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The quantum anomalous Hall (QAH) effect is sometimes observed in twisted bilayer graphene
(tBG) when it is nearly aligned with an encapsulating hexagonal boron nitride (hBN) layer. We
propose that the appearance or absence of the QAH effect in individual devices could be related to
commensurability between the graphene/graphene and graphene/hBN moiré patterns. We identify
a series of points in the (θGG, θGBN) twist-angle space at which the two moiré patterns are commen-
surate, allowing moiré band theory to be applied, and show that the band Chern numbers are in this
case sensitive to a rigid in-plane hBN displacement. Given this property, we argue that the QAH
effect is likely only when i) the (θGG, θGBN) twist-angle-pair is close enough to a commensurate point
that the two moiré patterns yield a supermoiré pattern with a sufficiently long length scale, and ii)
the supermoiré has a percolating topologically non-trivial QAH phase. For twist angles far from
commensurability, the hBN layer acts as a source of disorder that can destroy the QAH effect. Our
proposal can explain a number of current experimental observations. Further experimental studies
that can test this proposal more directly are suggested.

I. INTRODUCTION

Two graphene sheets that have a small orienta-
tional misalignment (twisted bilayer graphene - tBG)
form a quasiperiodic moiré superlattice, whose elec-
tronic structure is well-described by moiré band theory.1
Correlated insulating states,2 Chern insulators,3–6 and
superconductivity7–10 have been observed in tBG when
the twist angle is close to a magic angle that enables
strong correlation physics associated with exceptionally
flat moiré bands. The introduction of twist angle as a new
tunable degree of freedom has now been exploited to cre-
ate strong correlations in a variety of different multi-layer
van der Waals systems.11–17

Recent experiments have shown both non-quantized3
and quantized4,18 anomalous Hall effects can occur in
magic angle twisted bilayer graphene when at least one
graphene layer is nearly aligned with an encapsulating
hexagonal boron nitride (hBN) layer, and the number of
carriers per moiré period is close to an odd integer. The
anomalous Hall effect is normally understood in terms
of a mean-field picture, in which it arises from a com-
bination of spontaneous valley polarization and non-zero
Chern numbers of the valley-projected flat moiré bands
induced by violation of inversion symmetry (C2).19–23
Somewhat mysteriously, the anomalous Hall effect is not
always present even with hBN alignment.

The theoretical description of hBN encapsulated tBG
runs into a fundamental difficulty when one or both hBN
layers are nearly aligned with the tBG layers. Because
of the small lattice constant mismatch between graphene
and hBN, the nearly-aligned hBN layers produce addi-
tional moiré patterns24–29 which are not in general com-
mensurate with the moiré pattern of tBG. Therefore, the
low-energy Hamiltonian is only quasi-periodic, disallow-
ing all the simplifications that come from Bloch’s theo-
rem. Similar moiré pattern interplays can also arise in
twisted trilayer graphene.30 Most of the existing theo-

retical work on the anomalous Hall effect22,23 and re-
lated properties31–36 of tBG/hBN and hBN/tBG/hBN
systems employs a highly simplified model in which only
the spatially average sublattice energy difference is re-
tained in the graphene/hBN moiré potentials. The justi-
fication for this expediency is not obvious, since the spa-
tially averaged and position-dependent tBG/hBN inter-
action terms have similar energy scales28 and are there-
fore at first sight equally important.

The aim of this paper is to study the effect of the
interplay between the moiré patterns on the anomalous
Hall effect of encapsulated tBG. For definiteness we will
assume that only one of the encapsulating hBN layers
is aligned, which allows us to restrict our attention to
tBG/hBN trilayers. In mean-field theory spontaneous
valley polarization occurs when the moiré bands are suffi-
ciently narrow to satisfy a Stoner criterion. It follows that
both criteria for a quantized anomalous Hall effect, topo-
logically non-trivial valley-projected bands and valley po-
larization, are simply related to the electronic structure
issues on which we focus.

We notice that at particular combinations of the two
twist angles, θGG between the two graphene layers and
θGBN between the hBN and its adjacent graphene layer,
the two moiré patterns are commensurate. The system
is then periodic in a larger unit cell, allowing the use of
Bloch’s theorem with both moiré patterns present. Re-
cent papers37,38 have noticed several such commensurate
points in the twist angle space and we provide a general
description of all commensurate geometries. For a com-
mensurate system, rigid translation of the hBN layer by
ddd at fixed twist angle changes the moiré band structures,
and even moiré band Chern numbers.37 We characterize
this dependence in terms of maps of Chern numbers and
bandwidths vs. ddd, from which electronic properties can
be estimated.

A supermoiré pattern, also known as a moiré of moiré,
is formed when the two moiré patterns are nearly, but not



2

exactly commensurate. Supermoiré electronic structure
has been studied in hBN/graphene/hBN trilayers39–41
and in twisted trilayer graphene,30,42,43 but not yet in
tBG/hBN. We point out here that the supermoiré can be
viewed as a commensurate structure with spatially vary-
ing ddd. Thus its electronic properties can be well described
by a local moiré band picture, where local properties are
defined by the local Hamiltonian H(rrr) = H(ddd(rrr)), with
H(ddd) the Hamiltonian of the commensurate structure.
In this picture, the Chern number vs. ddd map expands
to a spatial Chern number phase pattern, which is rem-
iniscent of the percolation44 picture and of the Chalker-
Coddington model45,46 of the quantum Hall effect. In the
present case, however, there are also semimetal phases
due to overlaps between the valence and conduction
bands that are indirect in momentum space. For the
quantum anomalous Hall (QAH) effect the possible pres-
ence of regions in which the Stoner criterion for sponta-
neous valley polarization is not satisfied because of locally
larger bandwidths is also relevant.

In this local picture a global QAH effect can appear
only if the following two conditions are satisfied: i) the
supermoiré period must be long enough that edge states
between topologically distinct phases do not couple to
each other and ii) a topologically nontrivial insulating
phase must percolate across the device. The first condi-
tion is always satisfied over a finite range of twist angles
close to a commensurate point and the second condition
can usually be satisfied by varying the electrical potential
difference U between layers by applying a gate-controlled
out-of-plane electric field.

In the opposite limit in which the two moiré patterns
are far from being commensurate and the local moiré
band picture fails, we assume that the moiré periodic
part of the hBN potential acts like a disorder potential.
The moiré bands of tBG are then widened by scattering
from the hBN potential. In some cases this broadening
effect may also make the full bandwidth exceed the in-
teraction strength, standing in the way of spontaneous
valley polarization and therefore of the anomalous Hall
effect. Our proposals provide a possible explanation for
a number of experimental observations, but are not con-
clusively established by exisiting experiments.

This paper is organized as follows: In Sec. II we first
identify the commensurate twist angle pairs, and then
discuss the geometry of tBG/hBN supermoiré systems
in terms of proximity to these commensurate points. In
Sec. IIIA we describe the continuum model we use to
investigate the electronic structure. In Sec. III B we
present our results for the spatial pattern of tBG/hBN
supermoiré’s phases calculated from our model in a local-
band approximation. In Sec. III C we estimate the twist
angle windows within which QAH effects can occur in
tBG/hBN supermoiré. In Sec. IIID we analyze the limit
in which the two moiré patterns are far from being com-
mensurate. Then in Sec. IV, we use our results to provide
possible explanations of current experiments and suggest
further experimental approaches to test our proposals in

the future. Sec. V contains the summary and main con-
clusions of this paper.

II. GEOMETRY

A. Commensurate tBG/hBN

We consider a tBG/hBN trilayer system in which the
graphene layer adjacent to the nearly-aligned hBN layer
is labeled as layer 1 or G1, while the top graphene layer
is labeled as layer 2 or G2. We let G2 and the hBN
layer both be twisted relative to G1 by small angles, de-
noted respectively as θGG and θGBN. The lattice con-
stant of microscopic graphene honeycomb aG is taken to
be aG =

√
3 × 1.42Å,47 α = aBN/aG = 1.01748 is the

ratio between the hBN and graphene lattice constants,
and the A sublattice of hBN is taken to be occupied by
boron atoms.

The moiré patterns of the G1/G2 and G1/hBN het-
erojunctions are commensurate if and only if their moiré
reciprocal lattices are commensurate. We show in Ap-
pendix A that the commensurabilty condition is:

n(KKKBN −KKK1) = pqqq3 + qqqq′2, (1)

where (n, p, q) is a triplet of coprime integers that char-
acterizes distinct commensurate structures. Here KKK1 =
(4π/3aG, 0) and KKKBN = (4π/3aBN)(cos θGBN, sin θGBN)
are the Dirac points of graphene layer 1 and hBN respec-
tively, and qqq3 and qqq′2 are defined in Figs. 1 (a)-(b). For
given n, p and q, the twist angle pair (θGG, θGBN) is im-
plied by Eq. (1). In the small twist angle approximation
(cos θ, sin θ)→ (1, θ),

θGG ≈
n

p+ q
× 1.1◦, θGBN ≈

p− q
p+ q

× 0.55◦. (2)

Exact expressions for the commensurate twist-angle pairs
are discussed in Appendix A.

We focus our attention on integer triplets that satisfy
n = p+ q. Geometrically these triplets correspond to the
case in which KKKBN is on the line

←→
ab illustrated in Fig. 1

(a). We choose these commensurate structures because
they yield a tBG angle θGG ≈ 1.1◦ that is very close to
the magic angle ∼ 1.05◦.1 Only for these twist angles do
we expect the strong correlation physics7 that is respon-
sible for much of the interest in tBG/hBN systems to
appear. For this series of commensurate points, the area
of the supercell is N = n2 times larger than the corre-
sponding tBG system. It follows that each moiré band
of isolated tBG is split into n2 bands by coupling to the
adjacent hBN layer. We note that commensurate points
are dense in twist angle space, just as rational numbers
are dense on the real line. However, most commensu-
rate points have very large n, which means that the tBG
bands are split into a correspondingly large number of
subbands, and are therefore unlikely to lead to observable
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FIG. 1: Schematic reciprocal space geometry of a tBG/hBN system: (a)-(b) Generic twist angles: K1, K2 and KBN

are Brillouin-zone corner points of graphene layer 1, graphene layer 2, and hBN, respectively. The mBZs of the
G1/G2 and G1/hBN moiré patterns are illustrated by blue and red hexagons respectively; (c) 60◦ commensurate,
(d) 120◦ commensurate, and (e) 90◦ commensurate systems. In (e), the blue dashed, red dashed, and inner black
solid hexagons are respectively the mBZs of the G1/G2, G1/hBN heterojunctions and the entire trilayer. The
high-symmetry points of the mBZs of the commensurate systems are given their conventional labels.

consequences in finite-size systems with non-zero disor-
der. We therefore focus on the discrete set of low-order
commensurate points that we have identified. Two differ-
ent n = 1 systems have been identified in previous work:
(p, q) = (1, 0)37 and (p, q) = (2,−1).38 Figures 1 (c)-(e)
show schematics of several of the simplest structures in
this series, which we will refer to respectively as 60◦ com-
mensurate (Fig. 1 (c), (n, p, q) = (1, 1, 0), θGBN ≈ 0.55◦),
120◦ commensurate (Fig. 1 (d), (n, p, q) = (1, 0, 1),
θGBN ≈ −0.55◦), and 90◦ commensurate (Fig. 1 (e),
(n, p, q) = (2, 1, 1), θGBN ≈ 0◦).

In commensurate tBG/hBN trilayers, electronic prop-
erties change when one moiré pattern is laterally trans-
lated relative to the other by a rigid in-plane transla-
tion of any one of the three layers. This contrasts with
the bilayer moiré superlattice case in which the effect of
translating one of the two layers is simply to produce a
magnified global shift of the moiré pattern, which has no
consequence in the thermodynamic limit. In a trilayer,
shifting an outside layer only shifts one of the two moiré
patterns, and shifting the middle layer shifts both, but
not necessarily by the same amount. In this paper, we fix
a local AA stacking point of the G1/G2 moiré pattern at
the origin and examine how electronic structure changes
when the hBN layer is translated by ddd relative to a point
at which its A (boron) site is at the origin (see Fig. 2).
A shift in the hBN layer by ddd shifts the G1/hBN moiré
pattern by

dddM = (1− αRθGBN
)
−1
ddd. (3)

(Here Rθ is an operator that rotates a vector counter-
clockwise by θ.)

B. tBG/hBN supermoiré structures

A supermoiré structure is formed when the two twist
angles are displaced slightly away from a low-order com-
mensurate point, i.e. when

θGG = θnpqGG + δθGG, θGBN = θnpqGBN + δθGBN, (4)

where (θnpqGG , θ
npq
GBN) is the commensurate pair defined by

the integer triplet (n, p, q) defined in Eq. (1), and both
δθGG and δθGBN are ∼ 0.01◦. The period and orienta-
tion of the supermoiré pattern depend on both δθGG and
δθGBN.

For sufficiently large supermoiré periods, the super-
moiré structure can be characterized in terms of local
commensurate tBG/hBN systems with the shift parame-
ter ddd varying slowly in space. We let ddd = 0 correspond to
local AAA stacking at rrr = 0, since in the supermoiré case
a global shift of the hBN layer ddd(rrr)→ ddd(rrr) +ddd0 does not
affect the overall supermoiré pattern. This can be seen
by noting that a shift of hBN causes a magnified shift
of the G1/hBN moiré pattern, which in turn produces
a further magnified shift of the supermoiré pattern, and
this can be cancelled by a reselection of the origin.

The analysis in Appendix B shows that in the small
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d = 0

d

(a) (b)

G1/G2 G1/hBN G1/G2 G1/hBN

FIG. 2: Schematic illustration of two moiré patterns that differ by a rigid displacement ddd of the hBN layer of a
commensurate tBG/hBN system: (a) ddd = 0; (b) ddd 6= 0. As we see, the G1/hBN moiré pattern is shifted. The twist
angles and lattice constant mismatches are exaggerated in this schematic.

twist angle limit the magnification factor from ddd to rrr is

γ ≡ |r
rr|
|ddd|
≈ n∣∣nδθGBN −

(
peiπ/3 + qe2iπ/3

)
δθGG

∣∣ , (5)

and that when the supercell of the (n, p, q) commensurate
system contains N moiré cells of tBG, the ratio ra be-
tween the supermoiré lattice constant asm and the hBN
lattice constant aBN is

ra ≡
asm
aBN

=
γ√
N
. (6)

For supermoirés near 60◦, 120◦ and 90◦ commensurate
points,

r120
◦,60◦

a =
1√

δθ2GG + δθ2GBN ± δθGGδθGBN

(7)

with the + sign for 120◦, and

r90
◦

a =
1√

3δθ2GG + 4δθ2GBN

. (8)

III. ELECTRONIC PROPERTIES

A. Model Hamiltonian

In this section we describe how we model tBG/hBN
trilayers with arbitrary twist angles θGG and θGBN and
hBN layer translations ddd. We adopt the commonly em-
ployed non-interacting model Hamiltonian, focusing on

one valley since the other valley can be easily obtained
by time reversal. The low-energy degrees of freedom are
entirely in the graphene bilayer, but have a periodic con-
tribution due to the adjacent hBN layer that we separate
by writing

H(ddd) = HtBG + VBN(ddd). (9)

The bilayer has four π-electron sublattices counting the
two honeycomb layers. For HtBG we use the well-known
four-sublattice continuum model Hamiltonian of tBG,1
adding a gate-controlled interlayer potential difference U .
We adopt the ab initio estimates for the same and differ-
ent sublattice interlayer tunneling parameters in tBG by
setting wAB = 113meV26 and wAA/wAB = 0.8, a value
that accounts approximately for lattice relaxation.49

In Eq. (9) we assume that VBN(ddd) is non-zero only on
G1 layer and not on G2. VBN(ddd) can be separated26 into
a spatially averaged term that is independent of position,
and a periodic contribution:

VBN(ddd) =
∑
kkk

ψ†1kkk(m0σ
z)ψ1kkk +

6∑
j=1

ψ†1kkkVj(ddd)ψ1(kkk+gggj)

 .

(10)
The first term on the right hand side (RHS) of Eq. (10)
captures the critical broken inversion symmetry in the G1
layer, as discussed in previous work.22,23,31–36 Ab initio
calculations of monolayer graphene/hBN with full lattice
relaxation yield the estimate m0 = 3.62meV,28 but ex-
periments suggest that m0 is significantly larger,50 possi-
bly as large as ∼ 15meV51 and possibly reflecting many-
body physics that is absent in the DFT calculation.52
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Since it is unclear whether many-body enhancement
of m0 is also important in tBG/hBN, we take m0 =
3.62meV in most of our explicit calculations, using the
value m0 = 10meV in some calculations for comparison
purposes.

The second term on the RHS of Eq. (10) accounts for
the G1/hBN moiré pattern. The 6 transfer momenta gggj
are from the first shell of the moiré reciprocal lattices
and the Vj ’s are matrices that act on sublattice degrees
of freedom. Ab initio calculation28 estimate that all Vj ’s
are ∼ 10meV. These matrices are detailed in Appendix
C. We capture the ddd dependence of the hopping matrix
Vj by multiplying the Fourier expansion coefficients by
phase factors:

Vj(ddd) = Vj(0)eigggj ·dddM , (11)

where the shift dddM of the G1/hBN moiré pattern depends
on ddd via Eq. (3).

B. Anomalous Hall effect at commensurate
twist-angle pairs and supermoiré

Figure 3 (a) contains a map of the valence band Chern
number C vs. ddd for the 120◦ commensurate tBG/hBN tri-
layer implied by the model Hamiltonian described above
with U = 0. The Chern numbers were calculated us-
ing the highly efficient method described in Ref. 53.
The structure present in the Chern number map demon-
strates that band crossings occur as ddd is varied. In Figs.
3 (b)-(d) we plot the band structures at the ddd points
highlighted in Fig. 3 (a). The expected band inversion
at the Chern number boundary is apparent in these fig-
ures. We emphasize that if the gggj 6= 0 terms in Eq. (10)
were neglected, then the spectrum would be independent
of ddd, and the Chern number map would be monochro-
matic. The interesting structure is present only because
the G1/hBN moiré pattern has a qualitative influence on
electronic structures.

When the electronic structure of a supermoiré system
is described in a local band picture, the C(ddd) map in
Fig. 3 (a) expands to a spatial map C(rrr) = C(ddd(rrr))
with magnification factor γ defined in Eq. (5). When
narrow bands lead to spontaneous valley polarization at
odd moiré band fillings,6,19,33,54 spatial regions with dif-
ferent valley-dependent Chern numbers will have topo-
logically distinct QAH or trivial phases. We notice that
at some ddd’s the valence and conduction bands overlap,
giving rise to semimetal regions that cannot support a
quantized Hall conductance, but can in principle support
spontaneous valley polarization and therefore non-zero
Hall effects. The entire supermoiré structure is therefore
expected to support a complex spatially inhomogenous
state containing alternating Chern insulator, trivial in-
sulator, and semimetal phases. Several samples of such
patterns are plotted in Fig. 4 (a)-(f). We see that at cer-
tain interlayer potential differences U , the C = 1 phase
or the semimetal phase percolates, while at other U ’s no

phase percolates. The percolation properties of different
U ’s are summarized in Table I, where we see that per-
colation of the C = 1 phase is most common in nearly
120◦ commensurate systems. If many-body effects do en-
hance m0 or the single-particle sublattice splitting term
in the Hamiltonian is larger than the estimate employed
for these plots, more C = 1 percolation is expected be-
cause the original gap opened by the m0 term of the hBN
potential is then larger and less easily inverted by either
U or the ggg 6= 0 terms of the G1/hBN moiré potential.
This observation is quantified in Appendix D where the
corresponding results for m0 = 10meV are summarized.

So far we have assumed full valley polarization. In
practice valley polarization occurs only if the bands are
sufficiently narrow relative to interaction strength. In
Figs. 4 (g)-(i) we map the conduction band width W
vs. position rrr. It follows from the Stoner mean-field cri-
terion that spontaneous valley polarization is likely to
be absent when the bandwidth W exceeds the relevant
exchange energy X. Self-consistent Hartree-Fock calcu-
lations in previous work suggest that X ≈ 30meV in tBG
with twist angle θGG = 1.1◦ at moiré band filling factor
ν = 1.19 Since Hartree-Fock calculations tends to overes-
timate the exchange energy, our W (rrr) maps may imply
that some valley unpolarized regions, within which the
anomalous Hall conductivity vanishes, may occur in the
supermoiré pattern. (If the number N of tBG moiré cells
in a supercell of the commensurate system is a multiple
of 4, for example in the 90◦ commensurate case, it is not
impossible that the Fermi level could lie within one of
the subband gaps of the original moiré bands.) Accord-
ing to the results shown in Fig. 4 (d)-(i), unpolarized
states are more likely in semimetal phases of nearly 60◦

commensurate systems and in C = 1 regions in nearly
120◦ commensurate systems.

C. Supermoiré quantum anomalous Hall effect
twist angle windows

Our percolation-like44,45 picture of the supermoiré
anomalous Hall effect allows the spatial maps in Fig. 4
to be interpreted using a Landauer-büttiker transport
picture.55,56 In this picture an overall quantized anoma-
lous Hall conductance occurs only when (i) a topolog-
ically nontrivial QAH phase percolates; (ii) the edge
states between phase boundaries are sufficiently localized
that their coupling can be neglected. The latter condition
requires that the twist angle pair should be sufficiently
close to a commensurate point that the supermoiré pe-
riod is large compared to the lateral localization of the
edge states. These considerations lead to the conclusion
that there is a region of finite area in twist angle space
surrounding each commensurate point within which the
QAH effect can occur. Below we provide an estimate of
the sizes of these twist angle windows.

We estimate the lateral localization width λ of the
edge states localized along boundaries between topolog-
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FIG. 3: (a) Map of valence band Chern number C vs. hBN displacement ddd for a 120◦ commensurate tBG/hBN
moiré superlattice with zero interlayer potential difference U . Different colors specify different Chern numbers, as
ilustrated by the legend below. The lighter shades identify semimetal regions with a gap closing that is indirect in
momentum space. The black hexagon is the Wigner-Seitz cell of the hBN layer. (b)-(d) Band structures of the
system at the ddd values marked by cyan (b), yellow (c) and white (d) dots in map (a). The band structures are
plotted along the red path shown in (e), which includes the point t at which the band touching occurs in (c). Band
touching always occurs at some point in the mBZ along the map’s Chern number region boundaries.

TABLE I: Summary of percolating supermoiré phases of different commensurate structures under various interlayer
potential difference U . S labels percolating semimetal states; X labels states with no percolating phase.

U (meV) −100 −80 −60 −40 −20 0 20 40 60 80 100

60◦ commensurate S S C = 1 C = 1 C = 1 X X S S S S

90◦ commensurate S X X X C = 1 C = 1 C = 1 X X X S

120◦ commensurate C = 1 C = 1 C = 1 C = 1 C = 1 C = 1 C = 1 X X C = 1 C = 1

ically nontrivial and trivial phases by concentrating on
the two crossing levels and appealing to a Jackiw-Rebbi
picture57,58 of two-dimensional Dirac fermions with a
mass gap that varies smoothly with position. This map-
ping yields

λ = 2

√
vF
|∇rrr∆|

, (12)

where ∆ is the local gap. The typical Fermi veloc-
ity, ~vF ≈ 100meV · nm, was estimated from our model
calculations by examining band dispersion at touching
points like the one in Fig. 3 (c). Similarly the rate of vari-
ation of the gap with ddd is |∇ddd∆| ≈ 300meV ·nm−1. For a
supermoiré lattice with a magnification factor |rrr|/|ddd| = γ,
we have |∇rrr∆| = |∇ddd∆|/γ. Quantization is accurate
when the edge-isolation parameter ρ ≡ asm/λ, the ratio
of gapped state size to edge state localization length, is
large. From Eqs. (6) and (12) we find that when the twist
angle is tuned toward a commensurate point defined by

Eq. (1) with n = p+ q,

ρ =
asm
λ

=
aBN

2

√
γ|∇ddd∆|
NvF

, (13)

where N = n2. Since the magnification factor γ depends
smoothly on twist angle, Eq. (13) implies that edge iso-
lation will be achieved over smaller ranges of twist an-
gle near higher order (larger N) commensuration points.
Here we have assumed that both vF and |∇ddd∆| retain
their order of magnitude as n becomes large. The latter
assumption is justified by Eq. (11) since

|∇ddd∆| ∼ |∇dddVBN| ∼ |igggj · (∇ddddddM )Vj(ddd)| ∼ GBNVBN,

where GBN is the magnitude of primitive reciprocal lat-
tice vector of the hBN, which does not change with n.

We adopt the practical numerical criterion that the
Hall conductance is effectively quantized when the edge
isolation parameter ρ exceeds 5, which according to Eq.
(13) is equivalent to γ > 500n2 (ra > 500n). From Eq.
(5), the linear size of twist angle window that satisfies



7

(c)(a) (b)

C = −1 semimetalC = 0C = +1

(f)(d) (e)60o commensurate 90o commensurate 120o commensurate

(i)(g) (h)W (meV) W (meV) W (meV)

FIG. 4: (a)-(c) Phase maps of a supermoiré structure close to the 90◦ commensurate twist point with
δθGG = δθGBN = 0.01◦, under various interlayer potential differences U . Different colors specify different phases, as
illustrated by the legend on the bottom. C is the valence band Chern number. The black hexagon is the
Wigner-Seitz cell of the supermoiré pattern. At U = 20meV the C = +1 phase is globally connected, indicating an
overall measurable QAH effect. Otherwise the quantum Hall conductance is not quantized and the longitudinal
conductivity is non-zero. (d)-(f) Phase maps of a supermoiré structure with δθGG = δθGBN = 0.01◦ near (d) 60◦

commensurate; (e) 90◦ commensurate; (f) 120◦ commensurate structures, with U = −20meV. All three cases have
percolating C = 1 phases. (g)-(i) Maps of the local conduction band width W of the same systems as in (d)-(f). For
90◦ commensurate, W refers to the difference between the top of the highest miniband and the bottom of the lowest
miniband split from the conduction band of tBG. In a Stoner approximation spontaneous valley polarization occurs
when an exchange interaction parameter exceeds W .
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60o supermoiré120o supermoiré

(1,0,1) (120o commensurate) (1,1,0) (60o commensurate)

(2,1,1) (90o commensurate)
(4,3,1)

(3,2,1)(3,1,2)

(4,1,3) (4,5,−1)
(3,4,−1)

(4,−1,5)
(3,−1,4)

FIG. 5: Twist angle windows for QAH effects according
to criteria explained in the main text. Quantized
regions are shaded blue and labeled by their (n, p, q)
integer triplets. The windows are larger for low-order
commensurate twist angle pairs.

this criterion is δθ ≈ 1/γ ≈ 0.1◦/n2. The quantization
windows for the series of twist angle windows up to n = 4
are illustrated schematically in Fig. 5. Within the largest
two of these windows, the typical supermoiré period is

∼ 0.1 ∼ 1 µm, compared to typical tBG/hBN device sizes
that are up to tens of micrometers.3,4,18 These consider-
ations imply that devices can in principle be fabricated
with up to tens of supermoiré periods on a side.

D. Anomalous Hall effect of incommensurate
tBG/hBN

In principle all twist angle pairs are close to some com-
mensurate point, just as all real numbers are near some
rational number. However, most of these points have ex-
tremely large n and can be practically viewed as incom-
mensurate. In such a system, the moiré bands are broad-
ened by the G1/hBN moiré, or split into an extremely
large number of minibands. To roughly assess the in-
fluence of the G1/hBN moiré on electronic structures in
this limit we adopt a simplified picture by treating it as a
disorder potential with a scattering rate estimated using
a self-consistent Born approximation:

τ−1nkkk =
2ΣInkkk
~

=
2π

~
∑
m

6∑
j=1

|〈nkkk|VBN |m(kkk + gggj)〉|2
1

π

ΣIm(kkk+gggj)

(εm(kkk+gggj) − εnkkk)2 + (ΣIm(kkk+gggj)
)2
. (14)

Here ΣInkkk is the imaginary part of the self energy, |nkkk〉 is
the Bloch state of the nth band at wave vector kkk and εnkkk
is the corresponding band energy, and the gggj ’s are from
the first shell of G1/hBN moiré pattern. To simplify
this approximation, we include only the moiré flat bands
and assume that the scattering rate is approximately the
same for all states by letting ΣInkkk → ΣI in Eq. (14). This
yields∑
n,m=v,c

1

Nkkk

∑
kkk∈mBZ

6∑
j=1

|〈nkkk|VBN |m(kkk + gggj)〉|2

(εm(kkk+gggj) − εnkkk)2 + (ΣI)2
= 1,

(15)
where v and c stand respectively for valence and conduc-
tion bands. We solve Eq. (15) for the disorder energy
broadening ΣI using an Nkkk = 50 × 50 mesh to perform
the momentum space integral and a numerical bisection
method to fix ΣI .

Figure 6 (a) shows disorder self-energy ΣI of the tBG
bands calculated in this way and compares them with
the disorder-free band widths W and gaps shown in the
inset. The disorder broadening is largest when the moiré
bands are narrowest, as expected on the basis of density-
of-states considerations, and exceeds 10meV over a broad
range of twist angles. Within a Stoner mean-field picture,
spontaneous valley polarization is expected only when
the moiré band width is smaller than the exchange en-
ergy strength. Assuming that the disorder self-energy
ΣI effectively adds to the band width, the values re-
ported in Fig. 6 suggest that spontaneous valley polar-
ization is unlikely in incommensurate tBG/hBN. Since

the disorder broadening effect is in any case sufficient to
close the typically 2 ∼ 3meV band gap present when the
G1/hBN moiré pattern is ignored, even if present spon-
taneous valley polarization is unlikely to produce a quan-
tized anomalous Hall effect. The property that an incom-
mensurate tBG/hBN interaction can be strong enough
to close gaps is consistent with our findings for commen-
surate systems. As also in that case a larger value for
m0 = 10meV would imply more quantum anomalous
Hall effects that are more, but still imperfectly, persis-
tent. (see Appendix D)

IV. DISCUSSION

When tBG/hBN devices are fabricated, θGG can be
accurately controlled to a precision of order of ∼ 0.1◦

because the two graphene sheets are extracted from a
common exfoliated single-layer crystal.59 This advantage
is not present when aligning the graphene and hBN lay-
ers and θGBN is therefore far less precisely controlled.
Nominally aligned samples may have differences in ori-
entation in the range of ∼ ±1◦. If the orientation angle
is random within this range, the two moiré patterns will
generally be incommensurate and therefore, we have ar-
gued, likely to show only a weak or zero anomalous Hall
effect. If by chance θGBN falls into one of the twist angle
windows identified in Fig. 5, devices are likely to exhibit
a quantized Hall conductance. Close to these twist angle
windows the Hall conductance is likely to be large, but
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C = −1

C = +1

Eg = 2.57meV

W0 = 12.22meV

conduction

valence

k

k'

γ

γ

(b) (c)

(a)

FIG. 6: (a) Disorder self-energy ΣI due to the G1/hBN
moiré potential vs. θGBN for a series of θGG values with
m0 = 3.62meV and interlayer potential difference
U = 0. Inset: the energy range of valence (yellow) and
conduction (cyan) bands of near-magic angle tBG with
sublattice symmetry broken by the m0 term of the
G1/hBN potential and the same value of m0. (b) A
sample tBG moiré band structure with m0 = 3.62 meV,
plotted along the red path shown in (c). The band
Chern numbers C, the bandgap Eg, and the conduction
band width W0 in the absence of disorder are specified.

still not quantized. This provides a possible explanation
for the fact that accurately quantized Hall conductances
seem to be observed relatively rarely in experiments on
tBG/hBN. Our expectation that the Hall conductance is
more likley to be quantized for twist angle pairs closer
to a commensurate point is consistent with the exper-
imental observation of a quantized Hall resistance in a
sample with measured twist angles θGG ≈ 1.15◦ and
θGBN ≈ ±0.6◦,4 which is close to either the 60◦ or the
120◦ commensurate point depending on the sign of θGBN,
and a non-quantized Hall resistance in a sample with
θGG ≈ 1.2◦ and θGBN ≈ ±0.8◦,3 which is further from a
commensurate twist-angle-pair point.

Since there will always be a difference in local lattice
bonding energy per area between regions with different
values of the hBN sliding vector ddd, a supermoiré struc-
ture will spontaneously expand regions in which ddd is close
to the most energetically preferred value.60 For samples
smaller than a supermoiré period, this process will induce
relaxation towards a uniform phase with the energetically
preferred value of ddd. At present we do not know whether
or not these uniform samples are more likely to be Chern
insulators, trivial insulators or semimetals.

In larger samples, the supermoiré pattern can intro-
duce intrinsic inhomogeneity at the micrometer scale.
One consequence is that the measured Hall conductance
can be a device-specific quantity, even for devices that
have the same twist angles. This scenario is consistent
with the fact that in some devices the quantum anoma-
lous Hall effect is observed4 for some source, drain and
voltage contact choices and not for others. The obser-
vation of domain walls18 that remain pinned even when
the magnetization has apparently saturated is also consis-
tent with device scale inhomogeneity. Persistent pinning
might be associated with local absence of valley polariza-
tion as discussed in Sec. III B.

The relationship we propose between commensu-
rability and the appearance of the QAH effect in
tBG/hBN could be tested by measuring the twist-
angle-pair of a nearly commensurate device using Bragg
interferometry.61 In this technique a high-energy elec-
tron beam with sub-moiré size is rastered through and
diffracted by both graphene and hBN layers. In tBG,
the intensity of the Bragg disks varies with electron-
injection position with moiré periodicity as a result of
spatially varying interference between the two graphene
layers. For nearly commensurate tBG/hBN, we expect
this periodicity to be further modulated with a larger pe-
riodicity, namely the supermoiré, by a perturbation from
the hBN layer.

The absence of an anomalous Hall effect in a large de-
vice could signal the absence of valley polarization at any
point, or a complex valley-polarization domain structure.
These circumstances can be distinguished in principle by
using nano-ARPES62,63 to separately detect energy and
momentum distribution functions in opposite valleys to
see if they are different.64 Valley polarization can also be
measured locally by looking for valley-contrasting optical
properties.65–67

V. SUMMARY AND CONCLUSIONS

Trilayer van der Waals heterojunctions have two in-
dependent relative twist angles. We have identified
a series of (θGG, θGBN) twist-angle pairs in tBG/hBN
trilayer systems at which the graphene/graphene and
graphene/hBN moiré periodicities are commensurate and
θGG is close to the magic angle at which isolated tBG
moiré bands are narrow and support strong correlation
physics. We use a non-interacting continuum model
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Hamiltonian that accounts for both moiré patterns to
address the trilayer electronic properties. Although
the active degrees of freedom are localized in the two
graphene layers, the hBN layer produces an effective ex-
ternal potential that includes both a position indepen-
dent term, and a position-dependent term that is of-
ten ignored.22,23,31–36 We find that when the position-
dependent terms are retained, the band structures and
Chern numbers of commensurate trilayers change as the
hBN layer is rigidly displaced by translation vector ddd.
When only the translationally invariant mass term are
included in the Hamiltonian, the electronic structure is ddd-
independent, and the Chern number maps are uniform at
C = 1. This finding proves that the role of the position-
dependent terms in trilayers, which have the periodicity
of the graphene/hBN moiré, is essential.

Building on this result, we analyze the role of the
graphene/hBN moiré in tBG/hBN trilayers, focusing on
their importance for the appearance or absence of the
QAH effect at odd integer moiré band fillings. When the
twist angle pair is close to a commensurate point, a long-
period supermoiré pattern is formed that can be viewed
as a slow spatial variation of the hBN translation vector
ddd. When analyzed using a local moiré band picture, the
supermoiré at odd integer moiré band filling factors is
characterized by a spatial map of distinct states, includ-
ing correlated insulating states with various Chern num-
bers, semimetal states, and valley-unpolarized states. We
argue that an overall QAH state is possible only when a
topologically nontrivial insulating phase percolates and
the twist angle pair is close enough to a commensurate
value. For twist angles far from commensurate points, we
assume that the hBN moiré potential acts like a disor-
der potential which we treat using a self-consistent Born
approximation. We argue that that the anomalous Hall
effect is unlikely to occur in this regime because of the
disorder-induced band-broadening effect.

Our proposal can explain the experimental observation
of both quantized and non-quantized anomalous Hall ef-
fects, as well as states with no anomalous Hall effect
at all, in tBG/hBN samples. The supermoiré picture
also provides possible interpretations of unexplained in-
homogeneities observed in some experiments that act as
pinning centers of orbital ferromagnetism. Direct verifi-
cation of our proposal could be achieved by performing
Bragg interferometry moiré structure and transport mea-
surements in the same sample.

Earlier experimental39,43,68,69 and theoretical30,40–42,70
work has addressed the rich electronic properties of other
trilayer systems, including hBN/graphene/hBN trilayers
and twisted trilayer graphene system. This manuscript
shows that the tBG/hBN trilayer system is also an at-
tractive platform to study bi-moiré electronic structures,
and to study the interplay between strong-correlations
and quasiperiodicity.

Note added in proof — As this manuscript was being
prepared we noticed a related preprint71 that identifies a
series of commensurate twist angle pairs in tBG/hBN and

g1  GBN

g2  GBN

g3  GBN

g4  GBN

g5  GBN

g6  GBN
g1  GG

g2  GG
g3  GG

g4  GG

g5  GG

g6  GG

FIG. A1: The primitive reciprocal lattice vectors of the
G1/G2 (blue) and G1/hBN moiré patterns (red).

performed full structural relaxation calculations. This
work supports our speculation that commensurate moiré
structures are likely to be energetically preferred. A sec-
ond related preprint72 has identified the two simplest ex-
amples of morié commensurability, and provides a com-
plementary analysis of the electronic properties of incom-
mensurate tBG/hBN.
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Appendix A: Exact geometry of general
commensurate tBG/hBN trilayers

The commensurability of the tBG/hBN trilayer is cap-
tured by the fact that any reciprocal lattice vector of
either moiré pattern is a linear combination of the prim-
itive basis of a common mini- reciprocal lattice with in-
teger coefficients. This is equivalent to saying that any
reciprocal lattice vector of one moiré pattern is a linear
combination of the reciprocal basis of the other moiré
pattern with rational coefficients. According to this con-
dition we can set

gggGBN
1 = p̃gggGG

2 + q̃gggGG
3 (A1)

where gggGG
j and gggGBN

j are defined in Fig. A1, p̃ and q̃ are
rational numbers with the least common denominator n
so that p̃ = p/n and q̃ = q/n. Rotating both sides of Eq.
(A1) clockwise by 90◦ and scaling by 1/

√
3 yields Eq. (1)

in the main text.
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We now solve for the exact expression of the twist an-
gle pair (θGG, θGBN) in terms of (p̃, q̃). We first write
Eq. (1) in a complex number form in which 2D vec-
tors are represented by complex numbers whose real and
imaginary parts are the two components i.e. KKK1 = K,
KKK2 = KeiθGG and KKKBN = KeiθGBN/α. Rotation matri-
ces are then represented by complex numbers with norm
1 i.e. Rφ = eiφ:

eiθGBN

α
− 1 =

(
p̃ei

π
3 + q̃ei

2π
3

)
(eiθGG − 1). (A2)

Adding 1 to each side of Eq. (A2) and then multiplying
by complex conjugates yields an equation for θGG which
has two exact solutions modulo 2π:

θ±GG = arccos
t√

t2 + s2
± arccos

t+ 1
2

(
1− 1

α2

)
√
t2 + s2

, (A3)

where t = r2 + s2 − r, r = (p̃ − q̃)/2 and s =
√

3(p̃ +
q̃)/2. θ+GG is typically not small enough to justify the
continuum models that make the use of moiré periodic
Hamiltonians. On the other hand θ−GG is small since α is
very close to 1.

By similar means we can also get an equation of θGBN

from Eq. (A2), which has two exact solutions modulo
2π:

θ±GBN = arccos
r − 1√

(r − 1)2 + s2
± arccos

αr − 1
2

(
α+ 1

α

)√
(r − 1)2 + s2

.

(A4)
Again, θ+GBN is typically not small enough to justify moiré
band theory.

The three special cases discussed in the main text
are obtained by substituting (p̃, q̃) = (1, 0), (0, 1) and
(1/2, 1/2) into Eqs. (A3) and (A4), and using α = 1.017.
We obtain:

θ60
◦

GG = 60◦ − arccos

(
1− 1

2α2

)
≈ 1.103◦, (A5)

θ60
◦

GBN =
θ60

◦

GG

2
= arccos

(
1

2α

)
− 60◦ ≈ 0.551◦, (A6)

θ120
◦

GG = 30◦ − arccos

(
2√
3

(
1− 1

4α2

))
≈ 1.116◦, (A7)

θ120
◦

GBN = −30◦ + arccos

(
1√
3

(
α+

1

2α

))
≈ −0.577◦,

(A8)

θ90
◦

GG = arccos

√
3

7
− arccos

(
1√
21

(
5− 2

α2

))
≈ 1.106◦,

(A9)

θ90
◦

GBN = arccos

(
1√
7

(
α+

1

α

))
− arccos

2√
7
≈ −0.009◦.

(A10)

Appendix B: Geometry of tBG/hBN supermoiré

For a tBG/hBN trilayer with twist angle pair
(θGG, θGBN), the two moiré Bravais lattices are defined
by 

AAAGG = (1−R−θGG
)
−1
aaa

AAAGBN =

(
1− R−θGBN

α

)−1
aaa

(B1)

where aaa is a lattice vector of the G1 graphene layer.
We start from an (n, p, q) commensurate structure with

ddd = 0, so that the two moiré patterns share AA stack-
ing points at the origin, and look for other common AA
stacking points rrr that satisfy

rrr =
(

1−R−θnpqGG

)−1
aaa1 =

(
1−
R−θnpqGBN

α

)−1
aaa2, (B2)

where both aaa1 and aaa2 are G1 lattice vectors. Now we tune
the twist angle pair slightly away by (δθGG, δθGBN), and
then the AA stacking points in both moiré patterns are
shifted and their relative displacement is

dddM (rrr) =

(
1− R−θGBN

α

)−1
aaa2 − (1−R−θGG

)
−1
aaa1,

(B3)
where θGG = θnpqGG + δθGG and θGBN = θnpqGBN + δθGBN.
Writing aaa1 and aaa2 in Eq. (B3) in terms of rrr using Eq.
(B2) yields an explicit expression for dddM (rrr), and then an
explicit expression of ddd(rrr) by using Eq. (3). For small
δθGG and small δθGBN,

ddd(rrr) =
(
δθGBNR90◦ −

α

n
δθGG (pR30◦ + qR−30◦)RθnpqGBN−θ

npq
GG

)
rrr. (B4)

To obtain this expression one needs to make use of the relation

n

(
1−
RθnpqGBN

α

)
= (pR60◦ + qR120◦)

(
1−RθnpqGG

)
.

(B5)
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(b)(a)

dM

G1/hBN

G1/G2
AGG

AGBN

FIG. A2: Local AA stacking points of the two moiré patterns in a 90◦ commensurate system: (a) dddM = 0; (b) dddM is
the half of a shortest G1/hBN moiré lattice vector, which is the sum of a G1/G2 moiré lattice vector AAAGG and a
G1/hBN moiré lattice vector AAAGBN. The two systems are identical up to a translation. The small blue and large
orange dots represent the local AA stacking points of G1/G2 and G1/hBN moiré patterns respectively.

which can be extracted directly from Eq. (1).
Further approximation neglecting the difference be-

tween RθnpqGG
, RθnpqGBN

, α and 1 yields

ddd(rrr) ≈
(
δθGBNR90◦ −

1

n
δθGG(pR30◦ + qR−30◦)

)
rrr.

(B6)
Take the norm of both sides of Eq. (B6) and we get Eq.
(5) in the main text.

To understand the factor 1/
√
N in Eq. (6), we must

return to the commensurate system and show that the
system is invariant not only under a change of ddd by a
lattice vector of the hBN, but also under a change of ddd
by a lattice vector of a lattice that is N times as dense as
the hBN. We look at the shift of the position of G1/hBN
moiré pattern, dddM , due to the change in ddd. The system is
obviously invariant under a shift of dddM by any G1/hBN
moiré lattice vector AAAGBN, and in fact also invariant un-
der a shift of the G1/hBN moiré pattern by any G1/G2
moiré lattice vector AAAGG, which can be understood by
noticing its equivalence to a shift of the G1/G2 moiré pat-
tern by −AAAGG. An example is shown in Fig. A2. We also
notice that combining Eqs. (B1) and (B5) (note that we

are dealing with commensurate systems so θGG = θnpqGG ,
θGBN = θnpqGBN) yields the relation between the two moiré
Bravais lattices:

nAAAGG = (pR−60◦ + qR−120◦)AAAGBN (B7)

which is identical to the relation between the two moiré
reciprocal lattices characterized by Eq. (A1), up to a
mirror reflection. Since this relation folds the mBZ of the
G1/G2 moiré pattern into 1/N of its area, it also folds
the spatial primitive cell of the G1/hBN moiré pattern
into 1/N of its area. Hence we conclude that the system
is invariant under a shift of dddM by a lattice vector of a
triangular lattice that is N times as dense as the Bravais
lattice of the G1/hBN pattern, which is equivalent to a
shift of ddd by a lattice vector of a lattice that is N times
as dense as the hBN.

Appendix C: Details of model Hamiltonian

The continuum model Hamiltonian of tBG1 in one mi-
croscopic valley with a tunable interlayer potential dif-
ference U is

HtBG =
∑
kkk

(
ψ†1kkk

(
−U

2
+ ~vσσσ1 · kkk

)
ψ1kkk + ψ†2kkk

(
U

2
+ ~vσσσ2 · kkk

)
ψ2kkk

)
+

∑
kkk

3∑
j=1

ψ†1kkkTjψ2(kkk+qqqj) + H.c.

 , (C1)

where vσσσl ·kkk (l = 1, 2) is the graphene Dirac Hamiltonian
of the lth layer, with σσσ1 = (σx, σy), σσσ2 = (cos θGGσ

x −
sin θGGσ

y, sin θGGσ
x + cos θGGσ

y) and v = 106m/s.

Tj =

 wAA e−i
2π
3 (j−1)wAB

ei
2π
3 (j−1)wAB wAA

 (C2)

are the three interlayer tunneling matrices where wAB =
113meV26 and wAA = 0.8wAB .49 The vectors qqqj are

shown in Fig. 1 (b). Note that we have written the
Tj matrices in a convention taking a local AA-stacking
point as the origin, which is different from Ref. 1 where
AB-stacking is taken as the origin.

The hBN layer adds to the Hamiltonian the term VBN

specified in Eq. (10) in main text, where the 6 transfer
momenta gggj are defined in Fig. 1 (b) for arbitrary θGBN.
The transfer matrices Vj depends on ddd via Eq. (11). C3
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symmetry requires that Vj(0) has the following forms:

V1(0) = V †4 (0) =

C0 + Cz CAB

CAB C0 − Cz

 (C3)

V3(0) = V †6 (0) =

C0 + Cz e−i
2π
3 CAB

ei
2π
3 CAB C0 − Cz

 (C4)

V5(0) = V †2 (0) =

 C0 + Cz ei
2π
3 CAB

e−i
2π
3 CAB C0 − Cz

 (C5)

where C0, Cz and CAB are complex values with dimen-
sion of energy. Different ab initio results of these quanti-
ties as well as the mass term m0 under various assump-
tions are presented in Refs. 26–28. Here we use the most

realistic one, “relaxed β” in Ref. 28:

m0 = 3.62meV

C0 = 7.03ei(134.54
◦)meV

Cz = 6.85ei(60.14
◦)meV

CAB = 12.94ei(−13.81
◦)meV

(C6)

Appendix D: Results for larger mass term

Table II shows the percolating phase of tBG/hBN su-
permoiré structures with m0 = 10meV and various in-
terlayer potential difference U . The C = 1 region nearly
always percolates, except for very large U . Figure A3
shows the estimated broadening effect ΣI of the peri-
odical part of the G1/hBN moiré potential on the tBG
bands gapped by the spatially uniform sublattice asym-
metric term with m0 = 10meV. The gap increases with
θGG, ranging from ∼ 6meV to ∼ 8meV in the near-magic
angle regime. The broadening effect is large enough to
close the gap except for relatively large θGG and rela-
tively large θGBN. For larger θGG the original bandwidth
W0 is large, thus the full bandwidth W ∼ W0 + ΣI is
very likely to destroy the valley polarization, resulting
in zero anomalous Hall conductance. For smaller θGG

non-quantized anomalous Hall conductance is possible.
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