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Electron-phonon superconductors at high pressures have displayed the highest values of critical
superconducting temperature Tc on record, now rapidly approaching room temperature. Despite
the importance of high-P superconductivity in the quest for room-temperature superconductors, a
mechanistic understanding of the effect of pressure and its complex interplay with phonon anhar-
monicity and superconductivity is missing, as numerical simulations can only bring system-specific
details clouding out key players controlling the physics. Here we develop a minimal model of
electron-phonon superconductivity under an applied pressure which takes into account the anhar-
monic decoherence of the optical phonons. We find that Tc behaves non-monotonically as a function
of the ratio Γ/ω0, where Γ is the optical phonon damping and ω0 the optical phonon energy at zero
pressure and momentum. Optimal pairing occurs for a critical ratio Γ/ω0 when the phonons are
on the verge of decoherence (“diffuson-like” limit). Our framework gives insights into recent exper-
imental observations of Tc as a function of pressure in the complex BCS material TlInTe2.

I. INTRODUCTION

When a crystal lattice is subjected to a (hydrostatic)
pressure deformation, its phonon frequencies change in
response to the change of volume, in a way which is con-
trolled by the materials’s Grüneisen parameter, hence by
the anharmonicity of the vibration modes. However, the
effects of these changes in the phonon frequencies, and of
the related anharmonicity, on the superconducting prop-
erties of a material have largely remained poorly under-
stood. Filling this knowledge gap is an urgent problem in
order to develop an understanding of superconductivity
in materials under pressure, which include the highest-Tc
values recorded so far in the high-pressure hydride mate-
rials1–4.

On one hand, a large number of experimental works
have shown how the superconducting critical tempera-
ture Tc changes as a function of pressure P for a vari-
ety of materials. For elemental superconductors, a com-
monly observed trend in experiments is a decrease of Tc
with increasing P , which has been theoretically predicted
upon analyzing the behaviour of the Eliashberg electron-
phonon coupling function α2g(ω) as a function of P , see
Refs.5–9. A similar behaviour is seen in many technologi-
cally important materials, such as Nb3Sn, see Ref.10. An
increase of P typically shifts the α2g(ω) distribution to
higher frequencies, thus driving the system into an un-
favorable regime as per the Bergmann-Rainer criterion11

for the electron-phonon coupling. Notable exceptions to
the above standard rule for elemental superconductors
is represented by α-uranium9,12, while another puzzling
material such as bismuth is known to have a very low Tc
at ambient pressure (on the order of the mK)13,14 and

a decent Tc (7 − 8K) at higher pressures15. In both
these systems, new effects play a role. In α-uranium
the phonon density of states is very rich of soft vibra-
tional modes16, traditionally attributed to anharmonic-
ity in crystals17, although their origin in α-uranium is
still under debate16. In bismuth, instead, the Debye en-
ergy is very close to the Fermi energy, thus leading to
an almost vanishing attraction for the Cooper pairs14.
At high pressure, a more close-packed structure becomes
favourable, which changes the underlying phonon physics
leading to more favourable conditions for pairing.

On the other hand, exploring the effect of pressure on
more complex non-elemental materials has led to a zool-
ogy of trends of Tc as a function of P , see e.g. Ref.18.
In such materials, exceptions to canonical Tc behavior
with pressure according to phonon frequency shifts and
the Bergmann-Rainer criterion lay abound. In almost
all cases, understanding and isolating the key ingredi-
ents that affect Tc as a function of pressure at the level
of model Hamiltonians is a futile exercise given their in-
credible microscopic complexity. The cuprates form a
case in point where even the pairing mechanism is highly
debated and the quasiparticle picture is ill-defined. Nev-
ertheless, in phonon mediated superconductors, numeri-
cal simulations have provided invaluable quantitative in-
sights into the phonon dispersion relations, and into the
structural stability of superconducting compounds, in-
cluding many new materials.

More specifically, numerical calculations allow one to
estimate the anharmonicity of the various phonon modes
involved, by comparing fully anharmonic calculations
with harmonic calculations4,19. As a matter of fact, early
theoretical approaches5–9 ignored phonon anharmonic-
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ity while other approaches20–22, including more recent
works on the high-Tc hydrides19,23–33 focus mainly on the
phonon energy renormalizations neglecting anharmonic
damping/decoherence. The latter is a key ingredient that
is needed to properly describe the effect of pressure on
phonon-mediated Cooper pairing, as will be shown in our
work. Thus a mechanistic picture of high pressure effects
on the superconducting state which exploits the synergy
between anharmonic phonon decoherence and phonon en-
ergy renormalization is missing in most materials includ-
ing elemental superconductors.

In this paper, we develop a minimal version of such a
theory by working with a gap equation in the weak cou-
pling BCS limit. Crucially, to mediate Cooper pairing,
we implement optical phonon propagators which contain
the effect of an external applied pressure and the re-
sulting anharmonic decoherence via the optical phonon
damping34,35. The analytical theory is able to provide
predictions that allow one to disentangle the complex
interplay between pressure-induced changes of optical
phonon energy and anharmonic decoherence, and their
effects on the Tc. The results of our theory are pre-
sented in the specific context of a recent high pressure
study on the superconductor TlInTe2. Different physi-
cal regimes are predicted, which include (i) monotonic
decrease of Tc with P as observed in many systems; (ii)
non-monotonic trend with a minimum, in conjunction
with optical phonon softening, which qualitatively ex-
plains recent experiments in TlInTe2 from Ref.36; (iii)
non-monotonic trend with a maximum in a regime of in-
coherent phonons where the quasiparticle picture breaks
down.

We emphasize that our goal is to approach this ques-
tion from a phenomenological viewpoint with key inputs
from experiments. We do not wish to provide accurate
predictions of Tc as a function of pressure – an endeavor
elusive to even state-of-art numerical methods. Rather,
we take the perspective that the coordination between
decoherence and frequency renormalization induced by
phonon anharmonicity can play a role dominant enough
to provide a reasonable qualitative understanding of ex-
perimental data. From such a proof-of-principle demon-
stration, our expectation is that this synergy between
energy scales must necessarily constitute a key ingredi-
ent of any serious future numerical first principle study
that aims to understand superconducting properties of
materials such as TlInTe2.

II. EXPERIMENTAL STANDPOINT

Recent high pressure Raman spectroscopy, X-ray
diffraction and transport measurements in TlInTe2 along
with first-principles band structure calculations uncov-
ered a change in Fermi surface topology due to a Lifshitz
transition between 6.5-9 GPa, leading to the formation
of enlarged electron pockets at the Fermi level. This fea-
ture is preceded by a superconducting transition at 5.7

GPa with Tc ' 4K. With increasing pressure, the Tc
decreases steadily and rises again with a minimum lo-
cated around 10 GPa. Concurrent to this V shaped Tc
“anomaly”, there is a further softening of the Ag phonon
mode. It is natural to attribute such a V-shaped Tc be-
havior to changes in electronic density of states or the
softening of the Ag phonon mode as was concluded by
the authors of Ref.36. After all, both these quantities
play key roles in controlling superconducting properties
especially in phonon mediated superconductors.

But on closer examination, these arguments are de-
batable at best. First, the theoretically calculated elec-
tronic density of states (DOS) from the electron pocket
becomes larger in the regime between 6GPa and 9GPa
due to the Lifshitz transition. However, this is exactly
the regime where Tc decreases, thus eliminating the elec-
tronic DOS as the key driver for the observed trend in
Tc. Second, the softening of the Ag phonon mode oc-
curs around P ∗ ∼ 12.5 GPa greater than the pressure
where Tc is minimum. But any argument justifying a de-
crease in Tc with increasing phonon frequency implicitly
invokes the Bergmann-Rainer criterion. While this crite-
rion works well for P < P ∗, the same argument fails when
P > P ∗ since a softening phonon mode would imply a
second dip in Tc approximately symmetric with respect
to P ∗. This however seems to contradict experimental
observations.

Having ruled out a dominant role of (purely) phonon
frequency shifts or electronic DOS in explaining observed
experimental behavior, we turn to the possibility that the
phonon linewidth could be a key player in determining
superconducting properties in TlInTe2. Raman data as
a function of pressure indicates that anharmonicity in
this material is strong enough to significantly increase
the phonon linewidth (Γ) with respect to the peak fre-
quency ω′, the latter controlled by the key parameter ω0,
but weak enough so that the phonons remain coherent
(Γ < ω0). As we will see below, this is precisely the
regime where Tc correlates with the ratio Γ/ω0. The del-
icate balance in hierarchy of scales and the possibility of
disentangling other effects such as electronic DOS and
phonon frequency shifts, makes TlInTe2 an ideal play-
ground to test the hypothesis presented in this paper.
We note that the experimental situation in TlInTe2 is
evolving. For example, it is still not clear whether the
normal state yielding the superconductor exhibits all con-
ventional Fermi liquid properties. To date, there are no
attempts to determine the pairing symmetry of the super-
conducting state either. Even the nature and full symme-
try characterization of phonons responsible for pairing,
the strength of individual electron-phonon couplings etc,
is undetermined. Furthermore, there exist uncertainties
between experiment and theory in the measurement of
the bulk modulus and its derivative, which could in prin-
ciple change the finer details of the relationship between
pressure and frequency. So far, we know of no improved
equation of state that accounts for all the experimental
measurable quantities precisely, so we use the best can-
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FIG. 1. Mechanism of Tc enhancement through anharmonic-
ity with two phonon modes. (Left panel) In the absence
of anharmonic decoherence (D = 0), the Stokes (S-) and
anti-Stokes (aS-) processes are insensitive to their phase and
are thus indistinguishable. This scenario leads to ordinary
Cooper pairing. (Middle panel) Weak anharmonic deco-
herence (D ∼ D∗) sensitizes the phase of the S- and aS- pro-
cesses and enables them to act coherently and enhance the
effective coupling of electrons and phonons leading to strong
Cooper pairs. (Right panel) For very strong anharmonicity
(D � D∗), the S- and aS- processes are only weakly sensi-
tive to their phases making them effectively indistinguishable
while acting to reduce the effective coupling of electrons and
phonons leading to weak pairing.

didate available in literature, i.e. the well-known Birch-
Murnaghan equation of state for deriving the relationship
between pressure and frequency (used also in the exper-
imental study of Ref.36). Hence we keep our formalism
simple but general enough to accommodate these uncer-
tainties until future experiments paint a more complete
picture of the material’s phenomenology.

III. THEORETICAL FRAMEWORK

A. Optical phonon energy under pressure

We start by analyzing the effect of external pressure
on the optical phonons of a crystal lattice. The main
effect of pressure is to induce a negative volume change
of the material. The change of volume, in turn, is related
to a change of phonon frequency, through the Grüneisen
parameter, γ = −d lnω′/ d lnV , via37:

ω′(V )

ω′P=0

=

(
V

V0

)−γ
, (1)

where ω′P=0 refers to optical phonon energy at zero am-
bient pressure. The above relations apply to individual
phonon modes with frequency ω′.

The volume change is related to the change of pressure
as described by the Birch-Murnaghan equation of state38,
which is derived based on nonlinear elasticity theory, and
provides an expression for P (V ). Upon replacing V with
ω′ in (1), one obtains the following relation between the

optical phonon frequency ω′ and the applied pressure38:

P (X) =
3

2
B0

(
X7 −X5

) [
1 + η (1−X2)

]
, (2)

with X ≡ (ω′/ω′P=0)1/3γ . Upon inverting the above
Eq.(2) to obtain ω′ as a function of P , it is clear that ω′

is a monotonically increasing function of P in the regime
of interest here, with the increase being modulated by
anharmonicity through γ. Also, B0 is the bulk modulus,
while η = (3/4)(B′0 − 4) with B′0 = dB0/dP .

In the above relations, the frequency ω′ refers to the
real part of the phonon dispersion relation (which al-
ready contains the renormalization shift due to anhar-
monicity39), whereas the imaginary part of the disper-
sion relation is related to the phonon damping coefficient
Γ (the inverse of the phonon lifetime), as follows (e.g.
Eqs. (23)-(27)in Ref.39)

ω2 = ω2
0 − i ω Γ + O(q2), (3)

ω′ ≡ Re(ω) =
1

2

√
4ω2

0 − Γ2 +O(q2), (4)

Γ

2
≡ Im(ω) +O(q2). (5)

Quantitative numerical calculation of Γ can be done us-
ing the Self-Consistent Phonon (SCP) methodology39,40,
for specific systems41, but this is not the goal of our pa-
per, which is rather focused on generic qualitative trends
in terms of the effect of Γ on the pairing and on Tc.
Hence, ω′ denotes the renormalized phonon energy mea-
sured e.g. in Raman scattering (i.e. the Raman shift),
while Γ represents the linewidth of the Raman peak. Let
us emphasize that these expressions are at leading order
in the momentum q and higher order corrections O(q2)
are neglected at this stage.

We now introduce a key dimensionless parameter for
the subsequent analysis

D ≡ Γ/ω0 , (6)

which quantifies the degree of coherence of the phonon.
Low values of D signify high coherence of the phonons,
which can thus be treated as approximately indepen-
dent quasiparticles, whereas, at the opposite end of the
spectrum, very large D values correspond to incoher-
ent vibrational excitations in the diffusive regime (“diffu-
sons” in the language introduced by Allen, Feldman and
co-workers42). The schematic picture that will emerge
from the subsequent theoretical analysis is anticipated in
Fig.1.

In the following section, we introduce the theoretical
framework for the Cooper pairing and we will start by
considering how the superconducting critical tempera-
ture Tc varies as a function of D.

B. Gap equation with anharmonic phonon damping

For a generic Fermionic Matsubara frequency ωn and
momentum k, we denote the gap function as ∆(iωm,k).
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We assume throughout a quadratic dispersion relation for
the electronic band. With a constant coupling g, the gap
equation can be derived from the Eliashberg equations in
the one-loop ( weak coupling) approximation, and takes
the form43,44

∆(iωn,k) =
g2

βV

∑
q,ωm

∆(iωm,k + q)Π(q, iωn − iωm)

ω2
m + ξ2

k+q + ∆(iωm,k + q)2
,

(7)

where β is the inverse temperature and V is the vol-
ume. In Matsubara frequency space, we choose the pair-
ing mediator to be a damped optical phonon given by
the bosonic propagator45

Π(q, iΩn) =
1

Ω(q)2 + Ω2
n + Γ(q)Ωn

, (8)

where Ωn is the bosonic Matsubara frequency,
Ω(q) = ω0 + â q2 is the phonon dispersion, and the
damping factor, Γ(q) ≡ Dω0, is a constant independent
of momentum for high-frequency optical phonons34.
In accordance with the Klemens formula34, one can
also include an additional prefactor, 1 + 2

eω0/2T−1
, in

the damping term Γ(q) to account for a temperature
dependent phonon linewidth. We find that this has a
negligible effect on the results discussed below. The
factor D controls the strength of the damping term and
may change with pressure. The leading order contribu-
tion to the square of the dispersion is Ω(q)2 ' ω2

0 + vq2

where v = 2ω0â. This is the first momentum correction
which was neglected in Eq.(5). Assuming an isotropic,
frequency-independent gap ∆(iωn,k) ≡ ∆, we can set
the external frequency and momentum to zero without
any loss of generality (see supplementary note46 with
regards to the ωn = 0 simplification). Converting the
resulting summation into an energy integral (and assum-
ing a quadratic dispersion relation for the fermions), the
gap equation becomes

1 =
∑
ωm

∫ ∞
−µ

λTdξ

[vξ +M2 + ω2
m −Dωmω0] [ω2

m + ξ2 + ∆2]
,

(9)

where M2 = µv + ω2
0 . Here we have defined the effec-

tive coupling constant λ = N(0)g2, N(0) is the density
of states at the Fermi level, and µ is the chemical po-
tential. We can now utilize the energy integral identity∫∞
−∞

dξ
(zξ+s)(ξ2+r2) = πs

r(s2+z2r2) in the limit of large chem-

ical potential to yield the gap equation

1 =
∑
ωm

λπT
(
M2 + ω2

m −Dωmω0

)√
ω2
m + ∆2 [(M2 + ω2

m −Dωmω0)2 + (ω2
m + ∆2)v2]

.

(10)

We can now perform the final Matsubara sum using
methods described in Ref.47 after seeking a condition
for Tc by setting ∆ = 0. Defining p = ω0D + iv and

Q± = 1
2

(
p±

√
p2 − 4M2

)
leads to an equation for Tc

that can be numerically solved given by

−M ′2 = ψ

(
1

2

)
+

1

4

[{
p′ −Q′+
Q′+ −Q′−

ψ

(
1

2
−

Q′+
2πT ′c

)
+
−p′ +Q′−
Q′+ −Q′−

ψ

(
1

2
−

Q′−
2πT ′c

)
+ c.c

}
+ {D → −D}

]
, (11)

where ψ (x) is the digamma function, the primed quan-

tities are dimensionless and are defined as Q′± ≡
Q±√
λ

,

T ′c = Tc√
λ

, and so on.

IV. RESULTS

A. Schematic Tc dependence on optical phonon
energy and anharmonicity

Upon numerically solving Eq.(11) for a constant damp-
ing coefficient Γ, we can study the evolution of Tc as a
function of the dimensionless parameter D ≡ Γ/ω0. The
trend is shown in Fig.2. At low D values, Tc increases
withD, then goes through a maximum after which it then
decays sharply upon further increasing D. The maxi-
mum appears around D∗ ∼ O(1) with its exact value
determined by the microscopic parameter M2. This cor-

responds exactly to the scale at which the real and the
imaginary part of the phonon dispersion relation become
comparable (Γ ∼ ω0) and the phonons turn into quasi-
localized “diffuson-like” excitations42. In this sense, this
is analogous to the Ioffe-Regel crossover scale48.

The mechanistic picture shown in Fig.1 can be used to
understand the non-monotonic dependence of Tc upon
the anharmonic decoherence parameter D. To begin, we
note that in the absence of D, the gap equation in Eq. 9
has even terms only in the Matsubara frequency transfer
ωm. Hence both constructive Stokes (S-) and destructive
anti-Stokes (aS-) processes, which emit and absorb
energy respectively, contribute to the gap equation
equivalently. However, when D is non-zero, Eq. 9 is
sensitive to the sign of the energy transfer, thereby
distinguishing the two processes. From this property, it
is clear that the energy integral and Matsubara summa-
tions in Eqs. 9 and 10 lead to terms that are proportional
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~ a1 + a2 De
a3 D

quasiparticle

 (coherent)
incoherent

~ 1/D
D
*

D

Tc

FIG. 2. An illustration of the two regimes present in our
model: the “coherent” regime where the critical tempera-
ture grows with D ≡ Γ/ω0 and the “incoherent” regime,
where the functional dependence is inverted. In the “co-
herent” regime, the optical phonons behave like independent
quasiparticles with frequencies renormalized by anharmonic-
ity, whereas in the incoherent regime the quasiparticle coher-
ence breaks down due to the large anharmonic damping.

to D in the numerator of the gap equation. Provided
D . D∗, this effectively increases the electron-phonon
coupling λ and hence the Cooper pair binding energy.
For values of D much larger than D∗, the phonons
are extremely damped and S- and aS- processes again
contribute approximately equally to the gap equation,
thus reducing the effective electron-phonon coupling.

At low values of damping Γ (low-D regime) and
Γ/ω0 � 1, the real part of the dispersion relation domi-
nates over the imaginary part, and the phonons behave
like coherent quasiparticles with well-defined momentum
k. In the opposite regime of large anharmonic damping
Γ/ω0 � 1 (hence large D), we have that Imω > Reω,
hence the phonons lose their coherence and the quasi-
particle approximation breaks down. These two regimes
correspond to two different Cooper pairing regimes.
One regime we call the “coherent” regime (because here
phonons behave like coherent quasiparticles), where Tc
correlates positively with anharmonic damping (hence
where damping enhances Tc). The second regime we
call “inchoerent” and here, instead, Tc decreases with
further increasing the anharmonic damping. Notice
that, in the coherent regime, Tc increases (decreases)
as the optical phonon energy ω0 decreases (increases),
whereas the opposite trends apply in the incoherent
regime. This implies that the effect of pressure can either
promote or depress superconductivity depending on the
underlying physics of the optical phonons in a given
lattice. In the Appendix, we provide additional plots for
the variation of Tc with other physical parameters M ′

and v′ appearing in Eq. 11. For low and high D, Tc is
barely affected by M ′ and v′ whereas the peak value of
Tc is suppressed at critical D∗ with increasing values of

both these parameters. On the other hand, the peak D∗

itself increases with M ′ while it is barely affected by v′.

The theoretical prediction in Fig.2 can be fitted with
the following simple functions

Tc(D) ∼ a1 + a2Dea3D for D < D∗ (coherent),

Tc(D) ∼ D−1 for D > D∗ (incoherent) ,
(12)

with an > 0.

We will show below that these two regimes lead to rad-
ically different scenarios in terms of the dependence of Tc
on the external pressure P . This conceptual schematiza-
tion will be shown in the next sections to hold a number
of consequences for a deeper mechanistic understanding
of the effect of pressure on superconductivity in complex
materials.

In Fig.2 we assumed that the pairing is mediated by
high-frequency optical phonons near the Debye frequency
ωD for which the Klemens model gives a simplified (con-
stant) anharmonic damping coefficient Γ = Dω0. In
the more general case, the Klemens damping is given by
Γ = αω5

0 , where α is a prefactor which depends on the
microscopic physics which governs the decay of the opti-
cal phonon into two acoustic phonons. Notably, α ∼ γ2,
where γ is the lattice Grüneisen parameter introduced
above. The latter is a function of the interatomic poten-
tial49, hence of the electronic orbital/bonding physics,
and can be easily computed, for a given phonon mode in
a given material, from first principles50.

Using this more general Klemens formula for a generic
optical phonon that mediates the pairing, we obtain the
trends shown in Fig.3. A linear decreasing trend of Tc
as a function of P is predicted by our theory for the
incoherent-phonon (strongly anharmonic) regime. A lin-
early decaying trend of Tc with P has been recently ob-
served in the strongly anharmonic AlH3 high-pressure hy-
dride51 as well as in the SC-I phase of CeH10 in Ref.52. In
more standard systems, a linear decay of Tc with increas-
ing P has been reported for in the literature for simple
(e.g. elemental) superconductors9,18,53.

B. Theoretical analysis of superconductivity in
TlInTe2 at high pressure

In this section, we explore the potential of the above
framework to rationalize recent experimental data where
highly non-trivial (e.g. non-monotonic) dependencies of
Tc upon P have been observed, and for which a theoret-
ical explanation is lacking. We study the paradigmatic
case of TlInTe2, for which accurate experimental data are
available for the phonon mode Ag involved in the Cooper
pairing. Data are available in terms of the optical phonon
energy and of the anharmonic damping, as measured by
Raman scattering, and also for Tc, as a function of pres-
sure36.
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1 2 3 4 5 6
P [GPa]

1.82

1.84

1.86

1.88

2πTc/λ
1/2

FIG. 3. The normalized critical temperature with D = αω4
0

and ω0 given by the formula Eq.(2). α decreases from purple
to red, α = {0.5, 0.48, 0.45, 0.4, 0.35} × 10−7. The y-axis is
dimensionless in our units. ω0(P ) is taken from the experi-
mental fit shown in Fig.4(a).

We start by fitting the experimental data for the fre-
quency of the Raman-active Ag optical phonon (renor-
malized by anharmonicity) ω′ as a function of pressure,
displayed in Fig.4 (a). By using Eq.2 for the fitting, we
get:

B0 = 15 GPa , γ = 0.3 ,

η = −2.475, ω′P=0 ≈ ω0,P=0 = 127 cm−1. (13)

where we fixed η = −2.475 as found experimentally from
the P-V relation in Ref.36. The value that we found for γ
is close to value found for the Ag mode in this material36,
γ ∼ 0.23, and larger values (up to 0.8) were also reported
in the literature54. Also the value of the bulk modulus
that we found from our fitting (15GPa) is quite close to
the experimental value (19GPa) reported in Ref.36.

The fitting is shown in Fig.4(b), where the frequency
values refer to ω′. The latter has been obtained by using
Eq.5 in combination with Eq.2. The optical mode energy
increases upon increasing P in a conventional way37 up
to P = 8GPa, after which phonon softening, linked to
the increase of anharmonic damping Γ is observed upon
further increasing P , as shown in Fig. 4(a).

The increase of anharmonicity with pressure is clearly
evidenced by the behaviour of the Raman peak linewidth
Γ, as shown in Fig.5(a). Notice that the percentile growth
of the linewidth under pressure is much larger than that
of the normalized Raman shift. In this sense, the material
is characterized by giant anharmonicities and the damp-
ing effects are fundamental. Here, in the same panel,
different empirical trends are shown, alongside the ex-
perimental data which manifest a significant scatter. In
general, Γ � ω0 for this system, such that this case be-
longs to the “coherent” regime discussed in the previous
section and in Fig.2. Indeed, we checked that ω′ and

FIG. 4. (a) The normalized Raman shift (proportional to
ω′) of the Ag phonon mode in TlInTe2 as a function of pres-
sure and its fit with an empirical function. The value at zero
pressure is ≈ 128 cm−1. Data taken from36. (b) Comparison
between the best empirical fit of36 (shown in the panel (a))
and the Eq. 2 in terms of ω0 ≈ ω′, (Γ� ω0). The parameters
are set to the values shown in Eq.(13).

ω0 differ by only about 0.01% at all P values. These
different trends for Γ have been implemented, alongside
the fitted optical phonon energy ω′ from Fig.4, into our
theoretical gap-equation framework for the prediction of
Tc presented in the previous section of this paper. The
resulting theoretical Tc trends are shown in Fig.5 in com-
parison with the experimental Tc data from Ref.36, as a
function of the applied pressure.

All the Γ trends in Fig. 5 (a) clearly lead to the same
qualitative dependence of Tc on P , with a minimum. The
physics behind this trend is explained by our theoretical
framework: at low P the Tc decreases because of the
increase in P , which induces an increase of the optical
phonon frequency ω′ or ω0. The subsequent phonon soft-
ening leads to the minimum and to an inversion of the
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trend: upon further increasing the pressure the Tc starts
to rise. This is due to the fact that lower ω0 values lead
to a Stokes/anti-Stokes constructive interference (in the
presence of anharmonic damping), which enhances the
Cooper pairing55,56. This behaviour, with a minimum in
Tc is independent of the particular Γ trend with P , and
in fact occurs even for Γ constant with P .

The role of the Γ trend with P is to control the position
of the minimum as a function of pressure. Also, impor-
tantly, the presence of a rise in Γ leads to a stronger rise
after the minimum, which confirms that in the “coher-
ent” regime the Tc can be strongly enhanced by the an-
harmonic damping, as discussed in the context of Fig.2.
This finding has deep implications for high-Tc hydrogen-
based materials, where the anharmonic damping of the
optical phonons can be significant and may be tuned by
the material design. Also, phonon softening could also
be enhanced by the electron-phonon interaction itself as
discussed in Refs.57,58.

V. CONCLUSION

We presented a theory of the pressure effect on Cooper
pairing in superconductors where the pairing is mediated
by generic bosonic excitations. Our theory is based on
solving the gap equation with a bosonic propagator that
is damped due to anharmonic decoherence. A specific
calculation is presented for optical phonons which takes
into account: (i) the anharmonicity of the phonon via
the Klemens’ damping, (ii) the effect of pressure on the
phonon frequency. The theory identifies two fundamen-
tal regimes as a function of the dimensionless ratio D
between anharmonic phonon damping and phonon fre-
quency. At low values of this ratio, Tc is strongly en-
hanced by anharmonicity and, at the same time, de-
creases with increasing pressure. At large values of the
D ratio (after a maximum), where the phonons are no
longer well-defined quasiparticles, Tc instead correlates
positively with pressure and is lowered by anharmonicity
(see Fig.2). Optimal pairing occurs for a critical ratio
D∗ when the phonons are on the verge of decoherence
(“diffuson” limit).

In the more conventional case of systems in the “co-
herent phonon” regime, where phonons are coherent
quasiparticles, the standard18 linearly decreasing corre-
lation between Tc and P is recovered in our theory using
the Klemens model of anharmonic damping for optical
phonons. Furthermore, the theory provides a qualita-
tive description of recent experimental data on TlInTe2

for which phonon frequencies, anharmonic phonon damp-
ing and Tc were all measured experimentally. It predicts
that Tc initially decreases with P as a consequence of
the optical phonon energy increasing with P , but then
goes through a minimum, as the optical phonon starts
to soften and to become more anharmonic, after which it
rises with P . The predicted behaviour is well supported
by the experimental data.

FIG. 5. (a) The normalized linewidth of the Ag phonon mode
in TlInTe2 and three different sets of fits. The zero pressure
value is taken as 3.2 cm−1. Data taken from36. (b) The
corresponding theoretical calculations for the critical temper-
ature (solid lines) are compared with the experimental data
(symbols). The colors of the theoretical curves for Tc match
the respective models for the linewidth in the panel (a). The
parameters used in the model correspond to â = 1, α =
(6, 5.4, 5.4, 4.2) × 10−8eV−4, µ′ = µ√

λ
= (37.3, 32.5, 35.6, 24)

for orange, blue, green and purple curves. We also choose
λ = 1, ω0 ∼ 15meV = 1

2
v.

This theoretical picture provides a mechanistic ra-
tionale for the pressure effect on superconductivity in
TlInTe2, by physically describing different regimes of
negative/positive pressure effect on Tc. By clarifying
the deep interplay between anharmonicity of the bosonic
glue and pressure effects on the pairing mechanism, the
theory provides new guidelines for material design, which
may prove useful for discovering and/or engineering
new materials with enhanced Tc. In future work, the
presented framework could be combined with models of
strain-dependent critical properties in technologically
important materials such as Nb3Sn, where anharmonic
phonon generation has been recently shown to play a
key role59.
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FIG. 6. Plot of the dimensionless critical temperature Tc as a function of D for various v′ (left) and M ′ (right). We have
chosen M ′ = 2 (left panel) and v′ = 0.5. The Klemens’ factor has a negligible effect in both cases.
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APPENDIX

In Fig. 4, the functional form for the empirical fits of the phonon linewidth is given by the following expression:

f(x)fit = 0.00064035x5 − 0.00398124x3 + 1.39603x+ 128.166 (14)

This fitting function works well up to P ≈ 15 GPa. Interestingly it seems to capture also the turning of the data
point between 15 < P < 25 but it definitely fails in capturing the last two points of the dataset.

In Fig. 5, the Raman linewidth is normalized with respect to the experimental zero pressure value, taken as
3.2 cm−1. The curves shown in the panel (a) of Fig.5 are given by:

orange: Γ̃(P ) = 1.09375 , (15)

blue: Γ̃(P ) = 0.3125

(
0.09523 (0.4422P + 0.0597)(1− tanh(7.326 − P )) + 3.3 P ≤ 7.326

0.356P + 1 7.326 < P

)
(16)

green: Γ̃(P ) = 0.3125

(
0.09523(0.4422P + 0.0597)(1− tanh(11.326 − P )) + 3.7 P ≤ 11.326

0.5P − 1.47 11.326 < P

)
(17)

purple: Γ̃(P ) = 0.3125

(
0.09523(0.1822P + 0.0597)(1− tanh(11.326 − P )) + 3.7 P ≤ 11.56

0.1952P + 1.7 6 < P

)
(18)

Additionally, the parameters for the panel (b) are as follow:

orange: α = 6 × 10−8 , µ′ = 37.3 , (19)

blue: α = 5.4 × 10−8 , µ′ = 32.5 , (20)

green: α = 5.4 × 10−8 , µ′ = 35.6 , (21)

purple: α = 4.2 × 10−8 , µ′ = 24 . (22)

where we set â = 1 (the optical phonon stiffness) and µ′ = µ√
λ

. This corresponds to µ ∼ 10eV for a BCS super-

conductor with ω0 ∼ 15 meV = 1
2v. We have checked that the dependence of ω′ on P is predominantly controlled

by the P -dependence of ω0, whereas the contribution of the P -dependence of Γ in the square root appearing in the
expression for ω′ is much smaller (which is also consistent with our conclusions that the experimental data of TlInTe2

are largely in the weak-anharmonicity coherent-phonon regime).

In Fig. 6, we also plot the dimensionless Tc as a function of D for various v′ and M ′. As stated in the
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main text, increasing both v′ and M ′ reduces the peak Tc. While v′ barely has an effect on the critical D∗, increasing
M ′ increases D∗.
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