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Dynamic polarization protocols aim to hyperpolarize a spin bath by transferring spin polarization from a well-
controlled qubit such as a quantum dot or a color defect. Building on techniques from shortcuts to adiabaticity, we
design fast and efficient dynamic polarization protocols in central spin models that apply to dipolarly interacting
systems. The protocols maximize the transfer of polarization via bright states at a nearby integrable point, exploit
the integrability-breaking terms to reduce the statistical weight on dark states that do not transfer polarization, and
realize experimentally accessible local counterdiabatic driving through Floquet-engineering. A master equation
treatment suggests that the protocol duration scales linearly with the number of bath spins with a pre-factor that
can be orders of magnitude smaller than that of unassisted protocols. This work opens new pathways to cool spin
baths and extend qubit coherence times for applications in quantum information processing and metrology.

I. INTRODUCTION

A prevalent goal in several fields of physics and chemistry
is to efficiently polarize an ensemble of spin particles. In
nuclear magnetic resonance spectroscopy (NMR) and mag-
netic resonance imaging (MRI), polarizing nuclear spins en-
hances sensitivity and resolution [1–4]. In applications to
quantum information processing, hyperpolarization schemes
can be used to initialize large-scale quantum simulators [5] or
to extend qubit coherence times by cooling the surrounding
spin bath [6, 7]. Where costly or difficult to polarize the spin
ensemble directly, dynamic polarization protocols have been
developed to repeatedly transfer polarization from readily po-
larized control spins [1, 8–14]. In simple experimental setups,
a spin bath is polarized by controlling a single qubit, such
as a nitrogen vacancy (NV) center in diamond [15–17] or a
quantum dot [18–20], whose polarization can be repeatedly
reset, effectively generating a zero temperature reservoir for
the bath [21]. A key goal of this article is to introduce a fast
and efficient scheme for dynamic polarization in central spin
models.

Polarization transfer relies on the spin-flip interactions be-
tween a control spin and the spin ensemble to be polarized.
The Hamiltonian can be schematically represented as

H = Ω(t) Sz + Hspin-flip , (1)

consisting of an electromagnetic fieldΩ(t) acting on the control
spin along the z-direction and spin-flip interactions between
control spin and spin bath. Given an initially polarized con-
trol spin, Ω(t) can be tuned to transfer polarization [22–24].
Specifically, dynamic polarization protocols can be separated
into two classes: (i) sudden protocols in which the control field
Ω(t) is quenched to resonance with the spin-flip interactions
to induce polarization transfer and (ii) adiabatic protocols in
which polarization transfer is induced by slowly driving Ω(t)
across resonances [25]. Adiabatic protocols offer an advantage
over sudden protocols as they do not require precise resonance
tuning and pulse timing. They also can cover a broader range of
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bath spin resonances, enabling robust transfer in the presence
of field and interaction inhomogeneities [26–28]. Their main
disadvantage is the requirement of slow speeds, which can be
inefficient or unfeasible in experiments limited by spin diffu-
sion in the bath and decoherence of the control spins [29, 30].

Apart from the limitations on control speeds, the achievable
polarization is also limited by the presence of dark states, mak-
ing it seldom possible to completely polarize the bath even
at slow speeds [21, 31–34]. Dark states are many-body qubit-
bath eigenstates in which the qubit is effectively decoupled
from the bath. Since such states have a fixed control spin po-
larization and cannot be depopulated through changes in the
qubit control field, any initial nonzero population of dark states
will limit hyperpolarization. Experiments in different material
systems have found maximum saturation at about 60% full
polarization [35–37].

Several schemes have been proposed to enhance hyperpo-
larization by depopulating dark states effectively [20], for ex-
ample by modulating the electron wavefunction of the qubit in
quantum dots [21, 31] or by alternating resonant drives which
reduce quantum correlations in the bath [38]. While studies so
far mainly focused spin systems where the central spin interacts
with its environment through fully isotropic (XXX) interac-
tions, arising in e.g. quantum dots in semiconductors, we
consider a model where the interactions are anisotropic (XX),
as in resonant dipolar spin systems [17, 19, 23, 24, 38–40].

Overcoming the requirement of slow speeds in adiabatic
protocols is the aim of the field of shortcuts to adiabaticity
[41, 42]. Shortcut methods such as counterdiabatic driving
(CD) suppress diabatic transitions between the eigenstates of a
driven Hamiltonian H(t) by evolving the system with a Hamil-
tonian HCD(t) containing additional counter terms [43–49].
CD preserves the system’s adiabatic path through state space
even during ultra-fast protocols. CD protocols typically require
engineering operators which are highly complex and many-
body, making them difficult to implement in practice [49].
Recent progress has focused on reducing the complexity of
CD Hamiltonians, for example by mapping them to simpler
unitary equivalents [50–53], or by approximating them with lo-
cal (few-body) operators [54–56]. The required local operators
can be realized through e.g. Floquet-engineering techniques,
using high-frequency oscillations to realize the CD Hamilto-
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nian as an effective high-frequency Hamiltonian using only
controls present in the original adiabatic protocol [55, 57–60].
Local counterdiabatic driving has recently been realized ex-
perimentally in synthetic tight-binding lattices [61], in IBM’s
superconducting quantum computer [62], and in a liquid-state
NMR system for a nonintegrable spin chain [63]. Such meth-
ods have also gained attention in the context of quantum ther-
modynamics, where (approximate) CD can be used to speed up
underlying adiabatic processes and increase the performance
of quantum engines [58, 64–71].

We develop a dynamic polarization scheme which imple-
ments approximate counterdiabatic driving (CD) to quickly
and efficiently polarize a spin bath using a tunable qubit while
simultaneously depopulating dark states. In the absence of
inhomogeneous bath fields, the model Hamiltoniani is inte-
grable [34]. We first exploit the integrability of this model
to design a CD protocol explicitly targeting all polarization-
transferring bright (i.e., not dark) states. Within all protocols
the bright states arise in pairs acting as independent two-level
Landau-Zener systems, for which CD protocols can be straight-
forwardly designed. While the exact CD protocol targets all
bright states and gives rise to a highly involved control Hamilto-
nian, we show how the CD protocol can be well approximated
using local (few-body) operators and experimentally imple-
mented using Floquet engineering (FE). In the presence of
inhomogeneous bath fields the system is no longer integrable.
However, the proposed protocols still lead to a remarkable
increase in transfer efficiency. Furthermore, the local counter-
diabatic (LCD) protocol dynamically couples dark states to
bright states, such that dark states can be depopulated. Not
only are such LCD protocols much easier to implement than
the exact CD ones, we find that they outperform CD protocols
and lead to a complete hyperpolarization of the spin bath.

The FE protocols also lead to natural quantum speed limits:
there exists a lower bound for the protocol durations below
which the FE protocol can no longer accurately mimic the
LCD protocol. The emergence of speed limits is ubiquitous
in shortcut protocols and control theory [42, 49, 52, 71–78].
Interestingly, our work now suggests that speed limits are also
intrinsic in approximate local counterdiabatic protocols.

This paper is organized as follows. In Section II, we present
the qubit-bath model system and the hyperpolarization scheme
used throughout this work. In Section III, we construct and
detail the CD and LCD protocols and compare their efficiency
with unassisted (UA) protocols which do not use shortcut meth-
ods. In Section IV, we show how our shortcut protocols can
be applied to fully polarize a spin bath. A master equation
for the hyperpolarization is introduced in Section V, which is
used to analyze the protocols at large system sizes and show
that all protocol durations scale linearly with the number of
bath spins. In Section VI, we show how to realize LCD with
FE and discuss the emergence of a quantum speed limit. We
conclude in Section VII with a discussion of our results in a
broader context.

II. MODEL AND HYPERPOLARIZATION SCHEME

A. Hamiltonian

We focus on a concrete central spin model describing a qubit
interacting with L − 1 spin-1/2 bath spins. The Hamiltonian is
given by

H(t) = ΩQ(t) Sz
0 +

L−1∑
j=1
ΩB, j Sz

j +
1
2

L−1∑
j=1

gj
(
S+0 S−j +S−0 S+j

)
, (2)

where ΩQ(t) is the magnetic field strength on the qubit, ΩB, j

is the magnetic field strength on the j th bath spin, and gj is the
coupling strength between the qubit and the j th bath spin, with
j = 1, 2, . . . , L − 1. Eq. (2) describes several physical setups in
rotating frames, such as color defects or quantum dots coupled
to ensembles of nuclear spins via dipolar interactions [17, 19,
23, 24, 38]. Spin conserving (‘flip-flop’) transitions dominate
the dipolar interaction provided gj � ΩQ + ΩB, with the
latter set by the amplitudes of the continuous driving fields; a
standard derivation is given in Appendix A. The top panel of
Fig. 1 shows a schematic of the model.

Experimentally, the bath field and qubit-bath couplings are
spatially inhomogeneous. For simplicity, we model these in-
homogeneities as uncorrelated disorder: we draw each ΩB, j

independently from a uniform distribution

ΩB, j ∈ [ΩB − γz,ΩB + γz], (3)

where ΩB sets the mean value and γz sets the z-disorder
strength. We also draw each gj independently from a uniform
distribution

gj ∈ [g − γxx, g + γxx], (4)

where g sets the mean value and γxx sets the xx-disorder
strength. In this work, we probe the weak coupling and disor-
der regime given by γxx, γz < g � ΩB.

Since H conserves total magnetization [H, M] = 0, where

M ≡
L−1∑
j=0

Sz
j , (5)

its eigenspectrum splits into L + 1 polarization sectors (see
left of lower panel in Fig 1). Each sector can alternatively be
specified by the number N = M + L/2 of spin flips above
the fully-polarized state |↓〉 ⊗ |↓↓ . . . ↓〉. The aim of hyperpo-
larization is then to find protocols that systematically reduce
M, where a fully polarized state corresponds to N = 0 or
M = −L/2.

B. Spectrum

The eigenstates of H capture essential features common in
applications of dynamic polarization: bright states which allow
resonant polarization transfer when ΩQ(t) is varied, and dark
states which limit transfer. In the γz = 0 limit, the model is
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FIG. 1. Model schematic, spectrum, and hyperpolarization
scheme. (Top panel) Schematic of the central spin model in Eq. (2).
(Bottom panel) On the left, we illustrate the polarization sectors and
spectrum for a system with an even number L of spins and small
disorder strengths. On the right, we illustrate the spectrum in two
polarization sectors with M < 0, ∆max sets the maximal width of the
resonance region, where together with an outline of the transfer-reset
hyperpolarization scheme.

integrable and the structure of its eigenstates is known [34].
While our proposed protocols are not restricted to integrable
models, the known eigenstate structure at the integrable point
allows for a quantitative understanding of the general cooling
protocols. We briefly review these eigenstates and their basic
properties in the integrable limit, and subsequently extend the
discussion to γz > 0.

1. Bright States (γz = 0)

Bright eigenstates can be written as

|Bα(λ)〉 = cα
↑
(λ) |↑〉 ⊗ |Bα

↑
〉 + cα

↓
(λ) |↓〉 ⊗ |Bα

↓
〉 , (6)

where

λ(t) ≡ ΩQ(t) −ΩB (7)

measures the detuning between the qubit and bath fields. On
resonance, ΩQ = ΩB and λ = 0. The index α distinguishes
between the different bright states. Crucially, the bath states
|Bα
↑,↓
〉 do not depend on λ.

As such, when varying λ the bright states only couple in
pairs (α = ±k), behaving as independent two-level Landau-
Zener systems. The Hamiltonian in each such two-dimensional
subspace can be written as

Hα(λ) = λS̃z
α + ∆α S̃x

α +ΩB M, (8)

where ∆α sets the energy splitting (gap) of the pair at resonance
[34] and we have introduced generalized spin operators S̃x,y,z

α

acting on the two-dimensional space spanned by |Bα+ 〉 = |↑〉 ⊗
|Bα
↑
〉 and |Bα− 〉 = |↓〉 ⊗ |B

α
↓
〉.

S̃x
α =

1
2

(
|Bα− 〉 〈B

α
+ | + |B

α
+ 〉 〈B

α
− |

)
,

S̃y
α =

i
2

(
|Bα− 〉 〈B

α
+ | − |B

α
+ 〉 〈B

α
− |

)
,

S̃z
α =

1
2

(
|Bα+ 〉 〈B

α
+ | − |B

α
− 〉 〈B

α
− |

)
.

S̃z
α corresponds to Sz

0 projected on a bright pair subspace. The
apparent simplicity of the problem in this subspace hides the
complexity of the qubit-bath interactions present in the orig-
inal spin basis, where the bath states |Bα

↑,↓
〉 and the gap ∆α

are obtained by solving a set of nonlinear Bethe equations
[34]. Within each magnetization sector M = N − L/2, we la-
bel bright state pairs by α = |k |, where k ∈ {1, 2, . . . , nB}

and

nB =

(
L − 1
N − 1

)
, (9)

is the number of pairs in the sector for M < 0 1.
The Hamiltonian (8) returns the bright state energies

Eα
B
(λ) = ΩB M ±

1
2

√
λ2 + ∆2

α . (10)

We refer to the set of bright states with positive
Eα
B
−ΩBM > 0 as the top bright band, and those with neg-

ative Eα
B
−ΩBM < 0 as the bottom bright band (see red bands

in bottom panel of Fig. 1).
In bright states, polarization can be transferred between the

qubit and the bath. At resonance (λ = 0) the bright state pairs
are fully hybridized with c±k

↑
= ±c±k

↓
. Initializing the system

in a fully polarized central spin state and then quenching to
resonance, as is done in sudden protocols, transfers polarization
on the timescale ∆−1

α . Adiabatic protocols induce a qubit-bath
polarization transfer in bright states by slowly varying λ(t)
resonance. As λ→ ±∞, bright states approach a product form
and the initial eigenstate |↑〉 ⊗ |Bα

↑
〉 is adiabatically connected

to |↓〉 ⊗ |Bα
↓
〉 and vice versa.

Each Landau-Zener problem is fully characterized by its
gap. The distribution of bright pair gaps at resonance ∆α is
shown in Fig. 2 for various polarization sectors. As shown in

1 Since the aim of the proposed protocols is to reduce magnetization, we
focus on M < 0.
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Appendix B, the gap distribution can be obtained analytically
at zero disorder (γxx = 0) in the thermodynamic limit where
we take L → ∞, holding m ≡ |M |/L fixed. Since these gaps
set the necessary time scales for adiabatic protocols, we briefly
detail some relevant gap scales. The typical gap scale is given
by

∆typ ≡
√∑

g2
j ∼
√

L − 1 g, (11)

shown as a gold vertical dashed line in Fig. 2, whereas the
maximal gap, also setting the maximal width of the resonance
region, is given by

∆max ∼ L g, (12)

scaling extensively in L. The smallest bright gap in the homo-
geneous model can be found as

∆min = g
√

2(M + 1) ∼ g
√

2 m L. (13)

At sufficiently small gaps ∆ & ∆min, the distribution of bright
pair gaps is given by

n(∆) ∝ ∆
(

1 + 2m
1 − 2m

)−(∆/∆min)
2

; ∆ ≥ ∆min. (14)

This distribution is shown in Fig. 2 as a dashed black curve.
We find good qualitative agreement between the analytical
curve at γxx = 0 and our numerical results for small but finite
disorder γxx = 0.05 in the magnetization sector M = −1 with
the largest Hilbert space dimension.

Fig. 2 also shows the numerically obtained distribution of
bright pair gaps in the M = −4 and M = −7 sectors. The
distribution in the M = −4 sector exhibits three broad peaks
which are centered around the three bright pair gap energies
in the γxx = 0 limit (Appendix B). As the width of each peak
is proportional to γxxL while the bright pair gaps at γxx = 0
are order one, we expect the three-peak structure to be washed
out at larger L, and the distribution to be captured by Eq. (14)
instead. In the M = −7 sector, we expect a single pair of
bright states with pair gap ≈ ∆typ at small γxx , as confirmed by
Fig. 2. We note that Eq. (14) only applies to sectors with finite
magnetization density at large L.

The main difference comes from the non-zero density of
gaps for ∆ < ∆min. However, as will be shown in following
sections, this non-zero density does not qualitatively influence
our protocols.

In sum, the bright bands consist of an ensemble of indepen-
dent Landau-Zener systems with a non-trivial distribution of
gaps. For each bright pair, an adiabatic passage of λ across res-
onance prevents excitations across its gap and flips polarization
of the qubit, transferring polarization to the bath.

2. Dark States (γz = 0)

Dark states have the following product form with the central
qubit fully polarized:

|Dα〉 = |↑〉 ⊗ |Dα
↑
〉 or |Dα〉 = |↓〉 ⊗ |Dα

↓
〉 , (15)

FIG. 2. Distribution of bright pair gaps at resonance. Histogram
of number n(∆α) of bright state pairs with gap ∆α. Data is shown for a
typical disorder realization in multiple polarization sectors. The gold
vertical dashed line denotes the typical gap ∆typ. The black dashed
curve denotes the distribution of gaps from Eq. (14). Parameters:
L = 16, λ = 0, g = 0.1, γxx = 0.05, γz = 0, and 60 bins.

where the index α distinguishes between the different dark
states. The bath states |Dα

↑,↓
〉 depend implicitly on {gj}, but

crucially not on λ, and are obtained by solving a set of ‘dark’
Bethe equations [34].

In a given polarization sector M = N − L/2, there are

nD =
����(L − 1

N

)
−

(
L − 1
N − 1

)���� (16)

dark states. Dark states with central qubit polarized along +z
only exist in sectors M > 0, while dark states with central spin
polarization along −z only exist in sectors M < 0, and no dark
states exist in the sector M = 0. Dark state are eigenstates of Sz

0
and are annihilated by the interaction part of the Hamiltonian
[34], such that the energies given by

Eα
D
(λ) = ΩB M + sgn[M]

λ

2
, (17)

change linearly with the qubit field detuning λ. Their wave
functions however do not change with λ, preventing polariza-
tion transfer to the bath.

3. Bright & Dark States (γz > 0)

In the presence of z-disorder (γz > 0), the system is not
integrable. However, the same qualitative picture for the eigen-
states holds: on adiabatically changing the detuning λ and
comparing the polarization of the central spin far away from
resonance (λ = ±∞), there exists a subset of ‘bright states’ in
which the polarization is changed and a subset of ‘dark states’
for which the polarization is unchanged.

Since the central spin is polarized far away from resonance,
a counting argument can be used to determine the number of
bright and dark states. Consider a sector with magnetization
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M < 0 and dimension nM =
(L
N

)
: there are n↓ =

(L−1
N

)
states

in which the qubit is fully polarized along the −z-direction and
n↑ =

(L−1
N−1

)
states in which the qubit is fully polarized along

the +z-direction. Far from resonance, the energies are given by
ΩBM − λ/2 and ΩB + λ/2 respectively. Comparing the total
number of states in the top and bottom band far away from
resonance, there must be nD = n↓ − n↑ dark states in which
the polarization of the qubit does not flip for an adiabatic
passage across resonance (see also Fig. 1). The remaining
nM − nD = 2 n↑ states are bright states in which the spin of the
qubit flips during such an adiabatic process, consistent with
Eqs. (9) and (16). This simple counting argument only uses
conservation of total z-magnetization and produces the same
qualitative eigenstate band structure as one sthe Bethe ansatz
in the integrable limit (γz = 0) [34].

There are, however, important differences between the in-
tegrable (γz = 0) and non-integrable (γz > 0) models in the
resonance regime. When γz > 0, the simple product state struc-
ture of dark states and the Landau-Zener structure of bright
states is no longer exact: the non-integrable eigenstates are
mixtures of the unperturbed states and exhibit ergodic behavior
(Appendix E).

While adiabatic protocols transferring polarization in the
inhomogeneous model are qualitatively similar to those in
the homogeneous model, and bright and dark states can gen-
erally be defined by their central spin polarization far away
from resonance, non-adiabatic effects can enhance polariza-
tion transfer in the inhomogeneous model. Finite z-disorder
is useful for the purposes of dynamic polarization: in a non-
adiabatic protocol dark states can be excited to bright states
since |〈Dα |Sz

0 |B
α′〉| > 0. Dark states in the inhomogeneous

model can be depopulated during a non-adiabatic passage
across resonance, such that the limit on hyperpolarization can
be overcome by preferentially inducing transitions from dark
states to bright states.

C. Hyperpolarization Scheme

We now discuss the basic hyperpolarization scheme as illus-
trated in Fig. 1.

To polarize the spin bath, we apply a cyclical scheme. In
each cycle, we (i) reset the polarization of the qubit to |↓〉 at
large detuning, and (ii) we transfer polarization from the qubit
to the bath by sweeping the central field detuning λ(t) across
resonance over a timescale τr . The reset step is a routine ex-
perimental step in quantum computing platforms; for example,
in a NV set-up, the qubit can be reset using a rapid optical
pulse [59, 79]. The ramp varies λ(t) from an initial value λi
to a final value λ f = −λi , such that the cycle starts and ends
far from resonance λ0 ≡ |λi | = |λ f | � ∆max, where the qubit
is completely polarized in every eigenstate. From one cycle to
the next, the direction of the ramp is reversed (after each reset)
in a forward-backward fashion.

During a single reset and sweep cycle probability is trans-

ferred in every magnetization sector2 (M) from states with up
qubit polarization |↑〉 in sector M to states with down qubit
polarization |↓〉 in the magnetization sector (M − 1) (as de-
picted in Fig. 1). The effects on a single bright state can be
readily understood: suppose the system is initially in a bright
eigenstate |↓〉 ⊗ |Bα

↓
〉, factorizable far away from resonance

and with fixed magnetization M . Then the total magnetization
of the bath state is necessarily M + 1/2. After an ideal adi-
abatic transfer across resonance, this bright state is given by
|↑〉 ⊗ |Bα

↑
〉, again far away from resonance. From conservation

of magnetization, the bath state now has total magnetization
M − 1/2. Following the reset step of the central spin, this state
is reset to |↓〉⊗ |Bα

↑
〉, which is no longer an eigenstate but rather

a superposition of eigenstates. Crucially, these states all have
magnetization M − 1: the total bath magnetization has been
reduced. Dark states of the form |↓〉 ⊗ |Dα

↓
〉 are left invariant

by these steps. After several cycles, dark state populations
build up and ultimately saturate the bath spin polarization well
above its fully polarized value.

The success of the protocol depends on the suppression
of diabatic excitations. However, transitions between bright
states within their own band are irrelevant for the purposes of
polarization transfer, and thus we only require that transitions
be suppressed between the bands. Specifically, we mimic a
slow smooth ramp λ(t) with ramp time τr � τ0, where

τ0 = 2λ0/∆
2
min (18)

sets the timescale for the onset of diabatic transitions between
eigenstate bands (Appendix C). While such a protocol may
still be too slow in practical applications, here it serves only as
a starting point which guarantees efficient transfer.

III. POLARIZATION TRANSFER PROTOCOLS

We detail how to speed up adiabatic ramps with the assis-
tance of CD and LCD protocols in a single sweep. Such (L)CD
protocols can be exactly analyzed in the integrable limit. We
further compare our CD protocols to unassisted (UA) protocols
which, unlike CD, attempt to polarize the bath without engi-
neering additional controls. A full cooling protocol consisting
of repeated sweeps will be analyzed in Section IV.

We simulate sweeps λ(t) across resonance by numerically
solving the time-dependent Schrödinger equation 3 in a specific
polarization sector and measure efficiency. The system is
initialized at λi = −λ0 � −∆typ in a mixed state:

ρ(t = 0) = |↓〉 〈↓| ⊗ ρB, (19)

2 The reset and transfer steps have an effect on all polarization sectors simul-
taneously.

3 The specific ramp function used in this work is a smooth polynomial
λ(t) = λ0 (12 (t/τr )5 − 30 (t/τr )4 + 20 (t/τr )3 − 1), which monotoni-
cally increases from λ(0) = −λ0 to λ(τr ) = λ0 and has vanishing first
and second derivatives at the protocol boundaries. The minimal order of
a polynomial in t/τr that satisfies these constraints is five. However, any
form λ(t) with sufficiently smooth boundary conditions can be used [49].
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where the bath is in an infinite-temperature state ρB. This
choice of a spatially uncorrelated and unpolarized bath state
is motivated by experimental conditions. We also expect any
coherences in the initial bath state to be lost during the repeated
cycling of the qubit. This gives an initial probability PB↓(t = 0)
of starting in the top bright band and PD↓(t = 0) of starting in
the dark band, with

PB↓,↑(t) =
∑
α

Tr[ρ(t) P↓,↑ |Bα〉〈Bα |P↓,↑], (20)

PD↓,↑(t) =
∑
α

Tr[ρ(t) P↓,↑ |Dα〉〈Dα |P↓,↑], (21)

in which P↓ ≡ |↓〉 〈↓| ⊗ I is the projection operator to the
subspace with down qubit polarization and similarly P↑ ≡
|↑〉 〈↑| ⊗ I. At the end of the ramp (λ f = +λ0), the state
ρ(t = τr ) has a probability PB↑(t = τr ) of being in the top
bright band, PD↓(t = τr ) of being in the dark band, and PB↓(τr )
of having transitioned to the bottom bright band. For protocol
efficiency, we use two measures: (i) the transfer efficiency,

ηT ≡ PB↑(τr )/PB↓(0), (22)

which measures how effectively the qubit polarization in bright
states is flipped during a single sweep, and (ii) the kick effi-
ciency,

ηK ≡ 1 − PD↓(τr )/PD↓(0), (23)

which measures how effectively dark states are depopulated
(or ‘kicked’) into the bright manifold. Throughout this section,
we continually refer to Fig. 3, which plots these efficiencies
over a range of ramp times τr for numerically simulated UA
and CD protocols. Note that we average over Ns realizations
of disorder in ΩB, j and gj , which we denote by an overline as
ηT or ηK .

A. Unassisted Driving (UA)

We first discuss unassisted (UA) protocols, corresponding to
a sweep of λ over a finite time. Adiabatic protocols correspond
to infinite ramp times τr →∞, where all bright state polariza-
tion is transferred across a single sweep: ηT = 1 while ηK = 0.
At finite ramp times diabatic effects become important and
generally ηT < 1 and ηK > 0. In the fast limit (τr → 0) the
system does not have time to respond to the drive, completely
preventing polarization transfer and dark state depletion such
that ηT , ηK → 0.

In a system with a homogeneous bath field (γz = 0), the
operator Sz

0 only couples bright state pairs4, and within each
M sector all excitations induced by a finite ramp speed Ûλ > 0
occur only between bright state pairs [34]. Each bright state
pair can be treated as an independent two-level Landau-Zener

4 Note that dark states at γz = 0 are eigenstates of Sz
0 , so they cannot couple

to bright states on changing the qubit z-field in time.

FIG. 3. Efficiency vs. ramp time. Disorder-averaged transfer
efficiency (top) and kick efficiency (bottom) of UA, CD, and LCD
protocols in systems with γz = 0.00 (crosses) and γz = 0.05 (boxes).
Dashed lines show the analytic prediction for the UA transfer effi-
ciency (26), the analytic predictions for LCD transfer (41) and kick
efficiencies (43) at large ramp velocities. Parameters: Ns = 150,
L = 10, M = −1, ΩB = 10, λ0 = 5, g = 0.1, γxx = 0.05, and
τ0 ≈ 1000.

problem following Eq. (8), for which the known transition
probability for a ramp λ(t) across a resonant gap ∆α is given
by [80, 81]

ptrans[∆α] = exp
(
−
π

2
∆2
α

Ûλ

)
. (24)

Averaging this transition probability over the gap distribution
(14) returns an approximate transfer efficiency for a given
magnetization sector

ηT = 1 −

∫ ∞
∆min

ptrans[∆] n(∆) d∆∫ ∞
∆min

n(∆) d∆
, (25)

which can be evaluated to return

ηT = 1 −
Ûλτm

1 + Ûλτm
exp

(
−

mπg2L
Ûλ

)
, (26)

in which m = M/L is the magnetization density, Ûλ ∝ λ0/τr ,
and

τm =
1

mπg2L
ln

(
1 + 2m
1 − 2m

)
. (27)
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The transfer efficiency in Eq. (26) is plotted in Fig. 3 as a
dashed black curve and shows excellent agreement with the
UA calculations for γz = 0 and γz = 0.05.

As shown in Fig. 3, the distinction between a system with a
homogeneous bath field (crosses) and an inhomogeneous bath
field (squares) has little impact on the UA transfer efficiency.
The transfer efficiency in UA dynamics varies drastically with
τr . When τr is sufficiently large (τr � τ0; cf. Eq. (18)),
transitions between eigenstate bands become suppressed and
the system becomes effectively adiabatic for the purposes of
polarization transfer: the qubit flips in bright state bands, but
not in dark bands. Fig. 3 shows the tendency of simulated UA
protocols toward unit transfer efficiency.

The difference between homogeneous and inhomogeneous
systems is important when considering the kick efficiency. In
a system with inhomogeneous bath fields (γz > 0), Sz

0 couples
bright and dark eigenstates. As such, inhomogeneous fields
lead to a nonzero kick efficiency because diabatic transitions
can depopulate dark states, whereas homogeneous fields lead
to a zero kick efficiency at all ramp rates.

The convergence ηT → 1 (shown) occurs much faster than
the convergence ηK → 0+ (not shown). The former is deter-
mined by the gap between bright state pairs, which remain
finite throughout the ramp at numerically accessible system
sizes, whereas the latter is determined by the dark-bright gaps,
which tend to close away from resonance. This leads to dark-
bright transitions at large yet finite τr . (∆E)−2, where ∆E is
on the order of the level spacing (Appendix C). Any attempt to
drive the system faster (τr . τ0) leads to diabatic excitations
between eigenstates. When γz = 0, speeding up UA protocols
decreases the transfer efficiency due to transitions between
bright bands, but again does not deplete dark states. At finite
disorder strength γz = 0.05, UA protocols suffer a similar loss
of transfer efficiency, but gain the ability to kick dark states,
with a peak kick efficiency at intermediate speeds τr ∼ τ0.

B. Exact Counterdiabatic Driving (CD)

CD protocols suppress transitions between the eigenstates
of an instantaneous Hamiltonian by evolving the system with
an assisted Hamiltonian that exactly cancels all diabatic ex-
citations [49]. The inclusion of counterdiabatic terms in a
hyperpolarization protocol can hence be used to increase the
transfer efficiency.

Within each two-dimensional Landay-Zener subspace (8),
the system remains in an instantaneous eigenstate of Hα(λ(t))
at all times when evolved with a time-dependent Hamiltonian
[49]

HCD,α(t) = Hα(λ(t)) − Ûλ(t)
∆α

λ(t)2 + ∆2
α

S̃y
α, (28)

where the auxiliary (counterdiabatic) term ∝ S̃y
α exactly cancels

diabatic transitions between the bright states for arbitrary ramp
speeds provided Ûλ = 0 at the beginning and end of the ramp.

CD is realized for the full system if the system is evolved
with the time-dependent CD Hamiltonian

HCD(t) = H(λ(t)) + Ûλ(t) Aλ(λ(t)), (29)

where the CD term Aλ, also known as the adiabatic gauge
potential, follows as

Aλ(λ) = −
∑
α

∆α

λ2 + ∆2
α

S̃y
α . (30)

The summation index α runs over all bright pairs in all mag-
netization sectors. The effect of the counterdiabatic term can
be understood in the limit Ûλ → ∞, where the Hamiltonian
reduces to ÛλAλ and the evolution operator for a single sweep
can be written as

exp
(
i
∫ ∞

−∞

Aλ dλ
)
=

∏
α

exp
(
− i π S̃y

α

)
. (31)

The gauge potential generates a rotation around the y-axis that
exchanges |Bα+ 〉 ↔ |B

α
− 〉 when λ is swept across resonance,

exactly as happens in the adiabatic protocol.
Alternatively, the gauge potential can be written in closed

form as (see Appendix F)

Aλ = −
i
4
(H −ΩBM)−2 [H, Sz

0 ]. (32)

The first (inverse) term in the product is to be interpreted in the
sense of a pseudo-inverse, and the second (commutator) term
in the product is given by:

[H, Sz
0 ] = i

∑
j

gj(Sx
0 Sy

j − Sy
0 Sx

j ). (33)

The gauge potential is a complex many-body operator, dif-
ficult to compute in theory and even harder to implement in
practice [49]. Only in certain special cases, for example when
∂λH is an integrable perturbation of an integrable model H,
is this operator sufficiently local [49, 82, 83]. Fortunately,
∂λH = Sz

0 is an integrable perturbation of H in the γz = 0 limit
of our present model, and the pair structure of the bright state
could be used to immediately write down the adiabatic gauge
potential. A similar two-level structure for the gauge potential
also arises in integrable free-fermionic systems [82].

In a system with an inhomogeneous bath field (γz > 0), we
can no longer express the adiabatic gauge potential explicitly.
Nevertheless, as CD mimics an adiabatic protocol, the transfer
efficiency will be maximal.

Fig. 3 showcases the effect of exact CD in a transfer proto-
col across resonance for systems with γz = 0 and γz = 0.05
(crosses and squares respectively). In both cases, the complete
suppression of bright state transitions yields a maximally ef-
ficient transfer protocol ηT = 1, systematically improving on
the UA protocol, while the complete suppression of dark state
transitions results in zero kick efficiency ηK = 0.

C. Local Counterdiabatic Driving (LCD)

In practice, it is hard to realize exact CD, and we must
resort to approximation schemes. In this section, we follow the
method devised in Ref. [55] to develop a local approximation
ALCD to Aλ. We refer to assisted driving (see Eq. (29)) with
ALCD as local counterdiabatic driving (LCD).
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As proposed in Ref. [55] and detailed in Appendix G, a
formal expansion for the adiabatic gauge potential can be found
in terms of nested commutators:

Aλ = i
q∑
j=1

αj [H, [H, . . . [H︸           ︷︷           ︸
2j−1

, ∂λH]]]. (34)

For q → ∞ Eq. (34) reproduces the exact gauge potential. A
local approximation for Aλ is obtained by truncating the com-
mutator expansion of Eq. (34) to a desired order q, and using a
variational minimization scheme [54] to set the coefficients αj

for j = 1, . . . , q.
We focus on the leading order term because it (i) is simple

enough to be implemented by Floquet driving on the qubit field
(see Section VI) and (ii) is already remarkably effective for
polarization transfer. One can always refine the approximation
to CD by adding higher-order commutators in Eq. (34); the
rapid convergence of higher-order LCD to CD is shown in
Appendix G.

To leading order (q = 1), we obtain:

ALCD(λ) = i α1(λ) [H, Sz
0 ], α1(λ) = −

1
λ2 + ∆2

typ
, (35)

This scheme leads to a coefficient α1(λ) depending on a single
energy scale which coincides exactly with the typical gap ∆typ,
in contrast with exact CD, where the prefactor depends either
explicitly (28) or implicitly (32) on all bright state gaps ∆α. In
sum,

HLCD(t) = H(λ(t)) + i Ûλ(t)α1(λ(t)) [H, Sz
0 ]

= H(λ(t)) +
Ûλ(t)

λ(t)2 + ∆2
typ

∑
j

gj(Sx
0 Sy

j − Sy
0 Sx

j ).

(36)

Fig. 3 shows the resulting LCD curves as unmarked solid
red curves (γz = 0.0), and circle-marked red curves (γz =
0.05). LCD is approximate, ηT < 1 (see top panel of Fig. 3).
Nevertheless, LCD’s transfer efficiency is high (ηT & 0.75)
over the whole range of ramp times τr , even as τr → 0 where
UA becomes completely transfer inefficient.

A finer comparison between ALCD and Aλ can be made for
γz = 0 by expressing the gauge potential in the Landau-Zener
picture (8),

ALCD(λ) = −
∑
α

(
∆α

∆typ

)
∆typ

λ2 + ∆2
typ

S̃y
α . (37)

Rather than targeting individual gaps as in Eq. (30), the LCD
protocols effectively target a single typical energy splitting
scale to suppress diabatic transitions between the bright bands.
In contrast with Eq. (30), the Lorentzian prefactor of S̃y

α has
a fixed width ∆typ, which does not vary with bright state gap,
and a modulated amplitude ∆α/∆typ.

This discrepancy introduces polarization transfer errors in
LCD at intermediate and fast ramps (τr . τ0). Comparing with

Eq. (31), in the limit Ûλ→∞ the LCD protocol again generates
a rotation within bright state pairs:

exp
(
i
∫ ∞

−∞

ALCD dλ
)
=

∏
α

exp
(
− i π

∆α

∆typ
S̃αy

)
. (38)

LCD strongly suppresses transitions between those bright pairs
with a gap ∆α ≈ ∆typ, but otherwise yield only partial suppres-
sion.

From Eq. (38) we can define a mismatch error between CD
and LCD for each bright pair with gap ∆α as

E[∆α] = cos2
(
π

2
∆α

∆typ

)
. (39)

Averaging over the gap distribution (14), the transfer efficiency
at large ramp rates is

ηT = 1 −

∫ ∞
∆min
E[∆] n(∆) d∆∫ ∞
∆min

n(∆) d∆
, (40)

The saddle-point approximation returns

ηT =

∫ ∞
1 dt t sin2

(
π
2
√

2mt
) (

1−2m
1+2m

) t2

∫ ∞
1 dt t

(
1−2m
1+2m

) t2 . (41)

This expression agrees with the LCD transfer efficiency in
Fig. 3 (dashed red line) and will be discussed in more detail in
the following section.

Fig. 3 (bottom panel) also shows the LCD kick efficiency
over several τr orders. In the γz = 0 limit, LCD has no effect
on dark states, just like UA and CD, again leading to a zero
kick efficiency (crosses in bottom panel of Fig. 3). When
γz > 0, LCD protocols do not prevent dark-bright transitions
and exhibit non-zero kick efficiency. Since the bright-dark gap
is smaller than the typical bright band gap ∆typ, especially far
from resonance where the bright-dark gap tends to close, LCD
allows dark-bright transitions as in UA driving.

The difference in gap scales gives LCD both the advantages
of CD for efficient transfer, and the advantages of diabatic UA
for depopulating dark states. For slow ramps τr > τ0, LCD and
UA have similar transfer efficiencies as the diabatic transition
probabilities are small. In faster ramps (τr . τ0), bright band
transitions are suppressed by LCD but not UA. Meanwhile,
LCD saturates to a maximum kick efficiency for τr < τ0, in
contrast with UA protocols which peak around τr ∼ τ0 and then
lose kick efficiency as τr → 0. The distinction between LCD
and UA protocols in this fast limit will be further quantified in
Eq. (43), following Appendix E, where it is argued that in the
limit τr → 0 the kick efficiency is proportional to the transfer
efficiency.

Finally, note that this work focuses on the weak xx-disorder
limit γxx < g where there is a finite gap between bright bands
at numerically accessible system sizes. However, a finite bright
pair gap is not necessary to design efficient LCD protocols that
need only target a typical gap between the bright bands. In
Appendix D we show that LCD maintains high transfer and
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kick efficiencies in the presence of strong xx-disorder even
in the presence of small gap as long as the bulk of the bright
spectrum still has a gap ∼ ∆typ.

D. Protocol Efficiency and Polarization Sector

We compare the efficiencies of CD, LCD, and UA protocols
for a single sweep across different polarization sectors M.
Since all protocols systematically reduce polarization, it is
crucial to understand how the transfer and kick efficiencies
depend on the polarization sector. The results are summarized
in Fig. 4 for a fast ramp (τr = 0.05 τ0) in a system with an
inhomogeneous bath field (γz = 0.05) for multiple system
sizes L.

FIG. 4. Efficiency vs. polarization sector. The vertical axes show
transfer efficiency (top) and kick efficiency (bottom) for fast LCD
(colored) and UA (grey) sweeps across resonance in a system with
an inhomogeneous bath field. The horizontal axis shows the density
N/L = M/L + 1/2 of spin flips above the fully polarized state in
M < 0 sectors. We plot theoretical predictions to ηT based on the
thermodynamic limit calculations at zero disorder (cf. Eqs. (26) and
(41)), and to ηK based on ηT (cf. Eq. (43)). For reference, we
also plot corresponding efficiencies for CD protocols. Parameters:
Ns = 150, ΩB = 10, λ0 = 5, g = 0.1, γxx = 0.05, and τr = 500/L.

As expected, CD always produces unit transfer efficiency
and zero kick efficiency. Moreover, LCD outperforms UA
by both efficiency measures in every polarization sector. The
top panel shows the transfer efficiency ηT , plotted against

N/L = M/L − 1/2.For both LCD and UA protocols, the trans-
fer efficiency decreases with N/L because the minimal gap
and the number of bright state pairs nB =

(L−1
N−1

)
increases with

N/L, in turn increasing the likelihood of diabatic transitions
between bright pairs. For LCD, the transfer efficiency is max-
imal (ηT = 1) in the sector with N = 1 because there is only
one bright state pair with gap ∆typ = ∆LCD to target.

The bottom panel shows the kick efficiency ηK , plotted
against N/L. For both LCD and UA, the kick efficiency in-
creases with polarization. This increase can be understood by
comparing the number nD of dark states to the number of bright
pairs nB within each sector. In the sector with N = 1, there are
(L − 2) dark states compared to a single pair of bright states,
which severely limits the pool of bright states that dark states
can transition to. As we probe increasingly larger N , nB even-
tually surpasses nD such that nB/nD → O(L) as N/L → 0.5.
The number of available bright states that dark states can tran-
sition to increases and thus enhances kick efficiency.

Fig. 4 also shows the analytic predictions (black curves) for
the transfer efficiency from Eq. (26) and (41), consistent with
the collapse of the curves. For LCD in fast ramps (41), the
only dependence of ηT is on m = M/L, consistent with the
collapse of ηT curves at different system sizes as a function
of spin flip density (N/L ∼ M/L + 1/2). The transfer effi-
ciency in Eq. (26) depends on both m and g2L/ Ûλ. To achieve
a collapse of curves at different system sizes, one must also
scale Ûλ ∼ L to eliminate the residual L dependence, yielding
a transfer efficiency which depends only on N/L. In practice,
the collapse can be achieved by scaling up λ0 ∼ L at fixed
ramp-time τr or scaling down τr ∼ 1/L at fixed ramp range;
in our simulations, we have implemented the latter. Both pre-
dictions show excellent agreement with simulation results in
most magnetization sectors, except near N ∼ O(1) where finite
size effects are significant. Such finite-size effects also lead
to the deviation of the numerically observed bright pair gap
distribution in Fig. 2 from the analytical one at large negative
values of M .

Remarkably, there is a simple approximate relation between
ηT and ηK for LCD and UA protocols in the presence of
z-disorder at moderate-to-fast ramps τ . τ0. Along with
Eqs. (41) and (26), this relation provides an analytical predic-
tion for the kick efficiency, such that the protocol efficiency
can be fully characterized analytically. Assume that the proba-
bility weight that is not successfully transferred to states with
up qubit polarization ergodically mixes between the available
dark and bright states with spin down. Then,

PD↓(τr ) ≈ PD↓(0)
nB(1 − ηT ) + nD

nB + nD
, (42)

which implies a kick efficiency

ηK = 1 −
PD↓(τr )

PD↓(0)
≈

nB

nB + nD
ηT =

N
(L − N)

ηT . (43)

The black curves in Fig. 4 show ηK computed using Eqs. (43),
(41) and (26). These analytic curves are in good agreement
with the numerical data for both LCD and UA. Note that the
derivation of Eq. (43) assumes equal mixing between dark and
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bright states: closer to integrable points, this assumption breaks
down, and an analytic relation between the transfer and kick
efficiency is no longer possible.

The resulting protocols hence depend on the interplay of
different effects across magnetization sectors: increasing m, the
total number of bright states capable of transfering polarization
increases, the average transfer efficiency decreases, and the
kick efficiency increases.

IV. HYPERPOLARIZING THE BATH

FIG. 5. Polarizing the spin bath. Expectation value of the bath po-
larization per spin 〈〈Sz

B
〉〉 along a sequence of Nc = 100 back and forth

cycles of the detuning λ across resonance. Top and bottom panels
show a typical realization for systems with zero and finite z-disorder,
respectively. The system is initialized in an infinite temperature state.
The forward-backward transfer flow between resets is illustrated by
the gold arrows. Grey dotted lines denote the polarization of the fully
polarized state. Parameters: L = 4, ΩB = 10, λ0 = 5, g = 0.1,
γxx = 0.05, γz = 0 (top), γz = 0.05 (bottom), and τr/τ0 ≈ 0.05.

We now turn to the performance of the various protocols
over multiple reset-transfer cycles. In particular, we show how
the ability of LCD to kick dark states enables complete bath
spin polarization.

Figs. 5 and 6 illustrate the progressive polarization of the
bath over multiple (Nc = 100) reset-transfer cycles in UA, CD,
and LCD protocols. We focus on fast sweeps τr/τ0 ≈ 0.05,
where the effects of LCD and UA are significantly differen-

FIG. 6. Spin bath polarization vs. cycle. Average bath polarization
per spin vs. cycle number with the same setup as in Fig. 5. Parameters:
Ns = 1, L = 4, ΩB = 10, λ0 = 5, g = 0.1, γxx = 0.05, γz = 0 (top),
γz = 0.05 (bottom), and τr/τ0 ≈ 0.05.

tiated. For this simple demonstration, we consider a qubit
coupled to 3 bath spins; however, the observed qualitative
behavior generalizes to larger baths (see Section V). In both
figures, we measure the expectation value of the average bath
spin polarization per spin:

〈〈Sz
B〉〉 =

1
L − 1

L−1∑
j=1
〈Sz

j 〉, (44)

where 〈Sz
j 〉 ≡ Tr[ρ(t)Sz

j ] is the expectation value of Sz
j in the

density matrix ρ(t) of the system at time t.
In Fig. 5, the bath polarization per spin is shown as a func-

tion of the detuning λ(t) across resonance. After each transfer
sweep, the qubit polarization is reset and the direction of the
ramp reversed; the resulting forward-backward motion is de-
picted by the gold arrows. Fig. 6 shows the corresponding bath
polarization per spin after every cycle.

In a typical realization of a system with a homogeneous
bath field (γz = 0), CD protocols at first quickly reduce the
bath polarization due to their maximal transfer efficiency, but
soon slow down and saturate as dark states become populated.
The saturation point lies well above the fully polarized state
(see grey dotted line 〈〈Sz

B〉〉 = −0.5). In contrast, UA protocols
are relatively inefficient and much slower to reach saturation,
requiring many more sweeps. LCD protocols perform only
slightly worse than CD and much better than UA; they eventu-
ally also saturate above the fully polarized state.

In a typical realization of a system with an inhomogeneous
bath field (γz = 0.05), CD protocols behave the same as in the
homogeneous limit, quickly polarizing the bath to a saturation
point. LCD protocols no longer saturate and can polarize the
bath close to the fully polarized state due to their non-zero kick
efficiency. Since the hyperpolarization scheme progressively
populates smaller M sectors, and the kick efficiency decreases
with decreasing M (see Fig. 4), the polarization rate per cycle
decreases as we 〈〈Sz

B〉〉 → −1/2. UA protocols, like LCD, are
able to fully polarize the bath, but their smaller kick efficiency
requires many more sweeps.
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V. SCALING TO LARGE BATHS

In this section, we explore how the number of cycles needed
to hyperpolarize the bath scales with system size L. So far
we focused on relatively small system sizes L . 10 to design
and test our protocols with accessible exact dynamic simu-
lations. To circumvent the resource cost of simulating exact
dynamics with larger system sizes, we introduce a scalable
master equation of the hyperpolarization process in terms of
probability flow equations which should be accurate at large
transfer speeds.

The state of the system after c transfer-reset polarization
cycles is given by:

P(c) =

[
®PB

®PD

]
=



PB,↓[0]
PB,↓[1]

...

PB,↓[L]
PD,↓[0]
PD,↓[1]

...

PD,↓[L]



(45)

where PB,↓[N] is the probability of finding the system in a
bright state with down qubit polarization in the sector with N
spin flips above the fully polarized state, and PD,↓[N] is the
probability of finding the system in a dark state with down
qubit polarization in the same sector. We do not track the prob-
abilities of bright and dark states with up qubit polarization, as
they are always converted to states with down qubit polariza-
tion after reset. Moreover, as there exist no dark states with
down qubit polarization for M ≥ 0, PD,↓[N] = 0 for N ≥ L/2.
Finally, we assume that the bath is fully characterized by the
probabilities in Eq. (45) and ignore any correlations in the
density matrix between individual dark and bright states since
the bath generally decoheres between different polarization
cycles. This assumption is justified a posteriori by compar-
ing the efficiencies predicted by the master equation to exact
simulations.

The dynamics of the system is obtained by applying a trans-
fer matrix T :

P(c + 1) = T P(c), (46)

where the transfer matrix can be schematically written as

T =

[
TBB TBD

TDB TDD

]
. (47)

The transfer efficiency ηT sets the probability that the qubit
polarization is flipped in bright states during a sweep across
resonance. On the other hand, the kick efficiency ηK sets the
probability that dark states are kicked into bright states. We
assume that dark states with down qubit polarization are only
kicked into bright states with down qubit polarization. When
the qubit polarization is reset after each sweep, bright states

FIG. 7. Effective model. Schematic representing the action of the
transfer matrix through the efficiency functions η and reset rates r
in bright (red) and dark (black) manifolds in two neighboring po-
larization sectors N = i + 1 and N = i during a single polarization
(transfer+reset) cycle.

with qubit state |↑〉 transition to either bright states (with |↓〉)
or dark states (with |↓〉) in a lower magnetization sector, with
relative probability rB and rD , respectively. Therefore, the
non-zero matrix elements of the transfer matrix are given by:

TBB[i, i] = 1 − ηT [i] (48)
TBB[i − 1, i] = rB[i] ηT [i] (49)
TDB[i − 1, i] = rD[i] ηT [i] (50)
TDD[i, i] = 1 − ηK [i] (51)
TBD[i, i] = ηK [i] (52)

for every sector index i = 0, . . . , L. Fig. 7 illustrates the transfer
and reset rates for a single cycle. Note rB[i] + rD[i] = 1, so
only one reset rate needs to be specified.

As shown in Section III, the different protocols CD, UA, and
LCD have different efficiency functions ηT [i] and ηK [i]. Here,
we consider moderate-to-fast ramp speeds (τr . τ0) where
LCD and UA have distinct effects. Since we are interested
in obtaining the scaling of the full protocol, we linearize the
previous expressions and model the kick efficiency for LCD
and UA as

ηK [i] = η0
i
L

; (i ≤ L/2), (53)

and model the corresponding transfer efficiency ηT [i] (i ≤
L/2) using Eq. (43).

The reset rates rD[i] and rB[i] depend on the probability
distribution of the state within each bright/dark band and details
of the structure of eigenstates. Furthermore, these rates can
drastically change from one disorder realization to another and
are hence difficult to predict. To get a reasonable estimate for
our master equation, we take rD[i+1] and rB[i+1] proportional
to to the number of accessible dark and bright states in the ith

sector, respectively. For M ≥ 0, all the weight is transferred to
bright states,

rB[i + 1] = 1, M ≥ 0, (54)

since dark states have qubit spin up and are not accessible
during reset. For M < 0, dark states have qubit spin down and
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become accessible, such that

rB[i + 1] =
nB[i]

nB[i] + nD[i]
, M < 0, (55)

with nD and nB given by Eqs. (9) and (16), and we refer to this
reset rate as well-mixed. Although we cannot generally satisfy
the equiprobable condition within every bright band, we expect
to approximately have well-mixed reset rates on average in
large disordered systems.

We test the master equation in Fig. 8, which compares UA,
CD, and LCD dynamics with Eq. (46) to the corresponding
exact dynamics for different system sizes (L = 4, 8). The figure
plots the average bath polarization per spin over many cycles
for a single disorder realization. Our master equation agrees
well with the results from exact dynamics for all protocols,
justifying the assumptions in Eq. (45). The exact dynamics
is computed at small ramp times τr ≈ 0.05 τ0. To properly
capture protocol efficiencies at this ramp speed, we set η0 ≈ 1.0
for LCD and η0 ≈ 0.4 for UA in accordance with the results in
Fig. 4.

FIG. 8. Spin bath polarization vs. cycle. Average bath spin
polarization after every transfer-reset cycle over many cycles. The
left and right panels show simulation results for systems of size L = 4
and L = 8, respectively. Colored markers indicate numerical results
using our scalable master equation. Solid colored lines correspond to
exact dynamics simulations. Parameters: Ns = 1, ΩB = 10, λ0 = 5,
g = 0.1, γxx = 0.05, γz = 0.05, and τr = 500/L.

The master equation allows acces to much larger system
sizes compared to exact diagonalization. Fig. 9 shows the
number of cycles Nc required to reach 99% of the polarization
of the fully polarized state against system size L. The opaque
and faint curves denote master equations capturing τr = 0.01 τ0
and τr = 0.05 τ0, respectively.

We find that the number of polarization cycles needed to
fully polarize the bath in both LCD and UA protocols scales
linearly with system size L. The main difference between LCD
and UA is in the prefactor, depending on protocol duration, and
which can be orders of magnitude larger in the UA protocol
compared to the LCD protocol at sufficiently fast ramps. In
slower ramps τr > τ0 (not shown), LCD and UA have similar
prefactor, but the prefactor for UA however increases as τr
is decreased. Our results are consistent with the expectation

that as τr → 0, UA takes progressively more cycles to fully
polarize the bath. Thus, moderate-to-fast LCD is not only time-
efficient but also optimizes the number of cycles required to
reach the fully polarized state.

We conclude this section with a couple of remarks. (i)
The master equation is applicable at sufficiently fast ramp
times τr < τ0 ∼ λ0 ∆

−2
min, where ∆min ∼

√
L g in the lowest

polarization sectors. To ensure this condition holds as L →∞,
we scale λ0 ∼ L. Otherwise at fixed λ0 and sufficiently large
L ∼ λ0/(τr g

2
), the master equation would need to be refined

to properly account for more complicated speed dependencies
in the transfer and kick efficiencies. (ii) Similarly, our master
equation is based on efficiency measurements at sufficiently
large z-disorder, where γz & ∆2

min/λ0. In the lowest energy
sectors, this requires γz & L g2

/λ0. Again, the L dependence
can be cancelled by scaling λ0 ∼ L.

VI. FLOQUET ENGINEERING (FE) OF LCD

The physical implementation of the LCD protocol requires
realizing a non-trivial operator [H, Sz

0 ]. We show how it is
possible to obtain this LCD Hamiltonian as an effective high-
frequency Hamiltonian through Floquet engineering.

Floquet engineering focuses on the design and physical ef-
fects of periodic drives [84]. A periodically driven system
exhibits dynamics which can be described stroboscopically
using an effective slow/static Floquet Hamiltonian HF . Fre-
quently, a control is periodically modulated at a frequency
scale ω larger than any other dynamical frequency in the sys-
tem, and HF can be (Magnus) expanded in powers of ω−1 [84].
In addition to capturing high-frequency physics, the Magnus
expansion has a commutator structure closely related to the
structure of the gauge potential in Eq. (34), and can be used to
realize local counterdiabatic driving at every order [55].

FIG. 9. Number of cycles to 99% polarization vs. system size.
Master equation simulation results are shown for UA (dashed black)
and LCD (solid red) protocol. Opaque curves show results for η0 =
1.0 set for LCD and η0 = 0.1 set for UA, which model ramps with
τr = 0.01 τ0. At this ramp speed, we find Nc ≈ 4L for LCD and
Nc ≈ 40L for UA. Faint curves show results for η0 = 1.0 set for LCD
and η0 = 0.4 set for UA, which model ramps with τr = 0.05 τ0. At
this ramp speed, we find Nc ≈ 4L for LCD and Nc ≈ 10L for UA.
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A. Two-level system

In order to give some intuition for the many-body Floquet
protocol, we illustrate the general ideas on the two-level sys-
tem of Eqs. (8) and (28). Temporarily dropping the bright
state label and making the time-dependence implicit, the CD
Hamiltonian to be realized can be written as

HCD = λS̃z + ∆S̃x + Ûλα1∆S̃y . (56)

In an experimental set-up only λ is an accessible control pa-
rameter, whereas ∆ is constant and the S̃y term is absent (as
it corresponds to a complex many-body operator acting on
the bright pair states). In order to realize HCD as an effective
Hamiltonian, we consider a LZ Hamiltonian and add high-
frequency oscillations modulated by a slowly-varying ampli-
tude. Specifically, we consider a time-dependent Hamiltonian
of the form

HFE(t) = γ(t)S̃z + ∆S̃x
+

[
β(t)ω sin(ωt) + Ûβ(t)(1 − cos(ωt))

]
S̃z, (57)

with β(t) and γ(t) slowly-varying functions to be determined.
The choice of this time-dependence is motivated by the re-

sulting effective Hamiltonian: in the limit of a large driving fre-
quency ω, the stroboscopic dynamics for this time-dependent
Hamiltonian is generated by the Floquet Hamiltonian (derived
in Appendix H)

HF = γS̃z + J0(β)∆
[
cos(β) S̃x − sin(β) S̃y

]
, (58)

where the slow time-dependence has been made implicit and
J0 is a Bessel function of the first kind.

The effective Hamiltonian is of the form (56), containing a
S̃y term not present in the instantaneous Hamiltonian. How-
ever, in the CD Hamiltonian the prefactor of S̃x is constant
and the prefactor of S̃y is time dependent. Since the (slow)
time dependence of these terms in the Floquet Hamiltonian is
determined by the same factor β(t), it is not possible to directly
realize the CD Hamiltonian in this way. Rather, we can realize
a Hamiltonian proportional to the CD Hamiltonian.

Demanding HF = G(t)HCD , the prefactor for S̃x immedi-
ately returns the time-dependent prefactor of the full Hamilto-
nian as

G(t) = J0(β(t)) cos(β(t)). (59)

Time evolution follows the time-dependent Schrödinger equa-
tion

i∂t |ψ(t)〉 = G(t)HCD |ψ(t)〉 . (60)

Defining a ‘rescaled time’ s(t) such that ∂s = G(t)∂t , Eq. (60)
can be used to realize counterdiabatic control in the rescaled
time provided i∂s |ψ(t(s))〉 = HCD(s(t)) |ψ(s(t))〉. The counter-
diabatic term is obtained by setting

tan(β(t)) = −α1(s(t)) Ûλ(s(t)), (61)

determining β(t) as function of α1(t), leaving

γ(t) = G(t)λ(s(t)), (62)

to finally return HF = G(t)HCD(s(t)). Note that the experimen-
tal time necessarily runs in the positive direction, requiring
G(t) > 0 and β ∈ [−π/2, π/2].

B. FE protocol

The ideas in Section VI A can be immediately extended to
the many-body Hamiltonian and LCD of Eq. (36). Given a
target LCD ramp with λ(t) = ΩQ(t) −ΩB, we drive the system
with the Floquet engineered (FE) Hamiltonian:

HFE = H(Λ(t)), (63)

with a modified field detuning Λ(t) = ΩQ(t) −ΩB given by

Λ(t) = J0(β(t)) cos(β(t)) λ(s(t))
+ β(t)ω sin(ω t) + Ûβ(t) (1 − cos(ω t)). (64)

Following Eq. (61), we set

β(t) ≡ arctan
(
−

dλ(s(t))
ds

α1(s(t))
)
, (65)

and the rescaled time s = s(t) satisfying ds = G(t)dt is defined
as

s =
∫ t

0
J0(β(t ′)) cos(β(t ′)) dt ′ > 0. (66)

This FE Hamiltonian is designed precisely so that the leading
order approximation to its Floquet Hamiltonian HF in the high-
frequency limit is the LCD Hamiltonian in the rescaled time:

HF = H(λ(s)) + i
dλ(s)

ds
α1(s)[H(λ(s)), ∂λH] + O

(
1
ω

)
. (67)

More specifically, the effective Floquet Hamiltonian is found
as (see Appendix H)

H̃F =G(t)
[
λ(s(t)) Sz

0 +
∑
j

δΩ′j Sz
j

+
∑
j

gj (Sx
0 Sx

j + Sy
0 Sy

j ) − tan(β(t)) i [H, Sz
0 ]

]
, (68)

where δΩ′j ≡ (ΩB, j −ΩB)/G(t) is the renormalized z-disorder.
The FE protocol is stroboscopically equivalent to LCD with
ALCD in Eq. (35). Moreover, in a smooth ramp λ with Ûλi =
Ûλ f = 0, HFE and HF yield the exact same initial and final
states, which guarantees that FE and LCD produce the same
polarization transfer during our hyperpolarization scheme.

We remark that HF equals HLCD only in the absence of z-
disorder (γz = 0). At finite z-disorder (γz > 0), the two differ
due to the renormalization δΩ′j of the bath fields. Away from
this point, the renormalization tends to enhance z-disorder
since G(t) ∈ [0, 1]. No significant quantitative differences in
performance were found between FE (in lab time) and LCD
(in rescaled time) with renormalized disorder, as shown next.
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FIG. 10. Floquet engineered ramp. Top panel shows the FE ramp
Λ(t) (solid colored curves) as a function of time t for ramp times
τr = 0.025, 0.5, 1.0. The target ramp λ(t) (dashed black curve) is
shown for reference. The bottom panel shows the effect of FE ramps
on the mean qubit polarization 〈Sz0 (t)〉 over the course of the ramp at
τr = 0.25, 0.5. The corresponding LCD curves are shown to coincide
with the FE curves. Curves for UA and CD at τr = 0.05 τ0 are
shown for reference. Parameters: L = 8, ΩB = 10, Λ0 = λ0 = 5,
g = 0.1, γxx = 0.05, γz = 0.05, τ0 ≈ 1000, and ω = 100 (Note: For
display, we have graphically reduced ω by a factor 10 to decrease
curve density).

The upper panel of Fig. 10 showcases the FE ramp Λ(t) in
Eq. (64) for various ramp times τr . The vertical axis is re-
scaled by the magnitude of the initial/final detunings Λ0 ≡ λ0,
which are designed to coincide with the target ramp at the ramp
endpoints. The target ramp λ(t) is shown for reference (dashed
black curve). Near the adiabatic breakdown time τr/τ0 = 1,
the FE ramp Λ(t) has a base profile (averaging out the oscil-
lations) similar to λ(t), with small oscillation amplitudes that
get slightly more pronounced in the middle of the ramp around
resonance. For progressively faster ramps τr/τ0 = 0.05, 0.025,
the FE ramp Λ(t) shows more pronounced deviations from
λ(t). First observe that the base profile of FE changes, keeping
the system near resonance for a progressively larger amount
of time. Moreover, the amplitude of the high-frequency oscil-
lations around resonance progressively increases due to β(t)
in Λ(t). Physically, these properties ensure the qubit and bath
interact strongly and long enough to effect polarization transfer
in accordance with LCD.

The lower panel of Fig. 10 serves two purposes: (i) to show

the effect of FE on the mean qubit z-polarization 〈Sz
0 〉 over the

course of a sweep, and (ii) to highlight the equivalence of FE
and LCD protocols. The qubit is initialized with spin down
〈Sz

0 〉 = −0.5 in a mixed state. Over the course of the ramp Λ(t),
FE (solid colored curves) transfers a large fraction of the qubit
polarization to the bath in perfect agreement with LCD (dashed
white lines). For reference we also show an UA protocol at
τr/τ0 = 0.05 (dashed black curve); as expected it is much less
efficient compared to FE/LCD and CD at this ramp speed.

In sum, we can systematically realize LCD with FE, where
the LCD protocol can be implemented indirectly in experi-
ments by driving the local qubit field ΩQ(t) periodically at
high-frequencies ω � ΩQ,ΩB, τ

−1
r . Importantly, the FE pro-

tocol requires no controls which are not already present in H
in Eq. (2), similar in spirit to Ref. [59]. It can be achieved by
setting a fixed global field ΩB and dynamically varying ΩQ(t),
without modifying the qubit-bath interactions. This result dif-
fers from other schemes which require controlling interactions
to realize LCD with Floquet engineering [55, 57, 58].

C. Quantum Speed Limit

The distinction between the lab time t and the rescaled time
s gives rise to a quantum speed limit. Namely, there exists a
critical ramp time τr = τSL > 0 in the lab frame for which
the protocol duration τS in rescaled time becomes zero and
β → π/2. Given sufficiently large driving frequencies, it is
always possible to realize LCD using FE if the LCD ramp time
is larger than this critical ramp time. However, at shorter ramp
times, the proposed protocol would lead to negative protocol
durations in stretched times, and the FE protocol can no longer
realize LCD. The speed limit can derived (see Appendix I) by
inverting Eq. (66):

τSL = lim
s→0

∫ s

0
[G(t(s′)]−1ds′ ∼ ∆−1

typ. (69)

The timescale τSL is set by the typical bright pair gap ∆typ,
which is on the order of the time needed to transfer polarization
from the qubit to the bath while sitting at resonance. In fact,
the profile G(t)λ(s(t)) of the FE protocol in Eq. (63) reduces
to a sudden quench protocol to resonance as τ → τSL .

Eqs. (64) and (69) provide an additional connection be-
tween sudden and adiabatic polarization protocols: Floquet-
engineering implements the adiabatic polarization protocol in
a transformed frame, which resembles a sudden protocol in
the lab frame when the speed limit is approached. For ramps
faster than the speed limit τr/τSL < 1, FE can be extended
by taking Λ(t) = π

2 ω sin(ω t); then FE effectively oscillates
around resonance for a shorter time than τSL and is no longer
as effective as LCD.

This speed limit is quantified in Fig. 11, showing the transfer
power vs. ramp time for several transfer protocols across
resonance. The transfer power is defined as

∆Sz
0

τr
=
〈Sz

0 (λ f )〉 − 〈S
z
0 (λi)〉

τr
, (70)
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FIG. 11. Power vs. protocol time. Disorder-averaged transfer power
against the scaled ramp time τr/τ0 for UA, CD, and FE protocols. The
vertical axis is scaled by (1/τSL) (grey dash-dotted line). The vertical
blue solid line marks the disorder-averaged speed limit timescale τSL .
Parameters: Ns = 50, L = 8, ΩB = 10, Λ0 = λ0 = 5, g = 0.1,
γxx = 0.05, γz = 0.05, τ0 ≈ 1000, and ω = 100.

measuring the rate at which polarization is extracted from the
qubit per unit ramp time. In the absence of tunable qubit-bath
interactions, the maximum possible polarization transfer is a
unit of polarization on the timescale τSL , shown in the plot as
a grey dash-dotted line. We find that UA protocols operate far
below this rate over the whole range of ramp times. On the
other hand, FE protocols significantly enhance power, peaking
in the vicinity of the speed limit. At protocol durations τ > τSL
FE nears the efficiency of CD protocols which, as expected,
transfers polarization more effectively than UA and FE per
unit time. At protocol durations τ < τSL , the FE power lies
significantly below the CD power.

The presence of this speed limit suggests a broader physical
limitation: Any ramped protocol which does not directly tune
system-bath couplings or add extra controls cannot transfer
polarization at a faster rate than a sudden resonant exchange.

VII. CONCLUSION

In this work, we apply the tools of shortcuts to adiabaticity
to a class of hyperpolarization protocols. In a single cycle of
each such protocol, the qubit is reset along the −z direction by
an external pulse, after which the z-field of the qubit is swept
across a resonance region. Polarization is transferred from the
qubit to the spin bath during the sweep.

We introduce local counterdiabatic driving (LCD) proto-
cols that mimic an adiabatic protocol. The LCD protocols
simultaneously tackle two problems: (i) the small sweep rates
necessary for the adiabatic transfer of polarization to the bath,
and (ii) the limits on hyperpolarization imposed by dark states.
The LCD protocols tackle (i) by efficiently suppressing dia-
batic transitions between bright bands. They tackle (ii) by
depleting dark states in the presence of inhomogeneous bath
fields (i.e., when the system is non-integrable). In this way,
LCD protocols outperform both unassisted protocols and exact
counterdiabatic protocols since the former does not suppress

transitions between bright bands and the latter suppresses tran-
sitions from dark to bright bands.

Using exact numerics and a master equation, we show that
the LCD protocols outperform the unassisted ones by various
metrics (efficiency, power, and number of cycles). Addition-
ally, the LCD can be experimentally implemented through a
high-frequency Floquet drive on the qubit. These engineered
protocols have a natural quantum speed limit; once the sweep
rate exceeds this limit, the LCD protocols cannot be realized
through Floquet drives.

The LCD may be used to speed up hyper-polarization in
several experimental systems with dipolarly interacting spins.
Indeed, Eq. (2) models the (rotating-frame) Hamiltonian of a
shallow nitrogen-vacancy (NV) defect coupled to surface elec-
tronic spins in high-purity diamond [79, 85, 86], as well as the
(rotating-frame) Hamiltonian of a NV defect coupled to bulk
C-13 nuclei [7, 12] or the nuclei of external molecules in solu-
tion [17]. A promising avenue for future work is to compare the
performance of LCD protocols to sudden protocols that satisfy
the Hartmann-Hahn condition [87] in these systems. Hyper-
polarization of powdered diamond using NV-centers [12, 14]
is also an important goal for magnetic resonance imaging. It
would be interesting to develop LCD protocols that account for
the random orientation of the NV center axes (the z-direction
of the central spin in Eq. (2)) in these systems. An additional
direction for future work is to use optimal control theory to
design possibly more efficient protocols and test the validity
of the speed limit. However, such a numerical optimization
problem in the many-body setting is expected to be highly
complex. In contrast, the LCD approach, while not guaranteed
to be optimal, is readily extended to more complex systems
with an arbitrary number of spins and arbitrary interactions.

Theoretically, our work raises questions about the precise in-
terplay between integrability and hyperpolarizability in central
spin models. The model in Eq. (2) with γz = 0 is (i) inte-
grable, and (ii) has exact dark states for any choice of gj [34].
However, the closely related XXX model with γz = 0 and
isotropic qubit-bath interactions

∑
j gj ®S0 · ®Sj is integrable with-

out exhibiting dark states [88, 89]. The XXX model describes
the hyperfine interactions of the electronic spin of a quantum
dot with surrounding nuclei [90, 91]. Previous work [31, 92]
suggests that the spin bath can be efficiently polarized in the
XXX model despite its integrability. A natural direction for
future work is to quantify the general role of integrability in the
polarization process. Another possible direction is to examine
the role of interactions in the spin bath. The accompanying
diffusive spin transport is expected to aid in the polarization of
distant bath spins with negligible gj .
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Appendix A: Derivation of central spin Hamiltonian

Consider a driven qubit-bath spin system in a magnetic field
B along the z-direction described by the Hamiltonian:

H0 = HQ + HB + HD + HQB + HBB, (A1)

Here HQ = γQ B Sz
0 is the Zeeman energy of the central qubit

with gyromagnetic ratio γQ, and HB = γB B
∑L−1

j=1 Sz
j is the

Zeeman energy of the bath spins with gyromagnetic ratio γB.
The driving term is given by

HD = 2ΩQ cos(ωQt) Sx
0 + 2 cos(ωBt)

L−1∑
j=1
ΩB, j Sx

j (A2)

where ΩQ is a Rabi amplitude on the central spin, ΩB, j =

ΩB + δΩj is a generally inhomogeneous Rabi amplitude on the
bath, and ωQ, ωB are respectively the corresponding driving
frequencies. The qubit-bath coupling is given by a dipole
interaction term:

HQB =
∑
i

γQγB

r3
i

[
®S0 · ®Si − 3 ( ®S0 · r̂i) ( ®Si · r̂i)

]
(A3)

where ®ri is the vector between the central qubit and the ith

bath spin. The interaction term HBB between bath spin pairs
is generally also dipolar. In this work, we assume bath-bath
interactions are small compared to the qubit-bath couplings,
which is realized in experiments with sufficiently low bath
spin density or with bath spins that satisfy γB � γQ. The
Hamiltonian H0 in Eq. (A1) describes single qubit systems,
such as NV centers in diamond or quantum dots, interacting
with an ensemble of spins (e.g. spins on the surface of di-
amond) and driven by continuous irradiation fields (such as
radio waves) [5, 16, 17, 19, 23, 24, 38].

In a doubly rotated frame defined by the unitary transforma-
tion

U = exp
[
− i

(
ωQ Sz

0 + ωB

L−1∑
i=1

Sz
i

)
t
]
, (A4)

H0 can be simplified by matching the driving frequencies to
the Zeeman energies (ωQ = γQB, ωB = γBB), and applying
a rotating wave approximation to eliminate rapidly rotating
non-secular terms which average to zero on the timescale of
the dynamics [24]. Relabeling our axes (x, z) → (z,−x), the
dominant time-averaged motion is described by

Hrot(t) = ΩQSz
0 +

L−1∑
j=1
ΩB, jSz

0 +
L−1∑
j=1

2 gj Sx
0 Sx

j (A5)

where

gj ≡
γQγB

2 r3
i

[1 − 3 cos2(θi)], (A6)

and θi is the angle between ®B and ®ri in the frame of H0.
We note our rotating wave approximation requires |gj/B | �
γQ , γB , |γQ ± γB | , which is readily satisfied in NV centers or
quantum dot experiments [16, 18].

The interaction term

Sx
0 Sx

j =
1
4
(
S+0 S−j + S−0 S+j + S+0 S+j + S−0 S−j

)
(A7)

describes zero quantum (flip-flop) transitions in its first two
terms, and double quantum (flip-flip/flop-flop) transitions in-
teractions in its last two terms. Zero quantum transitions dom-
inate when gj � ΩQ + ΩB, j [24], yielding the Hamiltonian
presented in the main text:

H(t) = ΩQ Sz
0 +

L−1∑
j=1
ΩB, j Sz

j +
1
2

L−1∑
j=1

gj
(
S+0 S−j + S−0 S+j

)
. (A8)

Appendix B: Distribution of energy gaps in the homogeneous
limit

In this section, we compute the approximate distribution of
bright pair gaps ∆α (Eq.(14)) in a system with a homogeneous
bath field (γz = 0).

In the homogeneous limit (γxx = 0), the central spin model
reduces to a two-body Hamiltonian

H = λSz
0 +

g

2
(
S+0 S− + S−0 S+

)
, (B1)

with S± =
∑L−1

j=0 S±j . The spectrum of this Hamiltonian can be
obtained in the collective bath spin basis, as the Hamiltonian
only couples the states: |↑〉 ⊗ |s,m〉 , |↓〉 ⊗ |s,m + 1〉. Here s is
the total spin quantum number of the bath, and m is the total
z-projection of the bath state, leading to M = m + 1/2. We
take −s < m < s, since the states |↑〉 ⊗ |s, s〉 and |↓〉 ⊗ |s,−s〉
are dark eigenstates of the Hamiltonian.

The energy in each two-dimensional subspace is fully deter-
mined by the quantum numbers s and m, leading to energies
±∆s,m/2 at resonance given by

∆s,m = g
√
(s − m)(s + m + 1). (B2)

The number of gaps equal to ∆s,m is fully determined by the
number of ways the (L − 1) spin-1/2 bath spins can be coupled
to a collective spin s with spin projection m. Furthermore,
since m < s and m is fixed by specifying M, this also leads
to a minimal gap within each polarization sector M , given by
∆m = g

√
2M + 1, obtained by setting s = m + 1 = M + 1/2.

Increasing s resulting in an increasing ∆s,m, whereas smaller
values of s are not allowed within this polarization sector.

Given (L − 1) bath spins, the number of spin-s representa-
tions is given by Catalan’s triangle as

Ns(L) = C ((L − 1)/2 + s, (L − 1)/2 − s) (B3)
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=
(L − 1)!(2s + 1)

(L/2 − 1/2 − s)!(L/2 + 1/2 + s)!
, (B4)

which can be approximated for large L as

Ns(L) ≈
eL fs (1/2−s/L)
√

2π
2s + 1

L/2 + s + 1

√
L

(L/2 − s)(L/2 + s)
,

(B5)
with fs(p) = −p ln(p)−(1−p) ln(1−p). The total magnetization
M fixes m such that the energy gap only depends on s, and we
can introduce a gap density as

n(∆) = Ns(∆)(L)
ds
d∆

, (B6)

with s(∆) =
√
(∆/g)2 + M2 − 1/2 and

ds
d∆
=

∆/g2√
(∆/g)2 + M2

. (B7)

As mentioned before, every fixed magnetization sector has a
minimal gap, which we write as ∆m ≡ g

√
2M + 1, such that

n(∆ < ∆m) = 0. Due to the presence of the exponential term, in
the limit of large L all integrals over n(∆)d∆ will be dominated
by the boundary terms where ∆ ≈ ∆m. Approximating the
exponential factor at s/L = |M |/L ≡ m̃ for ∆m < ∆ � gM,
we find

n(∆) ≈ K(m̃)
eL fs (1/2−m̃)
√

2πL

∆

∆2
m

(
1 − 2m̃
1 + 2m̃

) ∆2

∆2
m
, (B8)

with

K(m̃) =
4m̃

1/2 + m̃

√
1

1/4 − m̃2 . (B9)

Appendix C: Diabatic transitions in the Landau-Zener problem

The Landau-Zener (LZ) problem, described in Eq. (8) of
the main text, consists of a two-level system with gap ∆LZ =√
λ2 + ∆2, where λ is a control field and ∆ is the minimum

gap [80, 81].
When the control field is varied at a speed Ûλ ∼ λ0/τr , we

can estimate the speed scale below which the system remains
adiabatic. Adiabaticity occurs when the rate of change of the
gap ∆ is smaller than the dynamical timescale over the whole
range of the control field λ. In particular, this condition holds
if it is satisfied near resonance (|λ | ∼ ∆) where the gap is
smallest. (

Û∆LZ

∆LZ
� ∆LZ

) ����
λ=∆

=⇒ Ûλ � ∆2. (C1)

Therefore we satisfy the adiabatic condition when the ramp
timescale τr � λ0/∆

2. In faster ramps moreover, the scale
τ0 ∼ λ0/∆

2 sets the scale for the onset of diabatic transitions.
As discussed in the main text for our central spin model, the

LZ problem directly captures the interactions between bright

bands. Nevertheless, the LZ problem can also help understand
transitions between dark and bright bands, as we discuss next.

In system with γz = 0, the gap ∆DB between a dark state
with energy ED and a neighboring bright state with energy EB

is given by

∆DB = |EB − ED | =
1
2

√
λ2 + ∆2

min ±
1
2
λ, (C2)

since ED = ±λ/2 and EB = ±
1
2

√
λ2 + ∆2

min and where
∆min ≡ minα∆α is the minimum bright-bright gap at reso-
nance. At resonance, the gap is ∆DB = ∆min/2, comparable
to the minimum bright-bright gap. In contrast with bright-
bright gaps, dark-bright gaps are smallest furthest away from
resonance λ = ±λ0:

min∆DB ≈
1
4

(
∆min
λ0

)2
λ0. (C3)

In systems with γz = 0, the presence of a small bright-dark gap
does not imply fast ramps yield diabatic transitions because
the driving operator Sz

0 does not couple bright and dark states.
When z-disorder γz > 0 is introduced in the bath field,

dark and bright bands mix and γz sets an energy window for
perturbed dark/bright energies. Then the perturbed dark and
bright bands will begin to overlap at a critical z-disorder γcz
given by

γcz ∼ min∆DB ∼ ∆
2
min/λ0. (C4)

For γz & γcz , the gap between dark and bright bands is effec-
tively closed away from resonance. Then dark-bright transi-
tions depend on the many-body level spacing ∆E � min∆DB.
Therefore, any finite-speed ramps will yield dark-bright dia-
batic transitions provided

τr . λ0/(∆E)2. (C5)

On the other hand, for small but finite z-disorder regime 0 <
γz � γcz , Eq. (C3) accurately approximates the dark-bright
minimum gap. The ramp timescale for the onset of diabatic
dark-bright transitions is then given by:

τr ∼ λ0/(min∆DB)
2 ∼ λ3

0/∆
4
min. (C6)

Appendix D: LCD with a gapless model

Our main work has focused on the weak disorder limit
γxx, γz < g, in which there is a clear non-zero gap between the
bright bands at numerically accessible system sizes. Although
there is weak trend suggesting that the gap may close in the
thermodynamic limit, it is not clear from the numerics whether
and how this gap will close. In this section, we show that the
LCD protocols are still efficient for polarization transfer and
depopulating dark states in a gapless system.

To probe a gapless system, we consider the strong xx-
disorder limit γxx � g of the Hamiltonian model in equa-
tion (2). Then bright pair gaps have the the gap distribution
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FIG. 12. Histogram of resonant gaps at large xx-disorder
strength. Plot shows histogram of resonant gaps for γxx = 0.5
at L = 14 and M = −1. Vertical dashed grey lines shows refer-
ence scale ∆typ. Parameters: Ns = 1, ΩB = 10, M = −1, λ = 0,
g = 0.1,γz = 0.00, L = 14.

shown in Fig. 12. Although many bright pairs show exponen-
tially small gaps, the bulk of the distribution lies on the energy

scale ∆typ =
√∑

j g
2
j , as shown by the dashed grey vertical

line.
Fig. 13 shows the transfer and kick efficiency for CD, LCD,

and UA protocols as a function of ramp time τr at large xx-
disorder γxx = 5, g = 0.5. For concreteness, we focus on the
magnetization sector M = −1 with large Hilbert dimension to
bring out the exponential closing of the smallest gaps. Since the
minimum bright pair gap is exponentially small5 in L, making
τ0 ∼ ∆

−2
min exponentially large, we rescale the horizontal axis

instead by τtyp ≈ 2λ0/
∑

j g
2
j , which sets the scale for the onset

of diabatic transitions between a typical bright pair in the bulk
of the spectrum. The behavior of all protocols is qualitatively
similar to the weak disorder limit. In particular, our LCD
protocol maintains a relative high transfer efficiency and non-
zero kick efficiency at fast ramp speeds. This is to be expected
since LCD suppresses transitions by targeting a single bright
pair gap ∆typ, which is the gap scale for the bulk of bright pairs.

Appendix E: Breaking integrability with z-disorder

Energy level statistics are a widely used diagnostic for er-
godicity and chaos [93–95]. The average level spacing ratio
〈r〉 is obtained by averaging over an ordered distribution of en-
ergies {En} the ratio rn = min(sn, sn−1)/max(sn, sn−1), where
sn = En+1 − En [95, 96]. In integrable systems satisfying a
Poisson distribution of energy spacings, 〈r〉 ≈ 0.3863, while
ergodic systems are expected to satisfy a Wigner-Dyson dis-
tribution in accordance to a grand orthogonal ensemble with
〈r〉 ≈ 0.5307.

5 For comparison with the main text, at weak xx-disorder, ∆min ∼ g in this
magnetization sector at accessible system sizes.

FIG. 13. Efficiency vs. ramp time at large xx-disorder. Disorder-
averaged transfer efficiency (top) and kick efficiency (bottom) of
UA, CD, and LCD protocols in systems with γz = 0.00 (crosses)
and γz = 0.05 (squares).Parameters: Ns = 100, L = 10, M = −1,
ΩB = 10, λ0 = 5, g = 0.1, γxx = 0.5, and τtyp ≈ 10.

Fig. 14 shows 〈r〉 for a range of detunings λ around reso-
nance and multiple system sizes. We average the level spacing
ratio over the middle two quartiles of the spectrum in the sector
M = −1 and further average over Ns = 100 disorder realiza-
tions. The left panel shows a system with γz = 0, where the
ratio 〈r〉 tends to the Poisson value with increasing system
size over the whole range of detunings. In contrast, the right
panel shows a system with γz = 0.05, where 〈r〉 tends to the
Wigner-Dyson value with increasing system size around res-
onance λ ≈ 0. This behavior suggests that γz > 0 breaks the
integrability of model and establishes chaos and ergodicity.

Appendix F: Gauge potential in the absence of z-disorder

In the presence of a homogeneous global bath field ΩB,
the central spin Hamiltonian H is integrable and varying λ(t)
constitutes an integrable perturbation [34]. Then the closed
form of the gauge potential Eq. (32) is obtained from Eq. (34)
as follows. Let ∆H ≡ H −ΩBM . Then it can be checked that

[H, Sz
0 ] = [∆H, Sz

0 ] = i
∑
j

gj(Sx
0 Sy

j − Sy
0 Sx

j ), (F1)

∆H[∆H, Sz
0 ] = −[∆H, Sz

0 ]∆H. (F2)
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FIG. 14. Average level spacing ratio vs. qubit field detuning. The
average ratio 〈r〉 is shown for several system sizes L. Left panel
(homogeneous bath field) shows a trend toward Poisson statistics
with increasing system size. Right panel (inhomogeneous bath field)
reveals a trend toward GOE statistics around resonance. Grey dashed
lines indicate the Poisson and GOE values. Parameters: Ns = 100,
M = −1, ΩB = 10, λ0 = 5, g = 0.1, γxx = 0.05, γz = 0.0 (left),
γz = 0.05 (right).

The exact gauge potential satisfies [49]

[∂λH + i[Aλ,H],H] = 0, (F3)

which can be solved for ∂λH = Sz
0 using Eq. (F2) by

Aλ = −
i
4
(∆H)−2 [∆H, Sz

0 ]. (F4)

The pseudo-inverse only acts on the bright states, where we
can expand it as

(∆H)−2 = 4
∑
α

1α

λ2 + ∆α2
. (F5)

This reduces to a constant in each bright-state subspace, and
returns the total gauge potential as

Aλ = −
∑
α

∆α

λ2 + ∆α2
S̃y
α . (F6)

An alternative way of motivating this solution is by noting
Eq. (F2) implies that

[H, [H, . . . [H︸          ︷︷          ︸
k

, [H, Sz
0 ]] = (2∆H)k [∆H, Sz

0 ] = 2∆H[∆H, Sz
0 ]

Since all nested commutators are proportional to [∆H, Sz
0 ], the

commutator expansion for the gauge potential implies that the
gauge potential itself needs to be proportional to this commu-
tator up to a ∆H-dependent prefactor [55].

Appendix G: Local variational approximations of the gauge
potential

The gauge potential can approximated by truncating Eq. (34)
to a desired order q [55]. The approximation can be improved

by setting new coefficients αj which variationally minimize
the following action [54]:

S(Aλ) = Tr[G2]; G ≡ ∂λH + i[Aλ,H]. (G1)

First we express Aλ =
∑

j αj Aj , where {Aj : j = 1, . . . , q} is
the operator basis of order q with

Aj = [H, . . . , [H︸       ︷︷       ︸
2j−1

, ∂λH]]].

Differentiating S(Aλ) with respect to αk , we obtain:∑
j

αj Tr
[
{[H, Aj], [H, Ak]}

]
= Tr

[
{∂λH, [Ak,H]}

]
(G2)

Thus solving for the variational coefficients αj is equivalent to
solving a matrix equation. In the simplest case (order q = 1)
we can solve the resulting equation directly:

α1 =
Tr

[
{∂λH, [[H, ∂λH],H]}

]
2 Tr

[
[H, [H, ∂λH]]2

] . (G3)

For our purposes, ∂λH = Sz
0 , and this expression can be evalu-

ated analytically to yield

α1 = −
1

λ2 +
∑

j g
2
j

, (G4)

in accordance with Eq. (35) presented in the main text.
Higher order approximations can be obtained by solving

Eq. (G2) analytically or numerically. Fig. 15 showcases the
progressive convergence of local CD approximations to the
exact CD as order q is increased. The plot shows the trans-
fer efficiency for a numerical simulation of a sweep across
resonance over several orders of magnitude in ramp time. Al-
though higher order approximations mimic CD more closely,
they come at the cost of increased complexity which may not
be experimentally feasible.

FIG. 15. Transfer error vs. ramp time for higher order LCD.
Curves are shown for LCD in the leading three orders labeled by the
number of occurrences of the H in [H, [H, . . . , [H, ∂λH]]]. Higher
order curves progressively approach the exact CD result 1 − ηT = 0.
Parameters: L = 8, Ns = 1, M = −1, ΩB = 10, λ0 = 5, g = 0.1,
γxx = 0.05, γz = 0.0, τ0 = 1000.
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Appendix H: High Frequency Floquet Hamiltonian

We detail the stroboscopic equivalence between the Floquet
Hamiltonian HF and the LCD Hamiltonian in Eqs. (57) and
(63) to leading order in the limit of high frequency ω.

Considering the two-level Hamiltonian (57), we first go
to a rotating frame to cancel the rapidly oscillating term ∝
β(t)ωsin(ωt) that will be dominant in the limit ω→∞. Given
a unitarity transformation U, the effective Hamiltonian in the
moving frame is given by

H̄FE = U†HFEU − iU†∂tU. (H1)

We now take

U = exp
(
− i θ(t) Sz

)
, (H2)

generating a rotation about the z-axis by an angle θ(t) =
β(t) (1 − cos(ω t)). The resulting Hamiltonian in this rotat-
ing frame reads:

H̄FE = γ(t)Sz + ∆ [cos(θ(t))Sx − sin(θ(t))Sy] . (H3)

In the high-frequency limit,ω−1 is the fastest timescale, leading
to a time-scale separation such that all parameters in the Hamil-
tonian are effectively constant over multiple driving periods of
cos(ω t). Moreover, we can perform a Magnus expansion of
H̄FE in powers of ω−1 to approximate the Floquet Hamiltonian
HF [84]. To leading order, HF is found by averaging H̄FE over
a period T = 2π/ω:

HF = H̄FE[cos(θ) → 〈cos(θ)〉; sin(θ) → 〈sin(θ)〉] + O
(

1
ω

)
where

〈cos(θ)〉 =
1
T

∫ T

0
dt cos(θ(t)) ≈ J0(β) cos(β), (H4)

and

〈sin(θ)〉 =
1
T

∫ T

0
dt sin(θ(t)) ≈ J0(β) sin(β), (H5)

where J0 is a Bessel function of the first kind, and any
time-dependence of β has been neglected. This returns the
Floquet Hamiltonian proposed in the main text, satisfying
HF = G(β)HLCD with G(β) = J0(β) cos(β).

The same derivation holds for the central spin model, with
the unitary transformation given by U = exp(−i θ(t) Sz

0 ). This
returns

H̄FE = G(t) λ(s(t)) Sz
0 +

∑
j

δΩjSz
j

+
∑
j

gj [cos(θ(t)) Sx
0 − sin(θ(t)) Sy

0 ] S
x
j

+
∑
j

gj [(sin(θ(t))Sx
0 + cos(θ(t))Sy

0 ] S
y
j . (H6)

Regrouping terms and using Eq. (33) of the main text, we
obtain the presented Floquet Hamiltonian as the period-averagd
H̄FE.

We conclude this section with a couple of remarks: (i) The
lab and rotating frames periodically coincide such that the
state of the system under dynamics generated by HFE(t) is
stroboscopically identical in both frames. (ii) The evolution
under HFE(t) is further stroboscopically equivalent to the
evolution under HF(t) by design, where the remaining time
dependence in HF is through the slow variation of β(t) and
γ(t). This implies by extension that dynamics under the LCD
captured by HF(s) is stroboscopically equivalent to HFE(t)
to leading order at high driving frequencies. (iii) Requiring
that Ûλ = Üλ = 0 at the ramp endpoints further guarantees the
equivalence and stability of FE and LCD over a full sweep
across resonance.

Appendix I: Speed Limit

The mapping between HFE and HLCD requires a time-
rescaling transformation dt → ds = G(t)dt. Interestingly,
there exists a finite lab timescale τSL at which the correspond-
ing rescaled time vanishes. Although FE ramps over shorter
timescales are possible, they no longer map to LCD ramps.

To derive the speed-limit timescale consider a lab frame
ramp with timescale τ and let τS be the corresponding ramp in
the rescaled frame. Then

τS =

∫ τ

0
G(t) dt, τ =

∫ τS

0
[G(t(s))]−1ds. (I1)

Since G(t) < 1, then τS < τ. The smallest lab timescale for
which this mapping holds is given by:

τSL = lim
τS→0

∫ τS

0
[G(t(s))]−1ds. (I2)

Re-scaling the integral by s′ = s/τS and expanding the
J0(β) cos(β) term to leading order for β ≈ π/2, we obtain:

τSL = − lim
τS→0

C
∫ 1

0
τS Ûλ(τS s′)α1(τS s′) ds′ + O(τS) (I3)

where

C =
J0(π/4)
√

2 J0(π/2)
≈ 1.28. (I4)

For concreteness, we evaluate this limit directly for a linear
ramp Ûλ = 2λ0/τS . Using Eq. (35), we have

τSL = 2 λ0 C
∫ 1

0

1
(2 λ0 s′ − λ0)2 +

∑
j g

2
j

ds′. (I5)

Setting ∆typ =
√∑

j g
2
j =

√
(L − 1)g, we obtain

τSL ≈ 1.28
arctan[2λ0/∆typ]

∆typ
∼

1
√

L − 1 g
, (I6)

where the last scaling is obtained for ramps which begin/end
far from resonance λ0 � ∆, and using grms ∼ g for γxx . g.



21

[1] A. S. L. Thankamony, J. J. Wittmann, M. Kaushik, and B. Corzil-
ius, Prog. Nucl. Magn. Reson. Spectrosc. 102, 120 (2017).

[2] S. Bowen and C. Hilty, Angew. Chem. Int. Ed. 47, 5235 (2008).
[3] F. A. Gallagher, M. I. Kettunen, S. E. Day, D.-E. Hu, J. H.

Ardenkjær-Larsen, P. R. Jensen, M. Karlsson, K. Golman, M. H.
Lerche, K. M. Brindle, et al., Nature 453, 940 (2008).
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son, J. S. Petersson, F. Ståhlberg, and K. Golman, Eur. Radiol.
16, 57 (2006).

[5] J. Cai, A. Retzker, F. Jelezko, and M. B. Plenio, Nat. Phys. 9,
168 (2013).

[6] S. Foletti, H. Bluhm, D. Mahalu, V. Umansky, and A. Yacoby,
Nat. Phys. 5, 903 (2009).

[7] P. London, J. Scheuer, J.-M. Cai, I. Schwarz, A. Retzker, M. B.
Plenio, M. Katagiri, T. Teraji, S. Koizumi, J. Isoya, et al., Phys.
Rev. Lett. 111, 067601 (2013).

[8] V. A. Atsarkin, Soviet Physics Uspekhi 21, 725 (1978).
[9] A. Abragam and M. Goldman, Nuclear magnetism: order and

disorder (1982).
[10] T. Maly, G. T. Debelouchina, V. S. Bajaj, K.-N. Hu, C.-G.

Joo, M. L. Mak-Jurkauskas, J. R. Sirigiri, P. C. van der Wel,
J. Herzfeld, R. J. Temkin, et al., J. Chem. Phys. 128, 02B611
(2008).

[11] T. Can, Q. Ni, and R. Griffin, J. Magn. Reson. 253, 23 (2015).
[12] J. Scheuer, I. Schwartz, S. Müller, Q. Chen, I. Dhand, M. B.

Plenio, B. Naydenov, and F. Jelezko, Phys. Rev. B 96, 174436
(2017).

[13] I. Schwartz, J. Scheuer, B. Tratzmiller, S. Müller, Q. Chen,
I. Dhand, Z.-Y. Wang, C. Müller, B. Naydenov, F. Jelezko, et al.,
Sci. Adv. 4, eaat8978 (2018).

[14] A. Ajoy, K. Liu, R. Nazaryan, X. Lv, P. R. Zangara, B. Safvati,
G. Wang, D. Arnold, G. Li, A. Lin, et al., Sci. Adv. 4, eaar5492
(2018).

[15] R. Schirhagl, K. Chang, M. Loretz, and C. L. Degen, Annu. Rev.
Phys. Chem. 65, 83 (2014).

[16] C. Belthangady, N. Bar-Gill, L. M. Pham, K. Arai, D. Le Sage,
P. Cappellaro, and R. L. Walsworth, Phys. Rev. Lett. 110,
157601 (2013).

[17] P. Fernández-Acebal, O. Rosolio, J. Scheuer, C. Müller,
S. Müller, S. Schmitt, L. P. McGuinness, I. Schwarz, Q. Chen,
A. Retzker, et al., Nano Lett. 18, 1882 (2018).

[18] M. Gullans, J. Krich, J. Taylor, B. I. Halperin, and M. Lukin,
Phys. Rev. B 88, 035309 (2013).

[19] C. Lai, P. Maletinsky, A. Badolato, and A. Imamoglu, Phys.
Rev. Lett. 96, 167403 (2006).

[20] B. Urbaszek, X. Marie, T. Amand, O. Krebs, P. Voisin,
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