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Abstract

We study the low frequency spectra of complex Sachdev-Ye-Kitaev (SYK) models at general densities.

The analysis applies also to SU(M) magnets with random exchange at large M . The spectral densities

are computed by numerical analysis of the saddle point equations on the real frequency (ω) axis at zero

temperature (T ). The asymptotic low ω behaviors are found to be in excellent agreement with the scaling

dimensions of irrelevant operators which perturb the conformally invariant critical states. Of possible

experimental interest is our computation of the universal spin spectral weight of the SU(M) magnets at

low ω and T : this includes a contribution from the time reparameterization mode, which is the boundary

graviton of the holographic dual. This analysis is extended to a random t-J model in a companion paper.

1



CONTENTS

I. Introduction 2

II. Conformal solutions for the SYK models 5

III. Conformal perturbations 8

IV. Kitaev-Suh resonance theory 11

A. Linear order correction 12

B. Nonlinear order corrections 18

C. Finite Temperature Generalization 21

V. Spectral densities 22

VI. Random Quantum Rotor model 24

VII. Numerical results for spinon spectra 26

VIII. Conclusions 40

Acknowledgements 41

A. Free energy from conformal perturbations 41

B. Large q two point function in the fermionic SYK model 43

C. Two point function for q = 2 in the fermionic SYK model 45

D. Finite Temperature Generalization for Spectral Densities 45

E. Zero temperature numerics for the Bosonic/Fermionic SYK and the Random Rotor

models 50

References 52

I. INTRODUCTION

There has been much recent interest in solvable models [1–3] in the Sachdev-Ye-Kitaev (SYK)

class as descriptions of compressible quantum many body systems without quasiparticle excitations.

These are models with random and all-to-all interactions, and their low energy limit has the

structure of 0+1 dimensional conformal field theory [4]. Instead of quasiparticles, there are infinite
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towers of primary operators [5–8], all but a few of which have irrational scaling dimensions and

these describe the long time dynamics of all local observables. We will examine a number of models

of bosons and/or fermions in this paper, and the boson or fermion, a = b, f , has a zero temperature

(T = 0) spectral density as a function of frequency, ω, of the form (for the case with q = 4-particle

terms in the Hamiltonian)

ρa(ω) =


ga+(ω)√

ω
, ω > 0

ga−(−ω)√
−ω

, ω < 0
. (1.1)

Here ga±(ω → 0) = constant, and the main purpose of the present article is to describe the small ω

expansions of ga±(ω) for a number of models of physical interest. These expansions depend upon

the scaling dimensions and operator product expansions of the irrelevant primary operators, and

are also constrained by Luttinger-like theorems [9–11] and an emergent time reparameterization

symmetry [6, 7]. We will compare conformal theory predictions with accurate numerical solutions

of the SYK equations carried out directly on the real ω axis at T = 0 (as in the original paper of

Ref. [1]), and find excellent agreement.

A related analysis has been carried out by Maldacena and Stanford [6]. They examined the

particle-hole symmetric Majorana SYK model, using numerical solutions of the SYK equations

in imaginary time. All of our numerical analysis will be carried out in real time, using real

frequency spectral functions: we will show that this allows higher precision, and enables us to

identify various subleading and non-linear corrections. We also examine fermionic and bosonic

models without particle-hole symmetry—the scaling dimensions for the particle-hole asymmetric

fermionic models were obtained in Ref. [11].

Our results will also apply to the random quantum magnets with SU(M) symmetry which were

studied in Ref. [1] in the limit of large M . Such models are of interest to condensed matter physics

because of their ‘Mottness’: they have constraints associated with strong on-site interactions, in

contrast to the infinite-range interactions of the SYK models. For these magnets, we compute the

dynamic local spin susceptibility χL(ω). This quantity is potentially of experimental interest as a

description of a quantum critical point in a disordered magnetic system studied by neutron scat-

tering [12–16]. The time reparameterization mode is the leading irrelevant operator determining

the frequency dependence of χL, and we find

ImχL(ω) ∼ tanh
( ω

2T

) [
1− Cγ ω tanh

( ω
2T

)
− . . .

]
, (1.2)

where the specific heat per spin component = γT , and C is a dimensionless number which is

specified in (5.12) and (5.13) for our models. The leading term in (1.2) has been obtained earlier [4].

We obtain here the term proportional to C: this is the contribution of the time reparameterization
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FIG. 1: Plot of the local dynamic spin susceptibility. The blue solid line is obtained from numerical solution of

the Schwinger-Dyson equations (2.13) for T/J = 0.1. The black dashed line is analytical result in (1.2) for

CγT ' 0.05 with three higher order terms in (1.3) included with their T = 0 expressions.

mode i.e. the boundary graviton in the holographic dual. Notice that this term has a prefactor

of ω without a corresponding factor of 1/T : this indicates the violation of scaling induced by an

irrelevant operator. We show a plot of ImχL in Fig. 1; it is curious that this resembles observations

in Refs. [13, 14], and it would be worthwhile to investigate this further, especially in systems with

greater randomness. Similar spectra should also apply to anomalous density fluctuations in the

model of Ref. [17], and density fluctuations have been investigated in momentum-resolved electron

energy-loss spectroscopy (M-EELS) [18, 19] but for ω � T .

In the limit of T → 0, (1.2) predicts a discontinous spectral density at zero frequency. We have

computed higher order terms at T = 0 for the particle-hole symmetric case (see Eq. (5.10))

ImχL(ω) ∼ sgn(ω)
[
1− Cγ|ω| − 7

16
(Cγ)2|ω|2 − C ′|ω|2.77354... +

37

48
(Cγ)3|ω|3 − . . .

]
, (1.3)

where the |ω|2 and |ω|3 terms are non-linear corrections from the time reparameterization mode,

and C ′ mode is a linear contribution of a second irrelevant operator with scaling dimension h =

3.77354 . . .. The T > 0 form of the C ′ term can be deduced from imaginary part of (D24).

We have attempted to write this paper in a self-contained manner for condensed matter physi-

cists. We will begin in Section II by defining the models of interest, and recalling the leading

conformally invariant results. A diagrammatic analysis of the conformal perturbation theory is

presented in Section III, where we obtain the scaling dimensions of all primary operators, and iden-

tify the operators associated with time reparameterization and an emergent U(1) gauge invariance.

Section IV employs an alternative functional approach of Kitaev and Suh [7] which allows efficient

treatment of particle-hole asymmetry, non-linear corrections and non-zero temperatures. Section V
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transforms our results from imaginary time to the spectral densities on the real frequency axis.

Section VI extends our analysis to models of bosonic random rotors, which has appeared in some

recent studies of quantum phase transitions. Finally, our main numerical results are presented in

Section VII, where we compare numerical solutions of the SYK equations on the real frequency

axis with the predictions of the conformal perturbation analysis.

The formalism developed in this paper for the SYK models will be applied to the t-J in a

companion paper [20]. We will dope the large M SU(M) insulating quantum magnets described

in the present paper by mobile charge carriers. The resulting theory of fractionalized particles,

the spinons and holons, is described [21] by a set of Schwinger-Dyson equations similar to those

presented in Section II. The companion paper [20] presents the conformal corrections to a variety of

gauge-invariant observables, including the electron spectral functions and the optical conductivity.

II. CONFORMAL SOLUTIONS FOR THE SYK MODELS

We begin by recalling the less-familiar models considered originally in Ref. [1], as these will

connect directly to the t-J models considered in the companion paper [20]. These are SU(M) spin

models with Hamiltonian

HJ =
∑
〈ij〉,αβ

Jij

(
SiαβSjβα −

1

M
SiααSjββ

)
. (2.1)

Here α = 1 . . .M is a SU(M) spin index, Siαβ = S†iβα is the spin operator on site i, and the

1/M term (which will be dropped in large M limit) is added to ensure it transform in the adjoint

of SU(M). Here, we have chosen [4] to place the sites i on a high-dimensional lattice with co-

ordination number z, and the Jij are nearest-neighbor exchange interactions and Gaussian random

variables with

Jij = 0, J2
ij =

J2

Mz
(2.2)

We will examine the model HJ in the limit of large z, followed by large M . Alternatively, we can

consider the model on a N -site cluster, with all-to-all random exchange interactions; this was the

model considered in Ref. [1], and the large N limit leads to the same saddle-point equations as the

large z limit. However, the large z limit allows us to consider transport properties of electrons in

a lattice [4, 22] using a t-J model, which we will described in paper II.

The properties of the SU(M) spin models depend upon the representation of SU(M) realized

by the states on each site, i. The most common choices correspond to the formulations in terms of

fermionic and bosonic spinons. The fermionic spinon case corresponds to the representation with

a single column of boxes in the SU(M) Young tableaux, with the spin operator

Siαβ = f †iαfiβ. (2.3)
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expressed in terms of fermionic spinons fiα. This induces a U(1) gauge symmetry

fiα(τ)→ fiα(τ)eiφi(τ), (2.4)

The physical Hilbert space must be U(1) gauge-symmetric, which implies that the gauge charge is

conserved, and we consider the representation∑
α

f †iαfiα = κM, (2.5)

with κM boxes in the Young tableaux. We will take the large M limit at fixed κ.

Similarly, the bosonic spinon case corresponds to a different SU(M) representation with a Young

tableaux of a single row of boxes, and the spin operator

Siαβ = b†iαbiβ, (2.6)

with the U(1) gauge charge constraint ∑
α

b†iαbiα = κM . (2.7)

The fermionic spinon representation defined by (2.3) and (2.5) and the bosonic spinon representa-

tion defined by (2.6) and (2.7) are the same only for κM = 1.

Along with the SU(M) spin models recalled above, our results apply also to the complex SYK

model (with a q = 4 fermion Hamiltonian)

HSYK =
1

2N3/2

N∑
i,j,k,`=1

Jij;k`f
†
i f
†
j fkf` − µf

∑
i

f †i fi (2.8)

where Jij;k` are independent random numbers with |Jij;k`|2 = J2. The advantage of this model is

that only a single large N limit is required, and there is no analog of the subsequent large M limit

required for the models above. But, as we discussed in Section I, this simplicity comes at a cost:

we loose the Mottness that is present in the spin (and t-J) models, and is important for condensed

matter applications. The analog of the fermion constraint in (2.5) is now

〈f †i fi〉 = κ , (2.9)

with no sum over i. Analogously to the fermionic SYK model we can define bosonic SYK model

as

HSYK =
1

2N3/2

N∑
i,j,k,`=1

Jij;k`b
†
ib
†
jbkb` − µb

∑
i

b†ibi , (2.10)

along with the constraint

〈b†ibi〉 = κ . (2.11)
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We remark that the bosonic models defined above have b†∂τb kinetic term in the Lagrangian

formalism.

All of the above models have a common set of saddle point equations, which we now describe.

We introduce two-point Green’s function in imaginary time, τ , at a finite temperature T :

Gf (τ) = −〈Tτ

(
f(τ)f †(0)

)
〉 , Gb(τ) = −〈Tτ

(
b(τ)b†(0)

)
〉 . (2.12)

In both cases the large N Dyson-Schwinger equations look identical and read for τ ∈ (0, β)

Ga(iωn) =
1

iωn + µa − Σa(iωn)
, Σa(τ) = J2Ga(τ)q/2Ga(β − τ)q/2−1 , (2.13)

where the index a = f, b denotes fermions or bosons, β = 1/T is the inverse temperature, µa is

the chemical potential and we assume that q is even integer. The models described above have

q = 4, but we will also present some results for general q. For the fermionic case the Matsubara

frequencies is ωn = 2π
β

(n + 1
2
) and for the bosonic ωn = 2π

β
n. The two-point Green’s function

satisfies the KMS (Kubo-Martin-Schwinger) conditions Ga(τ) = ζaGa(β + τ), where ζb = 1 and

ζf = −1.

It is well-known that the equations (2.13) admit conformal solution in the IR region, where

1/J � τ � β − 1/J

Gc
a(τ) = −b∆

a

(
βJ

π
sin

πτ

β

)−2∆

e2πEa( 1
2
− τ
β

) ,

Σc
a(τ) = −J2b1−∆

a

(
βJ

π
sin

πτ

β

)−2(1−∆)

e2πEa( 1
2
− τ
β

) , (2.14)

where ∆ = 1/q, Ea is the asymmetry parameter which implicitly depends on µ, and the dimen-

sionless constant prefactor ba is

bf =
(1− 2∆) sin 2π∆

4π cos(π(∆ + iEf )) cos(π(∆− iEf ))
, bb =

(1− 2∆) sin 2π∆

4π sin(π(∆ + iEb)) sin(π(∆− iEb))
. (2.15)

When we work in frequency space, it turns out to be convenient to use the asymmetry angles θa

related to Ea by

e2πEa = ζa
sin(θa + π∆)

sin(θa − π∆)
, e−2iθf =

cos(π(∆ + iEf ))

cos(π(∆− iEf ))
, e−2iθb = −sin(π(∆ + iEb))

sin(π(∆− iEb))
, (2.16)

therefore we can find

ba = ζa
(1− 2∆)

π

sin(θa + π∆) sin(θa − π∆)

sin 2π∆
. (2.17)

Notice that Eb = 0 for θb = π/2 and Ef = 0 for θf = 0. Also π∆ < θb < π/2 and −π∆ < θf < π∆.
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Below, we will study the structure of the conformal corrections to the large z and large M

saddle point of HJ in (2.1), and the large N saddle-point of HSYK in (2.8). The Schwinger-Dyson

equations at the saddle point are identical in the two models, so the conformal corrections will also

be the same. However, once we go beyond the saddle point, and examine four-point correlators,

there will be differences between the two models. We will not address these differences here.

III. CONFORMAL PERTURBATIONS

In this section we describe a useful view point on the SYK models as a conformal field theory

(CFT) perturbed by infinite set of irrelevant operators. Although this approach is not rigorous and

has caveats, which we mention below, it clarifies understanding of some results and can correctly

predict 1/(βJ) and 1/(βJ)2 corrections to the free energy (see Appendix A). We will turn to a

more complete approach to similar results in Section IV.

For simplicity, in this section we consider only the fermionic SYK model (2.8) with zero chemical

potential µ = 0, as the generalization to µ 6= 0 is described in Section IV. It was shown in Refs. [23–

25] that this model has an infinite set of bilinear primary operators OA
h (τ) and OS

h(τ) , which can be

schematically represented as OA
hn

= f †i ∂
2n+1
τ fi and OS

hn
= f †i ∂

2n
τ fi for n = 0, 1, 2, . . . . To compute

the scaling dimensions of the operators O
A/S
h (τ) we consider three point functions

v
A/S
h (τ1, τ2, τ0) = 〈f(τ1)f †(τ2)O

A/S
h (τ0)〉 . (3.1)

Then we can derive the Dyson-Schwinger equations for the three point functions in the IR region,

and we can drop the bare terms to obtain [23]

v
A/S
h (τ1, τ2, τ0) =

∫
dτ3dτ4KA/S(τ1, τ2; τ3, τ4)v

A/S
h (τ3, τ4, τ0) , (3.2)

where the kernels KA/S are

KA/S(τ1, τ2; τ3, τ4) = −
(q

2
±
(q

2
− 1
))
J2Gc(τ13)Gc(τ24)Gc(τ34)q−2 . (3.3)

Diagramatically the equations (3.2) are represented in Fig.2. Emergent conformal symmetry in

the IR region fixes the functional form of the three-point functions up to the structure constants

cA
h and cS

h

vA
h (τ1, τ2, τ0) =

cA
h b

∆ sgn(τ12)

|Jτ12|2∆−h|Jτ10|h|Jτ20|h
, vS

h(τ1, τ2, τ0) =
cS
hb

∆ sgn(τ10)sgn(τ20)

|Jτ12|2∆−h|Jτ10|h|Jτ20|h
. (3.4)

It can be shown that for arbitrary h the three-point functions v
A/S
h satisfy the equation [6, 7, 24, 25]∫

dτ3dτ4KA/S(τ1, τ2; τ3, τ4)v
A/S
h (τ3, τ4, τ0) = kA/S(h)v

A/S
h (τ1, τ2, τ0) , (3.5)
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FIG. 2: Diagrammatic representation of the Dyson-Schwinger equations (3.2), after dropping the bare terms. The

internal loop has q − 2 powers of Gc (this diagram is for q = 6).

where kA/S(h) are given by the formulas

kA(h) =
Γ(2∆− h)Γ(2∆ + h− 1)

Γ(2∆− 2)Γ(2∆ + 1)

(
1− sin(πh)

sin(2π∆)

)
,

kS(h) =
Γ(2∆− h)Γ(2∆ + h− 1)

Γ(2∆− 1)Γ(2∆)

(
1 +

sin(πh)

sin(2π∆)

)
. (3.6)

This formula can be verified by taking the limit |τ0| → ∞ in (3.5) and then evaluating the integrals

over τ3,4. Therefore comparing (3.5) with (3.2), we have to set

kA(h) = 1 , kS(h) = 1 , (3.7)

and these equations define the anomalous scaling dimensions of the operators O
A/S
h (τ).

The SYK model can be viewed as some conformal field theory perturbed by this infinite set

of irrelevant primary operators. In the case of zero chemical potential µ = 0 there is an exact

particle-hole symmetry and thus only OA
h operators can appear in the action. This situation

exactly coincides with the case of the Majorana SYK model, where instead of complex fermions

fi we have Majorana fermions χi. Therefore in what follows we omit letter “A” for brevity and

write for the effective action of the Majorana SYK model

SSYK = SCFT +
∑
h

gh

∫ β

0

dτOh(τ) , (3.8)

where Oh have anomalous dimensions h = h0, h1, h2, h3, . . . and h0 = 2, h1 ' 3.77, h2 ' 5.68, etc,

which are found from the equation kA(h) = 1. (A notational aside: we will often use the subscript

i to represent the subscript hi e.g. gh2 ≡ g2.)

The expression for the full two point function reads

G(τ12) = − 1

Z

∫
Dχ

1

N
χi(τ1)χi(τ2)e−SSYK , (3.9)
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therefore using conformal perturbation theory we find

G(τ12) =Gc(τ12) +
∑
h

gh

∫
dτ3

1

N
〈χi(τ1)χi(τ2)Oh(τ3)〉

− 1

2

∑
h,h′

ghgh′

∫
dτ3dτ4

1

N
〈χi(τ1)χi(τ2)Oh(τ3)Oh′(τ4)〉+ . . . , (3.10)

where we used that Gc(τ12) = − 1
N
〈χi(τ1)χi(τ2)〉 and averaging of the correlation functions is im-

plicitly performed with SCFT action and involves only connected diagrams. The higher correlation

functions are fixed by conformal invariance up to the structure constants ch and ch1h2h3 :

1

N
〈χi(τ1)χi(τ2)Oh(τ3)〉 =

chb
∆ sgn(τ12)

|Jτ12|2∆−h|Jτ13|h|Jτ23|h
,

1

N
〈χi(τ1)χi(τ2)Oh1(τ3)Oh2(τ4)〉 =

∑
h

chchh1h2b
∆sgn(τ12)|τ14|h12

|Jτ12|2∆|Jτ34|h1+h2|τ13|h12
xh 2F1(h, h+ h12, 2h, x) , (3.11)

where h12 = h1 − h2 and x = τ12τ34

τ13τ24
. Alternatively they can be found from the Operator Product

Expansion (OPE)

1

N
χi(τ1)χ†i (τ2) =

b∆ sgn(τ12)

|Jτ12|2∆
+

1

N

∑
h

chb
∆ sgn(τ12)

|Jτ12|2∆−h Ch(τ12, ∂2)Oh(τ2) ,

Oh1(τ1)Oh2(τ2) =
Nδhh′

|Jτ12|2h
+
∑
h′′

ch1h2h3|Jτ12|h3−h1−h2C123(τ12, ∂2)Oh3(τ2) , (3.12)

where b = 1
2π

(1 − 2∆) tan(π∆) and the operators Ch and C123 generate all descendants and are

determined by the functional form of the three-point functions. The structure constants ch are [6]

c2
h =

1

(q − 1)b∆
· (h− 1/2)

π tan(πh/2)

Γ(h)2

Γ(2h)
· 1

k′A(h)
, (3.13)

and chh′h′′ have much more complicated form and were computed in Refs. [8, 26]. The OPE

formulas (3.12) should not include h0 = 2 operator, since it was shown in [6] that this operator

breaks conformal symmetry in the SYK model. Moreover we notice that ch is divergent for h0 = 2.

Nevertheless let us assume that we deal with unbroken CFT and can include Oh0 operator in the

OPE formulas assuming limit h0 → 2 [27].

For the first order correction to the two point function at zero temperature β =∞ we find

δGh(τ12) = gh

∫ +∞

−∞
dτ3

chb
∆ sgn(τ12)

|Jτ12|2∆−h|Jτ13|h|Jτ23|h
= −Gc(τ12)

αh
|Jτ12|h−1

, (3.14)

where αh and gh are related as

g2
h = J2(q − 1)b∆k′A(h)

(h− 1/2)

π tan(πh/2)

Γ(h)2

Γ(2h)
α2
h . (3.15)
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We notice that g0 has to be divergent for h0 = 2 in order for α0 to be finite. Also we remark that

all gh ∝ J are dimensionful couplings, whereas αh are dimensionless constants. The analysis in

Section IV establishes that α0 is indeed finite, and we will confirm this in our numerical results.

For the second order correction we find using (3.11)

δ2Ghh′(τ12) = −1

2
ghgh′

∫
dτ3dτ4

1

N
〈χi(τ1)χi(τ2)Oh(τ3)Oh′(τ4)〉 = −Gc(τ12)

ahh′αhαh′

2|Jτ12|h+h′−2
, (3.16)

where the coefficients ahh′ are functions of h, h′ and ∆ and we will find some of them explicitly in

the Section IV using resonance theory.

It is instructive to use these conformal perturbation methods to also compute the free energy.

We describe this in Appendix A; one term is at variance with another discussion [28].

IV. KITAEV-SUH RESONANCE THEORY

In this section, we will review the renormalization and resonance formalism developed in [7,

11, 22], and extend it to nonlinear order. The theory provides a framework for understanding the

corrections due to physics at higher energy scales in SYK-type models.

To linear order, the corrected Green’s function in (3.10) G(τ) = −〈Tτf(τ)f †(0)〉 can be written

as

G(τ) = Gc(τ)

(
1−

∑
h

αh
(βJ)h−1

Fh(τ/β) + . . .

)
. (4.1)

Here recall that Gc(τ) is the conformal Green’s function, β is inverse temperature and J denotes

some UV energy scale, which is usually taken to be the SYK coupling. Fh is some universal

scaling functions that will be computed later in (4.55). The sum runs over a set of discrete

numbers {hi} that will be determined in Section IV A. Although the resonance formalism is a

direct consequence of Schwinger-Dyson equations, the structure of the corrections is consistent

with the CFT interpretation of SYK-type model. The numbers {hi} can be interpreted as the

scaling dimensions of primary operators {Oh} in the SYK CFT that appears in the OPE of

f(τ)f †(0). The dimensionless coefficients αh parameterize the deformation away from the SYK

CFT, as in (3.8).

The exact values of αh’s require solving the full Schwinger-Dyson equations in the UV, and they

are usually extracted from numerics.

In SYK-type models, operators OS
0 (there may be several) of scaling dimension hS

0 = 1 and

OA
0 of scaling dimension hA

0 = 2 are special: they are the conserved charges of U(1) and time-

reparameterization symmetry respectively. These symmetries are emergent and spontaneously

broken in the IR, but also explicitly broken by the deformation δS which lives in the UV. Therefore
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δS provides the effective action for the these pseudo-Nambu-Goldstone modes. For the time-

reparameterization symmetry, this is the well-known Schwarzian action.

The resonance formalism was first developed in [7] for Majorana SYK, where the Green’s func-

tion is always antisymmetric in time and Fh is obtained for generic temperature. In [11], the

formalism was extended to complex SYK model which has a U(1) symmetry, and Fh is obtained

at zero temperature for generic U(1) charge. In [22], the theory was further extended to the t-J

model, a couple system of both fermions and bosons, and the scaling function Fh was obtained for

generic temperature and U(1) charge. In all these previous works, the correction is only calculated

for linear order in αh, which only provides information about the spectral weight ρa(ω) around

ω = 0. In this paper, we will extend the formalism to arbitrary nonlinear order in αh, which shows

excellent agreement with large-q expansion and numerics at finite q: it can now extrapolate the

spectral weight ρa(ω) up to finite ω/J .

A. Linear order correction

We summarize previous works on linear order resonance theory [7, 11, 22]. Our discussion will

be based on the Schwinger-Dyson equation, abstractly written as

G = G∗[Σ], Σ = Σ∗[G] + σ. (4.2)

Here G and Σ are regarded as bi-local fields and G∗ and Σ∗ are functionals that define the saddle

point. σ is a bi-local field referred as the UV source. The conformal solution (Gc,Σc) is exact if

σ = 0. In the bosonic and fermionic SYKq models, G∗[Σ](τ1, τ2) = −(1/Σ)(τ1, τ2) (in the sense

of functional inverse), and Σ∗[G](τ1, τ2) = (−)εaJ2G(τ1, τ2)q/2 (−G(τ2, τ1))q/2−1, and σ(τ1, τ2) =

(∂τ1−µ)δ(τ1−τ2). σ is referred as UV source because it contains high frequency Fourier components.

We also note that the self-energy Σ is shifted from the usual definition by σ.

If we are interested in the IR physics J−1 � |τ | . β, the UV source σ can be treated as

small perturbation, the small parameter being the ratio between IR and UV scales 1/(βJ)h−1

or 1/|Jτ |h−1. To calculate the linear response, we expand the SD equations (4.2) around the

conformal saddle point (Gc,Σc) to linear order:

G = Gc + δG, Σ = Σc + δΣ. (4.3)

and obtain

δG = WΣδΣ, δΣ = WGδG+ σ (4.4)

where we defined WΣ and WG as

WΣ =
δG∗
δΣ

∣∣∣∣
Σc
, WG =

δΣ∗
δG

∣∣∣∣
Gc
. (4.5)
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Finally a simple analysis yields [11]:

δG = (1−WΣWG︸ ︷︷ ︸
KG

)−1WΣσ , δΣ = (1−WGWΣ︸ ︷︷ ︸
KΣ

)−1σ . (4.6)

Here we defined two kernels KG = WΣWG and KΣ = WGWΣ. We remark that KG is exactly

the one-rung diagrams that one needs to sum to compute the four-point functions [6, 7]. By

construction the nonzero spectra of KG and KΣ are the same.

In what follows we are going to adopt a convenient notation used in Ref. [11] for writing functions

which have discontinuity at τ = 0 and different behaviour for negative and positive τ . Namely,

we write all functions as two component vectors, where the first component is for τ > 0 and the

second one is for τ < 0. We refer to this as a plus/minus basis. For example the conformal solution

for the Green’s function Gc
a(τ) and self-energy Σc

a(τ) at zero temperature can be written as

Gc
a(τ) = −

(
eπEa , τ > 0

ζae
−πEa , τ < 0

)
b∆
a

|Jτ |2∆
, Σc

a(τ) = −

(
eπEa , τ > 0

ζae
−πEa , τ < 0

)
J2b1−∆

a

|Jτ |2(1−∆)
, (4.7)

where the constant ba is given in (2.17) and ζb = 1 and ζf = −1. In what follows we suppress

index a = f, b in various functions for brevity and only keep ζ factors where it’s needed.

To proceed in analysis, we notice that the conformal saddle point possesses SL(2, R) symmetry,

and therefore we can break up (4.6) into irreducible representations of SL(2, R) labelled by h, and

a convenient basis for this purpose at zero temperature is

δG(τ) = δ ~G|Jτ |1−hGc(τ), δΣ(τ) = δ~Σ|Jτ |1−hΣc(τ), σ(τ) =
∑
h

~σh|Jτ |1−hΣc(τ)u(τ) , (4.8)

where δ ~G = (δG+, δG−)T, δ~Σ = (δΣ+, δΣ−)T and ~σh = (σh+, σh−)T are all two components

columns according to our new notations and the source σ(τ) is written in the IR region with the

window function u(τ) and positive real numbers h (for details about this representation of the

soruce σ see Ref. [7]). In this basis, WΣ, WG and KG, KΣ become 2× 2 dimensional matrices. So

for the fermionic and bosonic SYKq models (2.13), we can find

δΣ∗(τ)|Gc =

(
q

2

δG(τ)

Gc(τ)
+
(q

2
− 1
)δG(−τ)

Gc(−τ)

)
Σc(τ) (4.9)

and using the basis (4.8) we write it as

δΣ∗(τ)|Gc = WGδ ~G|Jτ |1−hΣc(τ) , (4.10)

where WG becomes a 2× 2 matrix given by the formula

WG =

(
q/2 q/2− 1

q/2− 1 q/2

)
. (4.11)
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To find expression for the operator WΣ we are going to use the Fourier transform written in our

convenient plus/minus basis∫ (
a+|τ |−α, τ > 0

a−|τ |−α, τ < 0

)
eiωτdτ =

(
a′+|ω|α−1, ω > 0

a′−|ω|α−1, ω < 0

)
,

(
a′+

a′−

)
= M(α)

(
a+

a−

)
, (4.12)

where the 2× 2 matrix M(α) has the form

M(α) = Γ(1− α)

(
i1−α iα−1

iα−1 i1−α

)
, M(α)−1 =

Γ(α)

2π

(
i−α iα

iα i−α

)
. (4.13)

In the Fourier space the basis (4.8) takes the form

δG(iω) = F (h)δ ~G|ω/J |h−1Gc(iω), δΣ(iω) = Φ(h)δ~Σ|ω/J |h−1Σc(iω) , (4.14)

where the matrices F (h) and Φ(h) are

F (h) = −i

√
Γ(2∆)

Γ(2− 2∆)
b

1
2

(
eiθ 0

0 −e−iθ

)
M(2∆− 1 + h)

(
eπE 0

0 ζe−πE

)
,

Φ(h) = −i

√
Γ(2− 2∆)

Γ(2∆)
b

1
2

(
e−iθ 0

0 −eiθ

)
M(1− 2∆ + h)

(
eπE 0

0 ζe−πE

)
. (4.15)

and we used formulas for Gc(iω) and Σc(iω) in the Fourier space at zero temperature:

Gc(iω) = −iC
J

(
e−iθ

−eiθ

)
|ω/J |2∆−1 , Σc(iω) = −iJ

C

(
eiθ

−e−iθ

)
|ω/J |1−2∆ , (4.16)

where we defined C ≡
√

Γ(2− 2∆)/Γ(2∆)b∆− 1
2 . Notice that there are no ζ factors in (4.16). The

operator WΣ connects linear corrections δΣ and δG as δG = WΣδΣ and has a simple form in the

Fourier space

δG∗(iω)|Σc = Gc(iω)2δΣ(iω) . (4.17)

Thus using (4.14) and Gc(iω)Σc(iω) = −1 we find

F (h)δ ~G = −Φ(h)δ~Σ (4.18)

and therefore WΣ acts on δ~Σ as a matrix WΣ(h) = −F (h)−1Φ(h) and is given by the formula [11]:

WΣ(h) =
Γ(2∆− 1 + h)Γ(2∆− h)

Γ(2∆)Γ(2∆− 1) sin(2π∆)

(
sin(πh+ 2θ) − sin(2π∆) + sin(2θ)

− sin(2π∆)− sin(2θ) sin(πh− 2θ)

)
. (4.19)
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We notice that the matrix WΣ(h) has the same form for bosonic and fermionic SYK models and

the only difference is the range of asymmetry angle θ in these two cases. The matrix KG(h) is a

product of two matrices WΣ(h) and WG, so KG(h) = WΣ(h)WG. Therefore (4.6) reads

δG =
1

1−KG(h)
WΣ(h)σ. (4.20)

For generic h, 1−KG(h) is non-singular and therefore the response δG is negligible at IR scales.

We need to remember that a physical source σ is supported only in the UV, and we expect a

non-singular response δG is also constrained in the UV region. To get an IR response, 1−KG(h)

should be singular, so the possible h’s that appear in (4.1) is selected by the condition

det(1−KG(h)) = 0 . (4.21)

For the particle-hole symmetric case, µ = 0, this equation is equivalent to kA/S(h) = 1 where

kA/S(h) are defined in (3.6).

For the resonant values of h = h∗, the apparent singluarity in (4.20) is regulated by the window

function u(τ) which restricts σ to be supported only on UV scales. Following [7, 11] we obtain

δG(τ) =
∑
h=h∗

1

K ′G(h)
WΣ(h)~σh|Jτ |1−hGc(τ) , (4.22)

where the sum goes over all resonances h∗ which are the solutions of (4.21). The derivative of

matrix K ′G(h) is
1

K ′G(h)
=

vhwh
k′G(h)

, (4.23)

where vh and wh are the corresponding right and left eigenvectors of KG(h) respectively which

have eigenvalue kG(h) = 1 and normalized as whvh = 1. Finally, we can rewrite (4.22) into the

form

δG(τ) = −
∑
h=h∗

αhvh
Gc(τ)

|Jτ |h−1
,

αh = −whWΣ(h)~σh
k′G(h)

.

(4.24)

We remark that the values of ~σh and thus αh are not accessible in the IR because a physical

UV source such as σ(τ) = (∂τ − µ)δ(τ) is highly singular and the task of decomposing it into

asymptotic powerlaws perhaps is equivalent to solving the full Schwinger-Dyson equations. Below

in the Section VII we present numerical results for αh of the first few resonances in the bosonic

and fermionic SYK4 models. The UV parameters αh depend on the asymmetry angle θ and q [29].
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Below we present explicit formulas for the eigenvalues and eigenvectors of the matrix KG(h):

kA/S(h, θ) =
Γ(2∆− h)Γ(2∆ + h− 1)

Γ(2∆ + 1)Γ(2∆− 1)

(
2∆− 1 +

cos(2θ) sin(πh)

sin(2π∆)
∓
√
P

)
,

v
A/S
h (θ) =

1

1 + (2∆− 1) sin(πh)
sin(2π∆)

(
sin(2θ)

sin(2π∆)
(2∆− 1− cos(πh))±

√
P

1 + sin(2θ)
sin(2π∆)

+ (2∆− 1) sin(πh−2θ)
sin(2π∆)

)
, (4.25)

where

P = sin(2θ)2
(

1− sin(πh)2

sin(2π∆)2

)
+
(

cos(2θ) + (2∆− 1)
sin(πh)

sin(2π∆)

)2

. (4.26)

Also w
A/S
h (θ) can be expressed through v

S/A
h (θ) as w

A/S
h (θ) = v

S/A
h (−θ)Tσz/(v

S/A
h (−θ)Tσzv

A/S
h (θ)),

where σz is the third Pauli matrix and one can check that w
A/S
h v

S/A
h = 0. We notice that for

θ = 0 the eigenvalues kA/S(h) in (4.25) coincide with definition (3.6). Though for non-zero asym-

metry angle θ there is no symmetry under τ → −τ we still label eigenvalues and eigenvectors

with A/S indices. We denote by hA/S solutions of the equations kA/S(h, θ) = 1 and numerate

them as h
A/S
0 , h

A/S
1 , h

A/S
2 , . . . . For these solutions we denote αh as α

A/S
0 , α

A/S
1 , . . . and similarly

v
A/S
0 , v

A/S
1 , . . . . In Fig.3 we plot hA/S and corresponding k′A/S(hA/S) for the fermionic and bosonic

SYK4 models as functions of the asymmetry angles θf and θb. We remark that in the fermionic

model for θf = π/6 some solutions of the equation kS(h) = 1 (red lines) go into solutions of

kA(h) = 1 (blue lines), nevertheless we still denote the dimension of the whole line by hA. In

bosonic case this happens for θb = π/3. The resonances hA
0 = 2 and hS

0 = 1 are related to

reparametrization and U(1) symmetries respectively and don’t depend on the asymmetry angles

θf or θb. According to the eq. (4.24) the mode hS
0 = 1 gives a constant correction to the Green’s

function and represents a response of the asymmetry parameter E (or θ) to a change of the chemical

potential µ. Therefore in the conformal two-point function (4.7) this mode is already taken into

account. Moreover it was shown in [11] that the hS
0 = 1 resonance leads to the Luttinger relations:

Q ≡ 1

2
− 1

NM

∑
iα

〈f †iαfiα〉 =
θf
π

+
(1

2
−∆

) sin(2θf )

sin(2π∆)
,

S ≡ 1

NM

∑
iα

〈b†iαbiα〉 =
θb
π

+
(1

2
−∆

) sin(2θb)

sin(2π∆)
− 1

2
. (4.27)

We notice an interesting behaviour of the operator hA
1 in the bosonic SYK model. For θb > 0.284π

(exact value θb1 = 1
2

cos−1(−2
3π

)) the resonance hA
1 is less than hA

0 = 2 mode and becomes the

leading contribution to the Green’s function. At θb = π/3 we have hA
1 = 3/2 and for θb = 0.360π

(exact value θb2 = 1
2

cos−1(−2
π

)) we find that hA
1 = 1 and therefore we should expect violation of

the Luttinger relations (4.27). We indeed confirm this numerically below in the Section VII. For

θb > 0.360π the resonance hA
1 becomes less than one and therefore gives divergent contribution to

the Green’s function for large τ . In terms of the discussion of the Section III this means that the
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FIG. 3: Plots of the resonance values hA/S and corresponding k′A/S(hA/S) for the fermionic and bosonic q = 4

SYK models as functions of the asymmetry angles θf and θb. hA/S are solutions of the equations kA/S(h, θ) = 1,

where kA/S are defined in (4.25). The red and blue lines are solutions of the equation kS(h) = 1 and kA(h) = 1

respectively.

operator OhA
1

becomes relevant and thus it violates basis of the analysis of the Sections III and IV.

Interestingly for θb > 0.360π we see that another operator of dimension 1− hA
1 appears and both

operators merge at θb = 0.369π (exact value θb3 = 1
2

cos−1(1
2
− 3

8π
)) and h = 1/2 and go to the

complex plane. This is a well-known scenario, discussed in [30–32]. In the context of the SYK-like
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models it was also found in [33].

We chose normalization of v
A/S
h in (4.25) such that at θ = 0 it is v

A/S
h = (±1, 1)T and w

A/S
h =

1
2
(±1, 1) for arbitrary h and thus the value of α0 for hA

0 = 2 mode is in agreement with the previous

works [6, 7].

We remark that for the fermionic SYK model at zero chemical potential µ = 0 (θf = 0) we have

αS
h =

σS
h+ − σS

h−

k′S(h)
= 0 , (4.28)

where we used that the source σ(τ) has to be antisymmetric under τ → −τ due to the particle-hole

symmetry. Thus in this case only hA operators contribute to the two-point function.

B. Nonlinear order corrections

In this section we present the generalization of the above resonance formalism to linear in

αh order. In the CFT interpretation, we are computing corrections to Green’s functions due to

double insertion of irrelevant operators, for example
∫∫

dτ3dτ4〈f(τ1)f †(τ2)Oh(τ3)Oh′(τ4)〉, which is

expected to be proportional to 1/|τ12|2∆+h+h′−2. In terms of the Schwinger-Dyson equation, this

corresponds to double insertion of the UV source σ. We will develop a recursive procedure that

enables computation of correction up to arbitrary order.

For simplicity, we will restrict to zero temperature and comment on finite temperature later.

Our strategy is to treat (4.2) as a perturbation problem and expand G,Σ to n-th order in σ:

G = Gc + δG+ δ2G+ · · ·+ δnG ,

Σ = Σc + δΣ + δ2Σ + · · ·+ δnΣ .
(4.29)

Expand (4.2) accordingly and match order by order, we have

δkG = δkG∗[Σ] , δkΣ = δkΣ∗[G], k ≥ 2. (4.30)

We can calculate δkG and δkΣ order by order recursively. To do so we rewrite the above equation

as

δkG = WΣδ
kΣ + δ̄kG∗[Σ] , δkΣ = WGδ

kG+ δ̄kΣ∗[G] , (4.31)

where we have explicitly separated out the pieces depending on δkG and δkΣ, which are all linear.

The rest are written as δ̄kG∗ and δ̄kΣ∗, and they depend nonlinearly on the corrections of order 1

through k − 1. We can readily write down the solution for δkG, δkΣ:

δkG =
1

1−WΣWG

[
WΣδ̄

kΣ∗[G] + δ̄kG∗[Σ]
]
, (4.32)

δkΣ =
1

1−WGWΣ

[
WGδ̄

kG∗[Σ] + δ̄kΣ∗[G]
]
. (4.33)
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The starting point of the recursion is the δG, δΣ computed from linear resonance theory. Because

all δkG and δkΣ are powerlaws in both time and frequency domain, the expansion of δ̄kG∗, δ̄kΣ∗

and the action of WΣ, WG can be carried out analytically and automated on a computer. At finite

temperature, the recursion is harder to implement because δkG and δkΣ are usually hypergeometric

functions whose complexity increases with k.

As an example, we find the second order correction for the bosonic and fermionic SYKq model.

The Schwinger-Dyson equations (4.2) take the form

G∗[Σ](iω) =
−1

Σ(iω)
, Σ∗[G](τ) = (−)εaJ2G(τ)q/2G(−τ)q/2−1. (4.34)

In the subsection (IV A) we derive the linear order response for the resonance h

δhG(τ) = −αhvh
Gc(τ)

|Jτ |h−1
, (4.35)

where vh = (vh+, vh−) is the right eigenvector of the matrix KG(h) = WΣ(h)WG with the eigenvalue

kG(h) = 1, so KG(h)vh = vh. Using (4.34) we can calculate

δ̄2G∗ = −
∑
h,h′

δhΣ(iω)δh′Σ(iω)

Σc(iω)3
=
∑
h,h′

δhG(iω)δh′G(iω)

Gc(iω)
, (4.36)

where we used that Gc(iω)Σc(iω) = −1 and δhG(iω) = Gc(iω)2δhΣ(iω) and the sum over h and

h′ goes over all resonances. Using (4.14) we find for the linear order response in the Fourier space

δhG(iω) = −αhF (h)vh|ω/J |h−1Gc(iω) , (4.37)

where the matrix F (h) is given in (4.15) and acts on the vector vh. Therefore we find

δhG(iω)δh′G(iω)

Gc(iω)
= αhαh′

(
F (h)vh · F (h′)vh′

)
|ω/J |h+h′−2Gc(iω) , (4.38)

where we introduced a special notation vh · vh′ ≡ (vh+vh′+, vh−vh′−). Finally we go back to the

coordinate space and obtain for the second variation of δ̄2G∗:

δ̄2G∗(τ)

Gc(τ)
=
∑
h,h′

F (h+ h′ − 1)−1
(
F (h)vh · F (h′)vh′

) αhαh′

|Jτ |h+h′−2
. (4.39)

The second variation of Σ∗[Gc] reads

δ̄2Σ∗(τ)

Σc(τ)
=
q − 2

8

(
q
δhG(τ)δh′G(τ)

Gc(τ)Gc(τ)
+ (q − 4)

δhG(−τ)δh′G(−τ)

Gc(−τ)Gc(−τ)

+ q
δhG(τ)δh′G(−τ)

Gc(τ)Gc(−τ)
+ q

δhG(−τ)δh′G(τ)

Gc(−τ)Gc(τ)

)
(4.40)
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and using our vector notations for vh = (vh+, vh−) and v̄h = (vh−, vh+) we obtain

δ̄2Σ∗(τ)

Σc(τ)
=
∑
h,h′

1

8
(q − 2)

(
q(vh + v̄h) · (vh′ + v̄h′)− 4v̄h · v̄h′

) αhαh′

|Jτ |h+h′−2
. (4.41)

Therefore the full second correction to G(τ) reads

δ2G(τ)

Gc(τ)
= − ahh

′αhαh′

|Jτ |h+h′−2
, (4.42)

where the two component vector ahh′ is given by the formula

ahh′ =−
(
1−WΣ(h+ h′ − 1)WG

)−1
(
F (h+ h′ − 1)−1

(
F (h)vh · F (h′)vh′

)
+

1

8
(q − 2)WΣ(h+ h′ − 1)

(
q(vh + v̄h) · (vh′ + v̄h′)− 4v̄h · v̄h′

))
. (4.43)

The general formula for the two point function can be written as

G(τ) = Gc(τ)

(
1−

∑
h

αhvh
|Jτ |h−1

−
∑
h,h′

ahh′αhαh′

|Jτ |h+h′−2
−
∑
h,h′,h′′

ahh′h′′αhαh′αh′′

|Jτ |h+h′+h′′−3
− . . .

)
, (4.44)

where vh, ahh′ , ahh′h′′ , etc are two-component vectors. For example for hA
0 = 2 mode and q = 4

case we find

vA
0 =

(
1− 3

2
sin(2θ)

1 + 3
2

sin(2θ)

)
, aA

00 =

(
3
16

(17 cos(4θ)− 5 + 24 sin(2θ))
3
16

(17 cos(4θ)− 5− 24 sin(2θ))

)
. (4.45)

For the fermionic SYKq model at zero chemical potential we have θ = 0 and we omit all upper

subscripts A for brevity, since as we explained in (4.28) modes hS don’t contribute to the two-point

function in this case. Then vh = (1, 1)T and also ahh′ ∝ (1, 1)T, ahh′h′′ ∝ (1, 1)T etc, and we can

omit vector notations so the coefficients ahh′ , ahh′h′′ , etc become just real numbers and thus the

leading terms for the two-point function can be written as

G(τ) = Gc(τ)

(
1− α0

|Jτ |
− α1

|Jτ |h1−1
− a00α

2
0

|Jτ |2
− 2a01α0α1

|Jτ |h1
− a11α

2
1

|Jτ |2h1−2
− a000α

3
0

|Jτ |3
+ . . .

)
, (4.46)

where h0 = 2 and h1 ' 3.77. Using (4.43) for vh = (1, 1) and θ = 0 we find explicitly

a00 =
(2∆ + 1)(2− 2∆− cos(2π∆))

8∆ cos2(π∆)
. (4.47)

In general it is possible to obtain corrections up to an arbitrary order. As an example for the cubic

order in α0 the result takes the form for θ = 0

a000 =
(∆ + 1)(2∆ + 1)(6∆− 8 + cos(2π∆))

24∆2 cos2(π∆)
. (4.48)

We checked that the results for ahh′ and a000 in (4.43) and (4.48) for θ = 0 exactly match with the

large q and q → 2 expansions discussed in Appendices B and C.
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C. Finite Temperature Generalization

The results described above are only applicable at zero temperature. To generalize to finite

temperature, we use the U(1) and time-reparameterization symmetry of the conformal saddle

point equations. In presence of the symmetry, G, Σ,WG, WΣ are all covariant under time-

reparameterization and U(1). Therefore, the coefficients αh should be temperature independent,

and all we need is the finite temperature form of the scaling function Fh.
As we already discussed in the Section III in general for the complex fermions with the particle-

hole symmetry the three-point function has two independent structures [24, 34]〈
f(τ1)f †(τ2)Oh(τ0)

〉
=

b∆
(
cA
h sgn(τ12) + cS

h sgn(τ10)sgn(τ20)
)

|βJ
π

sin πτ12

β
|2∆−h|βJ

π
sin πτ10

β
|h|βJ

π
sin πτ20

β
|h
, (4.49)

where cA
h and cS

h are independent structure constants and the sign function is antiperiodic on the

thermal circle sgn(τ +β) = −sgn(τ). This form is consistent with higher-dimensional CFT results

for fermions (see for example [35, 36]) and gives correct statistics for the fermionic and bosonic

fields, when one of the field is moved over the full thermal circle. For non-zero chemical potential

this result was generalized in [22] and takes the form〈
f(τ1)f †(τ2)Oh(τ0)

〉
= −Gc

f (τ12)
cA
h + cS

h sgn(τ12)sgn(τ10)sgn(τ20)

| sin πτ12

β
|−h|βJ

π
sin πτ10

β
sin πτ20

β
|h
, (4.50)

where we used conformal Green’s functions Gc
f (τ) to write the three-point function compactly. For

the bosonic case we have to replace Gc
f (τ) by Gc

b(τ). For a domain τ ∈ [−β, β] the formulas for

the conformal two-point functions are

Gf (τ) = −eπEf sgn(τ)
b∆
f sgn(τ)

|βJ
π

sin πτ
β
|2∆

e−
2πEf
β

τ , Gb(τ) = −eπEbsgn(τ) b∆
b

|βJ
π

sin πτ
β
|2∆

e−
2πEb
β

τ . (4.51)

Appearance of the factors exp(−2πE
β
τ) in the three-point functions can be derived by applying

U(1) transformation on f and f †, assuming Oh is neutral under U(1). One can check that the

expression (4.50) agrees with (3.11) upon taking β → ∞ limit and setting Ef = cS
h = 0. We also

remark that the three-point functions (4.50) represent a basis for the kernel KG. This A/S basis

is related to previously used plus/minus basis by some transformation matix.

Analogously to the discussion in the Section III the linear correction to the two-point function

can be computed as

δhG(τ12) = gh

∫ β

0

dτ0

〈
f(τ1)f †(τ2)Oh(τ0)

〉
, (4.52)

where we recall that gh ∝ J is dimensionful coupling. The correction is split on two parts δhG(τ) =

δhGA(τ) + sgn (τ)δhGS(τ) and to match our result (4.24) for zero-temperature we have

δhGA(τ)

Gc(τ)
= −1

2
(vh+ + vh−)

αh
(βJ)h−1

fA
h (τ),

δhGS(τ)

Gc(τ)
= −1

2
(vh+ − vh−)

αh
(βJ)h−1

fS
h (τ) , (4.53)

21



where

fA
h (τ12) ∝

∫ β

0

dτ0

| sin πτ12

β
|h

| sin πτ10

β
sin πτ20

β
|h
, fS

h (τ12) ∝
∫ β

0

dτ0

| sin πτ12

β
|hsgn (τ10)sgn (τ20)

| sin πτ10

β
sin πτ20

β
|h

. (4.54)

The function Fh(τ/β) defined in (4.1) reads

Fh(τ/β) =
1

2
(vh+ + vh−)fA

h (τ) +
1

2
(vh+ − vh−)fS

h (τ)sgn (τ) . (4.55)

Using results from [7, 22] for the integrals in (4.54) and fixing proportionality constants such that

f
A/S
h (τ)→ (β/|τ |)h−1 in the limit β →∞ we obtain

fA
h (τ) =

(2π)h−1Γ(h)2

2 sin πh
2

Γ(2h− 1)

(
Ah(e

i 2πτ
β ) + Ah(e

−i 2πτ
β )
)
, (4.56)

fS
h (τ) =

(2π)h−1Γ(h)2

2 cos πh
2

Γ(2h− 1)

(
iAh(e

i 2πτ
β )− iAh(e−i

2πτ
β )
)
, (4.57)

whereAh(u) = (1−u)hF(h, h, 1;u) and F is the regularized hypergeometric function. Our definition

of Ah coincides with A±h,0 defined in [7] and [37], and we have dropped the ± notation because the

two definitions in the references agree for our choice of parameter. Inside the unit circle |u| ≤ 1

we can compute Ah(u) using series expansion. We list results for hA
0 = 2 mode

fA
0 (τ) = 2 +

π − 2π|τ |
β

tan π|τ |
β

, fS
0 (τ) =

π

tan π|τ |
β

. (4.58)

One has to be careful computing fA
0 (τ) function since the prefactor in (4.56) diverges and we need

to expand Ah(u) to the next order in h, so for h → 2 we have Ah(u) = (1 + u)/(1 − u) − (h −
2)((1 + u) log(1− u)− 2u)/(1− u) + . . . .

The above procedure is relatively simple for linear in αh order. For nonlinear order the com-

putation involves complicated products of hypergeometric functions and we leave it for future

investigation.

V. SPECTRAL DENSITIES

To numerically study the models discussed above, it is convenient to work with spectral density

ρ(ω) instead of the Green’s function. For the fermionic and bosonic SYK models we define it as

follows

G(iωn) =

∫ +∞

−∞
dω

ρ(ω)

iωn − ω
. (5.1)

This definition implies that
∫ +∞
−∞ dωρ(ω) = 1 and the spectral density can be found as

ρ(ω) = − 1

π
ImGR(ω) , (5.2)
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where GR(ω) is the retarded Green’s function. It is related to Matsubara function G(iωn) by

analytic continuation from the upper-half complex ω plane, namely we have GR(ω) = G(iωn =

ω+i0), where ωn ≥ 0. Using (4.16) we find for the conformal Gc
R and ρc, written in the plus/minus

basis:

Gc
R(ω) =

C

J

(
e−iπ∆−iθ

−eiπ∆−iθ

)
|ω/J |2∆−1, ρc(ω) =

C

πJ

(
sin(π∆ + θ)

sin(π∆− θ)

)
|ω/J |2∆−1 . (5.3)

Next using the Fourier transform (4.37) for the eq. (4.44) and making analytical continuation to

the real frequencies we find the general formula for the retarded Green’s function. Then using

formula (5.2) we obtain the following expansion of the spectral density at low frequencies

ρ(ω) = ρc(ω)

(
1−

∑
h

Γ(2∆)αhvh|ω/J |h−1

Γ(2∆ + h− 1)
−
∑
h,h′

Γ(2∆)αhαh′ahh′ |ω/J |h+h′−2

Γ(2∆ + h+ h′ − 2)
− . . .

)
. (5.4)

At the end of this section we derive an expression for the spin spectral density. The spin-spin

correlator in imaginarty time is Q(τ) = −〈Tτ (S(τ)S(0))〉 and using that S = f †f or S = b†b in

the large M limit we find

Q(τ) = −ζG(τ)G(−τ) . (5.5)

Expressing Green’s function G(τ) through the spectral density and using a similar formula for

Q(τ) we find expression for the spin spectral density

ρQ(ω) =

∫ ∞
−∞

dνρ(ν)ρ(ν − ω)(n(ν − ω)− n(ν)) , (5.6)

where n(ω) = 1/(eβω − ζ) is the Fermi or Bose distribution. At zero temperature we have n(ω) =

−ζθ(−ω) and we obtain

ρQ(ω) = −ζ
∫ ω

0

dνρ(ν)ρ(ν − ω) , (5.7)

where it is valid for both positive and negative frequencies ω. Using (5.3) and (5.4) we find

ρQ(ω) =ρcQ(ω)

(
1−

∑
h

Γ(4∆)αh(vh+ + vh−)|ω/J |h−1

Γ(4∆ + h− 1)

−
∑
h,h′

Γ(4∆)αhαh′(ahh′+ + ahh′− − vh+vh′−)|ω/J |h+h′−2

Γ(4∆ + h+ h′ − 2)
− . . .

)
, (5.8)

and the conformal spin spectral density is

ρcQ(ω) = sgn(ω)
b2∆

JΓ(4∆)
|ω/J |4∆−1 . (5.9)
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For comparison to numerical results, we can find for q = 4 fermionic SYK at θf = 0 that the

first few terms in ρQf for ω > 0 are

ρQf (ω) = ρcQf (ω)

(
1− 2αA0

(ω
J

)
− 7

4
(αA0 )2

(ω
J

)2

− 0.44αA1

(ω
J

)2.77

+
37

6
(αA0 )3

(ω
J

)3

+ . . .

)
,

(5.10)

where we used values of a00 and a000 from (4.47) and (4.48) and hA
1 ' 3.77.

We generalize results for the spectral densities at finite temperature in the Appendix D. Here

we only present finite temperature generalization of the eq. (5.8) for ∆ = 1/4, where only hA
0 = 2

mode is retained

ρQ(ω) =
b1/2

J
tanh

(βω
2

)(
1− 2αA

0 ω

J
tanh

(βω
2

)
− . . .

)
, (5.11)

and we used that v0+ +v0− = 2. The coefficient of the correction term 2αA
0 /J can be related to the

coefficient γ in specific heat C = γT by the Schwarzian action argument in [22], with the result

Cf =
2αA

0 /J

γ
=

24

π [2 cos 2θf + 3π cos2 2θf ]
. (5.12)

For bosonic spinon theory, there is an extra minus sign because bosonic action differs from the

fermionic version by a minus sign:

Cb =
2αA

0 /J

γ
= − 24

π [2 cos 2θb + 3π cos2 2θb]
. (5.13)

VI. RANDOM QUANTUM ROTOR MODEL

In this section we consider random quantum q-rotor model (or also known as quantum spherical

q-spin model), where q is a positive integer number. The Hamiltonian of this model has the form

H =
N∑
i=1

π2
i

2M
+

N∑
i1,...,iq

Ji1...iqφi1 . . . φiq , (6.1)

where M is the mass, πi is the conjugate momentum to a real scalar spin variable φi so [φi, πj] = iδij

and there is the spherical constraint 1/N
∑N

i=1〈φ2
i 〉 = 1. The couplings Ji1...iq are independent

Gaussian variables with zero mean and variance

J2
i1...iq

=
J̃2

qN q−1
. (6.2)

This model was first studied in [38, 39] and similar models were considered in [40–44]. We define

imaginary time Green’s function at finite temperature

G(τ) =
1

N

N∑
i=1

〈Tτ (φi(τ)φi(0))〉 . (6.3)
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Introducing replicas and averaging over disorder it is possible to derive Schwinger-Dyson equations

for the function G(τ) in the large N limit

G(iωn) =
1

ω2
n + λ− Σ(iωn)

, Σ(τ) = J2G(τ)q−1 , (6.4)

where ωn = 2πn/β are Matsubara frequencies and λ is the Lagrange multiplier imposing the

spherical constraint, also we assumed replica symmetric solution and made rescaling φ→ φ/
√
M ,

so the spherical constraint takes the form G(τ = 0) = M and also J = J̃/M q/2. Similarly to the

SYK models the equations (6.4) admit conformal solution in the IR region for a given J upon

tuning M and thus λ to a critical value. The conformal solution reads

Gc(τ) =
b∆

|(βJ/π) sin(πτ/β)|2∆
, (6.5)

where ∆ = 1/q and dimensionless constant b coincides with bb in (2.17) computed for θb = π/2.

The analysis from the Section IV can be applied to the random rotor model. The only difference

is that the source term now is σ(τ) = ∂2
τ . The correction to the conformal Green’s function comes

from hA(θ) modes computed at θb = π/2. For q = 4 these modes are represented by blue lines

in Fig. 3 and for θb = π/2 we find hA
0 = 2, hA

1 ' 4.26, hA
2 ' 6.34, etc. Symmetric modes hS

don’t contribute to the two-point function due to the exact particle-hole symmetry (see discussion

around eq. (4.28)). We notice that for θb = π/2 there is a complex mode in the symmetric

sector [41]. Though the complex mode formally does not affect the large N two-point function it

presumably makes the replica diagonal solution unstable and leads to replica symmetry breaking

[45]. We also remark that appearance of the complex modes in some non-Fermi liquid theories was

noticed in [46]. In any case it is interesting to study conformal solution of the Schwinger-Dyson

equations (6.4). The leading analytical corrections to the Green’s function at zero temperature

read

G(τ) = Gc(τ)

(
1− α0

|Jτ |
− a00α

2
0

|Jτ |2
− a000α

3
0

|Jτ |3
− α1

|Jτ |h1−1
− . . .

)
, (6.6)

where we omitted subscripts A for brevity and for q = 4 we find a00 = 9/4 and a000 = −65/4

from (4.47) and (4.48) which are also valid for θb = π/2 and ∆ = 1/4. We notice that in this case

quadratic and cubic non-linear terms of h0 = 2 mode are more dominant than linear correction

of h1 mode. In the Section VII we will verify (6.6) numerically for q = 4 by computing spectral

density at zero temperature. The spectral density ρ(ω) is defined as

G(iωn) =

∫ +∞

−∞
dω

ρ(ω)

ω − iωn
(6.7)
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and due to the particle-hole symmetry the spectral density is an odd function ρ(−ω) = −ρ(ω).

Using this we can write (6.7) in the form

G(iωn) =

∫ +∞

−∞
dω

ωρ(ω)

ω2 + ω2
n

, (6.8)

and taking the large z limit we find
∫ +∞
−∞ dωωρ(ω) = 1. We also notice that unitarity implies that

ρ(ω) > 0 for ω > 0. We will find numerically that α0 ' −0.556 for q = 4 case. We notice that it

is negative, whereas for bosonic and fermionic SYK models α0 is positive.

VII. NUMERICAL RESULTS FOR SPINON SPECTRA

In this section we present numerical solutions of the real time Schwinger-Dyson equations at

zero temperature for the bosonic and fermionic spinon models and also the random rotor model in

case of q = 4. We study the corrections found analytically in the section IV and provide numerical

evidence that the conformal solutions and the corrections to the conformal solutions work very

well for all parameters in fermionic model and for some range of parameters in bosonic model.

We also numerically find values of the dimensionless coefficients αh for the first terms in the sum

(5.4) for a range of assymetry angles θf and θb and argue that the numerically found spectra of

operators agree with the ones found analytically.

The first Schwinger-Dyson equation for bosonic and fermionic spinon models is

GR(ω)−1 = ω + i0 + µ− ΣR(ω) , (7.1)

and using the second Schwinger-Dyson equation we can express the retarded self energy ΣR(ω)

though the spectral density ρ(ω), which is in turn related to GR(ω) as ρ(ω) = − 1
π
ImGR(ω).

We solve these equations at zero temperature using iterations. The detailed derivation of the

equations above and numerical technique is discussed in the Appendix E and we notice that a

similar numerical approach was used in [1].

At zero temperature we expect for the spectral density to diverge at small frequencies, therefore,

the quantity of interest in this

ρ(ω) =


g+(ω)√
ω/J

, ω > 0

g−(−ω)√
−ω/J

, ω < 0
. (7.2)

We are interested to find a solution of the SD equations that at zero frequency approaches the

conformal solution. Therefore the function of interest g±(ω) should approach a constant

g±(0) =
C

πJ
sin(π/4± θ), C =

( −ζπ
cos 2θ

)1/4

(7.3)
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according to eqs. (5.3) and (5.4). We remark that these boundary conditions at ω = 0 determine

asymmetry angle θ of the numerical solution and the chemical potential is fixed to be µ = ΣR(0)

and is not an input parameter at zero temperature numerics. In contrast for the finite temperature

numerics one fixes µ first and then can infer θ by analyzing numerical solution.

We are interested in the low frequency behavior of the numerical solution that is theoretically

described in the section IV, for both fermionic and bosonic spinon models. We use the expansion

of the spectral density at small frequencies (5.4) and rewrite the expression at ∆ = 1/q = 1/4 for

the function g±(ω) as follows

g±(ω) = g±(0)

(
1−

∑
h

√
παhvh±(ω/J)h−1

Γ(h− 1/2)
−
∑
h,h′

√
παhαh′ahh′±(ω/J)h+h′−2

Γ(h+ h′ − 3/2)
− . . .

)
, (7.4)

where g±(0) is given in (7.3). The coefficients αh depend on asymmetry angles θf and θb and are

different for fermionic and bosonic models. The eigenvectors vh = (vh+, vh−) of the matrix KG

and vectors ahh′ , ahh′h′′ , . . . also depend on the asymmetry angles and are given by eqs. (4.25) and

(4.43). For given asymmetry angle there are first few leading modes in (7.4) which dominate the

low frequency expansion.

Let us start with the fermionic SYK model at zero chemical potential. In this case θf = 0 and

due to particle-hole symmetry all hS modes don’t contribute and also g+ = g− = g and the leading

terms in (7.4) are

gf (ω) =
1

(4π3)
1
4J

(
1− 2αA

0

ω

J
− 3(αA

0 )2
(ω
J

)2

− 0.68αA
1

(ω
J

)2.77

+
26

3
(αA

0 )3
(ω
J

)3

− . . .
)
, (7.5)

where we used that vA
h = (1, 1) and hA

1 ' 3.77 and also aA
00 = 9/4 and aA

000 = −65/4 (see eqs.

(4.47) and (4.48)) for ∆ = 1/4 and θf = 0. Fitting numerical data we can find αA
0 = 0.2643

and αA
1 ' 0.31 − 0.36. We plot numerical result and theory (7.5) in Fig.4. One can see a really

good agreement between theory and numerics at low frequencies. We notice that since αA
1 term is

subleading we can not fix it with good precision, in contrast αA
0 can be fixed with high accuracy

and our result agrees well with previous computation of this term in [6].

For non-zero chemical potential and thus non-zero asymmetry angle θf modes from the sym-

metric sector contribute to the spectral density and since hS
1 < 3 the leading terms in low frequency

expansion of g±(ω) are

gf±(ω) =
sin(π

4
± θf )

J(π3 cos 2θf )
1
4

(
1− 2αA

0 v
A
0±
ω

J
−
√
παS

1v
S
1±

Γ(hS
1 − 1

2
)

(ω
J

)hS
1−1

− 4

3
(αA

0 )2aA
00±

(ω
J

)2

− . . .
)
, (7.6)

where explicit expressions for vectors vA
0 and aA

00 are given in (4.45) and vector vS
1 can be computed

from (4.25) for a given value of hS
1. The θf angle dependence of hS

1 is represented in Fig. 3.

27



FIG. 4: Plot of the fermionic SYK4 spectral density for θf = 0 at zero temperature. The red solid line is the

numerical result obtained by solving the Schwinger-Dyson equations using iterations. The black dashed line is

theoretical curve (7.5) ploted for αA
0 = 0.2643 and αA

1 = 0.31.

We remark that since the series (7.4) is asymptotic [47] the relevance of higher order terms

depends on the range of ω ∈ [0, ωmax] for which we approximate the exact result. That means

that if we truncate series at order pmax the maximal frequency ωmax for which this series gives

reasonable approximation to the exact result is roughly determined by the condition that the term

(ωmax/J)pmax becomes comparable with the lower order terms in the series. Based on this and

approximate values of the coefficients αh for the fermionic SYK4 model we keep only 2 or 3 leading

terms written in (7.6).

We also notice that the coefficient αA
0 can be found by fitting the numerical curve by the linear

correction

glin
± (ω) = g±(0)

(
1− 2αA

0

(
1∓ 3

2
sin 2θa

)
ω

J

)
. (7.7)

We present the solutions of the equations (E7) - (E13) and the corresponding fitting of the

analytical formula (7.6) in the Fig.5 for the fermionic spinon model and in the Fig.6 for the

bosonic spinon model.

For the bosonic case the leading two operators are hA
0 = 2 and hA

1 therefore we have

gb±(ω) =
sin(π

4
± θb)

J(−π3 cos 2θb)
1
4

(
1− 2αA

0 v
A
0±
ω

J
−
√
παA

1 v
A
1±

Γ(hA
1 − 1

2
)

(ω
J

)hA
1 −1

− 4

3
(αA

0 )2aA
00±

(ω
J

)2

−
2
√
παA

0 α
A
1 a

A
01±

Γ(hA
1 + 1

2
)

(ω
J

)hA
1 −
√
π(αA

1 )2aA
11±

Γ(2hA
1 − 3

2
)

(ω
J

)2hA
1 −2

− . . .
)
. (7.8)
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(a)

(b)

FIG. 5: Spectral density plots at zero temperature for the fermionic spinon model. Main plots: the red solid lines

are the numerical solution of the equations (E7) - (E13) for fermionic case at the value of the asymmetry

parameter (a) θf = 0.05π and (b) θf = 0.15π. The dashed lines are the fitting given by theoretical formula (7.6).

The pink dashed lines are the linear fit given by (7.7) with (a) αA
0 ' 0.29 and (b) α0 ' 0.68. The black dashed

lines are the fitting with the first four terms (nonlinear fitting is included) g±(ω) = g±(0)(1 + aω + bωhS
1−1 + cω2)

where (a) hS1 ' 2.63, αS
1 ' 0.05, and (b) hS1 ' 2.53, αS

1 ' 0.06; and c is a coefficient that depends on αS
0 . Insets:

zoomed in views of g±f at small frequencies. The legend shows the powers of frequencies at which the series is

terminated.
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For θb > 0.284π anomalous dimension hA
1 becomes less than hA

0 = 2 and thus start dominating the

expansion in (7.8).

(a)

(b)

FIG. 6: Spectral density plots at zero temperature for the bosonic spinon model. Main plots: the red solid lines

are the numerical solution of the equations (E7) - (E13) for bosonic case at the value of the asymmetry parameter

(a) θb = 0.26π and (b) θb = 0.3π. The dashed lines are the fitting given by (7.6). The blue dashed line is the

linear fit given by (7.7) with (a) αA
0 ' 21.9 and (b) αA

0 ' 17.3. The black dashed lines are the fitting of the

function (7.6) with the first three terms g±(ω) = g±(0)(1 + aω + bωhA
1 −1) with (a) hA1 = 2.16, αA

1 ' −12.2 and (b)

hA1 = 1.87, αA
1 ' −8.5. Insets: zoomed in views of gb± at small frequencies.
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The numerical approach we use in this section allows us to compute the coefficients αh in the

formula (7.6) with a very good precision. We use the function (7.6) as a fitting polynomial and

find the dimensionless coefficients of each term. The results for the fermionic case are presented

in the Fig.7 and for the bosonic case in the Fig.8. For the bosonic model, we see that the values

of αh becomes very large at some value of θb. This value is close to θb = 0.284π where hA
0 = hA

1

and k′A(h) = 0. We do not include the region where hA
1 ≤ hS

0 = 1 since the numerical solution is

not described by the conformal theory and is probably non-physical.

(a)
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FIG. 7: Numerically computed coefficients αh (7.6) and theoretical values of the anomalous dimension of OhS
1

operator in fermionic SYK. (a) The red circles are the numerical values of αS
1 – the coefficient die to the new

operator with the anomalous dimension hS1 , computed at different θf parameters; blue triangles are the numerical

values of the coefficient αA
0 representing the linear correction, computed at different θf parameters. The lines are

the linear interpolation between points. (b) Red dashed line is the plot of hS1 given by the theoretical prediction,

as a function of θf . The blue line is hA0 = 2.
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FIG. 8: Numerically computed coefficients (absolute values) αh and analytical values of the anomalous dimension

of OhA
1

operator in Bosonic SYK. Same as in the Fig.7 except: the left plot if in logarithmic scale. In the bosonic

SYK case we notice that hA1 = hA0 at θb ' 0.284π. Near this value, the peak on the upper plot becomes prominent.

Even though the coefficients αh cannot be computed analytically as discussed in the section

IV, and therefore, the fitting functions cannot be exactly determined and has to include numerical

results, there are ways to understand how well numerical solutions work by comparing them with

pure theoretical predictions. One way to do this is to compute the ratio of coefficients in front of

each term in (7.6). The general formula of the ratio of each term reads

rh(θa) =
sin(π∆− θa)
sin(π∆ + θa)

vh−
vh+

. (7.9)

where vh are the eigenvectors found in section IV, therefore, vh± are the components of the eigen-

vector that correspond to the positive and negative frequencies. We can compute this ratio both

analytically and numerically (using the analytically found resonance values of h). The results of
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the first two terms are presented in the Fig.9 for the fermionic and bosonic models. We again note

that for the bosonic model we do not include the region where hA
1 becomes less than one, since we

cannot trust the solution in this region.
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FIG. 9: Plot of the function rh(θ) defined in (7.9) for the bosonic and fermionic models. The blue and red solid

lines are analytical relations of the coefficients of the positive and negative frequencies due to the hA0 = 2 and hA1

terms respectively, and are given by the relation (7.9). (a) The red circles and blue triangles are numerical

relations rhA
0

(θb) and rhA
1

(θb). (b) The blue circles are the numerical relation rhA
0

at different θb. Both: for the

numerical fitting, we use ωmax = 7× 10−3 to obtain the closest to the theory result.

Another way to compare the numerical and theoretical results is to compute the Luttinger

relations (4.27) for both models. Numerically we find Q(θf ) and S(θb) from the spectral density at

zero temperature as S = −
∫ 0

−∞ dωρb(ω) and Q =
∫∞

0
dωρf (ω)− 1/2 and compare them with the

theory. The results for both models are presented in the Fig.10. We note that both solutions are
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close to the theoretical curves within ∆S, ∆Q ∼ 10−6 for each numerical point. As it was discussed

in the section IV A, at the asymmetry angle θb ' 0.36π where the anomalous dimension hA
1 ≤ 1

for the bosonic model, the Luttinger relation stops working. As we can see in the Fig.10(a),

this indeed happens around θb ' 0.36π as predicted from the theory. It is unclear if solutions

for angles θb > 0.36π are physical. Also one can provide a general argument why there is no

conformal solution of the bosonic SYK at θb = π/2. For the conformal solution at this angle we

have S = −
∫ 0

−∞ dωρb(ω) = 0 and thus from unitarity ρb(ω) ≤ 0 for ω < 0 we should conclude that

ρb(ω) = 0 for ω < 0, but the conformal solution implies that g−(0) = −1/((4π3)1/4J) at θb = π/2.

It is also instructive to find values of the charge Q and spin S as a function of the chemical

potential µf and µb respectively rather than the asymmetry angle θf and θb. Numerically we

compute µ using that µ = ReΣR(ω = 0) and the Kramers-Kronig relation

µ = −
∫ +∞

−∞

dν

π

Im(ΣR(ν)− ΣR(0))

ν
. (7.10)

Plot of the charge Q as the function of µf for the fermionic SYK is shown in the Fig.11(a) and we

see that there is a maximum absolute value of the chemical potential |µf max| ' 0.245J . At this

value |Qmax| ' 0.358. A similar dependence of Q as a function of µf was found in [48–50][51]. In

[48, 49] a general phase diagram in (T, µf ) space was investigated. It was showed that at T = 0 the

SYK solution becomes unstable already when Q & 0.26 and there is a first order phase transition

to a low entropy phase. In the Fig.11(b) we plotted compressibility K = dQ/dµf as a function of

Q. We see that it diverges at Qmax. For the bosonic SYK case we plotted θb as a function of µb in

Fig. 12.

Finally for the random quantum rotor model discussed in the Section VI we use expansion

g±(ω) = ± 1

(4π3)
1
4J

(
1− 2αA

0

ω

J
− 3(αA

0 )2
(ω
J

)2

+
26

3
(αA

0 )3
(ω
J

)3

− . . .
)
. (7.11)

We plot numerical result and analytical fit in Fig. 13. For the fit we used only two leading terms

ω and ω2. As we mentioned at the end of the Section VI in this case the value of αA
0 ' −0.556

is negative. We also found that Mcrit =
∫ +∞

0
dωρ(ω) ' 0.88 and we checked that

∫ +∞
−∞ dωωρ(ω) =

0.9988 which confirms validity of the numerical solution.

We conclude this section by finding numerically the spin spin spectral density ρQa(ω) using the

spectral density representation (7.2) in (5.7). Changing variables in order to eliminate divergences

of the integrand, we find a formula suitable for numerical evaluation

ρQ(ω) = 2sgn(ω)

∫ 1/
√

2

0

dx√
1− x2

(
g+(|ω|x2)g−(|ω|(1− x2)) + g−(|ω|x2)g+(|ω|(1− x2))

)
. (7.12)

For the fermionic SYK model at θf = 0 we plot both numerical solution and analytical formula for

the spin spin spectral density in Fig.14, where for the black dashed line we used analytical formula
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FIG. 10: S as a function of θb for the bosonic model and Q as a function of θf for the fermionic model. The

dashed lines are given by relations (4.27) and the red and blue points are obtained from numerical solution for the

spectral density at zero temperature. For bosonic case we see that numerics deviates from theory at θb ' 0.36π,

this is the angle after which the anomalous dimension hA1 is less than 1 and thus corresponds to relevant

perturbation.

(5.10) with αA
0 ' 0.2643 and αA

1 ' 0.31. We notice that the analytical fitting works very well at

some range of frequencies where ω < 1. Numerical solutions for the spin spin spectral densities

for both fermionic and bosonic spinon models for various asymmetry angles θf and θb without the

theoretical fitting are presented in the Fig.15.
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(a)

(b)

FIG. 11: (a) Charge as a function of the chemical potential for the fermionic SYK at zero temperature. The blue

line is the numerical solution of the Schwinger-Dyson equations (E7) - (E13) for the fermionic SYK at zero

termperature for different values of the asymmetry angle. There is a maximal value of the chemical potential at

which the value of the charge Qmax ' 0.358. (b) Compressibility K as a function of charge for the fermionic

spinon model at zero temperature (here we set J = 1). Compressibility diverges at Qmax ' 0.358 (θf ' 0.153π).

Inset: compressibility growth as small Q.
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FIG. 12: Asymmetry angle θb as a function of the chemical potential for the bosonic SYK at zero temperature.

FIG. 13: Plot of spectral density at zero temperature for the random quantum q = 4 rotor model. The red solid

line is the numerical result obtained by solving the Schwinger-Dyson equations using iterations. The black dashed

line is analytical curve (7.11) with only two leading terms ω and ω2 plotted for αA
0 = −0.556.
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FIG. 14: Plot of the fermionic spin spectral density for θf = 0. The red solid line is the numerical result. The

black dashed line is theoretical curve (5.10) ploted for αA
0 = 0.2643 and αA

1 = 0.31.
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(a)

(b)

FIG. 15: Plots of the numerically computed spin spectral densities (7.12) for (a) fermionic and (b) bosonic spinon

models at different values of asymmetry angles.
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VIII. CONCLUSIONS

The SYK equations in (2.13) describe the large N limit of the SYK models, and the large N

limit followed by the large M limit of the SU(M) spin models described in Section II. Despite

their apparent simplicity, these equations contain a great deal of subtle scaling structure which we

have reviewed and extended here. The predictions of the conformal perturbation theory agree very

well with the real-frequency numerical analyses, including the cases with particle-hole asymmetry.

Thus the low frequency behavior of the solutions of (2.13) can be declared to be well understood.

Specifically, we have confirmed the Luttinger relations between the spectral asymmetry and the

density; and we have shown that the low frequency corrections to the spectral density are controlled

by the leading irrelevant operators, the most important of which is the time reparameterization

operator.

All the analysis of the present paper is at N = ∞, and many other works [6, 7, 52–55] have

addressed the nature of the 1/N corrections to the SYK saddle point. These are dominated by

the fluctuations of a quantum ‘graviton’ associated with the time reparameterization mode, which

leads to a breakdown of the conformal invariance described here at energy scales lower than J/N .

We expect this breakdown to also apply to the SU(M) spin models.

From the condensed matter standpoint, it will be worthwhile to address the 1/M fluctuations

of the SU(M) magnets in the N = ∞ theory. Upon considering the SYK model as a dynamic

mean-field theory of correlated electrons, the 1/N corrections are finite size corrections which are

not of interest in the thermodynamic limit. On the other hand, physical systems usually have

only a SU(2) symmetry, and so the 1/M corrections are of greater interest. We expect that the

conformal structure is preserved in the 1/M expansion, and the ‘protected’ scaling dimensions of

the time-reparameterization mode (hA
0 = 2) and of the U(1) gauge symmetry mode (hS

0 = 1) hold

to all orders in 1/M . Renormalization group computations [21, 56, 57] have been used to argue

that the gauge-invariant spin operator also has a protected scaling dimension, and so none of the

exponents in (1.2) will be modified in the 1/M expansion. It would be of interest to examine these

conclusions directly in the 1/M expansion, and also determine the scaling dimensions of other

possible gauge-invariant operators.

Finally, we note that we have extended the analyses of the present paper to the doped magnet,

described by the SU(M) t-J model studied in Ref. [21]. These results will be described in paper

II.
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Appendix A: Free energy from conformal perturbations

We can also use the conformal perturbation methods of Section III to compute the low temper-

ature expansion for the free energy. We find [58–60]

βFSYK =βFCFT +
∑
h

gh

∫ β

0

dτ〈Oh〉β −
1

2

∑
h,h′

ghgh′

∫ β

0

dτ1dτ2〈Oh(τ1)Oh′(τ2)〉β

+
1

6

∑
h,h′,h′′

ghgh′gh′′

∫ β

0

dτ1dτ2dτ2〈Oh(τ1)Oh′(τ2)Oh′′(τ3)〉β + . . . . (A1)

The one-point functions in thermal CFT are not necessarily zero and from the scale symmetry we

have [61, 62]

〈Oh〉β = Nbh/(βJ)h . (A2)

To find constants bh we consider thermal conformal two point function

Gβ(τ) = − 1

N
〈χi(τ)χi(0)〉β = − b∆ sgn(τ)

|βJ
π

sin πτ
β
|2∆

. (A3)

Expanding it in series for τ → 0 we obtain

Gβ(τ) = −b
∆ sgn(τ)

|Jτ |2∆

(
1 +

π3

3
∆
∣∣∣ τ
β

∣∣∣2 +
π4

90
∆(1 + 5∆)

∣∣∣ τ
β

∣∣∣4 + . . .
)
. (A4)

On the other hand using OPE in (3.12) we find

Gβ(τ) = −b
∆ sgn(τ)

|Jτ |2∆

(
1 +

∑
h

ch|Jτ |h〈Oh〉β
)
, (A5)

where we assumed that the two-point functions of Oh are normalized as in (3.12). Comparing (A4)

and (A5) we find that only operators with h = 2k, where k = 1, 2, 3, . . . have non-zero one point

function, but all operators with h1, h2, h3, . . . should have zero one point function. As we already

stressed before conformal symmetry is broken in the SYK model and the analysis above should be

taken with caution. The role of higher expansion terms in (A4) with k > 1 is unclear. Moreover

in [28] it was conjectured that the free energy has a term T 3.77 in small T expansion and thus this
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would imply non-zero one point function 〈Oh1〉β. Whether this is correct or not remains an open

question. For h0 = 2 operator we find b0c0 = π2

3
∆. Thus the contribution of the one-point function

of h0 = 2 operator to the free energy is

βδFh0 = βg0〈Oh0〉β =
Nπ2∆

3(βJ)2

βg0

c0

= −2π2N

(βJ)
αS , (A6)

where αS = 1
6
(1 − ∆)b∆|k′A(2)|α0 is the Schwarzian action coupling and this result agrees with

[6, 7]. For the second order correction we find

βδ2Fh = −1

2

∑
h

g2
h

∫ β

0

dτ1dτ2〈Oh(τ1)Oh(τ2)〉 = −1

2

∑
h

Ng2
hβ

∫ β−ε

ε

dτ

(
π

βJ sin πτ
β

)2h

= −1

2

∑
h

(
N(g2

h/J
2)(βJ)

(h− 1/2)(εJ)2h−1
+
N(g2

h/J
2)

(βJ)2h−2

π2h− 1
2 Γ(1

2
− h)

Γ(1− h)

)
, (A7)

where we regulated the integral in UV by a cutoff ε ∼ 1/J . The first term is proportional to

N(βJ) and represents correction to the ground energy, whereas the second term is finite and gives

contribution to the free energy of order 1/(βJ)2h−2, so we find

βδ2Fh = N(q − 1)b∆(−k′A(h))
(π/2)2h−1(cos(πh) + 1)Γ(h)2

(2h− 1) cos(πh)Γ
(
h− 1

2

)2

α2
h

(βJ)2h−2
. (A8)

For h0 = 2 this result gives βδ2Fh0 = N2π2qαSα0/(βJ)2, which exactly agrees with N/(βJ)2

correction computed in [7, 28] using careful analysis of h0 = 2 mode [63]. Moreover using the

result for the large q free energy from [64] we find for 1/(βJ )2 term

βF ⊃
(π2

q2
− π2(24 + 5π2)

9q3
+ . . .

) N

(βJ )2
. (A9)

On the other hand taking large q limit of (A8) for h0 operator and using that α̃0 = 2
q
− 12+7π2

9q2 + . . .

(see Appendix B) we obtain

βδ2Fh0 =
(π2

q2
− π2 (24 + 5π2)

9q3
+ . . .

) N

(βJ )2
. (A10)

We see that βδ2Fh0 exactly coincides with 1/q2 and 1/q3 orders in the large q expansion. This

implies that if the one point function 〈Oh1〉β is not zero it should start contributing only at the

1/q4 order, which seems unlikely. The third order correction is given by

βδ3Fhh′h′′ =
1

6
ghgh′gh′′

∫ β

0

dτ1dτ2dτ3Nchh′h′′

(βJ
π

sin πτ12

β
)h+h′−h′′(βJ

π
sin πτ13

β
)h+h′′−h′(βJ

π
sin πτ23

β
)h′+h′′−h

=
Nchh′h′′ghgh′gh′′Γ(1−2(h+h′−h′′)

2
)Γ(1−2(h+h′′−h′)

2
)Γ(1−2(h′+h′′−h)

2
)Γ(1− h− h′ − h′′)

6π
3
2
−h−h′−h′′(βJ)h+h′+h′′Γ(1− 2h)Γ(1− 2h′)Γ(1− 2h′′)

. (A11)
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Using general expression for chh′h′′ [8] for the case when h = h′ = h′′ = h0 → 2 we find ch0h0h0 ∝
1/(h0 − 2)3/2 and therefore the full result (A11) is divergent in this case. This signals that the

conformal perturbation theory developed above should be taken very cautiously for h0 = 2 operator

and in general may produce incorrect results.

Appendix B: Large q two point function in the fermionic SYK model

We consider the fermionic SYKq model with zero chemical potential µf = 0. In this case there

is a Particle-Hole symmetry and the Schwinger-Dyson equations are G(iωn)−1 = iωn−Σ(iωn) and

Σ(τ) = J2G(τ)q−1. At the limit q → ∞ the two point function at finite temperature T = 1/β

admits 1/q decomposition [6]:

G(τ) = −1

2
sgn(τ)

(
1 +

1

q
g(τ) +

1

q2
h(τ) + . . .

)
, (B1)

where g(τ) = 2 log(
cos πv

2

cosx
) and we defined x ≡ πv

2
− πvτ

β
and v is found from transendental equation

βJ = πv
cos πv

2
with rescaled coupling J = (21−qq)1/2J . The next order h(τ) was found in [64] and

reads

h(τ) =
g2(x)

2
− 2`(x)− 4

(
tanx

∫ x

0

dy`(y) + 1
)

+
4(tan πv

2

∫ πv
2

0
dy`(y) + 1)(1 + x tanx)

1 + πv
2

tan πv
2

, (B2)

where `(x) = g(x) − e−g(x)Li2(1 − eg(x)). Also the expression for the large q free energy of the

Majorana SYK is

βF/N = −1

2
log 2− πv

(
tan

πv

2
− πv

4

) 1

q2
− πv

(
πv − 2 tan

πv

2

(
1− π2v2

12

)) 1

q3
+ . . . . (B3)

At large βJ limit one finds

v = 1− 2

βJ
+

4

(βJ )2
− 24 + π2

3(βJ )3
+

8 (6 + π2)

3(βJ )4
+ . . . . (B4)

Using this expansion and equations for g(τ) and h(τ) we can find at β =∞ that g(τ) = log u2 and

h(τ) =− 4

3
(1− u)− π2

9
u(3 + u−3)− 2

3
log(u2) +

1

6
(4u+ 3) log2(u2)

+
8

3
u log(u2) log(1 + u−1)− 16

3
uLi2(−u−1) +

2

3
u(2 + u−3)Li2(1− u2) , (B5)

where we denoted u ≡ 1/(1 +J τ). Conformal approximation to the two-point function at β =∞
has the form

Gc(τ) = −b1/q sgn(τ)

|Jτ |2/q
, b =

q − 2

2πq
tan

π

q
, (B6)
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therefore we can write the two point function (B1) as

G(τ) = Gc(τ)(J τ)
2
q

(q − 2

π
tan

π

q

)−1/q(
1 +

1

q
g(τ) +

1

q2
h(τ) + . . .

)
= Gc(τ)

(
1 +

2 logJ τ
q

+
2(1 + log2 J τ)

q2
+ . . .

)(
1− 2 log(1 + J τ)

q
+

1

q2
h(τ) + . . .

)
. (B7)

Finally using result (B5) and expanding everything in the limit J τ →∞ we find

G(τ) =Gc(τ)

(
1 +

(
− 2

J τ
+

1

(J τ)2
− 2

3(J τ)3
+ . . .

)1

q
+
(12 + 7π2

9

(
1

J τ
− 1

(J τ)2
+

1

(J τ)3

)
− 7

2(J τ)2
+

3

(J τ)3
− 6 log(J τ)

(J τ)2
+

12 log(J τ)

(J τ)3
+ . . .

) 1

q2
+ . . .

)
. (B8)

On the other hand from the resonance theory described in Section IV we expect to have

G(τ) = Gc(τ)

(
1−

∞∑
k=0

αk
|Jτ |hk−1

−
∞∑

k,m=0

akmαkαm
|Jτ |hk+hm−2

−
∞∑

k,m,l=0

akmlαkαmαl
|Jτ |hk+hm+hl−3

− . . .
)
, (B9)

where αk, akm, akml are all functions of q. In the large q limit solving kA(h) = 1, where

kA(h) =
Γ(2∆− h)Γ(2∆ + h− 1)

Γ(2∆− 2)Γ(2∆ + 1)

(
1− sin(πh)

sin(2π∆)

)
(B10)

we find that operators dimensions apart from h0 = 2 admit 1/q decomposition and read

h1 = 3 +
4

q
+ . . . , h2 = 5 +

22

9q
+ . . . , hk = 2k + 1 +

2(2k2 + k + 1)

(k + 1)(2k − 1)q
+ . . . . (B11)

Using these anomalous dimensions in (B9) we find

G(τ) =Gc(τ)

(
1− α̃0

(J τ)
− a00α̃

2
0

(J τ)2
− α̃1

(J τ)2+ 4
q

+...
− a000α̃

3
0

(J τ)3
− 2a01α̃0α̃1

(J τ)3+ 4
q

+...
− α̃2

(J τ)4+ 22
9q

+...
− . . .

)
=Gc(τ)

(
1− α̃h0

(J τ)
− a00α̃

2
0

(J τ)2
− α̃1

(J τ)2

(
1− 4

q
log(J τ) + . . .

)
− α̃2

(J τ)4

(
1− 22

9q
log(J τ) + . . .

)
− . . .

)
, (B12)

where we denoted α̃k(q) = (21−qq)
hk−1

2 αk(q). Comparing (B8) and (B12) we find relations

α̃0(q) =
2

q
− 12 + 7π2

9q2
+ . . . , α̃1(q) = − 3

2q
+

7π2 + 33− 24a
(2)
00

6q2
+ . . . , a00(q) =

q

8
+ a

(2)
00 + . . . ,

a01(q) = −q
2

+ a
(2)
01 + . . . , a000(q) = − 7

24
q2 +

1

8
(6a

(2)
01 − 8a

(2)
00 + 4)q + . . . (B13)

We notice that log(J τ)/(J τ)2 and log(J τ)/(J τ)3 terms in 1/q2 order arise due to h1 operator.

The large q results (B13) for a00, a01 and a000 match with an arbitrary q formulas (4.43) and (4.48)

derived in the Section IV. This comparison also fixes a
(2)
00 = 0 and a

(2)
01 = −3/2.
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Appendix C: Two point function for q = 2 in the fermionic SYK model

For q = 2 the exact result for the two point function for τ > 0 at zero temperature is [6]:

G(τ) = −
∫ π

0

dθ

π
cos2 θe−2Jτ sin θ =

LLL1(2Jτ)− I1(2Jτ)

2Jτ
= − 1

πJτ
+

1

4π(Jτ)3
+

3

16π(Jτ)5
+ . . . ,

(C1)

where I1(x) and LLL1(x) are modified Bessel and Struve functions. For q = 2 the conformal two

point function is

Gc(τ) = − 1

πJτ
, (C2)

where we used that b1/2 = 1/π. Thus we find

G(τ) = Gc(τ)

(
1− 1

4(Jτ)2
− 3

16(Jτ)4
− 45

64(Jτ)6
− . . .

)
. (C3)

On the other hand using formula (B9) and that for q = 2 operators dimensions are simply hk =

2(k + 1) we expect to have

G(τ) = Gc(τ)

(
1−

∞∑
k=0

αk
(Jτ)2k+1

−
∞∑

k,m=0

akmαkαm
(Jτ)2(k+m+1)

−
∞∑

k,m,l=0

akmlαkαmαl
(Jτ)2(k+m+l)+3

− . . .
)
. (C4)

Comparing (C3) and (C4) we obtain relations between αk(q) and akm(q), akml(q), etc for q = 2

α0(2) = 0 , α1(2) = −a000(2)α3
0(2) , a00(2)α2

0(2) =
1

4
, 2a01(2)α0(2)α1(2) =

3

16
. (C5)

Moreover using that α0(q) = π
8
(q − 2) + . . . for q → 2 [6] we obtain that a00(q) → 16

π2(q−2)2 + . . . ,

which agrees with the arbitrary q formula (4.43) for ahh′(q).

Appendix D: Finite Temperature Generalization for Spectral Densities

Consider retarded Green’s function in real time

GfR(t) = −iθ(t)〈{f(t), f †(0)}〉, GbR(t) = −iθ(t)〈[b(t), b†(0)]〉 , (D1)

where θ(t) is the Heaviside step function and should not be confused with the asymmetry angle.

Below we again suppress subscript a = f, b and only retain ζ factor, where ζf = −1 and ζb = 1.

We can obtain retarded Green’s function by analytically continuing imaginary time one:

GR(t) = iθ(t)
(
G(it+ 0)−G(it− 0)

)
. (D2)
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The full retarded Green’s function can be written as a conformal part plus corrections GR(t) =

Gc
R(t) + δGR(t) and for the conformal retarded Green’s function we find

Gc
R(t) = −iθ(t)(e−iπ(∆+iE) − ζeiπ(∆+iE))b∆e−

2πiE
β

t

(βJ
π

sinh πt
β

)2∆
. (D3)

We split correction δGR(t) on two terms δGR(t) = δGA
R(t) + δGS

R(t) where

δhG
A/S
R (t) = −1

2
(vh+ ± vh−)

αh
(βJ)h−1

f
A/S
Rh (t)Gc

R(t) , (D4)

and for f
A/S
Rh (t) we have

f
A/S
Rh (t) =

e−iπ(∆+iE)f
A/S
h (it+ 0)∓ ζeiπ(∆+iE)f

A/S
h (it− 0)

e−iπ(∆+iE) − ζeiπ(∆+iE)
, (D5)

where functions f
A/S
h (τ) are defined in (4.56) and (4.57). To find f

A/S
h (it ± 0) we notice that

function Ah(u) is analytic in C and has a branch cut [1,+∞). Inside the unit circle |u| ≤ 1 we

can compute Ah(u) using series expansion. Analytic continuation of f
A/S
h (τ) will produce two

terms Ah(e
− 2πt

β ) and Ah(e
2πt
β ± i0), where the last function is computed above or below the branch

cut. Using formulas for linear transformations of the hypergeometric function we can represent

fA
h (it± 0) in the convenient form

fA
h (it± 0) =

π(2π)h−1Γ(h)2

2 sin πh
2

sin(2πh)Γ(2h− 1)

(
(1 + e±iπh)Bh(e

− 2πt
β )

Γ(1− h)2
− (h→ 1− h)

)
,

fS
h (it± 0) = ± iπ(2π)h−1Γ(h)2

2 cos πh
2

sin(2πh)Γ(2h− 1)

(
(1− e±iπh)Bh(e

− 2πt
β )

Γ(1− h)2
− (h→ 1− h)

)
, (D6)

where Bh(u) = (1−u)hF(h, h, 2h, 1−u) is unambiguous for u = e−
2πt
β and can be computed using

series expansion. We notice that Bh coincides with the function B+
h,0 used in [7, 22, 37]. Using

(D5) we obtain for the fermions

fA
Rh(t) =

(2π)h−2 cos πh
2

Γ(h)2

cos(πh)Γ(2h− 1)

(
Γ(h)2

(
1 +

cos(π(∆− h+ iE))

cos(π(∆ + iE))

)
Bh(e

− 2πt
β )− (h→ 1− h)

)
,

fS
Rh(t) =

i(2π)h−2 sin πh
2

Γ(h)2

cos(πh)Γ(2h− 1)

(
Γ(h)2

(
1− cos(π(∆− h+ iE))

cos(π(∆ + iE))

)
Bh(e

− 2πt
β )− (h→ 1− h)

)
(D7)

and for bosons we need to change cos→ sin inside the brackets. For hA
0 = 2 mode we find

fA
R0(t) = 2−

π tan(π(∆ + iE)) + 2πt
β

tanh(πt
β

)
, fS

R0(t) = − iπ

tanh(πt
β

)
(D8)
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and for bosons we need to change tan → − cot. To compute expression for the spectral density

we need to find retarded Green’s function in frequency space GR(ω) = Gc
R(ω) + δGR(ω). For the

conformal part we take the Fourier transform of (D3) and find

Gc
R(ω) = −iC

J

(βJ
2π

)1−2∆

e−iθ
Γ(∆− iω′)

Γ(1−∆− iω′)
, (D9)

where ω′ ≡ βω
2π
− E and the constant C is defined after (4.16). Formulas written with the use of

asymmetry angle are the same for both fermions and bosons. Next for δGR(ω) = δGA
R(ω)+δGS

R(ω)

we introduce f
A/S
Rh (ω) as

δhG
A/S
R (ω) = −1

2
(vh+ ± vh−)

αh
(βJ)h−1

f
A/S
Rh (ω)Gc

R(ω) , (D10)

and we stress that f
A/S
Rh (ω) are not Fourier transforms just of f

A/S
Rh (t). After some computations

we obtain

fA
Rh(ω) =

(2π)h−2 cos πh
2

Γ(h)2

cos(πh)Γ(2h− 1)

(
Γ(h)

Γ(1− h)

(
e2iθ −

sin(πh
2
− 2π∆)

sin(πh
2

)

)
Jh(ω)− (h→ 1− h)

)
,

fS
Rh(ω) =

i(2π)h−2 sin πh
2

Γ(h)2

cos(πh)Γ(2h− 1)

(
Γ(h)

Γ(1− h)

(cos(πh
2
− 2π∆)

cos(πh
2

)
− e2iθ

)
Jh(ω)− (h→ 1− h)

)
, (D11)

where the function Jh(ω) is

Jh(ω) = Γ(1−∆− iω′)Γ(1 + h− 2∆)Γ(2∆)3F2

(
h, h, 1 + h− 2∆

2h, 1 + h−∆− iω′
; 1

)
(D12)

and 3F2 is the regularized hypergeometric function. For hA
0 = 2 we find fS

R0(ω) = πω′/∆ and

fA
R0(ω) =

1

∆

(
2∆− 1− iω′

(
π tan(π(∆ + iE)) + ψ(1−∆− iω′)− ψ(∆− iω′)

))
, (D13)

where ψ(z) ≡ Γ′(z)/Γ(z) is the digamma function and we used that tan(π(∆ + iE)) = tanπ∆ +

(e2iθ − 1)/ sin(2π∆) for fermions. For bosons we need to change tan→ − cot.

For the spectral density we find ρ(ω) = ρc(ω) + δρ(ω), where

ρc(ω) = − 1

π
ImGc

R(ω) =
C

πJ

(βJ
2π

)1−2∆

Re
(
e−iθ

Γ(∆− iω′)
Γ(1−∆− iω′)

)
(D14)

and the correction is

δρ(ω) =
∑
h

αh
2π(βJ)h−1

(
(vh+ + vh−)Im(Gc

R(ω)fA
Rh(ω)) + (vh+ − vh−)Im(Gc

R(ω)fS
Rh(ω))

)
. (D15)
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Finally we find formulas for the spin-spin correlator and spin-spin spectral density at non-zero

temperature. The spin-spin correlator in imaginary time is Q(τ) = −ζG(τ)G(−τ) (note, Q(τ) is

denoted χL(τ) in Section I). Retaining only leading linear corrections we obtain

Q(τ) = Qc(τ)

(
1−

∑
h

(vh+ + vh−)
αh

(βJ)h−1
fA
h (τ)− . . .

)
, (D16)

where we notice that functions fS
h (τ) don’t contribute at the leading order and the conformal part

of the spin-spin correlator is

Qc(τ) = −ζGc(τ)Gc(−τ) = − b2∆

|βJ
π

sin πτ
β
|4∆

. (D17)

We can find retarded spin-spin correlator in real time QR(t) = −iθ(t)〈[S(t), S(0)]〉 by analytic

continuation of the imaginary time one:

QR(t) = iθ(t)(Q(it+ 0)−Q(it− 0)) . (D18)

We notice that all formulas for QR(t) are essentially the same as for bosonic GR(t) with replacement

∆→ 2∆ and E = 0 (or θ = π/2). Below we still repeat some main steps.

As usual QR(t) is split on two terms QR(t) = Qc
R(t) + δQR(t) where the conformal part and

correction have the form

Qc
R(t) = −θ(t)2 sin(2π∆)b2∆

(βJ
π

sinh πt
β

)4∆
, δhQR(t) = −(vh+ + vh−)

αh
(βJ)h−1

fA
Rh(t)Q

c
R(t) (D19)

and here the bosonic function fA
Rh(t) in (D7) is for E = 0 and ∆ → 2∆. Now taking the Fourier

transform of QR(t) we get QR(ω) = Qc
R(ω) + δQR(ω), where the conformal part is

Qc
R(ω) = − πb2∆

JΓ(4∆) cos(2π∆)

(βJ
2π

)1−4∆ Γ(2∆− iβω
2π

)

Γ(1− 2∆− iβω
2π

)
. (D20)

The correction has the form

δQR(ω) = −
∑
h

(vh+ + vh−)
αh

(βJ)h−1
fA
Rh(ω)Qc

R(ω) , (D21)

where the function fA
Rh(ω) in (D11) is computed here for ∆→ 2∆, θ = π/2 and ω′ = βω

2π
. Therefore

for hA
0 = 2 mode we find

fA
R0(ω) =

1

2∆

(
4∆− 1− iβω

2π

(
ψ(1− 2∆− iβω

2π
)− ψ(2∆− iβω

2π
)− π cot(2π∆)

))
. (D22)

We are mainly interested in ∆ = 1/4 case. At ∆→ 1/4 limit the conformal part Qc
R(ω) is diverging

and we get

Qc
R(ω) =

2b1/2

J

(
1

4(∆− 1
4
)

+ ψ
(1

2
− iβω

2π

)
+ γ − log

(βJ
2π

)
+ . . .

)
. (D23)
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The diverging part is real and doesn’t not contribute to the spectral density. On the other hand

the function fA
Rh(ω) goes to zero as (∆− 1/4) and we obtain

fA
Rh(ω)Qc

R(ω) = −
b1/2(2π)h−1 cos πh

2
Γ(h)2

J cos(πh)Γ(2h− 1)

[
Γ(h)2Γ(π−iβω

2π
)

tan πh
2

Γ(1− h)
3F2

(
h, h, h

2h, π(2h+1)−iβω
2π

; 1

)
− (h→ 1− h)

]
,

(D24)

where 3F2 is the regularized hypergeometric function. The spin-spin spectral density ρQ(ω) can

be found as

ρQ(ω) = − 1

π
ImQR(ω) (D25)

We write ρQ(ω) = ρcQ(ω) + δρQ(ω) and using (D24) we obtain

ρQ(ω) =
b1/2

J
tanh

(βω
2

)(
1−

∑
h

(vh+ + vh−)
αh

(βJ)h−1
RA
h

(βω
2π

)
− . . .

)
, (D26)

where the function RA
h (ω) is

RA
h (ω) =

2
(
π
2

)h
Γ(h)

√
π sin

(
πh
2

)
Γ
(
h− 1

2

)Re 3F2

(
h 1− h 1

2
+ iω

1 1
; 1

)
. (D27)

To get this expression we used two identities for the regularized hypergeometric function

3F2

(
1− h, 1− h, 1− h
2− 2h, 1− h+ a

; 1

)
=

Γ(h)3

Γ(1− h)3 3F2

(
h, h, h

2h, h+ a
; 1

)
+

Γ(h)3

Γ(a)Γ(2− 2h)Γ(2h− 1)
3F2

(
1− h, h, 1− a

1, 1
; 1

)
, (D28)

3F2

(
h, h, h

2h, h+ a
; 1

)
=

Γ(1− a)Γ(1− h)2

Γ(h)Γ(h+ a)Γ(1− h− a)
3F2

(
h, 1− h, 1− a

1, 1
; 1

)
+

Γ(1− h)2

Γ(h)Γ(a)
3F2

(
h, 1− h, a

1, 1
; 1

)
. (D29)

Retaining only hA
0 = 2 mode we obtain

ρQ(ω) =
b1/2

J
tanh

(βω
2

)(
1− 2αA

0 ω

J
tanh

(βω
2

)
− . . .

)
, (D30)

where we used that v0+ + v0− = 2 and

3F2

(
1− h, h, 1

2
+ iω

1, 1
; 1

)
= −2iω − 2iω(ψ(1/2− iω) + γE)(h− 2) +O((h− 2)2) . (D31)
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Appendix E: Zero temperature numerics for the Bosonic/Fermionic SYK and the Random

Rotor models

We consider Dyson-Schwinger equations for the retarded Green’s function for bosonic and

fermionic SYK for q = 4 case, which is obtained by analytic continuation from the Matsubara

frequency iωn → ω + i0. The first Dyson-Schwinger equation reads

GR(ω)−1 = ω + i0 + µ− ΣR(ω) . (E1)

Here for brevity we don’t explicitly label Green’s functions by index a = f, b but we will use

symbol ζa, which is ζf = −1 and ζb = 1. In general for the Green’s function and self-energy we

define analytic in the upper half plane functions G(z) and Σ(z), which are expressed through the

spectral densities ρ(ω) and σ(ω) as

G(z) =

∫ +∞

−∞
dω

ρ(ω)

z − ω
, Σ(z) =

∫ +∞

−∞
dω

σ(ω)

z − ω
. (E2)

The Matsubara and retarded Green’s functions can be obtained from these functions by taking

z = iωn and z = ω + i0. We can find the spectral density as ρ(ω) = − 1
π
ImGR(ω). Also using the

representation (E2) we can obtain Green’s function in imaginary time expressed through integral

over the spectral density

G(τ) =
1

β

∑
n

G(iωn)e−iωnτ = −
∫ +∞

−∞
dω

ρ(ω)e−ωτ

1− ζe−βω
, τ ∈ (0, β) . (E3)

We notice that ζG(β−) − G(0+) =
∫ +∞
−∞ dωρ(ω) = 1 for arbitrary temperature. To obtain the

second Dyson-Schwinger equation for the retarded self-energy ΣR(ω) we consider this equation

in the Matsubara space Σ(τ) = J2G2(τ)G(β − τ) and use (E3) to write it through the spectral

density

Σ(iωn) = −J2

∫ +∞

−∞

3∏
i=1

(dωiρ(ωi))
n(ω1)n(ω2)n(−ω3) + n(−ω1)n(−ω2)n(ω3)

ω1 + ω2 − ω3 − iωn
, (E4)

where n(ω) = 1/(eβω−ζ) is the Bose or Fermi distribution and we can get ΣR(ω) = Σ(iωn = ω+i0).

At zero temperature β =∞ we can replace nb(ω) by −θ(−ω) and nf (ω) by θ(−ω). Though nb(ω)

is divergent for ω → 0, we assume that this divergence does not play any role. Functions GR(ω)

and ΣR(ω) are complex valued and further we will adopt notations for their real and imaginary

parts GR(ω) = G′(ω) + iG′′(ω) and ΣR(ω) = Σ′(ω) + iΣ′′(ω). So for β =∞ using (E4) we find

Σ′′(ω) =

ζπJ2
∫ ω1+ω2≤ω

0
dω1dω2ρ(ω1)ρ(ω2)ρ(ω1 + ω2 − ω), ω > 0

ζπJ2
∫ 0

ω1+ω2≥ω dω1dω2ρ(ω1)ρ(ω2)ρ(ω1 + ω2 − ω), ω < 0 .
(E5)
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Below in all formulas we set J = 1 for brevity. We anticipate that at zero temperature the

functions ρ(ω) and Σ′′(ω) will have discontinuity. So it will be convenient to use a new set of

functions defined separetely for ω > 0 and ω < 0

ρ(ω) =


g+(ω)√

ω
, ω > 0

g−(−ω)√
−ω , ω < 0

, Σ′′(ω) =

4π
√
ωs+(ω), ω > 0

4π
√
−ωs−(−ω), ω < 0

. (E6)

We make change of variables ω1 = ω sin2 u cos2 φ and ω2 = ω sin2 u sin2 φ in (E5) and obtain

s±(ω) = ζ

∫ π
2

0

du sinu

∫ π
2

0

dφ g±(ω sin2 u cos2 φ)g±(ω sin2 u sin2 φ)g∓(ω cos2 u) , (E7)

and we notice that s±(x) and g±(x) are defined only for a positive argument. Now it is left to find

a real part Σ′(ω) of the self-energy. For this we use the Kramers-Kronig relation

Σ′(ω) = −
∫ +∞

−∞

dν

π

Σ′′(ν)− Σ′′(ω)

ν − ω
. (E8)

Defining Σ′±(ω) as Σ′(ω) = Σ′+(ω)θ(ω) + Σ′−(−ω)θ(−ω) we find

Σ′±(ω) = ±−
∫ +∞

0

dν

π

(
Σ′′±(ν)− Σ′′±(ω)

ν − ω
−

Σ′′∓(ν)− Σ′′±(ω)

ν + ω

)
. (E9)

At zero temperature we set chemical potential µ = Σ′(ω = 0), so introducing h±(ω) as

Σ′(ω)− Σ′(0) =

4
√
ωh+(ω), ω > 0

4
√
−ωh−(−ω), ω < 0

(E10)

and simplifying expressions we finally obtain

h±(ω) = ±−
∫ +∞

0

dν

(√
ωs±(ν)−

√
νs±(ω)√

ν(ν − ω)
+

√
ωs∓(ν) +

√
νs±(ω)√

ν(ν + ω)

)
. (E11)

Now using the first Dyson-Schwinger equation we can get g± from s± and h±

g±(ω) = − 4s±(ω)

(4h±(ω)∓
√
ω)2 + 16π2(s±(ω))2

. (E12)

We solve Dyson-Schwinger equations iteratively using (E7), (E11) and (E12) and also imposing

the initial conditions coming from the conformal solution (4.16)

g±(0) =
C sin(π

4
± θ)

π
, s±(0) = −

sin
(
π
4
± θ
)

4πC
, h±(0) = ∓

cos
(
π
4
± θ
)

4C
, C =

( −ζπ
cos 2θ

)1/4

. (E13)

We can compute the chemical potential numerically using that µ = Σ′(ω = 0) and eq. (E9):

µ = 4

∫ +∞

0

dω
s+(ω)− s−(ω)√

ω
. (E14)
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In the random rotor model defined in the Section VI the spectral density ρ(ω) is an odd function

due to the particle-hole symmetry. Thus we have g−(ω) = −g+(ω) and s−(ω) = −s+(ω), where

equation for s+(ω) is written in (E7) (ζ = 1 in this case). Also h−(ω) = h+(ω) and from (E11) we

find

h+(ω) =

∫ +∞

0

dν
2ω(
√
ωs+(ν)−

√
νs+(ω))√

ν(ν2 − ω2)
. (E15)

The first Schwinger-Dyson equation in the random rotor model reads

g+(ω) = − 4s+(ω)

(ω3/2 − 4h+(ω))2 + 16π2s+(ω)2
(E16)

and the boundary conditions are obtained from (E13) for θ = π/2.
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