝛾̅ [44,45], 336 

𝛾̅ =
∑ J!D)!!

D)
,                                                           (22) 337 

where 𝐶<+ is the mode isochoric heat capacity, and 𝛾+ = −(𝜕	ln	𝜔+/𝜕	ln	𝑉) is the mode Grüneisen 338 

parameter. Meanwhile, 𝛾MN is associated with 𝛾+ [44,45], 339 

𝛾MN =
∑ J!Y01!!

Y01
,                                                           (23) 340 

where 𝐸01+ is the mode thermal energy. Second, by assuming all 𝛾+ are equal to each other [45], 𝛾+ 341 

is factored out of Eq. (22) and (23), in which way 𝛾 = 𝛾̅ = 𝛾MN. However, realistically, 𝛾+ are not 342 

equal. Therefore third, only at sufficiently high temperature, e.g., all 𝐶<+ are equal and all 𝐸01+ are 343 

equal, 𝛾MN is an approximation to 𝛾̅ [45]. Here for cubic CaPv, none of the criteria is satisfied, 344 

resulting in a difference between 𝛾 and 𝛾MN.  345 

 346 

IV. CONCLUSIONS 347 

In summary, we have computed the temperature-dependent anharmonic phonon dispersions of 348 

cubic CaPv throughout the Earth’s lower mantle conditions using the phonon quasiparticle 349 

approach. Anharmonic phonon dispersions with stable phonons enabled us to evaluate the ab initio 350 
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free energy, 𝐹(𝑉, 𝑇), in the thermodynamic limit (𝑁 → ∞) [11,23,24] within the phonon gas 351 

model [28,29]. DFT energy errors were corrected by carefully combing [32,33] calculated 𝐹(𝑉, 𝑇) 352 

and pressure, 𝑃(𝑉, 𝑇), with experimental P-V-T data [15,19]. The corrected 𝐹(𝑉, 𝑇) was used to 353 

investigate the cubic CaPv’s thermal equation of state (EoS) and several thermodynamic quantities 354 

of interest. The calculated thermal expansivity and thermodynamic Grüneisen parameter show 355 

nearly temperature-independent behavior, which is a sign of the importance of anharmonic effects 356 

[4]. The intrinsic temperature dependence of phonon frequencies caused by phonon-phonon 357 

interaction leads to a discernibly larger isochoric heat capacity beyond the classical limit at high 358 

temperatures [40,41]. The calculated P-V-T data are also fit to the Mie-Grüneisen EoS. The 359 

obtained Mie-Grüneisen EoS Grüneisen parameter differs [44,45] from the thermodynamic 360 

Grüneisen parameter, which is, in part, also caused by anharmonicity. The present approach for 361 

accurate free energy calculations can be applied to investigate phase boundaries [24] and 362 

thermodynamic and thermoelastic properties of other strongly anharmonic systems at high 363 

pressures and temperatures. 364 
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TABLE I. Mie-Grüneisen EoS parameters of this study compared with previous studies 436 

[12,15,18,20,42,43]. 437 

 This 
study 

Wang et 
al. 

Shim and 
Duffy 

Noguchi 
et al. 

Kawai and 
Tsuchiya 

Sun et 
al. 

Thomson 
et al. 

𝑇* (K) 1500 300 300 700 1000 300 300 
𝑉* (Å3) 46.39 45.58 45.58 46.5 46.17 45.4 45.57 
𝐾8* 

(GPa) 264 232 236 207 203.5 249 248 

𝐾8*)  3.1 4.8 3.9 4 4.76 4 3.6 
𝜃* (K) 815 1100 1000 1300 1100 1000 771 
𝛾MN* 1.49 1.7 1.92 2.7 1.576 1.8 1.67 
𝑞MN 0.68 1.0 0.6 1.2 0.96 1.1 1.1 

  438 
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 439 
FIG. 1. Anharmonic (a) phonon dispersions and (b) vibrational density of states (VDoS) at a series 440 

of temperatures at constant density.  441 
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 442 
FIG. 2. (a) Vibrational entropy (S) vs. T at a series of densities. (b) Helmholtz free energy (F) vs. 443 

V at a series of temperatures before (dashed curves) and after (solid curves) DFT energy correction.  444 
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 445 
FIG. 3. Isothermal third-order finite strain EoS at a series of temperatures before (dashed curves) 446 

and after (solid curves) DFT energy correction, compared with experimental measurements 447 

[15,19]. Error bars show the experimental uncertainties.  448 
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 449 
FIG. 4. (a) Thermal expansivity (𝛼) and (b) isothermal bulk modulus (𝐾8) vs. T at a series of 450 

pressures before (dashed curves) and after (solid curves) DFT energy correction. Dash-dotted 451 

curves are results from a previous study [20].  452 
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 453 
FIG. 5. Thermodynamic Grüneisen parameter (𝛾) vs. T at a series of pressures before (dashed 454 

curves) and after (solid curves) DFT energy correction. Dash-dotted curves are results from a 455 

previous study [20].  456 
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 457 
FIG. 6. (a) Isochoric heat capacity (𝐶<) vs. T at constant density. Solid black curve was calculated 458 

from temperature-dependent anharmonic VDoS, and solid blue curve was calculated from 459 

temperature-independent anharmonic VDoS obtained only at the reference temperature 𝑇* = 1500 460 

K. Red dashed line labels the classical limit, 3𝑛𝑘7. (b) Isobaric heat capacity (𝐶B) vs. T at a series 461 

of pressures before (dashed curves) and after (solid curves) DFT energy correction. Dash-dotted 462 

curves are results from a previous study [20].  463 



 

 24 

 464 
FIG. 7. (a) Adiabatic bulk modulus (𝐾E) vs. T at a series of pressures before (dashed curves) and 465 

after (solid curves) DFT energy correction. (b) 𝐾E vs. P along several isotherms. Dash-dotted and 466 

dash-dot-dotted curves are results from previous studies [12,20,21]. 467 


