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Abstract 
In experimentally measured temperature-composition ferroelectric phase diagrams of 

BaTiO3-based binary systems, a quadruple point where cubic (C), tetragonal (T), 

orthorhombic (O) and rhombohedral(R) phases converge has been frequently reported 

in previous work. More interestingly, the quadruple points are experimentally found 

to behave as a critical point with large enhancement in properties. However, it has 

remained a fundamental question as to whether a quadruple point in a binary 

ferroelectric system defies the thermodynamic phase rule and whether such a point 

necessarily goes critical. In this study, it is demonstrated by Landau theory that a 

C-T-O-R quadruple point in a binary ferroelectric system can only exist in the form of 

a novel type of critical point at which two first-order transition lines and two 

second-order ones meet and such critical quadruple points do not defy the 

thermodynamic phase rule. It is further shown that at such a critical C-T-O-R 

quadruple point, the system exhibits infinitely large piezoelectric coefficients, which 

agrees with the high piezoelectricity observed at the C-T-O-R quadruple point in a 

number of BaTiO3-based binary ferroelectric systems and also helps to explain the 

large piezoelectricity obtained at the morphotropic phase boundaries of these 

quadruple-point based systems. 
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1. Introduction 

The Gibbs phase rules set constraint on the maximum number of phases converging at 

a point in an equilibrium phase diagram of a multi-component system [1-4]. For 

example, in the temperature-composition phase diagram of a binary system when 

other control parameters like pressure field are fixed, the first phase rule regarding 

first-order phase transitions limits the maximum number of phases coexisting at 

equilibrium to 3 and the second phase rule regarding critical phase transitions limits 

the maximum number of phases becoming identical at a critical point to 2 [1-4]. 

Therefore, it seems that for the temperature-composition ferroelectric phase diagram 

of a binary BaTiO3-based ferroelectric solid solution with other fields such as electric 

field and pressure fixed, according to the above phase rules, the maximum number of 

ferroelectric phases converging at a point (either in the form of first-order transitions 

or critical ones) could not exceed 3. 

 

Despite of the above phase rules, it has long been reported by experiments that in the 

temperature-composition phase diagram of BaTiO3-based binary ferroelectric systems 

such as BaTi1-xZrxO3,[5] BaTi1-xSnxO3,[6], Ba1-xSrxTiO3, [7], and 

(1-x)BaZr0.2Ti0.8O3-xBa0.7Ca0.3TiO3,[8] a quadruple point where cubic (C, Pm3m), 

tetragonal (T, P4mm), orthorhombic (O, Amm2) and rhombohedral (R, R3m) phases 

converge always appears. More importantly, it has been illustrated that such C-T-O-R 

quadruple points always exhibit a near-critical ferroelectric transition which 

accompany with high dielectric permittivity [9], high energy storage density [10], 

large electrocaloric effect [11], and enhanced electrostrain [12] due to the flattened 

free energy curves with respect to polarization at the critical transition. Thus, the 

experimentally reported quadruple point in these binary ferroelectric systems is hard 

to understand because it seemingly violates the above Gibbs phase rule, not to 

mention its critical behavior. Clearly a theoretical understanding to the above puzzle 

not only makes new contribution to the thermodynamics of ferroelectrics, but also 

may contribute to a better understanding to the properties of this important class of 
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functional materials. 

 

In this work, we use Landau theory to demonstrate that the C-T-O-R quadruple point 

can exist in a binary ferroelectric system only in the form of a novel type of critical 

point where two first-order and two second-order transition lines meet and such kind 

of critical quadruple point does not defy the phase rule, which explains the 

experimentally observed critical C-T-O-R quadruple point in BaTiO3-based binary 

ferroelectric systems. We further show that this new type of critical quadruple point 

should be accompanied by infinitely large piezoelectric coefficients, which agrees 

with the high piezoelectricity obtained at the C-T-O-R quadruple point in some binary 

lead-free BaTiO3-based ferroelectric systems and allows us to explain the large 

piezoelectricity at the morphotropic phase boundary (MPB) in systems containing 

such a quadruple point. In addition, we find that for ternary ferroelectric system the 

C-T-O-R quadruple point could exist in the form of other types of special points such 

as near-isotropic points and isolated critical points. This study could stimulate 

experimental search of critical points in ferroelectric systems. 

 

2. Landau free energy models 

The Landau free energy, f, of a BaTiO3-based binary ferroelectric system in an 

unconstrained state can be written as a Landau polynomial of polarization vector P 

(P1, P2, P3) truncated at the 6th order: 

 

 

                                                                  (1) 

 

where P is the length of the polarization vector P (P1, P2, P3), 1 2 1 2 3, , , , ,α β β γ γ γ are 

the Landau coefficients depending on concentration (c) and temperature (T). The first 

three terms at the right-hand side of equation (1) are isotropic while the last three 

terms are anisotropic. The Landau polynomial in Eq. (1) has been derived and 
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employed in previous works on Landau theory of ferroelectric materials [13,14]. A 6th 

order rather than 8th order Landau polynomial is employed because it is both 

necessary and sufficient to describe all the four phases (C, T, O and R) considered in 

the studied systems and the contributions of higher order terms such as 8th order to the 

free energy are rather small when P is small near the Curie temperature (TC) [13,15]. 

Eq. (1) is written in terms of polarization vector P (P1, P2, P3) to distinguish different 

ferroelectric phases (T, O and R). For simplicity, the free energy in Eq. (1) is first 

transformed to polynomials containing only scalar P rather than P (P1, P2, P3). This is 

possible because for T, O and R ferroelectric phases, P1, P2 and P3 have the following 

relationships with P: 1P P= , 2 3 0P P= = for T, 1 2
2

2
P P P= = , 3 0P = for O, and 

1 2 3
3

3
P P P P= = =  for R.  The free energy for T, O and R phases can then be 

written as a function of P as follows: 

 

2 4 6
1 1Tf P P Pα β γ= + +                                             (2) 

2 4 62 2
1 1( ) ( )

4 4Of P P Pβ γα β γ= + + + +                                         (3) 

2 4 62 2 2
1 1

2( ) ( )
3 9 27Rf P P Pβ γ γα β γ= + + + + +                                   (4) 

 

where fT, fO and fR are the free energy of the T, O and R phases, respectively. 

 

3. Results 

There are four kinds of phase transitions in the vicinity of the C-T-O-R quadruple 

point in experiments [5-8], i.e., C-T, C-R, T-O and O-R. Both the T-O and O-R 

transitions have to be first-order because the symmetry elements of the T, O and R 

phases do not have a group-subgroup relationship [14]. On the other hand, the C-T 

and C-R transition can be either first-order or second-order from the symmetry 

argument [14]. The 2nd order Landau coefficient in Eq. (1), α ( 0 0= ( )T Tα α − , where 
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0α is a positive constant and T0 is the Curie-Weiss temperature), is positive at 

first-order transitions (TC>T0) and zero at second-order transitions (TC=T0) [15]. Thus, 

from Eqs. (2) and (4), we know that the order of C-T and C-R transitions at the 

C-T-O-R quadruple point has to be the same. Therefore, there are two possibilities 

with regards to the nature of the four phase transitions in the vicinity of the quadruple 

point: 1) all four transitions (C-T, C-R, T-O and O-R) are first-order, which is 

designated as Case 1; 2) C-T and C-R transitions are second-order while T-O and O-R 

transitions are first-order, which is designated as Case 2. Note that here we emphasize 

“in the vicinity” of the quadruple point rather than exactly at it because the order of 

transition might change on the quadruple point as required by the four-phase 

convergence.  

 

For Case 1, i.e., all four transitions are first-order in the vicinity of the quadruple 

point, we can derive a relationship among the Landau coefficients at the quadruple 

point as shown below. Here C-T, C-O, and C-R rather than C-T, C-R, T-O and O-R 

transitions are considered for simplicity. First let’s consider a first-order C-T 

ferroelectric transition at the Curie temperature. Two thermodynamic requirements 

need to be satisfied at this C-T transition: first, the free energy of the C phase and that 

of the T phase should be equal; second, the free energy of the T phase should be a 

local minimum. i.e., the first derivative of the free energy of the T phase with respect 

to P at PT should be zero (PT is the polarization length of T phase at the Curie 

temperature). With the first requirement, we can obtain an equation: 

2 4 6
1 1 0T T TP P Pα β γ+ + = , while with the second requirement, we can obtain another 

equation: 3 5
1 12 4 6 0T T TP P Pα β γ+ + = . Combining the two equations, PT can be 

eliminated and the following relationship among the Landau coefficients at the Curie 

temperature can be established: 

 

2
1 14β αγ=                                                          (5) 
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A similar analysis can be performed for the first-order C to R and C to O ferroelectric 

transitions and thus two more relationships among the Landau coefficients at the 

C-T-O-R quadruple point can be obtained: 

 

2 32 2
1 1

2( ) 4 ( )
3 9 27

γβ γβ α γ+ = + +
                                          

(6) 

 

22 2
1 1( ) 4 ( )

4 4
β γβ α γ+ = +                                               (7) 

 

Eqs. (5)-(7) contain only the 6 Landau coefficients 1 2 1 2 3, , , ,  ,  α β β γ γ γ without any 

other unknown parameters. It is impossible to determine all the values of the 6 

coefficients due to the limited number of equations (i.e., 3), but some of them can be 

determined. For example, it can be easily deduced from Eqs. (6)-(8) that [16]: 

 

2 2 3 0β γ γ= = =                                                     (8) 

 

or 

 

1 2 0 α β β= = =                                                     (9) 

 

Therefore, Eqs. (5)-(7) have two possible mathematical solutions as represented by 

Eqs. (8) and (9). The first one given by Eq. (8) represents an isotropic case (all 

anisotropic terms are zero) where the first-order T-O and O-R transition become 

barrierless at the C-T-O-R quadruple point while C-T and C-R transitions are still 

first-order. Note that the transitions among T/O/R cannot be barrierless due to the 

symmetry argument [14], although the inclusion of 8th order and/or higher-order terms 

in Eq. (1) could make the transitions among T/O/R have small barriers. Therefore, Eq. 
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(8) could give a nearly isotropic C-T-O-R quadruple point. The second solution given 

by Eq. (9) represents a case where the first-order C-T, C-O and C-R transitions all 

become critical at the C-T-O-R quadruple point because the 4th order coefficients in 

Eqs. (2)-(4) are all zero. Therefore, Eq. (9) represents an isolated critical quadruple 

point at which four first-order transition lines meet. However, both these cases have a 

low probability to exit in a binary ferroelectric system. This is because the three 

Landau coefficients (β2, γ2, γ3 or α, β1, β2) all depend only on c and T in a binary 

ferroelectric system. The three equations, ( , ) 0c Tα = , 1( , ) 0c Tβ = , 2 ( , ) 0c Tβ =  or 

2 ( , ) 0c Tβ = , 2 ( , ) 0c Tγ = , 3 ( , ) 0c Tγ = represent three curves in the c-T space and the 

probability for them to intersect at a single point is rather low. Nevertheless, these two 

cases are highly possible in a ternary ferroelectric system because of the sufficient 

independent variables, i.e., c1, c2 and T. 

 

For Case 2, i.e., the C-T and C-R transitions are second-order while the T-O and O-R 

transitions are first-order in the vicinity of the quadruple point, we can also deduce a 

relationship among the Landau coefficients at the quadruple point. From the 

second-order nature of the C-T and C-R transitions, it can be deduced from Eqs. (2) 

and (4) that ߙ ൌ ଵߚ ,0 ൐ 0 , 2
1+ 0

3
ββ >  and that the equilibrium polarization at the 

quadruple point is zero. On the other hand, as the composition moves away from the 

quadruple point to the C-T and C-R sides, the stable ferroelectric phase below the 

phase transition points becomes T and R, respectively. It can be deduced that 2 0β ≈ at the quadruple point [15]. Therefore, for Case 2, the following conditions have to be 

satisfied: ߙ ൌ 0, 2 0β ≈ and ߚଵ ൐ 0 . Such conditions are possible in a binary 

ferroelectric system because ( , ) 0c Tα =  and 2 ( , ) 0c Tβ ≈  represent two curves and

1( , ) 0c Tβ >  represents a region in the c-T space of a binary ferroelectric system and 

thus the probability of the two curves intersecting at a point in a given region is not 
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low. Specifically, when 2= =0α β  and 1>0β  at the quadruple point, a phase diagram 

that can be formed is illustrated in Figure 1, where at the quadruple point, two 

second-order and two first-order transition lines intersect [16].  

 

 
Figure 1 A binary ferroelectric phase diagram with a novel type of critical C-T-O-R 

quadruple point where two first-order and two second-order transition lines intersect. 

It is constructed by a Landau polynomial (Eq. (1)) with 2 0 α β= = and 1 0β >  at the 

quadruple point. The solid lines represent first-order transition lines and the dashed 

lines represent second-order transition lines. 

 

4. Discussions 

4.1 Why quadruple points in binary BaTiO3-based ferroelectric systems do not 

violate the phase rule? 

The above work tells that although seemingly defying both the first and second phase 

rule as mentioned in the introduction [1-4], a C-T-O-R quadruple point in the 

temperature-composition phase diagram of a binary BaTiO3-based ferroelectric 

system actually does not violates the phase rule. This is due to the reason that the four 

different phases appearing in the BaTiO3-based binary systems, i.e., C, T, O and R, 
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involve symmetry breaking. For “symmetry-breaking” systems, both the first and 

second phase rules might not apply [21,28]. 

 

4.2 A novel type of critical quadruple point 

The above results suggest that a C-T-O-R quadruple point can exist in the 

temperature-composition phase diagram of a binary BaTiO3-based ferroelectric 

system only in the form of a novel type of critical point at which two first-order 

transition lines and two second-order transition lines meet (Figure 1). This new type 

of critical point differs from the conventional tetracritical point where four 

second-order transition lines meet [17-18] as well as from the isolated critical 

quadruple point where four first-order transition lines meet [19-20]. Note that the 

conventional tetracritical point has been examined thoroughly in previous theoretical 

studies [17-18,21] and the isolated critical quadruple point has been reported in 

ferromagnetic systems [20] or liquid crystals [19] and is possible in a ternary 

ferroelectric system as derived above (Eq. (9)).  

 

4.3 Comparison with experimental results in BaTiO3-based binary ferroelectric 

systems 

The experimental studies on binary ferroelectric systems such as 

BaZr0.2Ti0.8O3-xBa0.7Ca0.3TiO3[22-23], BaTiO3-xCaHfO3[24] and BaTiO3-xBaHfO3[25] 

have suggested a C-T-O-R quadruple point more close to an isolated critical point 

( 1 2 0α β β= = = ) at which four first-order transition lines meet based on observations 

that when the composition deviates from the quadruple point composition, the thermal 

hysteresis for the C-T, C-R, T-O and O-R transitions all gradually increases. There 

could be three possibilities for this disagreement: (a) the coupling between 

polarization and strain may slightly renormalize the 4th order term in Eq. 2 and would 

change the second-order transition near the quadruple point to weak first-order[26]; (b) 

the experimental binary phase diagrams could have a very limited composition range 

of the second-order transition lines in Figure 1 (ߚଵ approaches 0 at the quadruple 
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point), which makes the quadruple point look like an isolated critical point. This is 

because when ߚଵ approaches 0 at the quadruple point, the quadruple point on the 

phase diagram shown in Figure 1 will asymptotically evolve to an isolated critical 

point where 1 2 0 α β β= = = ; (c) the quadruple point measured in the experiments 

may not be a real quadruple point but a quasi-quadruple point with two triple points 

(i.e., C-T-R and T-O-R) close to each other[27].  

 

4.4 Piezoelectricity at the critical C-T-O-R quadruple point 

The criticality of the C-T-O-R quadruple point in a binary ferroelectric system can 

resolve the controversy on the origin of high piezoelectric property at the MPB 

(specifically the T-O phase boundary) of the quadruple-point-bearing BaTiO3-based 

binary ferroelectric systems such as BZT-BCT [22]. The T-O phase boundary in 

BZT-BCT shows a much larger d33 (620pC/N) than that found at the T-O boundary in 

pure BaTiO3 (<200pC/N) [29]. Whether this high piezoelectricity is related to the 

C-T-O-R quadruple point of the system has been a controversial issue since its 

discovery [30-31]. Below we will show that d33 at the new type of critical quadruple 

point exhibits an infinitely high value and thus the high d33 at the T-O boundary of 

quadruple-point-bearing ferroelectric systems is related to the quadruple point.  

 

We first calculate the polarization (P) - electric field (E) loop and strain (S) - E loop of 

the novel type of critical quadruple point. Under the constraint that 2 0 α β= = at the 

quadruple point, the free energy shown in Eq. (1) becomes 4 ' 6
1f P Pβ γ= + ( 1 0β > ,

' 0γ > ), where '
1γ γ=  for the T phase, '

1 2
1
4

γ γ γ= +  for the O phase and 

'
1 2 3

2 1
9 27

γ γ γ γ= + + for the R phase. Under an external electric field E along the 

polarization direction of one ferroelectric phase such as [001]C of the T phase, a 

coupling term, -EP, enters the free energy and the total free energy becomes
4 ' 6

1f P P EPβ γ= + − . From 0f
P

∂ =
∂

, a relationship between P and E can be obtained: 



11 
 

3 ' 5
14 6E P Pβ γ= + . Defining a reduced electric field e and a reduced polarization p as

5/2
3/2 1

'3/2
24 ( )
3

Ee
β
γ

=
×

 and
'

1/ 2

1

3( )
2

p Pγ
β

= , we obtain 5 3e p p= + . The p-e loop of the 

mixed-type critical quadruple point is shown in Figure 2(a). We then calculate the 

electrostrain of the critical quadruple point according to 2S QP= (where S is strain 

and Q is electrostrictive coefficient) and establish a relationship between S and E, i.e.,

3/2 ' 5/2
14 ( ) 6 ( )S SE

Q Q
β γ= + . Defining a reduced strain,

'

1

3
2

Ss
Q

γ
β

= , we obtain

3/ 2 5/ 2e s s= + . The s-e loop of the critical quadruple point is shown in Figure 2(b).  

 

 
Figure 2 (a) Polarization-electric field (p-e) loop and (b) strain-electric field (s-e) loop 

at the novel type of critical quadruple point shown in Figure 1.  p, e, s are reduced 

polarization, electric field, and strain, respectively. The slopes of both curves at e=0 

approach infinity, which indicates infinitely large ε33 and d33. 

 

It is readily seen from Figs. 2(a) and 2(b) that both the p-e and s-e loops of the new 

type of critical quadruple point are hysteresis-free. Moreover, the slopes of both 

curves at e=0 approach infinity, which suggests that a small electric field can induce a 

large polarization and strain at the critical quadruple point. Therefore, both ε33 and d33 

approaches infinity at this novel type of critical quadruple point. It is noted that at a 

second-order or critical transition infinite dielectric permittivity has been obtained 

(a) (b)
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theoretically in previous work [32] while the infinitely large piezoelectric d33 has not 

been predicted. The calculation result of infinitely large piezoelectric d33 at the critical 

quadruple point here can also be understood by the transverse instability mechanism 

proposed by Ishibashi and Iwata [32] and the polarization extension mechanism 

proposed by Damjanovic [33]. More importantly, it agrees with experimental 

observations that maximum d33 was found at the quadruple point of several 

BaTiO3-based binary systems such as BaZrxTi1-xO3 and BaSnxTi1-xO3[34-35]. 

 

The T-O phase boundary of BZT-BCT starts from the quadruple point and thus could 

inherit the vanishing energy barrier and infinitely large d33 of the novel type of critical 

quadruple point. As a result, the T-O boundary composition close to the critical 

quadruple point of BZT-BCT system should have small energy barriers between 

different phases and large d33 [22]. This is in sharp contrast to the T-O phase boundary 

in pure BaTiO3 or K0.5Na0.5NbO3 where no quadruple points exist and a large energy 

barrier is expected between T and O. As a result, the piezoelectricity at the T-O 

boundary of BaTiO3 or K0.5Na0.5NbO3 is much lower (100~200pC/N) than that 

(620pC/N) found at the T-O boundary in BZT-BCT [22,29]. In addition, the 

theoretically infinitely large d33 at the critical quadruple point is in sharp contrast to 

those at conventional first-order ferrroelectric transitions. It has been calculated that at 

the first-order paraelectric-to-ferroelectric transition of pure BaTiO3, d33 is enhanced 

but not a infinite value at the Curie tempreature (TC) [36]. 
 

4.5 Generality of the criticality of C-T-O-R quadruple point in binary 

ferroelectric systems 

The above derivation is parameter-free and, thus, suggests that the criticality of the 

C-T-O-R quadruple point in a binary ferroelectric system is a system-independent, 

general phenomenon. This explains why in so many different BaTiO3-based binary 

ferroelectric systems such as BaZr0.2Ti0.8O3-xBa0.7Ca0.3TiO3(BZT-BCT) [22-23], 

BaTiO3-xCaHfO3[24], and BaHfxTi1-xO3[25], the C-T-O-R quadruple point is always 

critical or near-critical. To the best of our knowledge, no exception has been found so 
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far in experiments for bulk BaTiO3-based ferroelectric systems. Therefore, by 

designing a C-T-O-R quadruple point in binary ferroelectric systems, we can always 

expect a critical transition, which is accompanied by superior properties including 

high dielectric permittivity, high piezoelectric coefficient, high energy density, large 

electrocaloric effect and large electrostrain[9-12,34,35]. The generality of criticality of 

a quadruple point in a binary ferroelectric system demonstrated in this work could 

stimulate research into finding more quadruple point compositions with critical 

ferroelectric transitions. In addition, the above derivation also suggests that through 

designing a C-T-O-R quadruple point in a ternary or even quaternary system, a 

near-isotropic critical point (Eq. (8)) or an isolated critical point (Eq. (9)) could be 

achieved, which might also exhibit exceptional properties due to the criticality. 

 

4.6 Comparison with lead-based binary MPB system 

For lead-based binary MPB systems such as PbZrO3-PbTiO3(PZT) and 

PbMg1/3Nb2/3O3-PbTiO3(PMN-PT), normally a C-T-R triple point is observed [37-38].  

At the C-T-R triple point, it is not necessary that the triple point has to be a critical 

point. Instead, it is possible that C-T, C-R and T-R transitions at the triple point are all 

first-order. This is because for first-order C-T and C-R transitions at the triple point, 

the number of equations that are required to be satisfied simultaneously is only two 

(Eqs. (5) and (6)), which does not exceed the number of independent variables in a 

binary ferroelectric system (c and T). However, in experiments the C-T-R triple point 

in lead-based systems seems to also exhibit near-criticality [39], the reason of which 

remains elusive. Theoretically, these critical triple points should also have large 

piezoelectricity. However, as far as we know experimental data of d33 at the C-T-R 

triple point are lacking in these lead-based MPB systems such as PZT and PMN-PT. 

On the other hand, it should be noted that the theoretically large piezoelectricity at the 

critical triple or quadruple point might be diminished by the depoling effect in 

experiments.  

 

It should also be mentioned that monoclinic phases (MA, MB and MC) have been 
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reported in lead-based MPB systems [40], which are supposed to play an essential 

role in the large piezoelectricity of these lead-based systems. These monoclinic phases 

cannot be stabilized by a 6th order Landau free energy and 8th and higher order terms 

are required in the Landau polynomial [14]. However, our recent work has found that 

the monoclinic phase could be stabilized by long-range elastic and electrostatic 

interactions in a multi-domain state even under a 6th order Landau polynomial [41,42]. 

In addition, in the lead-free BaTiO3-based MPB systems, monoclinic phases do not 

exist in the phase diagrams and the T, O and R ferroelectric phases in these systems 

can be well stabilized by a 6th order Landau polynomial [14]. Therefore, the 8th and 

higher order terms are not considered in this study.  

 

5. Conclusions 

In summary, to theoretically understand the existence of C-T-O-R quadruple points 

and their criticality in binary BaTiO3-based ferroelectric systems reported 

experimentally, we have used Landau theory to show that the C-T-O-R quadruple 

point could only occur in the temperature-composition phase diagram of a binary 

ferroelectric system in the form of a novel type of critical point where two first-order 

transition lines (T-O and O-R) and two second-order transition lines (C-T and C-R) 

meet and such critical quadruple points do not defy the thermodynamic phase rule. 

This new type of critical quadruple point has been demonstrated to be consistent with 

the experimentally found criticality of the quadruple point in various binary 

ferroelectric systems. In addition, theoretically the piezoelectric coefficient d33 at the 

new type of critical quadruple point is shown to have an infinitely large value, which 

is consistent with the experimental observations of the largest d33 at the quadruple 

point in BaZrxTi1-xO3 and BaSnxTi1-xO3 systems. It also explains why the MPB of a 

quadruple-point-bearing ferroelectric system shows a much higher d33 value than that 

found at a polymorphic phase boundary of conventional ferroelectrics not originating 

from a quadruple point. The criticality of the C-T-O-R quadruple point found in this 

study is general and holds for any binary ferroelectric systems. For ternary 

ferroelectric systems, the C-T-O-R quadruple point could exist in other forms of 
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special points such as near-isotropic point or isolated critical point. The findings of 

this study could shed light on future design of high-performance ferroelectrics, 

including high-piezoelectricity materials, large-electrocaloric materials, 

high-permittivity capacitors, and high-electrostrain materials and, thus, could 

motivate experimental studies searching for new critical-quadruple-point based 

ferroelectric systems. 
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