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A recent work [Balram, Jain, and Barkeshli, Phys. Rev. Res. 2, 013349 (2020)] has suggested
that an unconventional state describing Zn superconductivity of composite bosons, which supports
excitations with charge 1/(3n) of the electron charge, is energetically better than the Laughlin wave
function at ν = 7/3 in GaAs systems. All experiments to date, however, are consistent with the
latter. To address this discrepancy, we study the effect of finite width on the ground state and
predict a phase transition from an unconventional Zn state at small widths to the Laughlin state
for widths exceeding ∼ 1.5 magnetic lengths. We also determine the parameter region where an
unconventional state is stabilized in the one third filled zeroth Landau level in bilayer graphene.
The roles of Landau level mixing and spin are also considered.

I. INTRODUCTION

The fractional quantum Hall effect (FQHE) at filling
factor ν = 1/3 in the lowest Landau level (LLL) was the
first to be experimentally observed [1] and subsequently
understood, as a result of Laughlin’s trial wave func-
tion [2]. The FQHE has since proven to be an incredibly
rich platform for exploring the physics of strongly cor-
related electron systems. After the initial observation,
many additional fractions were observed in the LLL at
ν = n/(2pn ± 1) with n and p positive integers. These
fractions are understood as an integer quantum Hall ef-
fect (IQHE) of composite fermions, where a composite
fermion (CF) is an emergent particle consisting of an
electron bound to an even number of vortices [3–5].

In contrast, the FQHE in the second LL (SLL) of GaAs
is less well understood. Interestingly, even the physical
origin of the ν = 7/3 FQHE, which corresponds to 1/3
filled SLL, has not been conclusively established. Exact
diagonalization studies [6–11] have convincingly shown
that the actual state at ν = 7/3 for a zero width system
is an incompressible FQHE state. However, the over-
lap of the exact ground state with the Laughlin state
is not large, typically less than 60% for systems accessi-
ble to exact diagonalization studies [6–11]. [In contrast,
the overlap of the Coulomb ground state at ν = 1/3 in
the LLL with the Laughlin state is greater than 98% for
up to N = 15 electrons [11].] Furthermore, the excita-
tions of the 7/3 FQHE in exact diagonalization studies
are qualitatively different from those at 1/3, and exact
diagonalization studies also do not show a clearly iden-
tifiable branch of low-energy excitations, called the mag-
netoroton or the CF-exciton mode, as observed in the
LLL [12–16]. As a result, the precise nature of the state
at ν = 7/3 has remained a topic of debate [9, 11, 17–22].

In a recent work, Balram et al.[22] have proposed, in-
spired by the parton paradigm for the FQHE [23], that
the ν = 7/3 FQHE is a Zn topological superconductor,
wherein bound states of n composite bosons [24] undergo
Bose-Einstein condensation. This generalizes the Zhang-
Hansson-Kivelson theory of the 1/3 Laughlin state as a

Bose-Einstein condensate of composite bosons [24], with
Z1 corresponding to the Laughlin wave function. While
the different Zn states share many topological quantum
numbers, a key distinction between them is that the ele-
mentary quasiparticle has a charge of −e/(3n), where −e
is the charge of the electron. Variational calculations in
Ref. [22] suggest that the best candidate is the Z3 state,
which has lower energy than the Laughlin state in the
thermodynamic limit, and also a higher overlap with the
exact SLL Coulomb ground state for systems where such
a calculation is possible.

The experimental observations at ν = 7/3 are, how-
ever, largely consistent with the Laughlin state. In par-
ticular, shot noise [25–27] and scanning single-electron
transistor [26] experiments at ν = 7/3 have measured
quasiparticles of charge −e/3. This raises the question:
Why are experimental measurements consistent with the
Laughlin state while theory suggests that better vari-
ational states exist? This question has motivated the
present study.

There can be several reasons for the discrepancy be-
tween theory and experiment. The theoretical calcula-
tions mentioned above do not include the effects of fi-
nite width, Landau level mixing, screening, and disorder,
which can affect the variational comparisons. We con-
sider in this article the competition between the different
Zn states as a function of the quantum well width. Our
primary result is the prediction of a phase transition from
the Z4 state at small widths into the Laughlin (Z1) state
when the quantum well width exceeds approximately 1.5
magnetic lengths. We also predict a similar phase tran-
sition at ν = 1/3 in the zeroth Landau level of bilayer
graphene as a function of the magnetic field.

The plan of the paper is as follows. In Section II we
review the Zn parton wave function. Section III gives the
phase diagram as a function of the quantum well width.
The relevance of the Zn states in the zeroth Landau level
of bilayer graphene is considered in Sec. IV. Section V
includes the physics of Landau level mixing and the spin
degree of freedom. The article is concluded in Sec. VI
with a discussion of the results and their possible ex-



2

perimental manifestations. Various technical details are
given in Appendices A - D. Appendix A is devoted to
effective interaction in finite width GaAs quantum wells
as well as bilayer graphene; Appendices B and C provide
technical details of variational and diffusion Monte Carlo
method; and Appendix D gives thermodynamic limits for
energies at ν = 1/3 in the lowest Landau level including
both Landau level mixing and spin.

II. Zn PARTON WAVE FUNCTION AT ν = 1/3

The parton theory generalizes the Jain CF states [4]
to a larger class of candidate wave functions [23]. In
the parton theory, one considers fractionalizing electrons
into a set of fictitious particles called partons. The par-
tons are fractionally charged, have the same density as
electrons, and have filling factor να, where α labels the
parton species. An incompressible state is achieved when
each parton species is in an IQHE state, i.e. να = nα,
with nα an integer. (More generally, we can place the
partons in any known incompressible states.) The par-
tons are of course unphysical and must be combined back
into physical electrons, which is equivalent to setting the
parton coordinates zαj equal to the parent electron co-
ordinates zj , i.e. zαj = zj for all α. (The quantity
zj = xj − iyj is the complex coordinate of the jth elec-
tron.) The resulting wave functions, labeled “n1n2n3...,”
are given by

Ψn1n2n3...
ν = PLLL

∏
nα

Φnα({zj}), (1)

where Φn is the Slater determinant wave function for
the state with n filled Landau levels, and PLLL denotes
projection into the LLL, as appropriate in the high field
limit. The partons can also experience magnetic fields
anti-parallel to the field experienced by electrons; these
correspond to negative filling factors, which we denote as
n̄, with Φn̄ = Φ−n = Φ∗n. To ensure that each parton
species has the same density as the electron density, the
charge of each parton species is given by eα = −νe/να.
The relation

∑
α eα = −e implies that the electron filling

factor is given by ν = [
∑
α ν
−1
α ]−1. The Laughlin wave

function at ν = 1/3 can be interpreted as the 111 parton
state. The Jain n/(2pn + 1) states appear as the n11...
states and the Jain n/(2pn−1) states as n̄11...; these cor-

respond to the wave function Ψn/(2pn±1) = PLLLΦ±nΦ2p
1 .

Many other parton states have recently been shown to be
plausible for SLL and other FQHE [11, 22, 28–36]. These
states often have exotic properties, such as non-Abelian
anyonic excitations [37].

For ν = 1/3, Balram et al. proposed the Zn parton
states described by the wave function

ΨZn
1/3 = PLLLΦnΦn̄Φ3

1 ∼ Ψn/(2n+1)Ψn/(2n−1)Φ
−1
1 , (2)

where in the last step we redefine the wave function as
[PLLLΦnΦ2

1][PLLLΦn̄Φ2
1]Φ−1

1 . (This grouping is chosen

to facilitate the use of Jain-Kamilla projection method
in our numerical simulations [4, 38–42]. It is accepted
and has been shown for many cases that the topological
properties of the state do not depend on the details of
the projection method [43].) Because the factor ΦnΦn̄ is
real, all the Zn states occur at the same “shift” [44] S = 3
in the spherical geometry. The physical interpretation
of the wave function as a superconductor of composite
bosons arises from the fact that ΦnΦn̄ represents a Zn
superconductor of electrons [22, 45], and the factor Φ3

1

attaches three vortices to each electron to convert it into a
composite boson. The elementary excitation corresponds
to an excitation in the factor Φn or Φn̄ and has a charge
of magnitude e/(3n).

III. FINITE WIDTH PHASE DIAGRAM FOR
ν = 7/3 IN GAAS

We will use the spherical geometry [46] in our calcu-
lations, which considers N electrons on the surface of a
sphere subjected to a total flux 2Qφ0, with φ0 = hc/e
and 2Q is a positive integer. The radius of the sphere
is R =

√
Q`, where ` =

√
~c/eB is the magnetic

length. The state with n filled Landau levels can only
be constructed for particle number N divisible by n and
N ≥ n2. The same is true of the Zn state.

We approximate the confining potential as an infinite
square well of width w that results in a transverse wave
function given by a sine function. The problem of elec-
trons in the SLL interacting with the Coulomb interac-
tion is equivalent to that of electrons in the LLL interact-
ing with an effective interaction; the effective interaction
for this system is given in Ref. [47] and in Appendix A.
We consider well widths up to 5 magnetic lengths. (For
convenience, we use the disk pseudopotentials for our cal-
culations in the spherical geometry; this should not cause
any corrections because we will perform the calculation
for large systems and take the thermodynamic limit.)

FIG. 1. Thermodynamic extrapolations for the energy dif-
ferences ∆E = E(Zn) − ELaughlin for various Zn states at
ν = 7/3. The results are for zero quantum well width. The
Z4 state has the lowest energy in the thermodynamic limit.

At zero width, the Z4 state has the lowest energy in
the thermodynamic limit, as seen in Fig. 1. Here and
below, all energies are quoted in units of e2/(ε`) where ε
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FIG. 2. Thermodynamic energies of various Zn states at ν =
7/3 as a function of the quantum well width w. All energies
are quoted relative to the Laughlin state. The x-axis is the
quantum well width in units of magnetic length. A phase
transition from the Z4 to the Laughlin state is seen to occur
at w ∼ 1.5`.

is the dielectric constant of the material. (We note that
the Z4 and Z5 states were not studied in Ref. [22]. Also,
we cannot definitively rule out the Z3 state within the
numerical accuracy of our calculations.) We have simi-
larly determined the thermodynamic energies for quan-
tum wells of various widths [see Appendix D]. In Fig. 2,
we show how the energies of several Zn states, measured
relative to the energy of the Laughlin state, evolve as we
increase the well-width. For a w < 1.5`, the Z4 state
has the lowest variational energy in the thermodynamic
limit. For w > 1.5`, the Laughlin state is preferred in our
calculation, suggesting that the Z4 state should only be
observed in samples with sufficiently low quantum well
widths and/or low density. We add here that because of
the numerical uncertainty in the thermodynamic energy
differences and our simple model for the finite width, the
critical value of 1.5` should be taken only as a first esti-
mate.

IV. Zn STATE IN BILAYER GRAPHENE

We next ask if similar physics can appear elsewhere.
We expect to find a transition in the zeroth Landau level
of bilayer graphene (BLG) as a function of the magnetic
field. The zeroth Landau level of BLG is exactly equiv-
alent to the LLL of GaAs when the magnetic field is in-
finite and continuously interpolates to the SLL of GaAs
as the magnetic field is decreased. As such, we expect
that a Zn state is stabilized below a critical field and the
Laughlin state is favored above the critical field.

The Coulomb interaction between electrons can be
parameterized using Haldane pseudopotentials Vm [46],
which is the energy of two electrons in a relative angular
momentum state m in the disk geometry. The pseudopo-
tentials in the zeroth LL of bilayer graphene are given by

V 0−BLG
m (θ) =

∫ ∞
0

dq F 0−BLG(θ, q)e−q
2

Lm(q2). (3)

where the Fourier transformed form factor is [48]

F 0−BLG(θ, q) =

[
sin2(θ)L1

(q2

2

)
+ cos2(θ)L0

(q2

2

)]2

.

(4)
Here we have set the magnetic length to unity, Lr(x) is
the rth order Laguerre polynomial and θ is a parame-
ter that varies between 0 and π/2 to control the relative
proportion of the n = 0 and n = 1 LLs in the two-
component wave function. At θ = 0 the form factor is
that of the LLL of GaAs while for θ = π/2, it is exactly
the form factor for the SLL in GaAs. At the mid-way
point, θ = π/4, the form factor is that of the n = 1 LL in
monolayer graphene [49]. The value of θ is related to the

magnetic field by tan2 (θ) ∝ `/(~vF ) ∝ 1/
√
B, where vF

is the Fermi velocity. For very large magnetic fields, we
anticipate the physics of the LLL of GaAs. As the mag-
netic field is lowered, we first expect to see the physics
of monolayer graphene appear (which has been shown to
be well described by the composite fermion theory [49])
that eventually gives way to states exhibiting the physics
of the SLL of GaAs at very small magnetic fields.

FIG. 3. Energies of Zn states in bilayer graphene, measured
relative to the energy of the Laughlin state, as a function
of the tangent of the mixing angle θ. All energies represent
thermodynamic limits. The Z4 state is seen to be favored for
θ ' 1.45. The top axis shows ~vF /` in units of meV (see text
for relation between θ and ~vF /`). Energies are shown only
in the vicinity of the transition.

We construct an effective interaction as shown in Ap-
pendix A, and obtain the thermodynamic energies of
various candidate states as a function of θ. The angle
θ is related to measurable quantities through tan θ =
t`/(
√

2~vF ) where t is the hopping integral and vF is
the Fermi velocity [48]. Taking t ∼ 350meV, as obtained
from DFT calculations at zero magnetic field [50], we ob-

tain ~vF /` = 350meV/(
√

2 tan θ). The top axis in Fig. 3
shows ~vF /` in units of meV. We find that the transition
from the Z4 to the Laughlin state occurs approximately
at ~vF /` ∼ 30 meV. For graphene, with a typical Fermi
velocity of 106 m/s, this corresponds to a magnetic field
strength of B ≈ 1.4T.
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V. LANDAU LEVEL MIXING AND SPIN

It is natural to ask if Zn parton states can be rele-
vant for ν = 1/3 in the LLL. We have performed ex-
tensive calculations as a function of quantum well width
and density, also including LL mixing. We use a self-
consistent LDA calculation to determine the transverse
electron density at zero magnetic field at several elec-
tron densities and quantum well widths. We further in-
clude LL mixing through the so-called fixed phase dif-
fusion Monte Carlo method [51–53] (also see Appendix
C). For all parameters we have considered, the Laugh-
lin state remains the lowest energy state. The detailed
results are given in Appendix D.

Recent experiments have mapped out the spin polar-
ization of the SLL in GaAs quantum wells [54]. They
observe an anomalous spin depolarization between fill-
ings factors 1/5 and 1/3. The Laughlin state is fully
spin polarized, but Zn states with n > 1 allow for the
possibility of spin-unpolarized or spin-partially polar-
ized states. The generalization is analogous to that for
Jain CF states to spin-singlet or partially spin-polarized
states [4, 42, 55–57]. Specifically, the Zn state can be
generalized to include spin as

Ψ
Zn(n,0;n̄↑,n̄↓)

1/m = PLLLΦnΦn̄↑,n̄↓Φm1

∼ Ψn/(2n+1)Φ
m−4
1 PLLLΦ∗n↑,n↓

Φ2
1 (5)

where n = n↑ + n↓, and Φn↑,n↓ represents the state
with n↑ spin-up and n↓ spin-down filled Landau lev-
els. These wave functions can be shown to satisfy the
Fock cyclic conditions [4]. In the above wave function,
we have made the n̄-parton spinful. An analogous wave

function Ψ
Zn(n↑,n↓;n̄,0)

1/m can be written where the n-parton

is endowed with spin. Which configuration is preferred
depends on the interaction. Our detailed calculations,
shown in Appendix D, demonstrate that the fully spin-
polarized states have better variational energies for all
interactions considered in this article.

VI. DISCUSSION

Our work was motivated by an apparent discrepancy
between theory and experiment for the FQHE at ν = 7/3:
while theory finds the Z4 parton state to have lower en-
ergy than the Laughlin state, experiments are consistent
with the latter. We find that when we take into account
finite width corrections, there is a transition from the Z4

state into the Laughlin state at width ∼ 1.5`.
All experimental observations of the 7/3 state appear

to be for larger widths and thus fall in the region where
the Laughlin state is favored. (Large mobilities, neces-
sary for an observation of the 7/3 state, are typically
obtained for relatively wide quantum wells because that
minimizes the effect of interface roughening. One may
alternatively go to low densities. The 7/3 state has been
observed at very low densities [58, 59], but even there,

with 7/3 state occurring at B ≈ 0.9T, the width of 65
nm translates approximately into 2.5 `.) It may be pos-
sible to decrease both the quantum well width and the
density to get into the regime where the Z4 state is pre-
dicted. If a phase transition is observed (for example, by
gap closing and reopening as a function of the density), it
would provide evidence in favor of an unconventional Zn
state at small widths, and also of the role of large width
in stabilizing the Laughlin state at 7/3.

We note that a previous exact diagonalization calcula-
tion has also shown that the magnetoroton branch, ab-
sent at zero width, appears by the time the quantum well
width is three magnetic lengths [16]. Another exact diag-
onalization study has shown that finite width stabilizes
the 7/3 Laughlin state [11].

An additional experimental quantity, namely the chiral
central charge, can be measured in thermal Hall conduc-
tance measurements and can sometimes distinguish be-
tween states with different topological content [60, 61].
For the Zn states, the chiral central charge is indepen-
dent of the value of n and so the thermal Hall conduc-
tance is predicted to be the same for all of these states.
The measured value of the thermal Hall conductance at
7/3 is consistent with all of these states [62].

The Hall viscosity of all Zn states is identical because
they all have the same shift. These states are, however,
not topologically equivalent as they have different topo-
logical entanglement entropies [22]. The clearest exper-
imental signature distinguishing the states will be the
charge of the fundamental quasiparticles. The Laughlin
state has charge −e/3 quasiparticles while the Zn state
has charge −e/(3n) quasiparticles. These quasiparticles
can, in principle, be detected through scanning electron
transistor experiments [26]. The situation for shot noise
experiments is more subtle. As Balram et al. argued [22],
the −e/(3n) quasiparticles are gapped at the edge and
only the −e/3 quasiparticles can be excited at arbitrar-
ily low temperatures. It may be possible, however, that
the −e/(3n) quasiparticles become relevant in shot noise
experiments at somewhat elevated temperatures (or volt-
age bias).

We note that the so-called anti-Read-Rezayi 4-cluster
(aRR4) state [17] also provides a plausible candidate
wave function for the 7/3 FQHE [20]. The energy of
the aRR4 state is equal to the energy of the Laughlin
state within numerical uncertainty [20], in contrast to our
Z4 state which has lower energy than Laughlin’s. Fur-
thermore, the aRR4 state has overlaps of 0.77 and 0.59
with the exact ground state for 10 [10] and 12 particles,
whereas the Z2 state has an overlap of 0.87 for 10 par-
ticles and Z3 has an overlap of 0.93 for 9 particles [22].
(The Z4 state requires a minimum of 16 particles, for
which we cannot obtain overlaps.) Finally, assuming
equilibration of all edge modes, the thermal Hall mea-
surements at 7/3 are inconsistent with the chiral central
charge of the aRR4 state [62].
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Appendix A: Effective Interactions

The system of electrons in any given Landau level
(LL) interacting with the Coulomb interaction is formally
equivalent to the system of electrons in the lowest LL
(LLL) interacting with an effective interaction that has
the same pseudopotentials in the LLL as the Coulomb in-
teraction does in the given LL [46]. This allows us to work
within the LLL, which is convenient because various trial
wave functions are most readily constructed within the
LLL. Such effective interactions have been constructed
for zero as well as finite width systems [47, 63, 64]. Below
we present our construction of the effective interactions
that capture the effect of finite width in the LLL and
second LL (SLL) of conventional semiconductors such as
GaAs. We also construct effective interactions that de-
scribe the physics of the zeroth LL of bilayer graphene
(BLG) as a function of the magnetic field.

1. Finite width in LLs of GaAs

In the LLL, we use a self-consistent LDA calculation
to determine the transverse electron density at zero mag-
netic field at several electron densities and quantum well
widths [63]. We consider densities from 1×1010 cm−2 to
30× 1010 cm−2 and quantum well widths from 18 nm to
70 nm. In the SLL, we approximate the confining poten-
tial as an infinite square well that results in a sinusoidal
transverse wave function. The effective interaction for
this system can be found in Ref. [47].

2. Bilayer Graphene

In Sec. IV of the main text we introduced the pseu-
dopotentials {V 0−BLG

m (θ)} in the zeroth LL of bilayer
graphene. The interaction given in Eq. (3) of the main

text can be integrated analytically to obtain

V 0−BLG
m (θ) =

√
π

32

[
16 2F1

(
1

2
,−m; 1; 1

)
(A1)

−8 2F1

(
3

2
,−m; 1; 1

)
sin2(θ)

+3 2F1

(
5

2
,−m; 1; 1

)
sin4(θ)

]
where 2F1 is the Gauss hypergeometric function. We
propose the following real space effective interaction to
describe the physics of the zeroth LL of bilayer graphene
in the LLL

Veff(r, θ) =
1

r
+

sin2(θ)√
r6 + 1

+
2.25 sin4(θ)√
r10 + 10

+

M∑
i=0

Cir
2ie−r

2

,

(A2)
where r is in units of ` and the Ci’s are a set of M+1 fit-
ting parameters. The coefficients of the first three terms,
namely 1, sin2(θ) and 2.25 sin4(θ) are fixed by the long-
range part of the Coulomb interaction. We use the same
functional form given in Eq. (A2) for both fully polar-
ized (or “spinless”) electrons, for which only the odd
m pseudopotentials are relevant, and non-fully polarized
(or “spinful”) electrons, for which all the pseudopoten-
tials are relevant. For the spinful case, we fit the first 7
pseudopotentials (m = 0, · · · , 6) of Eq. (A1) with that
of the effective interaction given in Eq. (A2) to deter-
mine the coefficients C0, C1, · · · , C6. This interaction can
also be used for spinless states, but for these states we
find it more convenient to keep only three fitting param-
eters C0, C1 and C2 in the effective interaction and deter-
mine them by fitting the first 3 relevant pseudopotentials
(m = 1, 3, 5). The reason is that the effective interaction
generated for the spinless case using this procedure is
already very accurate; fitting a larger number of pseu-
dopotentials leads to a highly oscillating effective inter-
action, thus accentuating numerical errors in the energy
calculations. For the fully polarized states of our interest,
we have calculated energies using both interactions, and
confirmed that they are consistent (within error bars).

For completeness, in Tables I and II we have tabu-
lated the coefficients {Ci} for the spinful and spinless
effective interactions. As seen in Fig 4, the deviation of
the pseudopotentials of the effective interaction from the
true pseudopotentials [given in Eq. (A1)] is always below
0.3%, confirming that our effective real space interaction
accurately captures the physics in the zeroth LL of bi-
layer graphene for all values of θ (The value of θ can be
tuned by varying the magnetic field.). Shi et al. [64] used
the same procedure to construct an effective interaction
to simulate the physics of the fully spin-polarized SLL
states in the LLL; our interaction for spinless systems
matches theirs for θ = π/2. An effective interaction for
spinful electrons in the n = 1 LL of monolayer graphene
was earlier constructed in a similar fashion in Ref. [49];
our interaction agrees with that of Ref. [49] for θ = π/4.
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FIG. 4. Deviation of the pseudopotentials of the effective interactions from true pseudopotentials in the zeroth Landau level
of bilayer graphene. Panels (a) and (b) correspond to the interactions for spinful and spinless electrons, respectively; for the
former both odd and even pseudopotentials are relevant, whereas for the latter only odd pseudopotentials are relevant. We
present data for θ = π/4 (blue circles) and π/2 (red squares). The error for intermediate values of θ smoothly interpolates
between these two extreme values of our interest. The θ = π/4 and θ = π/2 interactions correspond to the interaction in the
n = 1 LL of monolayer graphene and the SLL of GaAs, respectively.

θ C0 C1 C2 C3 C4 C5 C6

π/4 42.552118895 -284.79594413 376.9515623 -179.3196865 36.582878699 -3.23227919 0.100424064

21π/80 52.355216896 -344.41619237 453.2479057 -214.9925686 43.784369086 -3.86408630 0.119954345

22π/80 63.029793451 -409.04246282 535.8091364 -253.5598803 51.565847438 -4.54651997 0.141043830

23π/80 74.484207658 -478.12738090 623.9395653 -294.6975250 59.862033129 -5.27386166 0.163515945

24π/80 86.605498835 -551.00087294 716.7898308 -338.0103786 68.593409224 -6.03914995 0.187155830

25π/80 99.261125521 -626.88030901 813.3696705 -383.0382094 77.667411251 -6.83428442 0.211713546

26π/80 112.30120610 -704.88353603 912.5643142 -429.2632732 86.979951610 -7.65015890 0.236908181

27π/80 125.56121220 -784.04451876 1013.154144 -476.1194174 96.417246762 -8.47682112 0.262432767

28π/80 138.86505467 -863.33124095 1113.837188 -523.0024955 105.85790672 -9.30365525 0.287959912

29π/80 152.02849210 -941.66546226 1213.253932 -569.2818539 115.17523982 -10.1195832 0.313148002

30π/80 164.86278371 -1017.9438792 1310.013895 -614.3126321 124.23972015 -10.9132805 0.337647844

31π/80 177.17850208 -1091.0602024 1402.723346 -657.4485910 132.92156104 -11.6734005 0.361109591

32π/80 188.78941695 -1159.9276378 1490.013529 -698.0551737 141.09333491 -12.3888038 0.383189799

33π/80 199.51635936 -1223.5012479 1570.568726 -735.5224941 148.63257863 -13.0487854 0.403558436

34π/80 209.19097536 -1280.7996689 1643.153519 -769.2779501 155.42432337 -13.6432961 0.421905691

35π/80 217.65928092 -1330.9256744 1706.638594 -798.7981650 161.36348985 -14.1631513 0.437948421

36π/80 224.78493416 -1373.0851016 1760.024496 -823.6199775 166.35709251 -14.6002238 0.451436086

37π/80 230.45214761 -1406.6036925 1802.462760 -843.3502199 170.32620076 -14.9476150 0.462156023

38π/80 234.56817133 -1430.9414532 1833.273930 -857.6740553 173.20761110 -15.1998010 0.469937948

39π/80 237.06528826 -1445.7041910 1851.962037 -866.3616757 174.95519048 -15.3527499 0.474657572

π/2 237.90227427 -1450.6519568 1858.225190 -869.2732028 175.54085927 -15.4040074 0.476239246

TABLE I. Coefficients of the effective interaction given in Eq. (A2) for bilayer graphene as a function of the angle θ for a system
of spinful electrons.

Appendix B: Variational Monte Carlo

We evaluate the energy of each trial wave function for
our effective interactions using variational Monte Carlo
(VMC). VMC allows us to consider many different inter-
actions during the same sampling procedure and so we
can quickly determine the energy for the LLL, the SLL,
finite width effective interactions, and bilayer graphene
effective interactions. In each VMC run, we perform 20
million steps and typically estimate the error in the per-

particle ground-state energy of each system to be be-
tween 10−5 and 10−4, except for highly oscillatory in-
teractions for spinful electrons for which the error is
∼ 2× 10−3. The reported energies are the total energies
per particle, i.e., include the effective electron-electron
interaction, the electron-background interaction, and the
background-background interaction. (For the latter two,
we use the Coulomb interaction, rather than the effec-
tive interaction. However, this is sufficient, because we
are only interested in the energy differences.)
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θ C0 C1 C2

π/4 -3.500190774 2.2905277281 -0.2760897478

21π/80 -4.3645703465 2.8256689456 -0.3392114604

22π/80 -5.3086398458 3.4087491892 -0.4079208489

23π/80 -6.3242224208 4.0347534781 -0.4816286458

24π/80 -7.4011939407 4.6974943436 -0.5596088683

25π/80 -8.5276405265 5.389707299 -0.641009981

26π/80 -9.6900618674 6.1031738918 -0.724869275

27π/80 -10.8736158706 6.8288696533 -0.8101301508

28π/80 -12.0623991601 7.5571336381 -0.8956619189

29π/80 -13.2397570448 8.2778557024 -0.9802816689

30π/80 -14.3886158229 8.9806772239 -1.0627777046

31π/80 -15.4918297228 9.6552006158 -1.1419340046

32π/80 -16.5325343885 10.2912027588 -1.2165551382

33π/80 -17.4944986309 10.8788473569 -1.285491054

34π/80 -18.3624661736 11.4088912318 -1.3476611604

35π/80 -19.1224793364 11.8728796968 -1.4020771302

36π/80 -19.7621770063 12.263326399 -1.4478638919

37π/80 -20.2710598417 12.5738733751 -1.4842783109

38π/80 -20.6407164192 12.7994275309 -1.5107251187

39π/80 -20.8650049565 12.936270306 -1.5267697123

π/2 -20.9401862915 12.9821379218 -1.5321475202

TABLE II. Coefficients of the effective interaction given in
Eq. (A2) for bilayer graphene as a function of the angle θ for
a system of fully polarized electrons.

There is a systematic correction to the energy as a
function of N due to the dependence of the density on N ;
we correct for this by multiplying the energy by

√
2Qν/N

[65]. This correction also reduces finite-size corrections
that arise from the fact that the non-fully polarized states
can occur at different values of the magnetic monopole
strength 2Q than the fully polarized states.

Rather than obtaining the thermodynamic limits of
the energies, as was done in Ref. [22], we find it more
convenient to directly obtain the thermodynamic limits
for the energy differences. We find that these behave
more linearly with 1/N than the individual energies.

Appendix C: Diffusion Monte Carlo: Landau level
mixing

The electrons resides in the LLL only in the limit of an
infinite magnetic field. The Landau level mixing (LLM)
parameter κ = ~ωc/(e2/ε`), which is the ratio of the
cyclotron energy to the Coulomb energy, is usually of
the order of 1, implying that LLM might have a non-
negligible effect on the energy ordering of various states.
Several earlier papers have shown that LLM can affect
the nature of the ground state [52, 53]. One may won-
der whether LLM can trigger a phase transition in our
system.

The method we use to study the effect of LLM is
called the fixed-phase diffusion Monte Carlo (DMC)
method. The standard DMC is a Monte Carlo method
designed to obtain the ground state of a many-body
Schrödinger equation by a stochastic method provided
that the ground state wave function is real and non-
negative. By setting time to an imaginary variable
t→ t = −iτ , the Schrödinger equation takes the form:

−~∂τΨ (R, τ) = (H − ET )Ψ (R, τ) (C1)

where R = (r1, r2, ..., rN ) is the collective coordinate of
the system and ET is a constant energy offset. When Ψ
is real and non-negative, this equation can be interpreted
as a diffusion equation, with Ψ interpreted as the density
distribution of a collection of randomly diffusing walkers.
The energy offset ET is introduced for technical conve-
nience. Briefly, the simulation starts with a trial wave
function ΨT and performs the diffusion process to obtain
a stable state. As the system evolves, all the high-energy
components of the state decay exponentially, so the final
state only contains the lowest-energy eigenstate, no mat-
ter what initial state is chosen (provided that the initial
state has a nonzero overlap with the exact ground state).
Many excellent articles introducing the details of DMC
are available in the literature [66, 67].

The original DMC cannot be implemented here be-
cause the ground state wave function of an FQHE state
is a complex function. To overcome this difficulty, the
fixed-phase DMC method has been developed[51–53]. In
this method, the ground state wave function is written
as

Ψ(R) = |Ψ(R)| exp [iφ(R)] (C2)

The phase φ(R) is then fixed to be the phase of a known
trial wave function ΨT and the standard DMC is imple-
mented to solve for the amplitude part |Ψ(R)| to obtain
the lowest energy state in the chosen phase sector. This
amounts to solving the Schrödinger equation

HDMC |Ψ (R, τ)| =(
−

N∑
i=1

~2∇2
i

2me
+ VDMC(R)− ET

)
|Ψ (R, τ)| = E |Ψ (R, τ)|

(C3)
with

VDMC(R) = V (R) +
1

2me

N∑
i=1

[
~∇iφ(R) +

e

c
A (ri)

]2
.

(C4)
where V (R) is the interaction energy and me is the elec-
tron band mass.

The accuracy of the fixed-phase DMC depends on the
choice of the phase φ(R). In this work, we fix φ(R) by
choosing the trial wave functions to be the Zn state. It
is worth noting that although the trial wave functions
themselves are in the LLL, the final states generated by
the DMC algorithm are not restricted to be within the
LLL, and the LLM parameter κ is embedded in this al-
gorithm.
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Appendix D: ν = 1/3 in the LLL

For completeness, we present thermodynamic extrap-
olations of several Zn states at ν = 1/3. In all cases, we
extrapolate the energy difference between the Zn state
and the Laughlin state. Fig 5 shows that the thermo-
dynamic extrapolations of the differences for the LLL of
GaAs and the n = 1 LL of monolayer graphene are well
fitted by a linear 1/N dependence. The Laughlin state
is seen to be the lowest energy state. (Results are not
shown for the n = 0 LL of monolayer graphene because
it is equivalent to the LLL of GaAs for a zero width sys-
tem in the absence of LLM.)

Fig. 6 presents energies of fully and partially spin po-
larized Zn states in the LLL, considering finite width ef-
fects (but no LLM). We find that the energy differences
decrease with increasing width and density, as expected.
However, the Laughlin state remains the ground state,
and there is no transition as a function of either the den-
sity or quantum well width for the parameters that we
have studied.

We have also studied the energy differences between
the spinful Zn states as a function of the magnetic field
in bilayer graphene (assuming no LLM). As seen in Fig 7,
the spin-singlet or partially spin-polarized states are not
relevant in the whole parameter regime available.

We next investigate whether Landau level mixing can
stabilize a non-Laughlin state at ν = 1/3 in the LLL. We
report here on our results of fixed-phase DMC calculation
for several Zn states at ν = 1/3. (We are not able to
study LLM for states at ν = 7/3 because DMC requires
keeping all electrons – not just electrons in the second LL
– which makes the computation of the thermodynamic
energies prohibitively demanding.)

We study the most prominent Zn states in the LLL,
which, using the notation defined in Eq. (5) of the main
text, are Z2 (2, 0; 2, 0), Z2 (1, 1; 2, 0), Z2 (2, 0; 1, 1) and
Z3 (3, 0; 3, 0). We only consider zero well-width. A tech-
nical point is worth mentioning. To construct the above
wave functions, we need to work with a particle num-
ber N for which both Φn and Φn̄↑,n̄↓ can be constructed.
That is possible for certain values of N for spin-singlet
states (i.e. when n̄↑ = n̄↓ = n̄/2, but not for partially
polarized states. We circumvent this problem by con-
structing wave functions with quasiholes in the spinless
portion, e.g. in the Φn factor in Eq. (5) of the main
text. In the thermodynamic limit, the addition of an or-
der one number of quasiholes or quasiparticles does not
alter the energy per particle, and therefore, we take this
wave function to be an adequate representation of the
partially polarized states.

We present in Fig. 8 energies from our fixed phase
DMC calculations for ν = 1/3 in the LLL for several
values of the LLM parameter κ. The thermodynamic
energies are shown in Fig. 9. Even though the energy
differences are reduced with increasing κ, the Laughlin
1/3 state comfortably remains the ground state.
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FIG. 5. Thermodynamic extrapolations of the energy difference between candidate state and the Laughlin state in the LLL
(left), and n = 1 LL of monolayer graphene (right). For both cases, the Laughlin state is the energetically preferred state.

FIG. 6. Energies of various Zn states at ν = 1/3 as a function of the quantum well width and the density. ∆E is the energy
difference between the Zn state and the Laughlin state, and ρ is the areal electron density in units of 1010cm−2. Panels (a)-(f)
show results for quantum wells of width equal to 18 nm, 30 nm, 40 nm, 50 nm, 60 nm, and 70 nm, respectively. The Laughlin
state remains the ground state for all parameters considered here.

FIG. 7. Energies of Zn states, including spin-unpolarized wave functions, for bilayer graphene as a function of mixing angle θ.
All energies are quoted relative to the energy of the Laughlin state. The statistical error in the Monte-Carlo energies of the
finite systems grows as θ is increased. Even with this relatively high error, it is clear that none of the spin unpolarized wave
functions is energetically relevant, even in the limit of vanishing Zeeman energy.
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FIG. 8. Thermodynamic extrapolations for the energies of
several Zn states at ν = 1/3 in the LLL. The LLM parameter
is κ = 2 (upper panel), κ = 4 (middle panel), and κ = 8 (low-
est panel). The calculation is done for Coulomb interaction
assuming zero width.

FIG. 9. The thermodynamic energies of several Zn states at
ν = 1/3 in the LLL as a function of the LLM parameter κ.
The calculation is done with a Coulomb interaction assuming
zero width. The Laughlin state remains the ground state.
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