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Topological quantum liquids contain internal degrees of freedom that are coupled to geometric response. Yet,
an explicit and microscopic identification of the geometric response remains difficult. Here, taking notable
fractional quantum Hall (FQH) states as typical examples, we systematically investigate a promising protocol
— the Dehn twist deformation on the torus geometry, to probe the geometric response of correlated topological
states and establish the relation between such response and universal properties of pertinent states. Based on
analytical derivations and numerical simulations, we find that the geometry-induced Berry phase encodes novel
features for a broad class of FQH states at the Laughlin, hierarchy, Halperin and non-Abelian Moore-Read
fillings. Our findings conclusively demonstrate that the adiabatic Dehn twist deformation can faithfully capture
rich geometric and topological information, including the Hall viscosity and topological spin of the pertinent
FQH state and the chiral central charge of the underlying edge conformal field theory. Our approach provides a
powerful way to reveal topological orders of generic FQH states and address previously open questions.

I. INTRODUCTION

Topological phases of matter' possess a variety of proper-
ties which are robust against external perturbations as long as
the topology of space where the system is defined is not al-
tered. As a celebrated example, the fractional quantum Hall
(FQH) effect’ formed by two-dimensional interacting parti-
cles in strong magnetic fields has attracted broad interest in the
past decades. The topologically invariant properties of FQH
states, including the quantized electrical®>> and thermal Hall
conductances®®, topological ground-state degeneracies’, ex-
otic anyonic quasiparticles'®'?, and entanglement character-
istics!*13, have been extensively studied from both theoretical
and experimental sides.

Despite FQH states are often characterized by their topo-
logically invariant features, these states do have intriguing re-
sponse to variations of the ambient geometry even if these
variations preserve the underlying topology. Two represen-
tative examples are the intrinsic “orbital spin” '8 and the
Hall viscosity!”!°?!. The former can be related to intrin-
sic metrics which describe deformations of an FQH droplet
due to anisotropies in the background space (for instance
those induced by tilted or spatially inhomogeneous magnetic
fields?>?3), while the latter determines a Berry phase caused
by strains applied to the FQH droplet'>?°. Moreover, trans-
port coefficients of FQH states can also be understood as a
response to variations of spatial geometry’*?’. As the ge-
ometric response is closely related to the internal topological
structure of FQH liquids, it provides an ideal platform to study
the interplay between geometry and topology in FQH liquids.

Nevertheless, so far most studies about the geometric re-
sponse heavily relied on effective field theories!®?%28-38 and
model wave functions®*3. A recent progress has been made
in microscopic models to connect the topological contents of
FQH states encoded in modular 7 -transformation (or Dehn
twist) operation**® to the momentum polarization via the en-
tanglement spectra*’*8. However, a direct microscopic inves-
tigation of the evolution of generic FQH wave functions them-

selves with variations of the ambient geometry is still lacking.

In this work, we aim to fill in this blank by explicitly im-
plementing the Dehn twist on the torus, tracking the evolu-
tion of FQH wave functions, and establishing the relation be-
tween the geometric response of FQH states and their univer-
sal (topological and geometric) properties. Instead of rely-
ing on physical arguments, this relation is analytically derived
under a gauge-fixing scheme for model FQH wave functions,
and can be readily confirmed by numerical simulations in mi-
croscopic models for generic FQH states. Our main finding is,
for a robust FQH phase with a set of degenerate ground states
evolving adiabatically during the Dehn twist, there is an accu-
mulated Berry phase in each ground state which contains both
topological and geometric information: the Hall viscosity re-
lated to the guiding-center spin'®2%4!  the sector-dependent
topological spin*’*®, and the chiral central charge of the un-
derlying edge conformal field theory (CFT). These informa-
tion fully characterizes the underlying topological order. By
using extensive exact diagonalization to track the evolution
of ground-state wave functions and calculate the accumulated
Berry phase, we demonstrate the validity of this relation for
various FQH states at the fermionic and bosonic Laughlin, hi-
erarchy, Halperin and non-Abelian Moore-Read fillings, and
successfully extract the topological and geometric properties
of both model wave functions and Coulomb ground states.
As a byproduct, we find that the flow of energy spectra un-
der geometric deformation plays as a “smoking-gun” feature
to justify the robustness of FQH liquids. In this context, we
demonstrate that the ground-state degeneracy at v = 5/2 un-
der particle-hole symmetric interactions is fragile, which chal-
lenges the identification of (anti-)Pfaffian state based on finite-
size calculations.

II. GEOMETRIC BERRY PHASE FROM DEHN TWIST

We consider N, particles with charge e moving in two spa-
tial dimensions on the torus geometry subjected to a perpen-
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FIG. 1. Dehn twist operation on the torus. (a) A twist operation
on the annulus (red) illustrates the self-homeomorphism of 7 trans-
formation. (b) The torus geometry is defined by two fundamental
vectors Ly = L7 and Ly = L&, and the twist angle is 6. The Dehn
twist, i.e., the 7 transformation sends 7 = 71, + T2€y, to its equiva-
lent geometry 7+ €., thus leaves the torus geometry unchanged. The
area of the torus does not change during the Dehn twist. Here we give
an example of the Dehn twist changing 7 from 72€), to €, + T2€)y,
with 72 = Lo (6 = 7/2)|/| L1 ).

dicular uniform magnetic field. The torus is spanned by two
vectors El = Lé, and EQ = L7, where 7 is parametrized
by the twist angle 0 as 7 = 71, + 7€, = (cosbé, +
sin Héy)|E2|/|E1| such that Ly = L,(6) depends on 6 (Fig. 1).
Here €, and €, are unit vectors in the = and y directions,
respectively. After rephrasing the coordinate xé, + ye, as
L(X'e, + X*7) with X', X? € [0,1], we can express the
single-particle Hamiltonian as

1
Ho(r) = Egab(T)Da(A)Db(A) (1
with
_ 1 I7]? —n
9(7)—L2—7_22<_7_1 1 ) (2)
where the vector potential A = —75 L BX €, and the covari-

ant derivative D,(A) = —ihd/0X® + |e|A,. The inverse-
mass-matrix (also called Riemann metric) g(7) depends on
the shape of the torus, which plays the role of a geometric
metric?021:38:3950-52 " The total number of fluxes N, penetrat-
ing the torus is given by the Landau level degeneracy Ny =
|L1 x Ly|/(2702), where the magnetic length ¢ = \/A/(|e[B)
is taken as the length unit. The filling factor is defined as
vV = Np / N¢.

We focus on the continuous geometric deformation gener-
ated by the Dehn twist operation on the torus, which corre-
sponds to the adiabatic process 7 — T + €, as illustrated in
Fig. 1. Since the torus geometry after Dehn twist is equivalent
to the original one, the physics of a topological order should
be left unchanged®. As required by the principle of gauge
invariance, we expect that the nearly degenerate ground-state
manifold of a stable FQH phase should evolve adiabatically in
the whole process of Dehn twist, and each ground state should

finally acquire a sector-dependent Berry phase. One advan-
tage of our choice of Dehn twist is the potentially rich infor-
mation contained in these Berry phases. First, the process of
Dehn twist operation is equivalent to shearing the torus geom-
etry, which is similar to applying a strain to a fluid. As a result,
these Berry phases should reflect the viscosity response of
FQH states'?2%%_ Second, the Dehn twist operation coincides
with the 7 -transformation in the 1+1D CFT* describing the
edge of the underlying FQH state, thus we expect to extract
the topological properties of modular tensor category of the
pertinent state from these Berry phases**#3333%  Third, the
adiabatic evolution of the FQH ground-state manifold itself
can be used as a criterion for the robustness of FQH liquids,
which so far has not been confirmed by proof-of-principle nu-
merical evidence.

A. Geometric phase

In order to explicitly illustrate the Dehn-twist induced
Berry phase, we first consider the ¥ = 1/¢ Laughlin wave
function in the topological sector o on the torus!%46:

(L) =N [] [

i<j

911(2i—2j|7') 4
0(r) } :

FE({Z) |r) @mNom ZalXaal®, 3)

where z; = x; + iy; is the coordinate of the ¢th particle. «
labels the ¢ degenerate Laughlin states, each of which corre-
sponds to a fixed type of quasiparticle. The center-of-mass
part of the wave function is described by f.({Z}), the relative
part is captured by the Jacobi-theta function 611 (z; — z;|7),
and the normalization prefactor N'(7) = No[\/72n?(7)]Ve/?
with Ny a 7-independent constant and 7 the Dedekind’s func-
tion. The details of this wave function will be given in the
Appendix Sec. A 3.

For the Laughlin wave function Eq. (3), we can analytically
prove that, up to an N,-dependent term which can be removed
by a gauge transform, the Dehn-twist induced Berry phase is

UT = —pH L2 4 2nh, — 21—

: o0 )

where nf is the Hall viscosity!®?’, h,, is the topological

spin characterizing the adiabatic self-rotation of quasiparticle
a8 and c is the chiral central charge of the edge CFT of
the underlying FQH state. We will give the proof of Eq. (4)
in the Appendix Secs. A4 and A5, in which we find the
Dehn twist induced Berry phase for general multicomponent
Halperin model wave functions® takes the same form. As
we will discuss below, the first term in Eq. (4) comes from
the stress response to the deformation of torus, while the sec-
ond and third terms are results of the response to the modular
transform accompanying the Dehn twist.



B. Hall viscosity response

The first term in Eq. (4) depends on the Hall viscosity n’!
and the length L of the twist path. This term comes from the
stress response, which is generally nonzero for time-reversal
symmetry breaking Hall liquids?>?!-38-59-52 For an FQH state
at filling v = p/q, we can calculate the Berry connection re-
sulting from the deformation of torus during the Dehn twist as
(see Appendix Sec. A 5, where we use p and g to represent the
numerator and denominator of filling factor v = p/q)

N,
Ar = i W3 710, W; 7) = — L2, 5)
87’2
which is a-independent and gives an accumulated Berry
phase'”

_ —h_lnHLQ.

(6)
Microscopic studies of the FQH physics often project the
whole system to the single partially filled Landau level for
high numerical efficiency. In this case, *! in the Berry phase
should be replaced by 79, the so called guiding-center vis-
cosity!”. 19 is related to the guiding-center spin s of the un-
derlying FQH state via n? = —; :}z where s describes an
emergent geometric response of a correlated composite boson
(with p particles in consecutive g orbitals) and can be used as
a topological quantum number to distinguish different FQH
states'®204! (see more details in Appendix Sec. D).

N,
/Aﬁdn /(A +Anyan = -1

C. Modular response

Apart from tilting the torus, the Dehn twist, equivalently,
the 7 -transformation, is expected to encode topological infor-
mation of the modular group on the torus*>*®. Starting from
Eq. (3), we can prove (see details in Appendix Sec. A 4)

. c wqN2
{207 +1) = ({2} ¥ r)e?™hems)ei T (7)

which leads to a Berry phase 27 (ho — 55) + (gp in addition

to the one purely caused by the torus deformation [Eq. (6)].
The matrix representation of 7 under the basis of initial states
is thus

(U7 7 TIW; 7) = (U7, [0 7+ 1) = Tape™  (8)

with

aB - 5&,861277 (ha ﬁ)u (9)
which recovers the modular 7-matrix, indicating that the over-
lap between microscopic ground-state wave functions before
and after the Dehn twist can characterize the underlying topo-
logical phase*»33>*  Note that we have properly fixed the
gauge in |[U;7) and |U%; 7 + 1) to derive Eq. (8) (see Ap-
pendix Sec. A 4).

Beside the universal topological information 27 (he — 57 ).
there is an extra system-size-dependent phase factor

WqNg
= 10
¥ 2 (10)
in Eq. (8), which was overlooked in earlier studies*’. How-

ever, it is necessary to isolate this non-universal term from the

universal ones if we want to determine the topological spin

and central charge from the microscopic simulation of Dehn
56

twist>®.

III. MICROSCOPIC MODEL

We aim to simulate the Dehn-twist-driven evolution of an
FQH system with a translation-invariant two-body interaction
projected to the lowest Landau level (LLL). The system is de-
scribed by the Hamiltonian

1
H(r) = —— S Vo : pocie : 11
(7) 2L1L2smozq: a‘P-aPa an

where V is the Fourier transform of the interaction potential
and pq is the LLL-projected density operator. The standard
second quantization procedure gives

ﬁq:/dre s (), (ral e, (12)

Ji,J2

+

where a; creates a particle in LLL orbital j (j =

0,1,---,Ny — 1), with wave function wj(:v y) =

1 1/2 27 (j+kNy) Zh 44 2T (]+kN¢)
(=~m)  Xse ¢34, Tn the
following, we choose the Coulomb interaction with Vg = ‘c;r‘

or Haldane’s pseudopotentials®’. At filling v = p/q with co-
prime p and ¢, the full many-body symmetry can be factor-
ized into a center-of-mass and a relative part>®>°, thus each
eigenstate of Eq. (11) can be labeled by a two-dimensional
momentum K = (K4, Ky) with K70 =0,1,--- ,Ny/q— 1
(equivalently, by k = (ki, ko) with k&y = 27K;/N, and
ko = 2mK2/(Ng/q)) in the irreducible Brillouin zone.

A. Dehn twist simulation

To simulate the Dehn twist, we parametrize the whole pro-
cess in Fig. 1(b) by the twist angle 6 of the torus which varies
from 7 /2 to tan (| L2 (0 = 7/2)|/|L1|). We divide the path
of 6 into M evenly spaced steps, and use exact diagonaliza-
tion in the Fock basis of LLL orbitals to calculate the energy
spectrum and eigenstates of Eq. (11) at each step. The accu-
mulated Berry phase in topological sector a can then be eval-

uated by the discretized formula34°
. M-2
eV o (o (0)[U, [ Wo (M = 1)) [T (Wa(G + 1)¥alh)),
j=0
13)
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FIG. 2. Flow of low-energy spectra. The low-energy spectra of the Coulomb interaction as a function of the twist angle 6 for (a) bosons
at v = 1/2 with N, = 8 and (b) bosons at v = 1 with N, = 12. The initial geometric conditions before the Dehn twist are chosen as
|L1| = |L2| in (a) and |L.| = 1.23|L2| in (b), with & = /2. The spectra are calculated in the irreducible Brillouin zone (K1, K3) with
Ki2 =0,1,..., Ny/q — 1. (c) Finite-size scaling of the minimal energy gap A during the Dehn twist for the v = 1/2,1/3,1/4 Laughlin
states, v = 2/5, 2/3 hierarchy states and v = 1 Moore-Read state. The arrows in (a) and (b) indicate the minimal gap during the Dehn twist.

where |U, (7)) is the ground state in topological sector a at
step j, and j = 0 and j = M correspond § = 7/2 and
0 = tan1(|L2(0 = m/2)|/|L1|), respectively. Note that the
final state |U,(M)) in Eq. (13) is not calculated by diago-
nalizing the Hamiltonian, but is directly transformed from the
initial state |¥,(0)) by | ¥, (M)) = Uf|¥,(0)), where Uy is a
unitary operator accounting for the gauge transform between
the LLL orbital bases before and after the Dehn twist (this uni-
tary operator U, will be defined in Sec. III B). This is for guar-
anteeing that the global phases randomly returned by numer-
ical diagonalization are automatically canceled in Eq. (13),
so that the obtained Berry phase is indeed gauge invariant.
Moreover, when deciding the number of steps M, we require
the wave-function overlap for two adjacent steps of the Dehn
twist satisfying |[(U, (5 + 1)|¥4(5))] > 0.99 to insure that the
deformation of the torus is performed adiabatically.

B. Gauge Transformation

Now we derive the unitary operator Ug in Eq. (13), which
connects the LLL orbital bases before and after the Dehn

twist. Before the Dehn twist, the two elementary magnetic

translational operators £; = f(%) and ty = f(%) on the
¢ .27 Np ¢
N

rectangular torus satisfy tits = oty e and act on the

single-particle orbital basis as>®>

- 27Tm
tilm) = €Yo [m), daolm) =[m+1),  (14)
where m = 0,1,---, N, — 1 and #(7) is the general mag-
netic translational operator. After the Dehn twist, i.e., the
T —transformation, the orbital basis should be the same as
the initial one up to a gauge phase v, ie., T|m) =
|m) = e |m), where [m) stands for the basis after the

T —transformation and satisfies

2rm

fm) = ¢ o m),

A combination of Egs. (14) and (15) leads to vy4+1 — Ym =
(2m + 1) 5. Assuming v = Am? + Bm + C, we get

2
m
m =m— + C.
Y, m N, +
In the many-body level, the total gauge transform between the
two equivalent orbital-basis Fock states before and after the
Dehn twist is then simply given by

Ug=[I e mim)ml,

meEoccupied

(16)

a7

where the sum is over all occupied orbitals®.

An analytical derivation based on the real-space wave func-
tion of the orbital basis gives C' = 0 in Eq. (16) (see Ap-
pendix Sec. A2). However, we set C = /N, with ~
given by Eq. (10), which is equivalent to a gauge transform
W7 + 1) — €|¥ 7 + 1). This choice is particularly
convenient for numerical extractions of Hall viscosity, topo-
logical spin and central charge from the Dehn twist, because
the non-universal part in the modular phase Eq. (8) is can-
celed by C'N), such that the Berry phase Eq. (13) returned by
numerical simulations only contains the pure geometric and
topological terms.

IV. RESULTS
A. Flow of Energy Spectra

As an isolated ground-state manifold in the whole process
of the geometric deformation is a requisite for a well defined



Berry phase, we first investigate the evolution of the low-
energy spectra during the Dehn twist. Such an examination
can reflect the stability of the FQH phase under the geometric
deformation. Due to the relevance with realistic systems, we
consider Coulomb interacting particles in what follows.

Remarkably, we observe an impressive robustness of
Abelian FQH states against the Dehn twist. A typical exam-
ple of v = 1/2 bosons is displayed in Fig. 2(a). Here we
choose a geometric path from a rectangular to its equivalent
one (as shown in Fig. 1). In this case, there is always a sin-
gle ground state in the (K7, K3) = (0,0) momentum sector,
which we confirm has a large overlap with the Laughlin state
and never mixes with other excited levels as the twist angle 6
of the torus changes during the Dehn twist. For each system
size, the energy gap separating the ground state and excited
states is almost constant during the Dehn twist even for the
generic Coulomb interaction [Fig. 2(a)]. A finite-size scal-
ing of the minimal energy gap A in the process of Dehn twist
suggests that the gap is very likely to survive in the thermody-
namic limit [Fig. 2(c)]. In addition, the minimum of the mag-
netoroton mode [at the bottom of excited levels in Fig. 2(a)]
only changes a little with 6, indicating that not only the ground
state but also the low-energy excitations are stable against the
Dehn twist.

We observe similar robustness of the ground-state mani-
fold for other bosonic and fermionic Coulomb ground states
at v = 1/4,1/3,2/3 and 2/5, which correspond to the
Abelian Laughlin, hierarchy, and Halperin states (see Ap-
pendix Sec. B). In all of these cases, the single ground state in
the irreducible Brillouin zone evolves adiabatically and never
mixes with excited levels during the Dehn twist. The energy
gap is also expected to be finite, as indicated by the finite-size
scaling of the minimal gap during the Dehn twist [Fig. 2(c)].

For non-Abelian FQH states, there are multiple ground
states in the irreducible Brillouin zone, which makes the spec-
tral flow more complicated. To pursue small finite-size effects
in the Coulomb ground states, we focus on bosons at v = 1,
where it has been confirmed that the Coulomb ground states
are in the Moore-Read phase®'. In this case, we again find
remarkable robustness against the Dehn twist. Although the
ground state in the (K7, K») sector evolves into the one in the
(K3, K1 + K>) sector after the Dehn twist, the three ground
states are always approximately degenerate and well separated
from other excited levels by a finite energy gap [Fig. 2(c)] in
the whole spectra flow [Fig. 2(b)].

B. Berry phase and Hall viscosity

Let us now turn to discuss the accumulated Berry phase
under the Dehn-twist operation. For specific N, v, Ny =
N, /v and topological sector a, we first numerically calculate

the Dehn-twist induced Berry phase at a fixed length L = | L1 |
of the torus. We then vary L around the square torus limit
L = /2w N4 to investigate the dependence of the Berry phase
on L. We do these procedures in each topological sector a.
Note that the torus area |L; x Ly| = 27N, is unchanged
when we tune L.
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FIG. 3. Accumulated Berry phase under Dehn-twist 7 — 7+ €.
Data are numerically calculated for Coulomb interacting bosons at
() v = 1/2 and (b) v = 1, with N, = 12 in both cases. Different
topological sectors, with notations given in the main text, are distin-
guished by colors. Fitting each curve into Eq. (4) allows us to extract
the guiding-center spin and topological spin in different topological
sectors.

Remarkably, for various Abelian and non-Abelian FQH
states that we have studied, the numerically obtained Berry
phase U/ in each topological sector a behaves nicely as a lin-
ear function of L? in the window of L stated above (Fig. 3),
which is consistent with the prediction of Eq. (4). Thus we
expect that the slope of the linear function U] (L?) is given
by the sector-independent guiding center Hall viscosity n9 (as
we have projected the Hamiltonian into a single Landau level,
only the guiding-center part can be captured, see Appendix
Sec. D), from which we can extract the guiding-center spin
s of the underlying phase. On the other hand, the sector-
dependent topological spin &, describing the phase obtained
by quasiparticle a spinned by 27, and the chiral central charge
c are expected to be encoded in the intercept of U/ (L?) in the
limit of L — 0. In particular, the difference between the inter-
cepts of U] (L?) and U}/ (L?) should give us the topological
spin difference h, — h; between sectors a and b.

For Abelian states, the ground states in different topologi-
cal sectors can be distinguished by their momenta (K71, K>),
thus we straightforwardly have |¥,) = |V(K7, K3)), where
| (K7, Ks2)) is the ground state from numerical exact diago-
nalization. Based on this, we calculate the Berry phase U, Z— ,
and indeed extract guiding center spin and sector-dependent
topological spin that are very close to their theoretical values
in pertinent FQH phases. For instance, we get s ~ —0.4997
for the two degenerate Coulomb ground states of bosons at
v = 1/2 and the intercept difference gives Ah = 0.2500
[Fig. 3(a)]. This matches the v = 1/2 bosonic Laughlin
state which carries s = —1/2 and has two types of quasipar-
ticles with by = 0 (¢ = 0 vacuum) and hy = 1/4 (a = s
semion), respectively*3362.  'We have also explored other
Abelian FQH states corresponding to the Laughlin states at
v = 1/3,1/4, hierarchy states at v = 2/5,2/3, and Halperin
states at v = 2/3,2/5 (see Appendix Sec. B). We summarize
these results in Tab. I, where all of the numerically extracted
guiding center spin and topological spin are consistent with



TABLE L. In this table, we compare our numerical results with theoretical predictions. s is the guiding-center spin, being related to the

h_—s
47l2 q

guiding-center Hall viscosity by n? =

h. is the sector-dependent topological spin. See Appendix Sec. B for detailed information

about the topological sectors of each FQH phase. Quantities with and without the superscript “cal” stand for numerically calculated results
and theoretical values, respectively. We use parent Hamiltonians for the (221) and (332) Halperin states, otherwise we use the Coulomb

interaction. N/A means no theoretical prediction on hand.

Laughlin  Laughlin Laughlin Hierarchy Hierarchy Moore-Read Halperin (221) Halperin (332)
_ 1 1 1 2 2 2 2 2
V=4 2 3 1 5 3 2 3 5
s -1 -1 -3 -3 -2 -1 -1 -2
s —0.4997 —0.9964 —1.4469 —2.9552 —2.0840 | —1.0320, —1.0246 —1.0499 —2.0033
1 1 11 1 3 1 12
ha = ho 1 3 82 N/A N/A 316 3 12
het — h(c)al 0.2500 0.3333  0.1250,0.5000| 0.2000,0.4000  0.3333 0.5000, 0.1873 0.3333 0.2000, 0.4000

theoretical predictions based on Jack polynomials or model
wavefunction calculations*!.

For non-Abelian states, we need to appropriately superpose
the ground states |¥ (K, K»)) obtained from numerical exact
diagonalization to construct the state |¥,) in a specific topo-
logical sector a. Here we take the v = 1 Coulomb interact-
ing bosons in the Moore-Read phase as an example. In this
case, the three numerical ground states are in the (k1,ks) =
(7,0), (0,7) and (7, 7) momentum sectors. The Moore-Read
phase has three types of quasiparticles: the vacuum a = 0,
the fermionic anyon @ = f and the Ising anyon a = o.
In particular, the Ising anyon o carries non-Abelian braiding
statistics which can lead to potential applications in topolog-
ical quantum computation®***. Based on the symmetry anal-
ysis, |U,) and |V (K7, K5)) are related via |¥,) = |V (0, 7))
and |Wg ;) = %(PIJ(W, 7)) 4 €?|¥(7,0))), where ¢ is cho-
sen to guarantee that |¥() and |¥ ¢) are minimally entangled
states*33334 with respect to the bipartition of all N, Landau
level orbitals (see Appendix Sec. E). Similar to the Abelian
cases, we find that the Dehn-twist induced Berry phase of each
such constructed | ¥, ) also matches a linear dependence on L?
for L around the square torus limit [Fig. 3(b)]. The extracted
guiding center spin is s &~ —1.0320 and —1.0246 for |¥,,) and
|Wo, ), respectively, which is almost sector-independent and
very close to the theoretical value s = —1 in the Moore-Read
phase. The topological spin of f and o are respectively deter-
mined by hy — hg ~ 0.5000 and h, — ho ~ 0.1873, being
consistent with expected “fermionic” and “Ising” statistics of
quasiparticle f and o>,

C. Chiral central charge and edge physics

In the vacuum sector a = 0, the topological spin h, = 0
such that the intercept of UJ_,(L?) is solely contributed by
the chiral central charge c. In this case, we can investigate
the edge structure of an FQH state which is determined by c.
As notable examples, we first consider the fermionic model
Laughlin state at v = 1/3 and its particle-hole conjugate at
v = 2/3. Working in the vacuum sector, we extract the central
charge of the v = 1/3 model Laughlin state as ¢ ~ 1.01595
(Fig. 4), which is close to the theoretical value ¢ = 1 (see

Appendix Sec. B for details). Physically, ¢ = 1 means that

the edge state is a single chiral bosonic field, being consistent
with the well known edge structure of the » = 1/3 Laughlin
state.

By contrast, there are multiple scenarios of the edge physics
for the particle-hole conjugate of the » = 1/3 Laughlin state
at v = 2/3. One possibility is that the edge current is car-
ried by two chiral v = 1/3 edge modes®”%¢. However, it
has been debated that the v = 2/3 state should harbor two
counter-propagating ¥ = 1 and v = 1/3 edge modes and
edge reconstruction could occur in this hole-conjugate FQH
state®. The difference between the two scenarios above is
that the former hosts ¢ = 2, while the latter has ¢ = 0 due
to the counter-propagating nature. As shown in Fig. 4, we
obtain ¢ ~ 0.0159 at v = 2/3 within very high accuracy.
This result unambiguously points to the counter-propagating
picture® and is also consistent with the recent shot noise mea-
surements and other experiments®’*7!. In addition, we iden-
tify ¢ = 1 for the model Halperin (333) state at v = 1/3,
which suggests its effective edge theory to be equivalent to
the Laughlin v = 1/3 state. In this sense, our approach offers
a guide to explore the edge physics of existing FQH effects.

E 1
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S -1
m Tee, 0 10 20
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v=1/3 %,
=20 |, (333)
0 100 200 300

FIG. 4. Chiral central charge. Linear extrapolation of the Berry
phase U./_,(L?) towards L = 0 for the model Laughlin state at v =
1/3 and its particle-hole conjugate at v = 2/3 in the vacuum sector
a = 0. The intercept gives the chiral central charge ¢ ~ 1.0159 for
the model v = 1/3 Laughlin state and ¢ ~ 0.0159 for its particle-
hole conjugate at v = 2/3. Similarly, we identify ¢ ~ 0.9818 for
the model Halperin (333) state.



0.30r= 247
0.25}
-2.48}
0.20f 1
5 0.15 -2:49; 7
2
& 0.0} 250
0.05}
-251
0.00f
@
-0.05 -252

16 18 20 22 24
-6 -6

FIG. 5. Energy spectra at v = 5/2. The low-energy spectra of (a)
the three-body parent Hamiltonian of the Pf state and (b) the two-
body Coulomb interaction at v = 1/2 in the second Landau level as
a function of the twist angle 0 for IV, = 12 electrons. The lowest
energy levels living in momentum sector (0, 7), (7, 0), (7, ) are la-
beled by colors. The insets show the energy spectra at @ = w/2 as a
function of |K]|.

V. DISCUSSION

Apart from extracting geometric and topological quantum
numbers of the underlying FQH state, our Dehn-twist ap-
proach also provides a distinctive viewpoint to inspect the sta-
bility of an FQH phase. In some cases such stability cannot be
guaranteed by only studying finite-size samples with a fixed
torus shape. Here we use the energy spectral flow under the
Dehn twist as a criterion. As required by the gauge trans-
formation, such an energy spectral flow is expected to main-
tain the ground-state degeneracy without level crossings with
excited levels if the underlying FQH phase is really robust’.
The results shown in Figs. 2(a) and 2(b) satisfy this require-
ment. However, we also notice a striking counterexample for
Coulomb interacting electrons at v = 5/2 (v = 1/2 in the
second Landau level). In this case, while the nature of the
ground state is still under debate, there is one possibility that
the ground-state manifold consists of the non-Abelian Pfaffian
(Pf) and anti-Pfaffian (aPf) states that are degenerate in the
thermodynamic limit'>’>78_ As both the Pf and aPf states are
three-fold degenerate in the irreducible Brillouin zone on the
torus, the total ground-state degeneracy in the irreducible Bril-
louin zone is expected to be six-fold in this case. Some numer-
ical attempts indeed reported the observation of six low-lying
states at v = 5/2 on the torus of special shape’”’8. How-
ever, we find that this feature is not stable under the Dehn
twist. As shown in Fig. 5(b), while there are six low-lying
states on the rectangular torus’’, three of them evolve into the
higher-energy spectrum during the Dehn twist, making the
Pf-aPf interpretation questionable. It is in sharp contrast to
the case of the particle-hole symmetry breaking three-body
parent Hamiltonian of the (anti-)Pfaffian state, for which the
(anti-)Pfaffian state is always the zero-energy ground state re-
gardless of the torus shape [Fig. 5(a)]. Moreover, Ref. 78
claimed that a quantum-well model with a finite layer-width
could stabilize Pf and aPf states. Unfortunately, we observe
similar level crossing with excited levels in the spectral flow
of that model also. Thus, our calculations suggest that, com-

pelling evidence on the torus geometry for Pf and aPf states
at v = 5/2 is still far from conclusive (see discussion in Ap-
pendix Sec. B5).

VI. CONCLUSION AND OUTLOOK

In this work, we present a systematic scheme based on the
Dehn-twist deformation on the torus geometry to identify the
topological orders of fractional quantum Hall (FQH) liquids.
With a gauge fixing procedure, we analytically derive the for-
mula of the total Berry phase accumulated during the Dehn
twist. This formula explicitly relates the geometric response
of FQH liquids to their universal properties, such as the Hall
viscosity, the topological spin, and the central charge of the
edge conformal field theory. We then verify this formula in
various microscopic models of Abelian and non-Abelian FQH
liquids beyond model wave functions, demonstrating the po-
tential of our scheme as a diagnosis of the topological order
in a generic FQH state without prior knowledge. Motivated
by the requirement of a well defined geometric Berry phase,
we also suggest a separated ground-state manifold from ex-
cited levels in the whole process of geometric deformation as
an indispensable criterion to justify the stability of an FQH
phase.

Our approach opens up several future directions deserv-
ing further exploration. We mostly focus on FQH states in
the lowest Landau level in this work. Considering that a se-
ries of FQH effects are also observed in higher Landau lev-
els, we believe that our Dehn-twist protocol can shed light on
the stability of those FQH states and their difference from the
lowest-Landau-level FQH states from the aspect of geometric
response. Moreover, in order to deepen our understanding of
the interplay between topology and geometry, it is instructive
to investigate how the geometric response of FQH liquids is
affected by the breaking of the rotational invariance, such as
in the cases of anisotropic FQH states'®??> and FQH nematic
phases’® . Furthermore, it would be interesting to adjust our
Dehn-twist protocol to lattice systems, such that it can be ap-
plied to the broad class of lattice topological states such as
fractional Chern insulators®!~%3,
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Appendix A: Derivation of the Dehn-twist Berry phase for
Abelian FQH states

In this section, we show a detailed derivation of the Dehn-
twist induced Berry phase shown in the main text.

1. Lowest Landau level wave functions on the torus

The Hamiltonian of a charged particle on the torus spanned
by 4 = Lé, and Lo = L7 with a uniform perpendicular
magnetic field can be written as

Ho(A,7) = Lo ()D(A)DA),  (AD)

where

(P
g(7) = %2 (_7_1 e (A2)
and D,(A) = —ihd/0X+|e|A, and A = (-2 L?BX?,0)

are the covariant derivative and vector potential, respectively.
The lowest Landau level (LLL) orbitals of Eq. (A1) are

1 . 2712
1 2 _ itNyT[X g
U, (X, X77) Tme oN_¢(N¢Z/L|N¢T)
o (A3)
with m = 0,1,--- , Ny — 1, where N, = L2xf2 = ;ﬁj is

the total flux through the torus, £ = \/%i/|e| B is the magnetic
length, z = x+iy = L(X*+7X?) is the complex coordinate
of electron, and 6,,,(z|7) is the theta function defined as

Ou(z|7) = Z exp (ir7(n + a)® 4 i2m(n + a)z).
nez

(A4)

2. Dehn-twist transform of the LLL wave functions

Let us consider how the LLL wave functions evolve under
the Dehn-twist transformation 7 — 7 4 1. After the Dehn
twist, the coordinate 2 = L(X' 4+ 7X?) can be rewritten as
z = L(X"'+(7+1)X"?). Thus we express the single-particle
Hamiltonian in terms of (X!, X'?) as

1
Ho(A',74+1) = 59“1’(7 +1)D,(A')Dy(A")  (AS)
with
1 |7 +12 -7 —1
1) =——= A6
g(T+ ) L27’22 (—Tl—l 1 ) ( )

and the LLL wave function takes the form of

1 . 1212
U (X7 X2 |7 +1) = ———e!™No(THDIXT]
( | ) Vrl/2Le
X@]\% (N¢Z/L|N¢(T +1)), (A7)

where D/ (A’) = —ih9/0X'* + |e|A, and A’ =
(—72L2BX"?)0) are the covariant derivative and vector po-
tential in (X'!, X"2), respectively. To compare Eq. (A7) with
Eq. (A3), we need to write them in the same coordinate frame.
Therefore, Ho(A’, 7+1) should be rewritten in (X*, X?). By
using relations

1 1 -1 1 0
9(T+1)=L2—722<0 1)9(7)<_11> (A8)

and
(3)-(10)(55)
Dy(A) -11 Dy(A")

with A = (-7 L?BX"?, 5 L?BX"?) =

(-7 L*BX2, 1, L2BX?), we find

- 1 - -
Ho(A', 74+ 1) = Ho(A,7) = 5gab(T)Da(A)DZ,(A)

) ) (A10)

with Do(A) = —ihd/0X® + |e|Aq. Because D,(A)

and D,(A) can be related by a gauge transformation U =

e—in¢[X2]246’ ie.,

Da(A) =U'Du(A)U, (A1)

we get
Ho(A,7) =UTHy(A, 7)U. (A12)

Now we can see that the LLL wave function after the Dehn
twist, when written in (X!, X2), is
. m2
UT, (X X2 r+1) =" 0, (X1, X2|7),  (A13)
where we have used
0z (Noz|[ Ny (7 +1))

Z iTrNd)T(nJrI(,—’; 2+i2ﬁ(n+Nﬂ¢)N¢z+iﬂN¢(n+Nﬂ¢)2
= e
n

2 ) " ) "
=Ny Z(_1)nN¢eWN¢T(n+N—¢)2+12ﬂ(n+N—¢)N«sz

n

a2
=€ N¢0Nl¢(N¢Z|N¢T). (A14)

. m?2
Therefore, a phase factor e No s gained in the mth LLL
orbital after the Dehn twist. Note that Eq. (A13) is consistent
with Eq. (16) in the main text.

3. FQH wave functions

We consider a multi-component FQH state whose wave
function on the torus can be expressed in terms of the theta



function*®#® (the single-component case can be reached by
setting the number of component equal to one):

v ({}r) =N L{Z' DA
. A%
X exp ’”TN¢;<LTQ> , (A15)

where [ is the index of component, x is the vector labeling
degenerate states, z/ = L(X!? + 7X/?) is the coordinate of
the th particle in the Ith component, and AR => 2l is the
center-of-mass coordinate of the Ith component. The relatlve
part of the wave function is

£ ) =TT T ™ (o

I<J 4,5

AT )

I i<y

HK”( I/L— zJ/L|7')

(T)01" (21 /L = 2} /LI7) ¢,

(A16)

where Kj; is the underlying K matrix with dimen-
sion dim(K) =k and diagonal elements K =
(K11, Kag, -+, Kyy)T, and

1 1 1
011(z ;Zexp {’Lﬂ'T(TL—‘r 2) +i27(n + 5)(,2—1-5)}
(A17)
is the odd Jacobi-theta function satisfying 01;(—z|7) =
—0611(2|7). The center-of-mass part of the wave function is

fe ({27} 17) =~ (r) fm(Z/LIr)  (A18)

with

Fem (2l = 3 exp{im(n+ ot ) Krin+ ot n)}
nezr
X exp {27ri(n +oa+n)"K(Z- 77)}7

(A19)

where n = K ~1k/2 for fermions and n = 0 for bosons, and

Z = (Z',72,---,Z")T. The normalization factor is
2 1N
N(7) = No [/72n(7)?]? , (A20)
where
=q'/* H q")|gmeiznr (A21)

9" ({1} |7 +1)

is the 7-dependent Dedekind’s N =
(N',N2,... .N®)" with N’ is the number of parti-
cles in the Ith component, and Ny is an area-dependent
constant.

n-function,

Now let us demonstrate how to get the vector o in
Eq. (A15). Note that K« is the coset lattice Z* /K Z" with
only |det(K)| independent vectors, indicating |det(K)|-
fold degenerate on torus®**34, For the Laughlin v = 1/q
state, its K matrix is K = ¢ with coset lattice Z/KZ =
{Ka|0,1,---,q— 1}, corresponding to the ¢ degenerate
states. For the Halperin (mmn) state, its K matrix is

and its coset lattice is enclosed by the parallelogram spanned
by two vectors (m,n) and (n,m), thus the number of in-
dependent vectors is equal to the area of the parallelo-
gram, i.e. |det(K)| = m? — n%  For instance, the
coset lattice of the Halperin (332) state is Z2/KZ? =
{Ka|(0,0),(1,1),(2,2),(3,3),(4,4)}. Once we get the
coset lattice vector K o, the vector « can be obtained by act-
ing K1 on the left-hand side of K. In this way, we have
{a|0,1/q,---, (¢ —1)/q} for the Laughlin v = 1/q state
and {a|(0,0), (1/5,1/5),(2/5,2/5),(3/5,3/5), (4/5,4/5)}
for the Halperin (332) state.

4. Dehn twist and modular information

Similar to the single-particle case, we introduce a many-
body gauge transformation

2
) (A22)

I
~ ) y
U, =expl iTN, g ( :
g ¢ T LT2

to relate the many-body wave functions before and after the
modular transformation {7 : 7 — 7 + 1}. Using Egs. (A15)-
(A22), we can get

= UN(r+ VL2 I+ D) ({2} 7+ 1)em Nt D i (wl/0m)°

= N ({27} 1) o ({2} P)eimNem Eaa(l /7)o yim(NT KN =) iz

=0 (X} X ) BN RN

(A23)



where we have used the following useful relations (here we
assume the total flux Ny through torus is even):

n(r+1) =™ ny(r),
011 (2|7 + 1) = /%011 (2|7),
JEO(Z|r 4 1) = eimo K fle 0 (Z)r),
f(a,K’lm/2)(Z|T +1) = eimlatz K w)TK(at+5K k)

x fleKTR/D(Z]|r).
(A24)

Eq. (A23) immediately gives the matrix representation of the
T -transform as

(P, 7| TIU%; 7) = dagei2mhe =302 mNTEN - (A25)
where ¢ = k is the chiral central charge of the underlying edge
CFT and h, is the topological spin of the topological sector
« satisfying

1
ha = EaTKa(mod 1) for bosons

1
ha = =(a+ K 'k)'K(a+ K~ 'x/2)(mod 1) for fermions.
(A26)

2
5. Hall viscosity and geometric phase
Let us denote the wave function in Eq. (AlS)
1 . (- _
as \/m@,ﬂ, where ({z; }®;7) 2 =
I
T itNeT Y, (15
Non(r)= Nf({Z"} In) fr({=]}I7)e ' <L> ;

1,7 L1 TN .
and Z(7,7) = (D;7|P;7) = 7 BTN _ (%5) N

a pure real part. Then we can calculate the Berry connection

induced by the 7~ deformation of the torus as?*4?
1 1 1 i
A =i(V; 7|—=0,—=|¥; 1) = N2, — + —0,7
Wz 7 vz 7
i kTN
=-0,InZ=- ,
PR 873
Ar = (0 7| e 0 1) = V70—
P =¥ T|—=0—=|V;7) = r—=
VZ 'VZ VZ
. TN
- lomz=-E1Y (A27)
2 87’2

We can also rewrite Eq. (A27) in terms of A, and A,,:

kTN
47’2

Ay = Ar+ A= —
.A7-2 :iAT—iAf :O

)

(A28)

So the corresponding Berry phase due to the geometric defor-
mation of torus is**+/

1 T
k' IN

dm = —
/oAlT1 41

= —h "L (A29)
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Appendix B: More numerical results

In this section, we present more numerical results at various
filling factors which are not shown in the main text. The path
of Dehn twist is given in Fig. 1 in the main text.

1. Laughlin state

We first consider v = 1/2 bosons interacting via the
Coulomb potential. In this case, the ground state should be
described by the v = 1/2 Laughlin state. In Fig. 6(a), we
show the low-energy spectrum as a function of momentum
K = \/K? + K3 for fixed geometric parameters = 7/2
and 75 = 1 (symmetric rectangular). There is a single ground
state in momentum sector (0, 0), which is separated from the
excited levels by a finite energy gap. Considering the two-fold
center-of-mass degeneracy at v = p/q = 1/2, we recover the
two-fold ground-state degeneracy for the Laughlin v = 1/2
state. The magneto-roton branch above the ground state, rep-
resenting the collective mode of quasiparticle-quasihole pair,
can also be clearly seen in momentum sectors X > 1. We
then vary the geometric parameter ¢ for a fixed system area
|L1 x Ly|. The ground state with momentum (0, 0) evolves
adiabatically and never crosses with higher energy levels in
the spectral flow [Fig. 6(b)]. By collecting the total Berry
phase accumulated in the Dehn twist (7 — 7+ 1) for different
L, we get the plot of U7 versus L2, as shown in Fig. 6(c). Fit-
ting the numerically obtained U7 into the relation Eq. (4) in
the main text, we get the guiding center spin as s ~ —0.4997
and topological spin as h; —hy = 0.2500 within machine pre-
cision, which are consistent with the theoretical predictions
s = —1/2*" and hy — hg = 1/4% for the Laughlin v = 1/2
state. In particular, the topological spin hy —ho = 1/4 signals
that the elemental quasiparticle satisfies semionic statistics in
which a semion goes back to itself by a self-rotation 87. The
chiral central charge extracted in the vacuum sector converges
to the theoretical value ¢ = 1 with the increasing of the system
size [Fig. 6(d)].

The same analysis can be applied to Coulomb interact-
ing bosons at v = 1/4, as shown in Fig. 7. In this case,
there are four topologically distinct ground states captured by
the » = 1/4 Laughlin states, labeled by their quasiparticle
charges Q = a/4 (in unit of e¢) with @ = 0,1, 2, 3. The dif-
ferent ground states can be distinguished by their topological
spins, which we numerically extract as 11y (3) — ho = 0.1250
and ho — hg = 0.5000. These results indeed match the theo-
retical predictions for the v = 1/4 Laughlin state. Combining
the v = 1/2 and 1/4 results, we conclude that the quasiparti-
cle a in bosonic Laughlin v = 1/q state (¢ even integer) car-
ries topological spin h, — hg = %(modl). This expression
is consistent with Eq. (A26).

For Coulomb interacting fermions at v = 1/3 whose
ground state is described by the v = 1/3 Laughlin state, we
get very similar results, as shown in Fig. 8. The obtained guid-
ing center spin is s ~ —0.9964, which is very close to the the-
oretical prediction s = —1 from the Jack polynomial calcula-
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FIG. 6. Numerical data for Coulomb interacting bosons at v = 1/2. (a) The low-energy spectrum for geometric parameter 6 = 7 /2 and
system size N, = 8. (b) Flow of energy spectra with varying geometric parameter 6. The energy gap (indicated by the arrow) is defined by
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Dehn twist for the ground state |¥,) of N, = 12 in topological sector a = 0, 1. Here topological sectors are distinguished by their fractional
quasiparticle charges @ = a/2 (in unit of e). Through the linear fitting against L?, the obtained guiding center spin and topological spin are
s ~ —0.4997 and h1 — ho = 0.2500, respectively. The inset shows the intercept in the a = 0 sector, which returns the chiral central charge
as ¢ &~ 0.9997(the yellow dashed line is —1/12). (d) Chiral central charge c¢ for various system sizes IN,. The interaction in (d) is either the
pseudopotential parent Hamiltonian of the » = 1/2 Laughlin state (blue circles) or the Coulomb potential (yellow triangles). The horizontal
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FIG. 7. Numerical data for Coulomb interacting bosons at v = 1/4. (a) The low-energy spectrum of N, = 8 for fixed geometric
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topological sector a = 0, 1,2, 3. |¥1) and |¥3) are equivalent. The obtained guiding center spin and topological spin are s = —1.4469 and
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tion for the v = 1/3 Laughlin state*'. According to Eq. (A26)
and Ref. 46, the theoretical value of the topological spin of the
v = 1/3 Laughlin state is h, = %(modl) in topologi-
cal sector a with quasiparticle charge @ = a/3 (a = 0,1, 2),
leading to hg = 1/24 +1/3 = 3/8,h1 = he = 1/24. In-
deed, we numerically obtain hg — hy = hg — hy = 0.3333 =

2. Halperin state

Now we consider the two-component Halperin (m, m, m —
1) states at v = 2/(2m — 1) = p/¢>. For the fermionic (332)
state, there are | det (K)| = 5 degenerate ground states with

1/3 within machine precision. However, the Jack polyno-
mial calculation in Ref. 41 on the cylinder geometry predicts
hi — hg = ha — hg = 1/6. This discrepancy is due to the
additional 7 Berry phase for fermions on the torus geometry
which we adopt, as noticed in Ref. 47.

{l(0,0),(1/5,1/5),(2/5,2/5),(3/5,3/5), (4/5,4/5)}

(see Sec. A3)*084 Using Eq. (A26) we can ob-
tain the theoretical values of the topological spin as
hoo = ho2 = 9/20,h33 = has = 1/20,hyy = 1/4,
where the subscripts of A correspond to the Ko val-
ues. Similarly, for the bosonic (221) state, there
are |det (K)] = 3 degenerate ground states with
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pseudopotential parent Hamiltonian of the » = 1/3 Laughlin state (blue circles) or the Coulomb potential (yellow triangles). The horizontal
dashed line is ¢ = 1.
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FIG. 9. Numerical data for model Halperin states. (a) Flow of energy spectra of the parent (332) Hamiltonian with varying geometric
parameter 6 for N, = 8 fermions. (b) Berry phase accumulated during the Dehn twist for the model (332) state |¥4.4) of N, = 8 in
topological sector a = 0, 1, 3. The obtained guiding center spin and topological spin are s ~ —2.0033 and ho,o — h1,1 = h22 — h1,1 =
0.2000, h1,1 — h3,z = h1,1 — ha,a = 0.2000, respectively. The inset shows the intercept in the a = 3 sector, which returns the chiral central
charge ¢ ~ 1.9678 (the yellow dashed line is —1/6). (c) Flow of energy spectra of the parent (221) Hamiltonian with varying geometric
parameter 6 for N, = 8 bosons. (d) Berry phase accumulated during the Dehn twist for the model (221) state |¥,,,) of N, = 8 in topological
sector a = 0, 1. The obtained guiding center spin and topological spin are s ~ —0.9986 and h1,1 —ho,0 = h2,2 —ho,0 = 0.3333, repsectively.
The inset shows that intercept in the a = 0 sector, which returns the chiral central charge ¢ ~ 2.0080 (the yellow dashed line is —1/6).

{[(0,0),(1/3,1/3),(2/3,2/3)}, and the correspond- 3. Fermionic v = 2/3 state
ing topological spins are hgo = 0,h11 = ha 2 = 1/3. Both
the (332) and (221) states should have chiral central charge Now we consider the particle-hole conjugate of the v = 1/3
¢ = 2 because of their two-component nature. We numer- | ayghlin state, obtained by diagonalizing the parent Hamilto-
ically extract these topological indices of both the (332)  pjan of the v = 1 /3 Laughlin state, i.e., the first Haldane’s
and (221) states by diagonalizing their parent Hamiltonians, pseudopotential®’’. The K matrix of this state is’
and the obtained numerical values indeed match theoretical
predictions (Fig. 9). 1 1
K= , Bl
1 —9 (B1)

thus the degeneracy is three. According to Eq. (12) in Ref. 16,
the theoretically predicted guiding center spin and topological
spins of this state are s = 1 and hg = —1/4,h; = hy =
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FIG. 10. Numerical data for v = 2/3 fermions, interacting via the first Haldane’s pseudopotential. (a) The low-energy spectrum of
Np = 20 for fixed geometric parameters § = 7 and 72 = 1 (symmetric rectangular). The ground state is located in momentum sector (0, 0).
(b) Flow of energy spectra with varying geometric parameter 6 for N, = 20. (c) Berry phase accumulated during the Dehn twist for the
ground state |W,) of N, = 24 in topological sector a = 0, 1. The obtained guiding center spin and topological spin are s &~ —0.9990 and
hiz) — ho = 0.3333, respectively. The inset shows the intercept in the a = 0 sector, which returns the chiral central charge as ¢ ~ 0.0160
(the yellow dashed line is 0). (d) Chiral central charge c for various system sizes /N,. The interaction in (d) is either the pseudopotential parent

Hamiltonian of the » = 1/3 Laughlin state (blue circles) or the Coulomb potential (yellow triangles). The horizontal dashed line is ¢ = 0.

1/12, respectively. Here the subscript of h corresponds to the
topological sector with quasiparticle charge @ = a/3 (a =
0, 1, 2). Indeed, we obtain numerical results s &~ —0.9990 and
hi2)y — ho =~ 0.3333, in excellent agreement with theoretical
predictions (Fig. 10). Moreover, we extract the chiral central
charge ¢ ~ 0.0160 [Figs. 10(c),10(d)], which points to the
counter-propagating edge modes. This is helpful for resolving
the debate®’~%° about the edge structure of the v = 2/3 state
(see the main text).

4. Hierarchy state

Starting from the Laughlin v = 1/q state, quasiparticles
can condensate into successive Laughlin states and generate a
hierarchy of incompressible states. The most prominent state
appears at v = % for fermions and at v = % for bosons, whose
guiding center spins are s = —3 and s = —2, respectively.

Our numerical simulation gives s ~ —2.0840 for Coulomb
interacting bosons at v = 2/3 and s &~ —2.9552 for Coulomb
interacting fermions at v = 2/5, both of which match the
above expected values (Fig. 11). Moreover, we also esti-
mate the topological spins of elementary quasiparticles as
hi) — ho =~ 0.3333 = 1/3 for v = 2/3 bosons and
h1(4) —ho ~02= 1/5,h2(3) —ho ~04= 2/5f0ru = 2/5
fermions. The subscript a of h labels the topological sector
with quasiparticle charge Q = a/(2p+ 1) atv = p/(2p + 1)
for fermions and @ = a/(p+1) atv = p/(p+ 1) for bosons.

5. Fermionic Moore-Read state

Despite that the FQH states at v = p/q with odd ¢ can
be understood by Laughlin’s paradigm and further hierar-
chy theory or by Jain’s composite fermion theory, the find-
ing of even denominator v = 5/2 FQH state challenges our

theoretical understanding of the FQH effect. Among multi-
ple candidates, Pfaffian or anti-Pfaffian wave function pro-
posed by Moore and Read'>7>7> seems a promising candi-
date to describe the enigmatic nature of the v = 5/2 FQH
effect. Although much efforts have been devoted to this long-
standing issue’>"*76-7885 ' solid numerical evidence of topo-
logical ground-state degeneracy on the torus is still lacking. In
the main text, we have shown that the quasi-degenerate ground
states of pure Coulomb interaction are not stable against the
Dehn twist transformation in finite systems. We notice that
Ref. 78 proposed that the modified Coulomb interaction with
a finite-layer width correction may enhance the Moore-Read
signature in some range of aspect ratio of the torus. Here we
investigate this possibility by using the modified Coulomb po-
tential
4 —kd

Ly 2m3kd S — T

ok k2d? + A2

(B2)

in an infinite square-well potential, where d stands for the ef-
fective layer-width of the experimental GaAs quantum well
structures. In our calculation, we set d = 4/ according to the
discussion in Ref. 78. The low-energy spectrum at rectangu-
lar geometry is shown in Fig. 12(a), which exactly repeats the
result in Fig. 4 of Ref. 78. The plausible six quasi-degenerate
ground states are labeled by red circles. However, under the
Dehn twist deformation, the six quasi-degenerate states evolve
into higher levels, as shown in Fig. 12(b). Due to such level
mixing, we cannot get the Hall viscosity and topological spin
for the v = 5/2 Coulomb state even with a finite d. Here, our
analysis based on geometric deformation suggests that numer-
ical signature of the fermionic v = 5/2 Moore-Read state on
the torus geometry is still questionable.

How to understand our results on the v = 5/2 FQH state?
One possible understanding is that, the Coulomb ground states
at v = 5/2 lie on the marginal boundary between Pfaffian and
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FIG. 11. Numerical data for Coulomb interacting fermions at v = 2/5 and Coulomb interacting bosons at v = 2/3. (a) Flow of energy
spectra of N, = 12 fermions at v = 2/5 with varying geometric parameter 6. (b) Berry phase accumulated during the Dehn twist for the
ground state |, ) of N, = 12 fermions at v = 2/5 in topological sector a = 0,1, 2, 3, 4. The obtained guiding center spin and topological
spin are s ~ —2.9552 and hy4) — ho = 0.2000, hoe3) — ho = 0.4000, respectively. (c) Flow of energy spectra N, = 12 bosons at v = 2/3
with varying geometric parameter 6. (d) Berry phase accumulated during the Dehn twist for the ground state |¥,) of N, = 12 bosons at
v = 2/3 in topological sector a = 0, 1, 2. The obtained guiding center spin and topological spin are s ~ —2.0840 and hy () — ho = 0.3333,
respectively.
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FIG. 12. (a) The low-energy spectrum of N, = 12 fermions at v = 5/2 for § = 7 and 7, ' = 0.997%. The model contains a finite-layer
width correction d = 4/ to the pure Coulomb interaction. The six quasi-degenerate ground states in momentum sectors (7, 0), (0, 7), (7, 7)
are indicated by red circles. (b) Flow of low-energy spectra with changing 6. The ground states in momentum sectors (m, ), (, 0), (0, 7) are
labeled by blue circle, yellow square and green rhombus, respectively. (c) The low-energy spectrum of N, = 12 fermions at v = 5/2 with
the pure Coulomb interaction. (d) The low-energy spectrum of N, = 12 fermions at v = 5/2 with the three-body parent Hamiltonian of the
v = 5/2 fermionic Pfaffian state.

anti-Pfaffian states since the particle-hole symmetry cannot 6. Bosonic Moore-Read State
be broken by translational invariant two-body interactions on
the torus’’. The recent progresses of discovering non-Abelian
statistics of the v = 5/2 FQH state on cylinder and sphere ge-
ometries may shed some light on this issue, where the particle-
hole symmetry is broken spontaneously or explicitly'>#386_ In
addition, recent thermal Hall measurement brings other pos-
sibilities to our attention. For example, the particle-hole sym-
metric Pfaffian state is proposed as a viable possibility®”. The
particle-hole Pfaffian state should host three-fold ground-state
degeneracy (excluding the center-of-mass degeneracy). Un-

In the main text, we have studied the Dehn twist of
Coulomb interacting bosons at ¥ = 1, whose ground state
is described by the v = 1 bosonic Moore-Read state. Here,
we do a similar study using the three-body parent Hamilto-
nian of the v = 1 bosonic Moore-Read state®®. As shown in
Fig. 13(a), the three degenerate v = 1 bosonic Moore-Read
model states are the zero-energy ground states of this Hamil-
tonian. According to theoretical predictions, these three states

fortunately, in our extensive calculations (see Fig. 12), we did
not observe any signal for the three-fold ground-state degen-
eracy either. In a word, our results call for further studies on
the v = 5/2 problem on the torus geometry.

correspond to three topological sectors: one with Abelian
quasiparticle with topological spin h; = 0, one with Abelian
quasiparticle with hy = %, and one with non-Abelian quasi-
particle (Ising anyon) with h, = % = 0.1875; and all of
these three sectors should have the same guiding center spin
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FIG. 13. Numerical data for the model bosonic Moore-Read state at v = 1. (a) The low-energy spectrum of the three-body parent
Hamiltonian for N, = 12, 6 = %, and 72 = 1.25. The three degenerate ground states in momentum sectors (7, 0), (0, ), (7, 7) are indicated
by red circles. (b) Flow of the low-energy spectra with changing 6. The ground states in momentum sectors (7, ), (7, 0), (0, 7) are labeled
by blue circle, yellow square and green rhombus, respectively. (c) Berry phase accumulated during the Dehn twist for the ground state |¥,)
of N, = 14 in topological sector a = 1, f, 0. The obtained guiding center spin is s ~ —1.0039(—0.9898) for |¥,)(|¥1)). The obtained

topological spinis hy — h1 ~ 0.5000, h, — h1 ~ 0.1885. The inset shows the intercepts in a = 1 and a = o sectors, leading to chiral central
charge ¢ &~ 1.4276 (the green dashed line is —% + % = %) for a = o and ¢ ~ 1.6441 (the red dashed line is —é) for a = 1. The average ¢

over these two sectors is ¢ &=~ 1.5359.

s = —1. Indeed, in numerics we find guiding center spin
and topological spins in good agreement with theoretical val-
ues [Fig. 13(c)]. In addition, the sector-averaged chiral central
charge is determined to be ¢ ~ 1.5359, close to the theoreti-
cal prediction ¢ = 3/2. These facts form a compete diagnosis
of the non-Abelian nature of the bosonic Moore-Read state at
v=1

Appendix C: Geometric Path Dependence

The topological information encoded in the Berry phase
during the Dehn twist (see Sec. II C) is an intrinsic property
of the underlying state, which should not depend on the spe-
cific Dehn-twist scheme that we choose. In the main text, we
have considered the Dehn-twist from the rectangular torus to
its equivalent one [Fig. 1(a)]. In the following, we will exam-
ine another Dehn-twist scheme, in which we deform the torus
from a hexagon-like geometry to its equivalent one, i.e., 6 is
changed from 27 /3 to 7 /3 [Fig. 14(a)].

The results of this different Dehn-twist scheme are shown
in Fig. 14 for v = 1/3 Coulomb interacting fermions. On the
initial symmetric hexagon geometry, the ground state is lo-
cated in momentum sector (0, 0), being separated from higher
energy levels by a gap [Fig. 14(b)]. We also observe the mag-
netoroton mode above the ground state [Fig. 14(b)]. When
the torus twist angle 6 is changed from 27 /3 to 7/3, the en-
ergy gap isolating the ground state from excited levels keeps
open [Fig. 14(c)]. We then calculate the Berry phase U, Z— ac-
cumulated in the ground state of topological sector a during
the geometric deformation. When analyzing the dependence
of U aT on L?, we use a different method from the one in the
main text. Instead of only focusing on a single system size
(the largest one we can reach numerically) and tuning L near
the square torus limit for this specific system size, here we

consider various system sizes and fix L — the length of L,
as L = /2w N,/ sin(27/3) for each system size. Then we
can change L and extract the dependence of U, Z— on L? by in-
creasing the system size Ny. In Fig. 14(d), we show the Berry
phase U7 for system sizes INV,, = 4,6, 8,10, 12. Remarkably,
the Berry phase again can be fitted into a linear function of
L?, which returns the guiding center spin as s ~ —1.0119
and the topological spin as 1,2 — ho ~ 0.3333. These values
are consistent with the theoretical predictions and the previous
numerical results obtained in Sec. B 1. Hence, we observe the
same physics in two different schemes of Dehn twist and by
two different methods of extracting the L?-dependencein U/ .

Appendix D: Other topological quantities of FQH states

In our calculations, the total Hall viscosity is replaced by
the guiding center Hall viscosity since we are working on the
LLL-projected Hamiltonian. In fact, the total Hall viscos-
ity of an FQH system should include two parts: the guiding
center Hall viscosity n9 and the Landau orbital Hall viscosity
n°. The guiding-center Hall viscosity 79 describes an emer-
gent geometric response of the correlated electrons, while
the Landau-orbital Hall viscosity 1 directly comes from the
Landau-orbital form factor. The Landau-orbital Hall viscosity
can be expressed in terms of the Landau-orbital spin 5 as

h

o _
= ——u§
Arp2

Ui D1)
where the Landau-orbital spin § = n + % for the nth Landau
level. s describes that, as the Landau level index increases,
the orbital angular momentum carried by the cyclotron mo-
tion also increases. For a given filling factor v, both the
Landau-orbital spin and Landau-orbit Hall viscosity are con-
stant. Please note the Landau-orbital Hall viscosity exists even
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FIG. 14. (a) The Dehn-twist scheme that we use here is to deform the torus from a hexagon-like geometry to its equivalent one, i.e., 0
is changed from 27 /3 to w/3. (b) The low-energy spectrum for N, = 8 Coulomb-interacting fermions at v = 1/3 on the symmetrical
hexagonal geometry (6 = % and 72 = 1). The ground state is located in the momentum sector (0, 0). (c) Flow of energy spectra with varying
geometric parameter 6. (d) Berry phase accumulated during the Dehn twist for the ground state | ¥, ), where |¥,) is labeled by the fractional
quasiparticle charge @ = /3 (in unit of e) in topological sector a = 0,1,2. |¥;) and |¥2) are equivalent. Here L is changed by fixing

L = /27 N,/ sin(27/3) for each system size then increasing Ny. The obtained guiding-center spin and topological spin are s ~ —1.0119

and hi12 — ho ~ 0.3333, respectively.

when the particles are non-interacting.
Combining the the Landau-orbital and guiding-center Hall
viscosities, we reach the total Hall viscosity

" h 5 hv

nt ="+ = (v5 —

— -) = ——(23). D2
47l? q) 871'62( %) (D2)
Here we recover the so-called mean “orbital spin” defined by
5 = § — =, which was first derived by Wen and Zee'®, and

later by Read and Rezayi’®. 5 can be further related to the
topological shift S via S = 25%°. For a given FQH state, S
is a topological number depending on the genus of the surface
hosting the state. It always vanishes on the torus, but may
take a nonzero value on the sphere. In the presence of S,
the number of particles and the number of flux is related by
Ny = N, /v — S. Here, we see that S can be measured by
the Dehn twist once we extract the guiding center spin s, even
though the topological shift itself does not directly appear on
the torus.

We close this section by illustrate some examples. For the
v = p/q = 1/q Laughlin state, the guiding center spin is
s = 2(1— q). The mean orbital spin is then s = §—s/p = £,
where we choose § = 1/2 for the lowest Landau level. There-
fore, the topological shift S = 25 = ¢. The same proce-
dure can be easily adapted to obtain S = 4 for the v = 2/5
fermionic hierarchy state, S = 3 for the v = 2/3 bosonic hi-
erarchy state, and S = 2 for the v = 1 bosonic Moore-Read
state.

Appendix E: Minimally entangled state in the v = 1 bosonic
Moore-Read manifold

We give a symmetry analysis of the v = 1 bosonic Moore-
Read state based on its one-dimensional thin-torus limit. Due
to N, = N, the center-of-mass degeneracy is 1. The thin-
torus limit of the v = 1 bosonic Moore-Read state has no
more than two bosons in two consecutive LLL orbitals, thus
there are three different thin-torus configurations®:

20}, [02], [11],

each of which can be adiabatically connected to the Moore-
Read state with a definite type of quasiparticle (i.e., in a defi-
nite topological sector) when the torus deforms from the thin-
torus limit to the two-dimensional limit. We label the corre-
sponding Moore-Read quasiparticle eigenstates as |20), |02)
and |11), which have different momenta: |20) and |02) have
Ky = 1%2 (or ky = m), while |11) has K1 = 0%2 (or
k1 =0).

Following the analysis in Ref. 59, we relate the quasiparti-
cle eigenstates to the ground states |k1, ko) in the momentum
sector (K1, K») by

1
2
|2O> = _(|k1 = 7T7k2 = 7T> - |k1 =, k2 = O>)a

02) = —=(|k1 = 7, ko = m) + |k1 = 7, k2 = 0)),

G-

111) = [k = 0, kp = 7). (E1)



To see Eq. (E1) really represents the quasiparticle eigenstates,
we provide two different proves here. One is that, we can con-
struct the modular S matrix based on Eq. (E1). The other one
is that, we can numerically prove that Eq. (E1) are the min-
imally entangled states in the Moore-Read manifold, which
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should be a faithful representation of quasiparticle eigenstates.

First, we relabel the quasiparticle eigenstates as |=7) =
|02),|=2) = |20) and |=%) = |11), and suppose that they
are given by Eq. (E1). Under the S transformation, coordi-
nates change according to x — y and y — —x. In this case,
the new set of quasiparticle eigenstates is

=Y\ — — — 1 —
=4) = ks = .k = 0) = = (02) — 20}

since we apply a 7 /2 rotation

|]€1=7T,k2:7T>—>|k1=7T,k2:7T>
|]€1 ZO,]C2:7T>—> |]€1 :7T,]€2:O>
|]€1 =7T,]€2=0>—> |]€1 :O,k2:F>

on the ground states. Finally, we can get the modular S matrix
as

11 V2
S=@EE) =51 1 —val,
V2 V2 0
which is exactly the theoretical prediction for the v = 1

bosonic Moore-Read state. Hence Eq. (E1) indeed gives the
quasiparticle eigenstates.

In practice, since numerical diagonalization adds an ad-
ditional phase to each |k1, ko), we must be careful when
using Eq. (E1). Supposing that the numerically obtained
ground state in the momentum sector (ky, ko) for a fixed 7
is |k1, ko, T)’, we express the quasiparticle eigenstates as

1 )
2 ry=—(lki=m k=7, 7Y + ek =7, ks =0,7)),
1) \/5(| 1 2 ) k1 2 ))
1 .
2ry=—(ki=m ko =7m,7) —e®Plk1 =7, ks =0,7)),
3:7) \/5(| 1 2 ) k1 2 ))
|E§,T>:|k1:0,k2:ﬂ',7'>/,

where ¢ depends on 7 and is determined by minimizing the
entanglement entropy for a half-half orbital bipartition of the
whole system.
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