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High-pressure equation of state and isentropic sound speed data for fluid silicon to 

pressures of 2100 GPa (21 Mbar) are reported. Principal Hugoniot measurements were 

performed using impedance matching techniques with α-quartz as the reference. Sound 

speeds were determined by time correlating imposed shock-velocity perturbations in both 

the sample (Si) and reference material (α-quartz). A change in shock velocity versus 
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particle velocity (us–up) slope on the fluid silicon principal Hugoniot is observed at 200 

GPa. Density functional theory-based quantum molecular dynamics simulations suggest 

that both an increase in ionic coordination and a 50% increase in average ionization are 

coincident with this experimentally observed change in slope. 

 

I. INTRODUCTION 

The behavior of silicon (Si) above millions of atmospheres (>100 GPa) is 

important to understanding the structure and evolution of terrestrial planets [1–4], as well 

as the performance of inertial confinement fusion (ICF) capsule designs [5–9]. In rocky 

planets, Si is thought to be intrinsically paired to oxygen and, to a lesser extent, metals 

since they are prevalent on Earth’s surface. However, it is likely that atomic bonding and 

compound formation are quite different at the extreme pressures expected in super-Earth-

like planets [10]. In direct-drive ICF target design, materials are selected based on a 

variety of properties at pressures exceeding several TPa [5]. Si has been proposed as a 

dopant for plastic shells [8] to mitigate laser imprint and Rayleigh–Taylor instabilities. 

While there has been significant work understanding the behavior of carbon [11–14] at 

TPa pressures, very little is understood about its group-14 analog, Si at these extreme 

conditions. 

Silicon has a rich and complex response to dynamic compression—in part due to 

strong variations in elastic properties along different crystal axes [15], which causes 

significant wave splitting. Elastic coefficients for silicon’s cubic-diamond structure (ρ0 = 

2.329 g/cm3) determine the ambient longitudinal sound speed (cL) along 〈100〉 to be 

8.8 km/s and the bulk sound speed (cB) to be 6.5 km/s. Previous experiments using 
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explosive [16,17], flyer plate [18–20], and laser [21] drivers have been performed to 

investigate silicon’s response to dynamic loading to 200 GPa. These works 

predominately used shock waves traveling at velocities below cL (and sometimes below 

cB), which form elastic and inelastic precursors, where the final shock state is a product 

of multi-wave compression. Shocks propagating faster than cL (P = 80 GPa), the region 

considered for this study, do not form precursors; the silicon samples are compressed by 

a single wave. This present work examines the liquid regime of silicon’s principal 

Hugoniot, extending the experimentally determined equation of state (EOS) to TPa 

pressures. These experiments used impedance matching [22] to an α-quartz standard, 

high-precision velocimetry [23], and an unsteady-waves correction [24] to deduce the 

kinematic properties and sound speed of shocked silicon.  

Principal Hugoniot and sound-speed data are presented for silicon at shock 

pressures between 320 and 2100 GPa. These Hugoniot data exhibit a significantly 

different (us–up) slope (S = 1.26±0.06) from the measurements of Ref. 16 (S = 1.80±0.10) 

at lower pressures (80 to 200 GPa). A  change in Hugoniot slope can point to a significant 

structural change in the material, e.g., solid–solid phase transitions or melting [25,26], 

dissociation [27], or ionization [28,29]. To explain the change in Hugoniot slope, 

quantum molecular dynamics (QMD) simulations were performed at various points along 

silicon’s principal Hugoniot. These simulations predict an increase in ionic coordination 

and average ionization (average number of free electrons per atom), which is concurrent 

with the experimentally-observed change in slope. Finally, the isentropic sound speeds, 

cs, were determined to increase from 15 to 23 km/s at densities from 5.7- to 7.6-g/cm3, by 

time-correlating the arrival of imposed acoustic perturbations at the shock front. 
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The experimental results are compared to modern theoretical calculations and 

tabular equations of state (SESAME 3810 [30], density functional theory-based first-

principles EOS (DFT-based FPEOS) [31], Livermore EOS (LEOS) 141 [32,33], and 

XEOS 140 [34,35]). To date, the DFT-based FPEOS approach produces the best overall 

representation of silicon’s principal Hugoniot and sound-speed data above 80 GPa.  

 

II. EXPERIMENTAL TECHNIQUE 

Experiments were conducted on the OMEGA EP Laser System at the University 

of Rochester’s [36] Laboratory for Laser Energetics. Targets were irradiated by one to 

four 351-nm laser beams directly onto a parylene-n (CH) ablator, producing strong shock 

waves that compress the planar samples [37–41]. These experiments used laser intensities 

of 30 to 305 TW/cm2 produced by 4- and 5-ns temporally square and ramp-top laser 

pulses with spot sizes of approximately 1100 or 1800 μm. Laser parameters for each shot 

are in Table I, and the laser pulse profiles are shown in Fig. 1(c). A portion of these 

experiments imposed acoustic perturbations on adjacent sides of the target stack, enabling 

a sound-speed determination. 

The target design, shown in Fig. 1(a), comprises a 40-μm-thick CH ablator, 

90-μm-thick α-quartz pusher (ρ0,Qz = 2.65 g/cm3, n0 = 1.547 at 532 nm), 78-μm-thick 

silicon sample (ρ0,Si = 2.329 g/cm3, single crystal 〈100〉), 150-μm-thick α-quartz witness, 

and 85-μm-thick α-quartz anvil. Silicon samples were laser cut into 1.5 × 3-mm 

rectangles and oriented so the shock propagated along the 〈100〉 crystal axis. Crystalline 

silicon has a maximum oxide layer thickness of 14 Å at room temperature [42]. In these 

experiments the oxide layer equilibrates in under 200 fs, and therefore has a negligible 
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effect on the measurement. Low-viscosity epoxy was used to bond the individual target 

components. Prior to bonding, sample thicknesses were measured with a dual confocal 

microscope to an accuracy of 2%; glue layers were characterized by measuring target 

thickness after assembly, with an average thickness and uncertainty of 3.6 μm and 0.4 

μm, respectively.  

The shock velocity in the quartz pusher, witness, and anvil were measured using a 

line-imaging velocity interferometer system for any reflector (VISAR) [23]. A VISAR-

side image of the target is shown in Fig. 1(d) and an example of a VISAR record is 

shown in Fig. 1(b). The vertical position of the fringes is proportional to shock velocity. 

Silicon is opaque to the 532-nm VISAR probe so the shock velocity cannot be measured 

within the sample. Instead, an average shock velocity is determined by a transit-time 

measurement using shock-breakout signatures at the bare ~100-μm-wide pusher/vacuum 

(Si entrance) and silicon/vacuum (Si exit) interfaces. The resolution of the VISAR streak 

cameras enables transit-time measurements with ~1%–2% accuracy. Transit times in the 

epoxy layer preceding the Si sample are calculated from the measured thickness and 

inferred shock velocity, which is estimated by impedance matching [22] using SESAME 

7603 for epoxy. This epoxy shock transit time is subtracted from the VISAR-measured 

transit time through the combined epoxy/silicon layer to determine the transit time 

through the silicon sample. A linear extrapolation of the silicon velocity profile was 

performed across the epoxy layer [14,43] at the pusher/silicon interface, extending the 

inferred silicon velocity profile backward across the epoxy, and modeling an event where 

the quartz and silicon are in perfect contact. The quartz witness, adjacent to the silicon 

sample, acts as a reference to determine the time-dependent shock velocity in the Si using 
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the unsteady-waves correction. A quartz anvil is attached to the rear side of the silicon 

sample to observe acoustic perturbations after the shock exits the Si samples. 

 

III. ANALYSIS AND RESULTS 

A. Hugoniot  

The principal Hugoniot data were determined by inferring shock and particle 

velocity using an unsteady-waves correction and impedance matching, respectively; 

α-quartz was used as a reference material for both techniques.  

Impedance matching [22] was performed at the quartz pusher/silicon interface, 

where the conservation of mass, momentum, and energy was used to calculate pressure, 

density, and particle velocity (P, ρ, and up) in the shocked silicon. P, ρ, and up in the 

shocked α-quartz were calculated using an analytic fit to experimental Hugoniot data in 

the 0.1- to 1.6-TPa range [44], which was extended to 3 TPa (well above this study’s 

highest pressures) using first-principles MD simulations [45]. A Mie–Grüneisen linear 

reference (MGLR) [45] model was used for the quartz release when the shock transits 

from higher-impedance quartz into slightly lower-impedance silicon. Since quartz and 

silicon have similar impedances, the resulting release produced only slightly lower 

pressures. Uncertainty in the impedance matching calculations were determined using a 

Monte Carlo routine (106 trials), which incorporates systematic uncertainties in the EOS, 

MGLR model, and random uncertainties in the measurements, yielding 1σ confidence 

intervals in the reported Hugoniot values. 

For impedance matching with opaque materials, systematic uncertainties can arise 

from unsteadiness in the shock velocity within the sample. To address this, adjacent 
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components in the target (see Fig. 1), which experience a common drive pressure profile 

with the sample [24], were used to infer the time-dependent velocity profile within the 

silicon samples and more accurately determine the shock velocity at the interface where 

impedance matching is performed. For these quasi-steady shock waves with small 

acoustic perturbations (ΔP/P<10%), linear scaling factors (F,G) are used to determine the 

relative arrival times and amplitudes of perturbations at the silicon shock front with 

respect to a reference medium (the α-quartz witness). Calculations of the linear scaling 

factors require estimates of the EOS, Grüneisen parameter, and sound speed for both 

quartz and silicon. The Grüneisen parameter for α-quartz is fixed at 0.66, which has been 

shown to be valid for shock pressures above 0.3 TPa in liquid silica [46]. The α-quartz 

sound speed was obtained from an empirical wide-range EOS, which was validated by 

experimental data in the 0.25-to 1.5-TPa range [47]. Estimates of the required parameters 

for silicon were taken from the DFT-based FPEOS from Ref. [31]. This analysis enables 

one to accurately infer the shock velocity profile within the sample and to determine the 

instantaneous shock velocity at the impedance-matching interface. Details of this 

technique are discussed at length in Refs. [14,46,48]. The scaling factors used for each 

shot are listed in Table II. 

 An example of the applied unsteady-waves correction can be seen in Fig. 1(e). 

The orange curve is the measured us in the quartz pusher (1.5 to 4 ns) and quartz witness 

(4 to 10 ns). The shock transits the silicon from about 4 to 6 ns. After 6 ns, the shock is 

observed in both the quartz witness and the quartz anvil (6 to 9 ns) on the rear of the 

silicon. The average us (horizontal black line) in the silicon is determined from the 

sample thickness and shock transit time (vertical black dashed lines). The measured us(t) 
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in the adjacent quartz witness is used to infer the velocity history in the silicon (black 

curve). In this example, there is a difference of Δus = 2.2 km/s (about 9% of average us) 

between the average us and inferred initial us when the shock enters the silicon, with an 

average velocity uncertainty of 0.2 km/s. Perturbations originating from fluctuations in 

drive intensity (ΔIL) are observed on the quartz witness later than in the silicon sample. 

To study systematic uncertainties in the inferred us associated with a choice of EOS in 

the unsteady-waves correction, two cases were tested: (1) Hugoniot parameters from 

SESAME 7387 (α-quartz) [49] and 3810 (silicon) [30], and (2) Hugoniot parameters from 

Ref. [45] (α−quartz) and the DFT-based FPEOS [31] (silicon). Results differed by less 

than their uncertainty; therefore, the empirically determined [45] and modern 

computational EOS [31] were used for the correction. 

The Hugoniot results are listed in Table II and plotted in Fig. 2. Shock and 

particle velocity data from this work and four data points from Ref. [16] are fit separately 

using a weighted linear regression (method described in Ref. [50]). This study is 

restricted to the high-pressure single-wave regime, where shocked silicon does not form 

elastic and inelastic precursors; only Hugoniot data with pressure greater than 80 GPa are 

included in the fit. Linear, quadratic, and bilinear functions were compared through a 

general linear F-test criterion, evaluated at the 1σ probability cutoff. An additional 

Bayesian statistical inference method [51] was used for model selection, comparing a 

bilinear model against global linear and quadratic models through the Bayes factor, and 

testing systematic uncertainties between our work and results in Ref. [16]. According to 

the F-test and Bayes test, the bilinear model best represents silicon’s response to shock 

compression for shock pressures greater than 80 GPa. Using a χ2 minimization, the 
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breakpoint between the two linear regions was found at up,break = 6.5 km/s. Parameters of 

the model and their 1σ confidence intervals are in Table III; an orthogonal basis imposed 

on the functional form removes correlation between the slope and intercept. For fluid 

velocities of 4 ≤ up ≤ 6.5 km/s along the Hugoniot, a linear fit to Ref. [16] exhibits slope 

a1 = Δus/up = 1.80±0.10, with functional form: 

 

 ( ) ( ) ( )s p10.3 0.1 1.80 0.10 4.95 .u u= ± + ± ⋅ −  (1) 

 

Uncertainty in the velocity data of Ref. [16] are assumed to be 0.1 km/s, based on their 

reported significant figures. Above up ≥ 6.5 km/s, silicon’s Hugoniot “softens,” and a fit 

to the data exhibits a shallower slope of a1 = 1.26±0.06 with similar functional form: 

 

 ( ) ( ) ( )s p22.5 0.2 1.26 0.06 14.0 .u u= ± + ± ⋅ −  (2) 

 

Residuals with respect to the bilinear fit are inset in Fig. 2(a), showing that the DFT-

based FPEOS [31] best represents the experimental results for liquid silicon’s Hugoniot. 

Figure 2(b) shows the same experimental data, fit, and models in P–ρ space. Further 

discussion of the Hugoniot models and discussion of the change in compressibility are 

included in Secs. 3C and 3D, respectively. 

 

B. Isentropic sound speed 
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Minor perturbations imposed on the laser drive (ΔIL ≤ 5%) generate acoustic 

waves that propagate at the local isentropic sound speed cs and are observed as 

perturbations in shock velocity on both sides of the target (i.e., both the witness and 

sample sides). Cross-correlation of perturbation patterns in the α-quartz witness and anvil 

allows one to determine cs along silicon’s principal Hugoniot [48]. The 1-D hydrocode 

LILAC [52] was used to confirm (on a shot-by-shot basis) that observed modulations in 

the shock velocity were correlated with the laser drive, and not, for example, wave 

reflections interior to the target.  

A schematic of the technique [24] used to measure sound speed is shown in Fig. 

3. Using a Doppler scaling factor, 
s
,cF  perturbations observed in the quartz witness are 

time shifted until the arrival times match between the witness (tQW) and anvil (tSi). The 

isentropic Eulerian sound speed in silicon is then calculated from 

 

 
( )( )

( )s

1
QW QPS

s
p,S S QPR

1 1
1 ,

1c

M MPc
u F Mρ

−− +⎛ ⎞
= −⎜ ⎟⎜ ⎟⋅ −⎝ ⎠

 (3) 

 

where P, ρ, and up are the pressure, density, and particle velocity, M is a local Mach 

number, 
scF  is the Doppler scaling factor ( )s Si QW ,cF t t=  and subscripts Si, QP, QPR, 

and QW denote parameters of the silicon sample, quartz pusher before release, quartz 

pusher after release, and quartz witness, respectively [48]. Uncertainty in the sound-speed 

values are determined through standard error propagation using Eq. (3). 
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The sound-speed results are listed in Table IV and shown in Fig. 4 for all shots 

with observable perturbations in the quartz anvil. Results are consistent with a linear 

trend with increasing density. Several function forms were tested; however, due to the 

uncertainty in the measurements, a preferred functional form could not be determined 

through the general F-test criterion. Consequently, we selected a linear representation 

since it has the fewest number of free parameters. Experimental results from this work 

are fit with a simple linear model; functional form, fit parameters, and 1σ confidence 

intervals are listed in Table V.  

 

C. EOS models 

This work was motivated in part by a significant disagreement between models 

for the EOS of high-pressure silicon shocked to the fluid phase. Specifically, recent path-

integral Monte Carlo (PIMC) [53] and DFT-based calculations [31,54] (FPEOS) 

predicted significantly higher compressibility than SESAME 3810 [30] and LEOS 141 

[32,33]. The experiments confirmed the higher compressions predicted by FPEOS and 

similarly by XEOS 140 [34,35]. 

Below the breakpoint, up = 6.5 km/s, corresponding to 200 GPa along the bilinear 

Hugoniot model, FPEOS and LEOS 141 are the most-accurate representations of the 

silicon Hugoniot measured by Ref. [16]. Above the breakpoint, FPEOS and XEOS 140 

show the best agreement with experimental results for both the Hugoniot and sound 

speed in the limit of high pressures. 

In fluid silicon for pressures greater than 80 GPa, the difference between the 

Thomas–Fermi and FPEOS models is a result of the models’ treatment of atomic 
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interaction beyond the melt (P ≈ 35 GPa [20,21,26]). SESAME 3810 is a preliminary 

table that uses different models for solid and liquid phases, and the thermodynamic 

properties are smoothly interpolated (along isochores) to the ideal gas limit. Ultimately, 

the specific heat at constant volume is matched to the ideal gas value of 3R/2 at high 

temperatures. Under such a treatment, which is implicitly monoatomic and noninteracting 

beyond the melt curve, clustering and/or bonding in liquids is ignored. These effects, if 

included, would lead to higher compressibility in physical systems. FPEOS (derived from 

DFT calculations) models these effects by using Kohn–Sham equations to solve for the 

mean-field approximated electron density, which, together with ion−ion interaction, 

drives the nuclear motion within the Born–Oppenheimer approximation. Similarly, the 

LEOS and XEOS tables, a quotidian EOS, rely on the Cowan model for the ionic free-

energy part, an average-atom model for the electronic free energy, and are built using a 

different interpolation scheme between the Debye model below melt and the ideal gas 

limit. 

 

D. QMD simulations 

Theoretical calculations have played an important role in explaining observed 

changes in physical properties of high-energy-density materials [48,55–65]. Changes in 

the Hugoniot slope are typically associated with ionic or electronic rearrangement. To 

better understand the physical mechanisms driving the change in Hugoniot slope for 

liquid silicon, DFT-based QMD simulations were performed to examine changes in ionic 

coordination under shock compression. All simulations were performed with ground state 

Kohn–Sham DFT [66,67] using the plane-wave implementation of DFT in the Vienna 
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ab initio simulation package (VASP) [68–71], with Perdew–Burke–Ernzerhof (PBE) [72] 

generalized gradient approximation [73] exchange-correlation functionals. Quantum 

molecular dynamics simulations were performed with VASP using 256-atom supercells 

with periodic boundary conditions. The reciprocal space was sampled using 2 × 2 × 2 

Monkhorst–Pack [74] k meshes. The ionic time-step size was 0.5 fs over 10,000 steps, 

yielding a total atomistic simulation time of 5 ps. Projector-augmented wave 

pseudopotentials [75,76] with a 1.10-Å cutoff of core radius was used with the semi-core 

2s22p63s23p2 electrons being treated as valence electrons, corresponding to a kinetic 

energy cutoff of 1100 eV for the plane-wave basis set. Previous studies [77,78] have 

tested the applicability of the pseudopotential for shock Hugoniot conditions. At 1 TPa, 

the Si-Si distance is >1.5-Å, so we do not expect a density bias due to the selected 

pseudopotential. Electrons were populated according to Fermi–Dirac statistics and all-

electronic, self-consistent field calculations were converged to a precision of 10−5 

eV/atom for the free energies. 

Results of the DFT-based QMD simulations of fluid silicon are shown in Fig. 5. 

The coordination number increases from n ≈ 11 to n ≈ 13 between 50 and 300 GPa [Fig. 

5(b)], with the sharpest rise located near 200 GPa. Since silicon is a liquid at these 

pressures, the coordination numbers are calculated by approximating an isotropic crystal 

structure and are not constrained to a maximum coordination number of 12. The observed 

change in Hugoniot slope at P = 200 GPa, indicated by the vertical blue line at ρ = 4.64 

g/cm3 on Fig. 5(a), is near the center of this rise. Previous work on structural evolution in 

compressed liquids has shown silicon and tin form highly coordinated liquid structures. 

Static experiments on liquid silicon revealed a gradual increase in coordination with 
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increasing pressure, measuring coordination numbers as high as 9.2 at 23 GPa [79]. In 

tin, another group-14 element, a coordination number of n = 11 was measured just above 

the melt on the Hugoniot (40 to 70 GPa), increasing to n > 12 around 90 GPa [80]. In 

silicon, n = 11 at 50 GPa would indicate that silicon has an isotropic fluid structure [81] 

just after shocking through the melt (P = 35 GPa). An increase to n ≈ 13, and subsequent 

plateau, suggests that silicon forms a more highly coordinated isotropic fluid by 300 GPa 

with no further changes in ionic arrangement to 2100 GPa. 

The change in Hugoniot slope is also coincident with a predicted 50% increase in 

the average number of free electrons per atom, due to an ionization event. Dynamic 

compression experiments on helium [28] and various metals [29] have made it possible to 

observe changes in Hugoniot slope at pressures above several hundred GPa, attributed to 

ionization. Figure 5(c) shows an increase in the average number of free electrons per 

atom, from 2Z ≈  to 3,Z ≈  starting at 200 GPa along the fluid silicon Hugoniot. These 

simulations suggest that above 500 GPa, and up to 1200 GPa, Z is nearly constant. 

 

IV. CONCLUSIONS 

The behavior of nature’s fundamental building blocks at millions of atmospheres 

is important to studies of astrophysical bodies [1–4] and ICF capsule designs [5–9]. In 

situ observation of these materials deep in the interior of planets and stars is 

technologically infeasible, necessitating the generation of extreme pressures and 

temperatures in the laboratory. With little intuition for the bonding or compounds that 

might form at such extreme conditions, these macroscopic thermodynamic studies 
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provide rigorous benchmarks for theory and first principles simulations, through which 

we can gain insight into the microscopic behavior. 

Reported here are shock-compressed measurements of silicon, along the principal 

Hugoniot, to a high-pressure liquid phase in the range of 320 to 2100 GPa, and achieving 

a maximum of 3.3-fold compression. Combined with existing data from Ref. [16], the 

experimental results are well represented by a bilinear fit determined by a weighted least-

squares fitting over an orthogonal basis. A change in Hugoniot slope is detected near P = 

200 GPa, and simulations were performed to examine the underlying physical processes. 

DFT-based QMD simulations suggest that the experimentally observed change in 

Hugoniot slope is coincident with an increase in ionic coordination and average 

ionization. By correlating acoustic perturbations on both sides of the target, the sound 

speed was determined to be 15 < cE (km/s) < 23 at 800 < P (GPa) < 2100 and 5.7 < ρ  

(g/cm3) <7.6 along the Hugoniot. Of the best available theoretical calculations, A DFT-

based FPEOS [31] table shows the most overall agreement with experimental results. 
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Figures and Figure Captions 

 

 

 

FIG. 1. (a) The target design for silicon Hugoniot measurements. Components include a 

CH ablator, a quartz pusher and witness, a silicon sample, and a quartz anvil. (b) VISAR 

record from shot 25378 using the target depicted in (a). The in-situ shock velocity in 

quartz is determined from the shifts in the fringe pattern. Silicon is opaque to the 532-nm 

VISAR probe laser, resulting in no fringe motion on the bottom half of the image until 

the shock enters the quartz anvil at 6 ns. (c) Laser intensity profiles for the four pulse 

shapes used in these experiments. (d) VISAR side image of the target design, showing 

lateral dimensions of the target components, diameters/locations of the laser spots (black 

dashed lines), and the VISAR field of view (green dashed lines). (e) Extracted shock 
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velocity profiles from the VISAR record in (b). The velocity profile in silicon (black 

curve) was inferred from the average shock velocity (horizontal black) and the observed 

velocity profile in the quartz witness (orange curve) using the unsteady-waves correction. 

The shock-velocity history in the quartz anvil (blue curve) is observed after the shock 

exits the silicon sample. 
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FIG. 2. Silicon principal Hugoniot in (a) shock velocity us versus particle velocity up 

space and (b) pressure P versus density  space. Only dynamic compression data above 

80 GPa, the single-wave compression regime in shocked silicon, are shown. 

Experimental data from this work (blue squares) and Ref. [16] (black circles) are fit with 

a bilinear functional form (dashed blue line) with a breakpoint at up = 6.5 km/s (solid 

blue line). A 1σ functional prediction band is shown as the shaded region surrounding the 

fit. Data is compared with Hugoniots from SESAME 3810 (red dotted curve), DFT-based 

FPEOS (pink curve), LEOS 141 (dot dash green curve), and XEOS 140 (dot dash yellow 
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curve). Inset in (a): Percent difference in shock velocity with respect to this work’s us–up 

fit. FPEOS shows the best agreement with the experimental Hugoniot fit and is the only 

model to predict the change in compressibility. The legend in (b) also corresponds to (a). 
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FIG. 3. A schematic of the technique used to determine sound speed of silicon. (a) The 

shock velocity is tracked in the pusher (green line), witness (orange line), and anvil (blue 

line). Velocity in the opaque silicon (black line) is not measured. In the witness and anvil, 

time and amplitude scaling factors allow us to correlate changes in velocity. Arrival times 

of perturbations are determined through a bilinear fit to the velocity profile near the 

suspected arrival. The leading shock and acoustic perturbations (dashed purple lines) are 

tracked in position and time on the (b) pusher/witness side and (c) pusher/silicon/anvil 

side. The perturbations originate from fluctuations in laser intensity at the drive surface. 
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FIG. 4. Isentropic sound speed along the silicon Hugoniot. Results from this work (blue 

squares) and a single measurement from Ref. [16] (black circle) are compared against 

SESAME 3810, DFT-based FPEOS, LEOS 141 and XEOS 140. The ambient bulk (cB) 

and longitudinal (cL along 〈100〉) sound speeds are indicated by the horizontal black 

lines. A linear model (blue line) is fit to the data and extrapolated (blue dashed line) to the 

left- and right-most error bar. The shaded region around the fit is the 1σ confidence 

interval. 
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FIG. 5. Results of DFT-based MD simulations along silicon’s principal Hugoniot. 

(a) Experimental Hugoniot results, bilinear us–up fit, and the DFT-based FPEOS. The 

breakpoint in the fit (vertical blue line) is located at ρ = 4.64 g/cm3, or P = 200 GPa 

along the Hugoniot fit. (b) Coordination number, n, and (c) average free electrons per 

atom, Z,  calculated at several densities along the principal Hugoniot. (inset) Image of the 

liquid silicon structure from MD with coordination number 13 at ~1 TPa. The observed 

change in slope along the Hugoniot occurs at the center of a predicted rise in coordination 

number and the beginning of a rise in average ionization. 
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Tables 

TABLE I: Laser pulse parameters for all shots included in this dataset. Parameters include: pulse duration and 

type [shown in Fig. 1(c)], laser spot diameter [location on target shown in Fig. 1(d)], energy 

delivered on the target, and the laser intensity at maximum. Data are ordered by increasing shot 

number. Spot diameters with an asterisk used one defocused beam with a diameter of 1.6 mm. 

Shot 

number 
Pulse type Spot diameter (mm) Energy on target (kJ) 

Intensity at maximum 

(W/cm2) 

24254 5-ns square 1.1* 9.95 1.8 × 1014 

24255 5-ns square 1.1* 5.74 8.8 × 1013 

24264 5-ns square 1.1* 12.9 2.4 × 1014 

25374 5-ns square 1.1* 9.76 1.8 × 1014 

25376 5-ns square 1.1* 6.10 9.4 × 1013 

25378 5-ns square 1.1* 4.56 7.1 × 1013 

25379 5-ns square 1.1 6.91 1.5 × 1014 

25381 5-ns square 1.1* 3.11 4.9 × 1013 

25382 5-ns square 1.1 3.55 7.5 × 1013 

25384 5-ns square 1.1* 1.45 2.3 × 1013 

25385 4-ns square 1.1 6.10 1.6 × 1014 

25387 4-ns square 1.1* 11.6 2.7 × 1014 

26632 5-ns ramp top 1.8 12.0 2.5 × 1014 

26634 5-ns ramp top 1.8 5.59 1.2 × 1014 

26638 5-ns ramp top 1.8 3.85 8.1 × 1013 

26640 4-ns ramp top 1.8 7.52 2.0 × 1014 

26641 4-ns ramp top 1.8 10.5 2.8 × 1014 
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TABLE II: Impedance match parameters [shock velocity in quartz ( )Qz
su  and silicon ( )Si

su ], linear scaling 

factors (F and G) used with the average shock velocity in silicon Si
su⎛ ⎞

⎜ ⎟
⎝ ⎠

 to infer Si
s ,u  and Hugoniot 

results for silicon including particle velocity (up), pressure (P) and density (ρ) for all shots included in 

this work.  

Shot 

number 

Qz
su  

(km/s) 

Si
su  

(km/s) 
F G 

Si
su  

(km/s) 

up 

(km/s) 
P (GPa) ρ (g/cm3) 

26638 15.5 (0.2) 16.3 (0.2) 0.95 1.08 15.5 (0.3) 8.9 (0.2) 321 (7) 5.42 (–0.18,+0.25) 

25384 16.6 (0.2) 16.8 (0.5) 0.97 1.11 17.5 (0.6) 9.5 (0.2) 389 (12) 5.12 (–0.20, +0.41) 

26634 17.8 (0.2) 18.5 (0.4) 0.97 1.06 18.0 (0.5) 10.6 (0.2) 443 (11) 5.66 (–0.16, +0.48) 

26640 21.5 (0.2) 23.1 (1.3) 0.95 1.03 22.0 (1.4) 13.5 (0.2) 692 (13) 6.00 (–0.13, +0.37) 

25381 22.3 (0.2) 21.4 (0.6) 1.00 1.08 23.5 (0.6) 14.0 (0.2) 766 (17) 5.73 (–0.14, +0.47) 

26632 23.0 (0.2) 22.7 (1.3) 1.00 1.05 22.8 (1.4) 14.8 (0.2) 788 (14) 6.63 (–0.25, +0.41) 

25382 23.2 (0.2) 22.9 (0.5) 1.03 1.07 22.9 (0.6) 15.0 (0.2) 799 (18) 6.69 (–0.32, +0.60) 

26641 24.0 (0.2) 25.1 (0.6) 1.00 1.01 24.2 (0.6) 15.6 (0.2) 877 (19) 6.57 (–0.37, +0.49) 

25378 24.0 (0.2) 23.6 (0.9) 1.02 1.07 25.8 (0.9) 15.2 (0.3) 914 (23) 5.70 (–0.19, +0.54) 

24255 23.8 (0.2) 25.6 (1.0) 0.99 1.05 26.5 (1.1) 14.9 (0.2) 921 (30) 5.32 (–0.09, +0.64) 

25376 27.2 (0.2) 25.5 (0.7) 1.07 1.07 28.2 (0.7) 18.0 (0.3) 1184 (25) 6.45 (–0.33, +0.49) 

25379 28.9 (0.2) 29.0 (0.7) 1.08 1.02 30.0 (0.8) 19.4 (0.3) 1353 (28) 6.60 (–0.19, +0.66) 

24254 30.3 (0.2) 31.3 (0.8) 1.04 1.01 32.1 (0.9) 20.4 (0.3) 1527 (32) 6.41 (–0.23, +0.60) 

25374 31.2 (0.2) 30.3 (1.1) 1.09 1.02 32.3 (1.2) 21.3 (0.3) 1604 (41) 6.87 (–0.51, +0.77) 

25385 31.7 (0.2) 30.1 (0.7) 1.09 1.04 32.7 (0.8) 21.8 (0.3) 1659 (32) 7.01 (–0.22, +0.73) 

24264 34.2 (0.2) 33.1 (1.2) 1.07 1.00 34.5 (1.3) 24.0 (0.3) 1918 (50) 7.65 (–0.56, +1.12) 

25387 35.6 (0.2) 34.0 (1.2) 1.09 1.00 36.1 (1.3) 25.1 (0.3) 2112 (56) 7.64 (–0.48, +1.23) 
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TABLE III: Parameters of the bilinear us–up Hugoniot fit of the form us = a0 + a1 (up–β) 

with 1σ confidence intervals. This fit is valid for shocks in silicon achieving 

pressures >200 GPa. Breakpoint of the fit is up,break = 6.5 km/s. 

Fitting range (km/s) a0 ( )0aσ (km/s) a1 ( )1aσ  β (km/s) 

4.0 ≤ up ≤ 6.5 km/s 10.3 (0.09) 1.80 (0.10) 4.95 

6.5 ≤ up ≤ 25 km/s 22.5 (0.23) 1.26 (0.06) 14.0 

 

 

TABLE IV: Sound speed (cs) and non-steady-waves parameter 
scF  

included in this work. 

Shot number 
scF  cs (km/s) ρ (g/cm3) 

25378 1.02 17.3 (1.9) 5.70 (–0.19,+0.54) 

25376 1.07 18.3 (2.5) 6.45 (–0.33,+0.49) 

26641 1.00 18.0 (1.7) 6.57 (–0.37,+0.49) 

25379 0.95 22.3 (1.8) 6.60 (–0.19,+0.66) 

25382 1.05 16.5 (2.2) 6.69 (–0.32,+0.60) 

25374 1.02 22.0 (2.6) 6.87 (–0.51,+0.77) 

25385 1.13 19.5 (3.7) 7.01 (–0.22,+0.73) 

25387 1.05 23.2 (4.0) 7.64 (–0.48,+1.23) 
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TABLE V: Parameters of the linear cs–ρ fit with 1-σ confidence intervals and 

correlation matrix elements. This fit is valid for shocks in silicon 

achieving pressures > 80 GPa.  

Function Form Fit Parameter Results Covariance Matrix 

sc β ρ α= ⋅ +  
α = 5.56 (0.98) km/s 0.96 … 

( )18.5 6.65 km cc
g s

β ⋅= −
⋅

 –6.5 44.2 

 

 


