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Noncoplanar multiple-Q spin textures by itinerant frustration:

Effects of single-ion anisotropy and bond-dependent anisotropy
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Department of Applied Physics, The University of Tokyo, Tokyo 113-8656, Japan

We theoretically investigate multiple-Q spin textures, which are composed of superpositions of spin den-

sity waves with different wave numbers, for an effective spin model of centrosymmetric itinerant magnets.

Our focus is on the interplay between biquadratic interactions arising from the spin-charge coupling and mag-

netic anisotropy caused by the spin-orbit coupling. Taking into account two types of the magnetic anisotropy,

single-ion anisotropy and bond-dependent anisotropy, we elucidate magnetic phase diagrams for an archetypal

triangular-lattice system in the absence and presence of an external magnetic field. In the case of the single-

ion anisotropy, we find a plethora of multiple-Q instabilities depending on the strength and the sign of the

anisotropy (easy plane or easy axis), including a noncoplanar triple-Q state regarded as a skyrmion crystal with

topological number of two, and coplanar and noncoplanar double-Q states. In an external magnetic field, we

find that another noncoplanar triple-Q state, a skyrmion crystal with topological number of one, is stabilized by

the in-plane (out-of-plane) magnetic field under the easy-plane (easy-axis) anisotropy. A part of the results, es-

pecially for the relatively large biquadratic interaction, qualitatively reproduce those in the Kondo lattice model

which explicitly includes itinerant electrons [S. Hayami and Y. Motome, Phys. Rev. B 99, 094420 (2019)]. We

also examine the stability of the field-induced skyrmion crystal by rotating the field direction. As a biproduct,

we show that a triple-Q state with nonzero chirality appears in the presence of the biquadratic interaction and

the easy-axis anisotropy. Meanwhile, we find that the bond-dependent anisotropy also stabilizes both types of

skyrmion crystals. We show that, however, for the skyrmion crystal with topological number of one, Bloch- and

Néel-type skyrmion crystals are selectively realized depending on the sign of the bond-dependent anisotropy,

since this anisotropy selects a particular set of the helicity and vorticity. Moreover, we find yet another multiple-

Q states with nonzero spin scalar chirality, including two types of meron crystals with the skyrmion numbers of

one and two. The systematic investigation of multiple-Q instabilities in triangular itinerant magnets will provide

a reference to complex magnetic textures in centrosymmetric magnetic metals.

I. INTRODUCTION

Superpositions of spin density waves, which are termed

as multiple-Q magnetic states, have attracted much interest

in various fields of condensed matter physics1–4. Different

ways of taking a linear combination lead to different types

of spin textures. One of the fundamental examples is found

in a superposition of collinear states in the axial next-nearest-

neighbor Ising model, which exhibits peculiar temperature de-

pendence of spatial spin modulations called the devil’s stair-

case5–10. Another interesting example is represented by a su-

perposition of spiral states, which results in noncollinear and

noncoplanar spin textures, such as magnetic vortices1,11–13 and

skyrmion crystals14–19. Such superpositions of spirals are in-

triguing, as they often carry nonzero vector chirality, Si×Sj ,

and/or scalar chirality, Si · (Sj×Sk), which are sources of an

emergent electromagnetic field for electrons through the spin

Berry phase mechanism20–22. Indeed, the chirality degrees of

freedom in the multiple-Q states generate interesting phenom-

ena, such as the topological Hall effect21,23–25, the spin Hall

effect26–28, and nonreciprocal transport29–32.

Such noncollinear and noncoplanar multiple-Q states are

ubiquitously found in a wide range of materials. From the

viewpoint of the microscopic mechanism, however, there are

several different origins depending on the systems. We here

discuss three of them in the following. The first one is

(i) the relativistic spin-orbit coupling in the absence of spa-

tial inversion symmetry in the lattice structure. It induces

an effective antisymmetric exchange interaction called the

Dzyaloshinskii-Moriya (DM) interaction33,34, which favors a

twist in the spin texture. For instance, the interplay among

the ferromagnetic interaction, the DM interaction, and an ex-

ternal magnetic field stabilizes a triple-Q spiral density wave

termed as the skyrmion crystal3,16,35–37. Since the discov-

ery of skyrmion crystals in B20 compounds17,18, a number

of candidates in this category have been studied intensively,

and various types of skyrmions have been explored, such

as the Bloch-type skyrmion17,18,38, Néel-type skyrmion39,40,

antiskyrmion41–43, and bi-skyrmion crystals44,45. Recently,

multiple-spin chiral interactions, which can be regarded as

higher-order extensions of the DM interaction, have been

studied to understand the peculiar noncoplanar magnetism at

surfaces and interfaces46–50.

The second mechanism is based on (ii) competing inter-

actions between the magnetic moments. For example, ge-

ometrical frustration arising from nonbipartite lattice struc-

tures leads to noncollinear and noncoplanar multiple-Q states,

combined with, e.g., the effect of further-neighbor interac-

tions51–53, quantum fluctuations12,13,54,55, and disorder by im-

purities56–58. Bond-dependent exchange anisotropy, e.g., of

compass and Kitaev type, can also induce magnetic vortices

and skyrmion crystals59–64. Frustration rooted in the compet-

ing exchange interactions and the magnetic anisotropy also

gives rise to a plethora of multiple-Q states61,65–72. Note that

the magnetic anisotropy in this mechanism originates from the

spin-orbit coupling in centrosymmetric systems, in contrast to

(i). In addition, multiple-spin interactions beyond the bilin-

ear exchange interaction provide another way to induce the

multiple-Q states through the frustration48,50,73–76.

The third mechanism is (iii) itinerant nature of electrons.
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The kinetic motion of electrons can induce effective magnetic

interactions through the coupling between spin and charge

degrees of freedom. The typical example is the Ruderman-

Kittel-Kasuya-Yosida (RKKY) interaction appearing when

the spin-charge coupling is much smaller than the band-

width77–79. The RKKY interaction is long-ranged and fa-

vors a single-Q spiral state whose wave number is set by the

Fermi surface. On the other hand, when the Fermi surface

has a structure so that the bare susceptibility exhibits multiple

peaks in momentum space, the instability toward the single-Q
spiral state occurs at the multiple wave numbers simultane-

ously. This is another type of frustration distinguished from

that in the mechanism (ii), which we call itinerant frustration.

In this case, higher-order contributions from the spin-charge

coupling lift the degeneracy. Among many contributions, an

effective positive biquadratic interaction in momentum space

plays an important role80–87 in stabilizing multiple-Q states,

such as the triple-Q states in hexagonal crystal systems80,88–95,

the double-Q states in tetragonal crystal systems83,96–98, and

the triple-Q states in cubic crystal systems99,100.

More recently, further interesting situations have been stud-

ied by considering the interplay between the mechanisms

(i)-(iii) mentioned above. For instance, a synergetic effect

between (i) the antisymmetric exchange interactions by the

spin-orbit coupling and (iii) the multiple spin interactions by

the spin-charge coupling results in more exotic multiple-Q
states, such as the triple-Q and quartet-Q hedgehog crys-

tals101,102 and sextuple-Q states103. Competition between

(ii) the single-ion anisotropy and (iii) the spin-charge cou-

pling induces a triple-Q skyrmion crystal under the magnetic

field104–106. Moreover, a Bloch-type skyrmion crystal is real-

ized even in a Rashba-type metal by taking into account (i),

(ii), and (iii)107,108.

These series of studies to investigate when and how the

multiple-Q states appear are important to understand the

microscopic origins of the multiple-Q states found in ma-

terials. Recently, unconventional multiple-Q states have

been found in d- and f -electron systems, such as the vor-

tices in MnSc2S4
109,110, CeAuSb2

111,112, and Y3Co8Sn4
113,

the skyrmions in SrFeO3
114–116, Co-Zn-Mn alloys117,

EuPtSi118–120, Gd2PdSi3
121–125, Gd3Ru4Al12

126,127, and

GdRu2Si2
128,129, and the hedgehogs in MnSi1−xGex

130–133.

Furthermore, there remain several unidentified multiple-Q
states distinguished from the above states, especially in cen-

trosymmetric materials115,121–123,126,128. Due to the crystal

symmetry and the short period of the magnetic textures, their

mechanisms might be accounted for by (ii) and (iii), although

their origins are still under debate.

To understand the microscopic origins and encourage fur-

ther experimental exploration of exotic multiple-Q states, in

this paper, we push forward the theoretical study in a more

systematic way on the interplay between (ii) the magnetic

anisotropy caused by the spin-orbit coupling in centrosym-

metric systems and (iii) the multiple-spin interactions arising

from the spin-charge coupling. Taking an archetypal hexag-

onal model, we study how the itinerant frustration is relieved

by their interplay and what types of the multiple-Q states are

generated. By introducing two types of magnetic anisotropy,

single-ion anisotropy and bond-dependent anisotropy, to the

effective bilinear-biquadratic model for itinerant magnets, we

elaborate magnetic phase diagrams in a wide parameter range

of the biquadratic interaction, the magnetic anisotropy, and

the magnetic field in a systematic way. We uncover a vari-

ety of multiple-Q states, including those which have never

been reported. Our results provide deeper understanding of

the multiple-Q states emergent from the synergy between

the spin-charge coupling and the spin-orbit coupling in cen-

trosymmetric systems.

The rest of the paper is organized as follows. We start by

showing a brief summary of the main results in this paper in

Sec. II. In Sec. III, we present an effective bilinear-biquadratic

spin model on a triangular lattice including the two types of

magnetic anisotropy, and outline the numerical method. In

Sec. IV, we discuss the effect of the single-ion anisotropy. We

obtain the magnetic phase diagram including three multiple-

Q states by changing the single-ion anisotropy and the bi-

quadratic interaction in the absence of the magnetic field in

Sec. IV A. Then, in Secs. IV B-IV D, we show a further va-

riety of multiple-Q instabilities in the magnetic fields applied

in different directions. In Sec. V, we discuss the effect of the

bond-dependent anisotropy. We find five multiple-Q states at

zero field and more in the field. Section VI is devoted to the

concluding remarks.

II. BRIEF SUMMARY OF MAIN RESULTS

Before starting the detailed discussions, we summarize

the main results of this paper, i.e., where multiple-Q states

appear in the phase diagram through the interplay among

the biquadratic interaction, the magnetic anisotropy, and the

magnetic field. We investigate two types of the magnetic

anisotropy, the single-ion anisotropy and the bond-dependent

anisotropy, with and without the biquadratic interaction and

the magnetic field. The schematic phase diagrams are shown

for typical parameter sets in Fig. 1, where K represents the

biquadratic interaction, positive (negative) A represents the

easy-axis (easy-plane) single-ion anisotropy, IA represents

the bond-dependent anisotropy, and H = (Hx, Hy, Hz) is

an external magnetic field. See Sec. III for the details of the

model and parameters.

For the isotropic case (A = IA = 0), we find a triple-Q
skyrmion crystal in a magnetic field for small K = 0.1 and

another one evolved from zero field for large K = 0.3, as dis-

played in the top row of Fig. 1(a). The former is characterized

by the topological number of one (nsk = 1 skyrmion crys-

tal), while the latter has topological number of two (nsk = 2
skyrmion crystal); see Secs. IV A and IV B 1.

The stability of the nsk = 1 and nsk = 2 skyrmion crystals

against the single-ion anisotropy A is discussed in Secs. IV B-

IV D. We show that the nsk = 2 skyrmion crystal remains

stable against both small easy-axis and easy-plane anisotropy

as shown in Figs. 1(a) and 1(b), qualitatively similar to the

result obtained for the Kondo lattice model105. We find two

types of modulations of the nsk = 2 skyrmion crystal by sys-

tematically changing A and Hz: One is characterized by a
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FIG. 1. Schematics of the magnetic phase diagram of the model in Eq. (1) in the presence of (a)-(c) the single-ion anisotropy A and (d) the

bond-dependent anisotropy IA. K stands for the coupling constant for the biquadratic exchange interaction: The left, middle, and right panels

are the results at K = 0, 0.1, and 0.3, respectively. (a) and (d) are for the [001] magnetic field, (b) is for the [100] field, and (c) is for the field

in the xz plane with H = 0.8. 1Q, 2Q, 3Q, SkX-1, SkX-2, MX-1, MX-2, Ch, and FP stand for the single-Q state, double-Q state, triple-Q
state, nsk = 1 skyrmion crystal, nsk = 2 skyrmion crystal, nsk = 1 meron crystal, nsk = 2 meron crystal, multiple-Q states with nonzero

uniform scalar chirality, and the fully-polarized state, respectively. The detailed magnetic and chirality structures in (a)-(c) are presented in

Sec. IV and those in (d) in Sec. V.

superposition of the magnetic vortices in the xy spin compo- nent and the sinusoidal wave in the z spin component, and
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the other is characterized by a superposition of the magnetic

vortices in both xy and z spin components; see Sec. IV B. Be-

sides, we find another nsk = 2 skyrmion crystal in the mag-

netic field along the Hx direction for the easy-axis anisotropy,

as shown in the case with A = 0.4 in Fig. 1(b), whose spin

texture is characterized by dominant double-Q modulations

in the z spin component and a subdominant modulation in the

xy spin components; see Sec. IV C 1 for the details. Mean-

while, we find that the nsk = 1 skyrmion crystal remains sta-

ble in the magnetic field along the z direction for the easy-

axis anisotropy and along both x and z directions for the

easy-plane anisotropy, as shown in Figs. 1(a) and 1(b); see

Secs. IV B 2, IV B 3, and IV C 2. We examine the system-

atic evolution of the nsk = 2 and nsk = 1 skyrmion crys-

tals by rotating the magnetic field in the xz plane, as shown

in Fig. 1(c); see Sec. IV D. The nsk = 2 skyrmion crystal

found for the field along the x direction under the easy-axis

anisotropy is rapidly destabilized by rotating the field to the z
direction. On the other hand, the nsk = 1 skyrmion crystal

is stable in a wide range of fields and anisotropy, as shown in

the second row of Fig. 1(c). The range of the field angle where

the nsk = 1 skyrmion crystal is stabilized tends to be wider

for larger K for both easy-axis and easy-plane anisotropy; see

Secs. IV D 1 and IV D 2. Moreover, we find a triple-Q state

with nonzero scalar chirality in the magnetic field in the xz
plane under the easy-axis anisotropy, as shown in the second

row of Fig. 1(c). We also show that there appear triple-Q
states, which are topologically trivial, around the skyrmion

crystals, as shown in Figs. 1(a)-1(c). Also, in the large K and

small A region, we find a double-Q state, whose spin config-

uration is coplanar at zero field, as shown in the right bottom

row of Fig. 1(a); see Sec. IV B 3.

The effect of the bond-dependent anisotropy IA is dis-

cussed in Sec. V. We find that the nsk = 2 skyrmion crystal is

also stabilized at zero field by introducing the bond-dependent

anisotropy, as shown in Fig. 1(d). Interestingly, this state has

a spontaneous ferromagnetic moment along the z direction, in

contrast to the case of the single-ion anisotropy. Accordingly,

the sign of the scalar chirality is selected to be opposite to that

of the z component of the ferromagnetic moment. In other

words, it lifts the degeneracy between the skyrmion and anti-

skyrmion64; see Sec. V A. When the magnetic field is applied

along the z direction, we obtain two types of the nsk = 1
skyrmion crystals: The one is characterized by a periodic ar-

ray of the uniaxially-elongated skyrmions and the other shows

a periodic array of the isotropic ones. Besides the skyrmion

crystals, we show that the bond-dependent anisotropy induces

a nsk = 1 meron crystal, including one meron and three an-

timerons in the magnetic unit cell. Furthermore, we find a

nsk = 2 meron crystal in the large IA and small K region,

which includes four merons in the magnetic unit cell. We also

obtain multiple-Q states with nonzero uniform scalar chiral-

ity other than the skyrmion and meron crystals under the mag-

netic field as shown in Fig. 1(d), which have not been found in

the case of the single-ion anisotropy. See Sec. V B for all the

details. Meanwhile, we could not find the instability toward

the skyrmion and meron crystals against the in-plane magnetic

field (not shown).

III. MODEL AND METHOD

We introduce an effective spin model for itinerant mag-

nets with the magnetic anisotropy in Sec. III A. We outline

the method of numerical simulations and measured physical

quantities in Sec. III B.

A. Model

When an itinerant electron system consists of itinerant elec-

trons and localized spins coupled via the exchange interac-

tion, like in the Kondo lattice model, one can derive an ef-

fective spin model for the localized spins by tracing out the

itinerant electron degree of freedom. The model includes the

exchange interactions in momentum space and two types of

magnetic anisotropy in general. We consider such a model

whose Hamiltonian is explicitly given by

H = HBBQ +HSIA +HBA +HZ, (1)

where

HBBQ = 2
∑

ν

[

−JSQν
· S−Qν

+
K

N
(SQν

· S−Qν
)2
]

,

(2)

HSIA = −A
∑

i

(Sz
i )

2, (3)

HBA = 2
∑

ν



−J
∑

αβ

IαβQν
Sα
Qν

Sβ
−Qν

+
K

N





∑

αβ

IαβQν
Sα
Qν

Sβ
−Qν





2





, (4)

HZ = −
∑

i

H · Si. (5)

The first term HBBQ represents the bilinear-biquadratic in-

teractions in momentum space, which was originally derived

from the perturbation expansion with respect to the spin-

charge coupling in the Kondo lattice model85; J and K are

the positive coupling constants for the isotropic bilinear and

biquadratic exchange interactions, which are obtained by the

second- and fourth-order perturbation analyses in terms of the

spin-charge coupling in the Kondo lattice model, respectively.

Although the coupling constants can be derived from the per-

turbation theory, we regard them as phenomenological param-

eters in order to cover the whole magnetic phase diagram in

the model in Eq. (1), as in the previous study105. Both interac-

tions in Eq. (2) are defined in momentum space for a particular

set of the wave numbersQν ; SQν
= (1/

√
N)

∑

i Sie
−iQν ·ri

is the Fourier component of the spin Si = (Sx
i , S

y
i , S

z
i ) at site

i, where N is the number of spins. In the present study, we

consider the triangular lattice in the xy plane (x is taken along

the bond direction), and assume that Qν originate from the
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six peaks of the bare susceptibility dictated by the Fermi sur-

face in the presence of sixfold rotational symmetry of the lat-

tice. Specifically, we choose a set of Qν as Q1 = (π/3, 0, 0),

Q2 = (−π/6,
√
3π/6, 0), and Q3 = (−π/6,−

√
3π/6, 0) in

the following calculations (the lattice constant is taken to be

unity). The other contributions with different q dependences

(including q = 0 component) are ignored by assuming dis-

tinct peak structures of the bare susceptibility85. Hereafter,

we set J = 1 as the energy unit.

The second and third terms in Eq. (1) represent the mag-

netic anisotropy that we focus on in the present study. The

second term HSIA in Eq. (3) represents the local single-ion

anisotropy. The positive (negative) A represents the easy-axis

(-plane) anisotropy. The effect of the single-ion anisotropy

on the instability toward multiple-Q magnetic orderings has

been investigated for chiral134–138, frustrated65–67, and itiner-

ant magnets104–106, although the analysis including itinerant

electrons explicitly has not been performed extensively due to

the huge computational cost.

The third term HBA in Eq. (4) represents the anisotropic

exchange interaction dependent on the bond direction. Due

to the sixfold rotational symmetry and mirror symmetry of

the triangular lattice, the anisotropic tensor IαβQν
satisfies the

relation, −IxxQ1
= IyyQ1

= 2IxxQ2
= −2IyyQ2

= 2IxyQ2
/
√
3 =

2IyxQ2
/
√
3 = 2IxxQ3

= −2IyyQ3
= −2IxyQ3

/
√
3 = −2IyxQ3

/
√
3 ≡

IA and otherwise zero. This type of interaction specifies the

spiral plane according to the sign of IA: A positive (nega-

tive) IA favors the proper-screw (cycloidal) spiral state. This

term originates from the relativistic spin-orbit coupling irre-

spective of inversion symmetry108,113,139, in contrast to the an-

tisymmetric Dzyaloshinskii-Moriya interaction in the absence

of inversion symmetry. Similar interactions have been dis-

cussed in terms of the short-ranged bond-dependent interac-

tion in magnetic insulators, such as the compass and Kitaev

interactions63,140–143.

The last term HZ in Eq. (5) represents the Zeeman coupling

to an external magnetic field. In the presence of the single-

ion anisotropy (A 6= 0), we apply the magnetic field in the z
and x directions, i.e., the [001] and [100] directions, and also

rotate it in the xz plane (note that the [100] and [010] fields are

equivalent when IA = 0). Meanwhile, in the presence of the

bond-dependent anisotropy (IA 6= 0), we apply the magnetic

field along the [100], [010], and [001] directions, but show the

results only for the most interesting [001] case (we do not find

any chiral spin textures in the [100] and [010] cases).

B. Numerical calculations

We study the magnetic phase diagram of the model in

Eq. (1) by using simulated annealing from high temperature.

Our simulations are carried out with the standard Metropo-

lis local updates in real space. We present the results for the

system with N = 962 spins. In each simulation, we first per-

form the simulated annealing to find the low-energy config-

uration by gradually reducing the temperature with the rate

Tn+1 = αTn, where Tn is the temperature in the nth step.

We set the initial temperature T0 = 0.1-1.0 and take the co-

efficient α = 0.99995-0.99999. The final temperature is typ-

ically taken at T = 0.01 for zero field and T = 0.0001 for

nonzero field (we need lower temperature for nonzero fields

to resolve keen competition between different phases). The

target temperatures are reached by spending totally 105-106

Monte Carlo sweeps. At the final temperature, we perform

105-106 Monte Carlo sweeps for measurements after 105-106

steps for thermalization. We also start the simulations from

the spin structures obtained at low temperatures to determine

the phase boundaries between different magnetic states.

We identify the magnetic phase for each state obtained by

the simulated annealing by calculating the spin and scalar chi-

rality configurations. The spin structure factor is defined as

Sαα
s (q) =

1

N

∑

j,l

〈Sα
j S

α
l 〉eiq·(rj−rl), (6)

where rj is the position vector at site j. As the magnetic inter-

action in the Qν channel tends to stabilize the magnetic order

with wave number Qν , we focus on the magnetic moment

with the Qν component, which is given by

mα
Qν

=

√

Sαα
s (Qν)

N
. (7)

In the case of the single-ion anisotropy, we measure the in-

plane component (mxy
Qν

)2 = (mx
Qν

)2 + (my
Qν

)2, while in the

case of the bond-dependent anisotropy, we measure the in-

plane components of the magnetic moments, m
Q‖

Qν
and mQ⊥

Qν
,

which are parallel and perpendicular to the Qν direction, re-

spectively; we take (m
Q‖

Qν
,mQ⊥

Qν
,mz

Qν
) to form the orthogo-

nal coordinates. We also calculate the uniform component of

the magnetization mα
0 .

Meanwhile, the chirality structure factor is defined as

Sχ(q) =
1

N

∑

µ

∑

R,R′∈µ

〈χRχR′〉eiq·(R−R′), (8)

where R and R′ represent the position vectors at the centers

of triangles, and µ = (u, d) represent upward and downward

triangles, respectively; χR = Sj · (Sk × Sl) is the local spin

chirality at R, where j, k, l are the sites on the triangle at R in

the counterclockwise order. The scalar chirality with the Qν

component is defined as

χQν
=

√

Sχ(Qν)

N
. (9)

The uniform component is given by χ0. Note that, in this def-

inition, a staggered arrangement of χR also gives a nonzero

χ0; we distinguish uniform and staggered ones by real-space

pictures.

IV. SINGLE-ION ANISOTROPY

In this section, we investigate the effect of the single-ion

anisotropy A for the Hamiltonian H = HBBQ +HSIA +HZ
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(i.e., HBA = 0). The magnetic phase diagram at zero mag-

netic field is presented in Sec. IV A. Then, the field-induced

magnetic orders are discussed in Secs. IV B-IV D for different

field directions: the field along the z direction in Sec. IV B, the

field along the x direction in Sec. IV C, and the field rotated

in the xz plane in Sec. IV D.

A. At zero field

 0.0

 0.1

 0.2

 0.3

-0.6 -0.4 -0.2  0.0  0.2  0.4  0.6

1Q collinear

1Q helical

1Q cycloidal

2Q coplanar

n
sk

=2 skyrmion

2Q

chiral stripe

FIG. 2. Magnetic phase diagram of the model in Eq. (1) with HBA =
HZ = 0 obtained by the simulated annealing down to T = 0.01.

A > 0 (A < 0) represents the easy-axis (plane) anisotropy. See the

text for details.

First, we present the magnetic phase diagram for the model

in Eq. (1) with HBA = HZ = 0 obtained by the simulated

annealing in Fig. 2. The result includes six phases, whose

real-space configurations of spin and chirality are shown in

Figs. 3 and 4. Each magnetic phase is characterized by the

magnetic moments with the Qν components, mQν
, the spin

scalar chirality with the Qν components, χQν
, and the uni-

form component (χ0)
2. A dependences of these quantities at

K = 0, 0.1, and 0.3 are shown in Fig. 5. Due to the sixfold

rotational symmetry, Q1, Q2, and Q3 are symmetry-related;

e.g., the single-Q state with mQ1
6= 0 is equivalent with that

with mQ2
6= 0 or mQ3

6= 0. Thus, three types of the single-

Q states are energetically degenerate, and hence, they are ob-

tained randomly in the simulated annealing starting from dif-

ferent initial configurations. Similar degeneracy occurs also

for other multiple-Q states. In the following, we show the re-

sults in each ordered state by appropriately sorting (mQν
)2

and (χQν
)2 for better readability.

(b)

-1

 0

 1(a)

(d)(c)

FIG. 3. Real-space spin configurations of (a) the single-Q (1Q) he-

lical state at A = 0.2 and K = 0, (b) the 1Q cycloidal state at

A = −0.4 and K = 0, (c) the 1Q collinear state at A = 0.6 and

K = 0, and (d) the double-Q (2Q) coplanar state at A = −0.4
and K = 0.3. The contour shows the z component of the spin mo-

ment144, and the arrows represent the xy components.

-1

 0

 1(b)(a) (b

-1

 0

 1(c)

-1

 0

 1

1

-1

 0

 1(d)

FIG. 4. Real-space spin configurations of (a) the 2Q chiral stripe

state at A = 0.1 and K = 0.1 and (b) the nsk = 2 skyrmion crystal

at A = 0.2 and K = 0.3. The contour shows the z component of

the spin moment, and the arrows represent the xy components. (c)

and (d) display the real-space chirality configurations corresponding

to (a) and (b), respectively.

At K = 0 where the model is reduced to the simple bilin-

ear model with the single-ion anisotropy, the single-Q state is

stabilized for all A, although the spiral plane depends on the

sign of A; the spins rotate in the xy plane for A < 0, while in

the xz (or yz) plane for A > 0, as shown in Figs. 3(a) and

3(b), respectively. This is represented by nonzero (mxy
Q1

)2



7

(a) K = 0 (b) K = 0.1 (c) K = 0.3

0.0
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0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

0.4

0.5

0.0

0.1

0.2

0.3

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

A

0.0

0.1

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

A

0.0

0.1

-0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

A

FIG. 5. A dependence of (first row) (mxy

Qν
)2, (second row) (mz

Qν
)2, and (third row) (χQν )

2 and (χ0)
2 for (a) K = 0, (b) K = 0.1, and (c)

K = 0.3. See also Fig. 2.

for A < 0 and nonzero (mz
Q1

)2 for A > 0, as shown in

Fig. 5(a). The former is an in-plane cycloidal spiral, while

the latter is an out-of-plane cycloidal or proper-screw spiral.

We call the former the single-Q cycloidal state and the lat-

ter the single-Q helical state. In the single-Q cycloidal state,

(mz
Q1

)2 is zero and (mxy
Q1

)2 does not depend on A, while

in the single-Q helical state, both (mxy
Q1

)2 and (mz
Q1

)2 are

nonzero and their ratio changes as A. This indicates that the

spiral plane in the cycloidal and helical states are circular and

elliptical, respectively. While increasing positive A, (mxy
Q1

)2

decreases and (mz
Q1

)2 increases to gain the energy from the

single-ion anisotropy. While further increasing A, (mxy
Q1

)2

vanishes and the 1Q collinear state with (mz
Q1

)2 6= 0 is re-

alized for A & 0.55. The real-space spin texture in the 1Q
collinear state is shown in Fig. 3(c).

By introducing the biquadratic interaction K , the double-

Q state is stabilized in the small |A| region, as shown in

Fig. 2. The spin and chirality components are shown in the

case of K = 0.1 in Fig. 5(b). This double-Q state is com-

posed of two helices, as indicated by the nonzero (mQ1
)2

and (mQ2
)2 with different intensities, (mQ1

)2 > (mQ2
)2.

At the same time, this state shows nonzero (χQ2
)2. The spin

and chirality configurations obtained by the simulation are

presented in Figs. 4(a) and 4(c), respectively. This type of

the double-Q state has been found in the itinerant electron

systems without the single-ion anisotropy, such as the Kondo

lattice model with the weak spin-charge coupling83 and the

d-p model with the strong Hund’s-rule coupling145, where it

is called the double-Q chiral stripe state83. In the limit of

A → 0, the real-space spin configuration is given by83

Si =





√

1− b2 + b2 cosQ2 · ri cosQ1 · ri
√

1− b2 + b2 cosQ2 · ri sinQ1 · ri
b sinQ2 · ri





T

, (10)

which is approximately regarded as a superposition of the

dominant spiral wave with Q1 in the xy plane and the sinu-

soidal wave with Q2 along the z direction. b represents the

amplitude of the latter component. In the case of A = 0,

the spiral plane is arbitrary; the energy is unchanged for any

global spin rotation. A nonzero A fixes the spiral plane. For

A > 0, the Q1 spiral is laid on the xz (or yz) plane and be-

comes elliptical, and the sinusoidal Q2 component runs along

the y (or x) direction. On the other hand, for A < 0, the

double-Q chiral stripe consists of the dominant spiral in the
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xy plane and the additional sinusoidal wave along the z di-

rection, as shown in Fig. 5(b). By increasing |A|, the double-

Q chiral stripe continuously turns into the single-Q cycloidal

state for A < 0 and the single-Q helical state for A > 0,

which are connected to those at K = 0. Note that the former

approximately corresponds to b → 0 in Eq. (10). The region

of the double-Q chiral stripe state is extended by increasing

K , as shown in Fig. 2.

For larger K , two different multiple-Q phases appear: the

nsk = 2 skyrmion crystal for −0.3 . A . 0.5 and the

double-Q coplanar state for A . −0.3, as shown in Fig. 2.

The nsk = 2 skyrmion crystal is a triple-Q magnetic state by

a superposition of three sinusoidal waves orthogonal to each

other, mQ1
⊥ mQ2

⊥ mQ3

85,91. The typical spin config-

uration is shown in Fig. 4(b). While (mQ1
)2 = (mQ2

)2 =
(mQ3

)2 at A = 0, the intensities at Qη for the xy compo-

nent become larger (smaller) than those for the z component

for A < 0 (A > 0), as shown in Fig. 5(c). The xy compo-

nent always shows the double-Q structure with equal intensi-

ties, while the z component is single-Q. This magnetic struc-

ture has a noncoplanar spin configuration, leading to nonzero

scalar chirality, as shown in Figs. 4(d) and 5(c), which gives

rise to the topological Hall effect.

By increasing A, the xy spin component vanishes as shown

in the top panel of Fig. 5(c), and then the nsk = 2 skyrmion

crystal turns into the 1Q collinear state continued from the

smaller K region. Meanwhile, when decreasing A, the z spin

component vanishes as shown in the middle panel of Fig. 5(c),

and the double-Q coplanar state with (mQ1
)2 = (mQ2

)2 > 0
and (mQ3

)2 = 0 is realized whose spin texture is shown in

Fig. 3(d).

A similar phase sequence of the double-Q coplanar, nsk =
2 skyrmion crystal, and single-Q collinear states while chang-

ing the single-ion anisotropy was obtained also for the origi-

nal Kondo lattice model105. Thus, our effective spin model in

Eq. (1) can capture the instability toward multiple-Q states

in itinerant magnets qualitatively in the large K region, as

demonstrated for the isotropic case85. However, by closely

comparing the results, we find at least two differences between

the two models. One is the nature of the phase transitions:

In the effective spin model, the transitions from the nsk =
2 skyrmion crystal to the single-Q collinear and double-Q
coplanar states appear to be of second order with continu-

ous changes of the magnetic moments mQη
and the uniform

scalar chirality (χ0)
2, while the results in the Kondo lattice

model indicate the first-order transitions with clear jumps in

these quantities. The other difference is that a noncopla-

nar double-Q phase appears in a narrow region between the

nsk = 2 skyrmion crystal and the double-Q coplanar state

in the Kondo lattice model. These differences might be at-

tributed to some factors which are omitted in the derivation of

the effective spin model from the Kondo lattice model, such

as the interactions at wave numbers other than Qη and other

types of magnetic interactions dropped off in the perturbation

processes in itinerant magnets. Nevertheless, our result in-

dicates that the effective spin model is useful to investigate

the multiple-Q instability in the Kondo lattice model, since it

provides us with an overall picture of the emergent multiple-

Q phases, by a considerably smaller computational cost than

that by the direct numerical simulation of the Kondo lattice

model.

B. Field along the z direction

Next, we examine the effect of the magnetic field along the

z direction. We take H = (0, 0, Hz) in the Zeeman Hamilto-

nian HZ in Eq. (5). We show the results for the isotropic case

at A = 0 in Sec. IV B 1, and the effects of the easy-axis and

easy-plane anisotropy in Secs. IV B 2 and IV B 3, respectively.

We discuss the results in this section in Sec. IV B 4.

1. Isotropic case

We first consider the situation in the absence of the single-

ion anisotropy, A = 0. The phase diagram in the K-Hz plane

and a part of the results were shown in the previous study

by the authors85. We here discuss the changes of the spin and

chirality structures in detail. Figure 6 shows the magnetic field

dependence of the spin and chirality components at K = 0,

0.1, and 0.3. Note that the following results in this section are

the same for the magnetic field along any direction due to the

spin rotational symmetry.

At K = 0, the magnetic state at zero field is the single-Q
spiral state, whose spiral plane is arbitrary due to the spin ro-

tational symmetry. When applying the magnetic field in the z
direction, the spiral plane is fixed in the xy plane, and the spin

pattern is characterized by (mxy
Q1

)2 in addition to the uniform

component of the magnetization along the z direction, mz
0, as

shown in the upper two panels of Fig. 6(a). This corresponds

to the single-Q conical spiral where the spiral plane is per-

pendicular to the field direction. Reflecting the noncoplanar

spin structure, this single-Q conical state exhibits a staggered

arrangement of nonzero local scalar chirality between the up-

ward and downward triangles, as signaled by nonzero (χ0)
2

shown in the top panel of Fig. 6(a). Note that the scalar chiral-

ity cancels out between the staggered components. While in-

creasing Hz , the single-Q conical state continuously changes

into the fully-polarized state at Hz = 2.

At K = 0.1, the double-Q chiral stripe state is stabilized at

zero field, as discussed in the previous section. In the presence

of the magnetic field, this state survives up to Hz ≃ 0.4, as

shown in Fig. 6(b). We note that (χ0)
2 takes a small nonzero

value for 0 < Hz . 0.4 because of the nonzero staggered

chirality induced by the magnetic field, similar to the single-

Q state at K = 0 above. While increasing Hz , this state

is replaced with the nsk = 1 skyrmion crystal at Hz ≃ 0.5
with a finite jump of (χ0)

2. The nsk = 1 skyrmion crystal is

characterized by the triple-Q peak structures for both xy and z
components in the spin structure, as shown in the two middle

panels of Fig. 6(b). It also exhibits the triple-Q peak structures

in the chirality as shown in the lowest panel of Fig. 6(b), in

addition to (χ0)
2. Thus, both spin and chirality configurations

in real space have threefold rotational symmetry, as shown in

Figs. 7(a) and 7(b). When further increasing Hz , the system
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FIG. 6. Hz dependence of (first row) mz
0 and (χ0)

2, (second row) (mxy

Qν
)2, (third row) (mz

Qν
)2, and (fourth row) (χQν )

2 for (a) K = 0, (b)

K = 0.1, and (c) K = 0.3 at A = 0.

undergoes a first-order phase transition to a triple-Q state at

Hz ≃ 1, which has double-Q peaks in the xy component and

a single-Q peak in the z component of the magnetic moments.

This triple-Q state accompanies the single-Q chirality density

wave withQ3. The triple-Q state turns into the fully-polarized

state at Hz = 2.

Figure 6(c) displays the result at K = 0.3. The nsk = 2
skyrmion crystal at zero field is replaced with a triple-Q state

at Hz ≃ 0.2, which is similar to the high-field state at K =
0.1. While further increasing Hz , it turns into the nsk = 1
skyrmion crystal at Hz ≃ 0.4. After that, the phase sequence

is similar to that at K = 0.1.

2. With easy-axis anisotropy

Next, we discuss the effect of the magnetic field along the

z direction, Hz , in the presence of the single-ion anisotropy

for several K and A. We show the results for the easy-axis

anisotropyA > 0 in Figs. 8-10 in this section and for the easy-

plane anisotropy A < 0 in Figs. 11-13 in the next section.

Figures 8(a) and 8(b) show the results at A = 0.2 and

A = 0.4 with K = 0, respectively. The main difference

from the isotropic case with A = 0 is found in the emer-

gence of the nsk = 1 skyrmion crystal in the intermediate-

field region. This indicates that the easy-axis anisotropy can

stabilize the nsk = 1 skyrmion crystal even without the bi-

quadratic interaction, consistent with the previous result in
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-1

 0

 1(a)

-1

 0

 1(b)

FIG. 7. (a) Real-space spin configuration of the nsk = 1 skyrmion

crystal at K = 0.1 and H = 0.6. The contour shows the z com-

ponent of the spin moment, and the arrows represent the xy compo-

nents. (b) Real-space chirality configuration corresponding to (a).
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FIG. 8. Hz dependence of (first row) mz
0 and (χ0)

2, (second row)

(mxy

Qν
)2, (third row) (mz

Qν
)2, and (fourth row) (χQν )

2 for K = 0
at (a) A = 0.2 and (b) A = 0.4.

Ref. 104. It is also found that (χ0)
2 becomes smaller for

larger A, since the positive A tends to align the spins along

the z direction, namely, it enhances (mz
Qν

)2 and suppresses

(mxy
Qν

)2. For A = 0.4, there are two types of the nsk = 1
skyrmion crystal, which are almost energetically degenerate:

One shows weak anisotropy in both spin and chirality struc-

tures for 0.5 . Hz . 0.9, and the other has the isotropic

intensities for 0.9 . Hz . 1.1. Such quasi-degenerate

skyrmion crystals have also been found in an itinerant elec-
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FIG. 9. The same plots as in Fig. 8 for K = 0.1.

tron model105 and a localized spin model146, which indicates

that optimized spin configurations in the skyrmion crystal is

determined from a subtle balance among different interaction

energies.

Differences from the result at A = 0 are also found in the

low- and high-field regions. In the low-field region, the single-

Q spiral state is realized similar to theA = 0 case, but (mz
Q1

)2

becomes nonzero for A > 0, as shown in the middle row of

Fig. 8. In addition, at A = 0.2, (mxy
Q2

)2 and (mxy
Q3

)2 become

nonzero in the vicinity of the phase boundary at H ≃ 0.4,

as shown in Fig. 8(a), suggesting a narrow intermediate phase

between the single-Q spiral state and the nsk = 1 skyrmion

crystal. Meanwhile, in the high-field region, the triple-Q state,

which is similar to that obtained at A = 0 and K > 0 in

Figs. 6(b) and 6(c), is stabilized for 1.3 . Hz . 1.6 at A =
0.2 without K , as shown in Fig. 8(a). This state is shrunk and

eventually vanishes while increasing A; the nsk = 1 skyrmion

crystal directly turns into the fully-polarized state at A = 0.4,

as shown in Fig. 8(b). This indicates that the energy gain by

A in this triple-Q state is smaller than that in the nsk = 1
skyrmion crystal and the fully-polarized state.

Figure 9 shows the results for K = 0.1. At A = 0.2, the

sequence of the magnetic phases is similar to that for A = 0 in

Fig. 6(b). Comparing Figs. 8(a) and 9(a), nonzero K replaces

the single-Q state in the low-field region by the triple-Q state

with the dominant single-Q peak in the z spin component.
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FIG. 10. The same plots as in Fig. 8 for K = 0.3.

Furthermore, K extends the region of the nsk = 1 skyrmion

crystal, as clearly seen at A = 0.4 in Fig. 9(b), while (χ0)
2 is

suppressed by increasing A.

When further increasing K , the zero-field phase becomes

the nsk = 2 skyrmion crystal forK & 0.25 as shown in Fig. 2.

The field-induced phases are similar to those for A = 0 in

Fig. 6(c). The results are shown in Fig. 10 for K = 0.3. Both

nsk = 2 and nsk = 1 skyrmion crystals remain for A = 0.2
and A = 0.4; the region for the nsk = 2 skyrmion crystal

appears to be independent of A, whereas that for the nsk = 1
skyrmion crystal is extended by increasing A. In particular,

in the case of A = 0.4 shown in Fig. 10(b), the triple-Q
state between the nsk = 2 and nsk = 1 skyrmion crystals

vanishes, and the nsk = 1 skyrmion crystal is stabilized for

0.1 . Hz . 1.2. At the same time, the triple-Q state without

(χ0)
2 appearing for 1 . Hz . 2 in Fig. 6(c) is suppressed

and vanishes while increasing A.

3. With easy-plane anisotropy

We turn to the case with the easy-plane anisotropy, A < 0.

Figures 11-13 show Hz dependences of the spin and chi-

rality related quantities for K = (0, 0.1, 0.3) and A =
(−0.1,−0.3).

At K = 0, as shown in Fig. 11, there is no qualitative

(a) K = 0 , A = -0.1 (b) K = 0 , A = -0.3
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FIG. 11. Hz dependence of (upper) mz
0 and (χ0)

2 and (lower)

(mxy

Qν
)2 for K = 0 at (a) A = −0.1 and (b) A = −0.3.
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FIG. 12. Hz dependence of (first row) mz
0 and (χ0)

2, (second row)

(mxy

Qν
)2, (third row) (mz

Qν
)2, and (fourth row) (χQν )

2 for K = 0.1
at (a) A = −0.1 and (b) A = −0.3.

change from the result at A = 0 in Fig. 6(a) by introducing the

easy-plane anisotropy. Meanwhile, when we turn on K , the
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FIG. 13. The same plots as in Fig. 12 for K = 0.3.
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FIG. 14. Real-space spin configuration of the nsk = 2 skyrmion

crystals at (a) Hz = 0.1 and (b) Hz = 0.2. The contour shows the

z component of the spin moment, and the arrows represent the xy
components.

system shows qualitatively different behavior with the insta-

bility toward the multiple-Q states. As shown in Fig. 12(a)

for K = 0.1 and A = −0.1, the single-Q conical state

at K = 0 is replaced with two triple-Q states by introduc-

ing the magnetic field. The lower-field one appearing for

0 < Hz . 1.1 shows a dominant contribution from (mxy
Q1

)2

accompanied by small (mxy
Q2

)2 and (mz
Q3

)2; while increasing

Hz , the former decreases but the latter two increase. Accord-

ingly, (χQ3
)2 becomes nonzero and shows similar Hz depen-

dence to (mz
Q3

)2, as shown in the lowest panel of Fig. 12(a).

Thus, the low-field phase is characterized by the anisotropic

triple-Q peaks with different intensities at Q1, Q2, and Q3 in

the spin structure and the single peak at Q3 in the chirality.

On the other hand, the higher-field state for 1.1 . Hz . 2.2
shows (mxy

Q1
)2 = (mxy

Q2
)2, similar to the high-field triple-Q

phase at K = 0.1 and A = 0 in Fig. 6(b). The intensities

of (mxy
Q1

)2, (mxy
Q2

)2, (mz
Q3

)2, and (χQ3
)2 become smaller as

increasing Hz , and the system continuously changes into the

fully-polarized state at Hz ≃ 2.2. For stronger easy-plane

anisotropy, however, these triple-Q states disappear as shown

in Fig. 12(b), and instead, the single-Q state similar to that

at K = 0 in Fig. 11(b) is recovered. Thus, the easy-plane

anisotropy suppresses the multiple-Q instability in the model

in Eq. (1), as seen in frustrated localized spin models65–67.

The results for a larger K = 0.3 are shown in Fig. 13. At

A = −0.1, as shown in Fig. 13(a), there is a phase transition

within the low-field nsk = 2 skyrmion crystal at Hz ≃ 0.2.

The spin texture for Hz . 0.2 is characterized by the double-

Q peak structure with equal intensities at Q1 and Q2, while

the z component shows the single-Q peak structure at Q3, as

shown in Fig. 4(b). This spin texture is similar to that in the

case of easy-axis anisotropy in Figs. 10(a) and 10(b). Mean-

while, the spin texture for Hz ≃ 0.2 has the triple-Q peak

structure for both xy and z components, as shown in the mid-

dle two panels of Fig. 13(a). Comparison of the real-space

spin configurations between the two types of the nsk = 2
skyrmion crystal is shown in Fig. 14. The low-field one in

Fig. 14(a) breaks the threefold rotational symmetry due to in-

equivalent (mQ1,2
)2 and (mQ3

)2, while the high-field one in

Fig. 14(b) preserves the threefold rotational symmetry, as in-

dicated in the data in Fig. 13. It is noted that these two spin

textures are connected by global spin rotation, and their ener-

gies are degenerate at A = Hz = 0; the former spin texture is

approximately given by

Si ∝





cosQ1 · ri
cosQ2 · ri
cosQ3 · ri





T

, (11)

and the latter is by

Si ∝





√
3
2 (cosQ2 · ri − cosQ3 · ri)

cosQ1 · ri − 1
2 (cosQ2 · ri + cosQ3 · ri)

1√
2
(cosQ1 · ri + cosQ2 · ri + cosQ3 · ri)





T

.

(12)

The result indicates that the spin texture in Eq. (11) is chosen

in the presence of A and small Hz , while that in Eq. (12)

is chosen for moderate Hz presumably due to subtle balance

among different interaction energies. While further increasing

Hz , the nsk = 2 skyrmion crystal changes into the nsk = 1
skyrmion crystal at Hz ≃ 0.3. Thus, in this case, there are

three different skyrmion crystals in the low-field region. At

Hz ∼ 0.4, the system undergoes a transition to the anisotropic

triple-Q state which is the same as that found for K = 0.1 in

Fig. 12(a).

For stronger easy-plane anisotropy, the low-field skyrmion

crystals are all replaced with the double-Q state with equal in-

tensities of (mxy
Q1

)2 and (mxy
Q2

)2, as shown in Fig. 13(b) for
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A = −0.3. This turns into the triple-Q state for Hz & 0.9
with a small additional contribution from (mz

Q3
)2. Thus, the

z-spin component of the low-field double-Q state is uniform,

while that of the high-field triple-Q state exhibits the sinu-

soidal modulation along the Q3 direction. Both states show

the single-Q chirality density wave at Q3, as shown in the

lowest panel of Fig. 13(b).

4. Discussion
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-0.10 -0.08 -0.06 -0.04 -0.02 0.00

A

FIG. 15. A dependence of (upper) mz
0 and (χ0)

2 and (lower)

(mxy

Qν
)2 and (mz

Qν
)2 at K = 0.3 and Hz = 0.7.

The results obtained in this section are summarized in

Fig. 1(a). We found a variety of multiple-Q instabilities in the

presence of the single-ion anisotropy A under the [001] mag-

netic field. The triple-Q states including the skyrmion crystals

with nsk = 1 and 2 are stabilized by the biquadratic interac-

tion K even at A = 0, but they show contrastive responses

to the easy-axis (A > 0) or easy-plane (A < 0) anisotropy.

In the following, we discuss the differences focusing on the

skyrmion crystals.

In the case of the nsk = 2 skyrmion crystal, although the

stable region in the presence of the easy-axis anisotropy at

zero field is wider than that for the easy-plane anisotropy,

e.g., −0.25 . A . 0.45 at K = 0.3 in Fig. 2, the robust-

ness against the magnetic field tends to be opposite: The crit-

ical field to destabilize the nsk = 2 skyrmion crystal is larger

for A < 0 compared to that for A > 0 [see Figs. 10(a) and

13(a)]. For A < 0, we found two different type of the nsk = 2
skyrmion crystal depending on Hz , as shown in Fig. 14.

Meanwhile, the stable field range of the nsk = 1 skyrmion

crystal changes more sensitively depending on the sign of A.

The range is extended by increasing positive A for small A
[see Figs. 6(b), 6(c), 9(a) and 10(a)], but it is rapidly shrunk

by decreasing negative A and does not appear in Figs. 11-

13. We show the stability in the small negative A region at

K = 0.3 and Hz = 0.7 in Fig. 15. The result clearly indi-

cates that the nsk = 1 skyrmion crystal is very weak against

the easy-plane anisotropy; it is destabilized at A ≃ −0.06,

while it remains stable for much stronger easy-axis anisotropy,

as exemplified in Fig. 10(b) for A = 0.4. The results are qual-

itatively consistent with those obtained for the Kondo lattice

model105. Despite the narrow stable region, it is worth not-

ing that the nsk = 1 skyrmion crystal for A < 0 is one of

the good indicators for the importance of the spin-charge cou-

pling, since it is hardly stabilized in the localized spin models

with the easy-plane anisotropy65–67.

Let us comment on the model parameters in relation to ex-

periments. The nsk = 2 skyrmion crystal is realized only for

nonzero K , while the nsk = 1 one is stabilized even without

K104 or A85. This indicates that the phase diagram against Hz

in experiments provides information whether K and/or A are

important. For example, in the skyrmion-hosting centrosym-

metric materials such as Gd2PdSi3
121–123 and Gd3Ru4Al12

126,

the effect of magnetic anisotropy might be significant rather

than K , since the zero-field phase does not correspond to the

nsk = 2 skyrmion crystal. Nevertheless, the chemical substi-

tution or carrier doping would result in the nsk = 2 skyrmion

crystal, since K is sensitive to the electronic band structure85.

C. Field along the x direction

Next, we discuss the result in the presence of the magnetic

field along the x direction by taking H = (Hx, 0, 0) in the

Zeeman Hamiltonian HZ in Eq. (5). As the result for the

isotropic case with A = 0 is the same (by replacing Hx with

Hz) as that in Sec. IV B 1 due to spin rotational symmetry,

we show the results for the anisotropic cases with A > 0 in

Sec. IV C 1 and A < 0 in Sec. IV C 2. We discuss the results

in this section in Sec. IV C 3.

1. With easy-axis anisotropy

Figures 16-18 show Hx dependences of the spin and chi-

rality related quantities in the case of the easy-axis anisotropy,

A = 0.2 and 0.4 for K = 0, 0.1, and 0.3. At K = 0
and A = 0.2, the spiral plane of the single-Q helical state

is locked in the yz plane for nonzero Hx, as shown in the

lower two panels of Fig. 16(a). By increasing Hx, (my
Q1

)2

and (mz
Q1

)2 become smaller and vanish at Hx ≃ 1.8 and

Hx ≃ 2.4, respectively. The difference of the critical field is

due to the presence of the easy-axis anisotropy favoring the z-

spin component. Thus, the magnetic state for 0 < Hx . 1.8
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FIG. 16. Hx dependence of (first row) mx
0 and (χ0)

2, (second row)

(mx
Qν

)2 and (my

Qν
)2, and (third row) (mz

Qν
)2 for K = 0 at (a)

A = 0.2 and (b) A = 0.4.

is the single-Q conical state with the anisotropic spiral in the

yz plane and the magnetic state for 1.8 . Hx . 2.4 is the

single-Q fan state consisting of the collinear z spin and the

uniform magnetization mx
0 . The single-Q conical state in the

low-field region has nonzero (χ0)
2 as plotted in the top panel

of Fig. 16(a), but this is not a uniform but staggered compo-

nent. For larger A = 0.4 in Fig. 16(b), the phase sequence

is similar to that for A = 0.2. The critical field between the

single-Q conical and fan states becomes smaller, while that

between the single-Q fan and fully-polarized states becomes

larger; namely, the fan state is extended by increasing A. This

tendency is naturally understood from the fact that the easy-

axis anisotropy prefers to align the spins parallel to the z di-

rection.

By introducing K , several multiple-Q instabilities appear

in the presence of Hx as in the case of Hz in Sec. IV B. Fig-

ure 17(a) shows the result for K = 0.1 and A = 0.2. While

the single-Q fan state is stabilized for 1.8 . Hx . 2.4 simi-

lar to the case for K = 0 in Fig. 16(a), the major part of the

lower-field single-Q conical state is replaced with a multiple-

Q state. At Hx = 0, the spin configuration is modulated from

the single-Q cycloidal spin structure at K = 0 so that the x-

spin component has Q2 modulation, which corresponds to the

double-Q chiral stripe state with nonzero (χQ2
)2, as shown in

the lowest panel of Fig. 17(a). When Hx is applied, (χ0)
2 by

a staggered chirality configuration, (my
Q3

)2, and (mz
Q3

)2 are

induced with similar Hx dependence and shows a broad peak

structure around Hx ∼ 1. At Hx ≃ 1.4, this state turns into

the single-Q conical state which was found in Fig. 16(a). For
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FIG. 17. Hx dependence of (first row) mx
0 and (χ0)

2, (second row)

(mx
Qν

)2 and (my

Qν
)2, (third row) (mz

Qν
)2, and (fourth row) (χQν )

2

for K = 0.1 at (a) A = 0.2 and (b) A = 0.4.

larger A, however, as shown in Fig. 17(b), the double-Q state

is suppressed and the phase sequence becomes similar to that

for K = 0 in Fig. 16(b).

In the case of larger K = 0.3 and A = 0.2 in Fig. 18(a),

the spin structure in the nsk = 2 skyrmion crystal stabi-

lized at Hx = 0 is modulated from the triple-Q sinusoidal

structure with (mx
Q3

)2, (my
Q2

)2, and (mz
Q1

)2 so as to pos-

sess nonzero (my
Q1

)2 and (mz
Q2

)2 [or (mz
Q1

)2 and (my
Q2

)2].

The real-space spin configuration at Hx = 0.1 is shown in

Fig. 19(a). For 0.2 . Hx . 0.4, the additional component

(my
Q1

)2 has a similar value to (my
Q2

)2. In other words, the

real-space spin structure in this field region is characterized by

the single-Q sinusoidal modulation along the field direction

and the double-Q checker-board-type modulation perpendic-

ular to the field direction. The real-space spin configuration is

presented in Fig. 19(b).

While further increasing Hx, (χ0)
2 jumps at Hx ≃ 0.4,

and the nsk = 1 skyrmion crystal is realized for 0.4 . Hz .
0.7, similar to that for A > 0 and Hz > 0 in Sec. IV B 2.

In this case, however, the skyrmion core has Sx ≃ −1 and

the spin structure breaks threefold rotational symmetry due

to the in-plane field, as shown in Figs. 19(c) and 19(d). For

0.5 . Hx . 0.7, (mQ2
)2 and (mQ3

)2 take the same value,
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FIG. 18. The same plots as in Fig. 17 for K = 0.3.
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FIG. 19. Real-space spin configuration of the nsk = 2 skyrmion

crystals at (a) Hx = 0.1 and (b) Hx = 0.3, and (c), (d) the nsk = 2
skyrmion crystal at Hx = 0.5 for K = 0.3 and A = 0.2. In (a)-

(c), the contour shows the z component of the spin moment, and the

arrows represent the xy components. In (d), the contour shows the x
component of the spin moment.

which are smaller than (mQ1
)2, while (mQ1

)2, (mQ2
)2, and
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FIG. 20. Real-space spin and chirality configurations of (a)-(d) the

anisotropic triple-Q state at Hx = 0.9 and A = 0.2 and (e)-(h) the

nsk = 2 skyrmion crystal at Hx = 0.8 and A = 0.4. The contour

shows the (a) and (e) z, (b) and (f) x, and (c) and (g) y components

of the spin moment, and the arrows in (a) and (e) represent the xy
components. In (d) and (h), the contour shows the scalar chirality.

(mQ3
)2 are all different for smaller Hx. This suggests that

there are two regions in the nsk = 1 skyrmion crystal with

slightly different multiple-Q structures.

At Hx ≃ 0.7, the nsk = 1 skyrmion crystal turns into

the anisotropic triple-Q state, which is characterized by the

equal intensities in (mα
Q1

)2 and (mα
Q2

)2 for α = y and z,

in addition to (mx
Q3

)2, as shown in the middle two panels of

Fig. 18(a). This triple-Q state has a single-Q chirality modu-

lation at Q3, as shown in the lowest panel of Fig. 18(a). The

spin and chirality configurations are shown in Figs. 20(a)-

20(d). These are similar to those in the high-field region in

Figs. 13(a) and 13(b) by a replacement of the spin compo-

nents (x, y, z) → (z, y, x). This indicates that the effect of

Hx for A > 0 is similar to that of Hz for A < 0. With a fur-

ther increase of Hx, this triple-Q state turns into the single-Q
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fan state at Hx ≃ 1.8, and finally becomes the fully-polarized

state at Hx ≃ 2.4.

The result for larger A = 0.4 at K = 0.3 is shown in

Fig. 18(b). The nsk = 2 and nsk = 1 skyrmion crystals

appear in a similar manner to the case with A = 0.2 in

Fig. 18(a), but in a narrower field range for 0 ≤ Hx . 0.4.

The state stabilized for 0.4 . Hx . 0.6, where (χ0)
2 van-

ishes, is dominantly characterized by a sinusoidal spin struc-

ture with (mz
Q1

)2 with small additional intensities at (mQ2
)2

and (mQ3
)2, as shown in the middle two panels of Fig. 18(b).

This is a different triple-Q state from the anisotropic one

found for A = 0.2. While increasing Hx, (χ0)
2 as well as

χQ3
becomes nonzero again for 0.6 . Hx . 0.9. In this

region, the spin structure has double-Q modulations for the

y and z components and the single-Q modulation for the x
component. This is regarded as a square-type vortex crystal

with nonzero uniform scalar chirality, whose real-space spin

and chirality structures are plotted in Figs. 20(e)-20(h).

It is interesting to note that this triple-Q vortex crystal is

hardly distinguished from that found for 0.7 . Hx . 1.8
at A = 0.2 solely from the spin structure. As shown in

Figs. 20(a)-20(c) and 20(e)-20(g), their spin patterns appear

to be similar: Both are represented by the checker-board-

type modulation in the y and z components and the sinu-

soidal modulation in the x component. The difference, how-

ever, lies in the relative phases among the constituent waves.

For Hx = 0.9 and A = 0.2 [Figs. 20(a)-20(c)], Sx shows

the maximum value where Sy becomes zero, while Sx and

|Sy| take their maximum at the same positions for Hx = 0.8
and A = 0.4 [Figs. 20(e)-20(g)]. Thus, these two double-

Q states are distinguished by the phase shift among the con-

stituent triple-Q waves31. Reflecting the phase shift, the chi-

rality behaves differently between the two states: The positive

and negative contributions of the scalar chirality are canceled

out for the former state, while there is no cancelation for the

latter state, as shown in Figs. 20(d) and 20(h), respectively.

By calculating the skyrmion number for the latter state, we

find that it exhibits the skyrmion number of two in the mag-

netic unit cell. This indicates that the obtained square-type

vortex crystal can also be regarded as the nsk = 2 skyrmion

crystal, although the skyrmion cores are arranged in a one-

dimensional way rather than a threefold-symmetric way.

While further increasing Hx in Fig. 18(b), (my
Q1

)2 and

(my
Q2

)2 decrease, and the system undergoes a phase transition

to another triple-Q state without (χ0)
2 and χQ3

at Hx ≃ 0.9.

At Hx ≃ 1.5, the triple-Q state turns into the single-Q fan

state, and finally into the fully-polarized state at Hx ≃ 2.8.

2. With easy-plane anisotropy

Next, we investigate the case of the easy-plane anisotropy

under Hx. Figures 21-23 show the results for A = −0.1 and

−0.3. First, we discuss the result at A = −0.1 and K = 0
in Fig. 21(a). By introducing Hx, (mx

Q1
)2 and (my

Q1
)2 be-

come inequivalent in the single-Q helical spiral state in the

low-field region. While further increasing Hx, the single-

Q state turns into the triple-Q state for 0.4 . Hx . 0.6
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FIG. 21. Hx dependence of (first row) mx
0 and (χ0)

2, (second row)

(mx
Qν

)2 and (my

Qν
)2, (third row) (mz

Qν
)2, and (fourth row) (χQν )

2

for K = 0 at (a) A = −0.1 and (b) A = −0.3.

where (mz
Q2

)2 and (mz
Q3

)2 are slightly induced in addition

to (χQ2
)2 and (χQ3

)2. At Hx ≃ 0.6, the system under-

goes a phase transition to the nsk = 1 skyrmion crystal. The

skyrmion core has Sx ≃ −1 similar to that stabilized by

the easy-axis anisotropy in Figs. 19(c) and 19(d). This re-

sult indicates that the skyrmion crystal can be stabilized by

an in-plane magnetic field in itinerant magnets with the easy-

plane anisotropy even without K . For larger Hx, the nsk = 1
skyrmion crystal is replaced with other states: the anisotropic

triple-Q state for 1.1 . Hx . 1.5, the single-Q conical state

for 1.5 . Hx . 1.7, the single-Q fan state for 1.7 . Hx . 2,

and the fully-polarized state for Hx & 2. The spin configura-

tions in these states are shown in Fig. 24. It is noted that the

anisotropic triple-Q and single-Q conical states have small but

nonzero (χ0)
2 as shown in the top panel of Fig. 21(a), due to

the staggered arrangement of the scalar chirality.

By increasing the easy-plane anisotropy, (mz
Qν

)2 are sup-

pressed as shown in Fig. 21(b) in the case of A = −0.3. The

low-field state for 0 < Hx . 0.7 remains unchanged from the

single-Q helical spiral state at A = −0.1 for 0 < Hx . 0.3.

On the other hand, the intermediate phase for 0.7 . Hx . 1.2
is a different triple-Q state from those for A = −0.1 because

of the absence of (mz
Qν

)2, in spite of a similar magnetization
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FIG. 22. The same plots as in Fig. 21 for K = 0.1.

curve to that for A = −0.1 as shown in the top row of Fig. 21.

This triple-Q state has zero (χ0)
2 and a similar in-plane vor-

tex structure of (mx
Qν

)2 and (my
Qν

)2 to that in the nsk = 1
skyrmion crystal at A = −0.1. The real-space spin configu-

ration is shown in Figs. 25(a)-25(c). Interestingly, the bubble

structure appears in the x-spin component in Fig. 25(b) where

the cores with Sx ≃ −1 form an anisotropic triangular lattice.

We note that similar bubble structures were obtained for an

out-of-plane magnetic field in frustrated magnets67 and itin-

erant magnets106 with strong easy-axis anisotropy. However,

the present bubble state exhibits a coplanar spin structure with

additional modulation in the y component, in contrast to the

collinear bubble structures for the easy-axis anisotropy. The

in-plane component orthogonal to the magnetic field gains the

energy under the easy-plane anisotropy, and contributes to the

stabilization of the coplanar bubble state.

While further increasing Hx, the system undergoes a phase

transition to the single-Q fan state at Hx ≃ 1.2, as shown in

Fig. 21(b). Finally, the system turns into the fully-polarized

state for Hx & 2.

When we introduce K , the multiple-Q states found for

K = 0 tend to be more stabilized, as shown in Fig. 22 for

K = 0.1. For A = −0.1 in Fig. 22(a), the low-field single-Q
state is suppressed and the nsk = 1 skyrmion crystal is sta-

bilized from a smaller Hx compared to the K = 0 case in
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FIG. 23. The same plots as in Fig. 21 for K = 0.3.

Fig. 21(a). In the higher-field region, the anisotropic triple-Q
state is also extended up to a larger Hx, while the spin struc-

ture is modulated from the K = 0 case so that the dominant

peaks at Q1 and Q2 have the same intensities. Meanwhile, for

A = −0.3 shown in Fig. 22(b), there are no additional phases

compared to the K = 0 case in Fig. 21(b), while the region of

the triple-Q state is extended.

For larger K , the multiple-Q states are more stabilized

and take over the single-Q states, as shown in Fig. 23 for

K = 0.3. In addition, for A = −0.1, the nsk = 2 skyrmion

crystal appears for 0 ≤ Hx . 0.2, as shown in Fig. 23(a).

The spin texture is modulated in an anisotropic manner with

larger intensities for the xy components than the z component,

which is opposite to the case with the easy-axis anisotropy

in Fig. 18(a). The narrow triple-Q state for Hx ≃ 0.2 has

different spin and chirality textures from those for the lower-

field state; it is characterized by nonzero (my
Q2

)2 = (my
Q3

)2

and (mz
Q2

)2 = (mz
Q3

)2 in addition to (mx
Q1

)2. The triple-Q
state turns into the nsk = 1 skyrmion crystal at Hx ≃ 0.3
with a finite jump of (χ0)

2, as shown in the top panel of

Fig. 23(a). The nsk = 1 skyrmion crystal is stabilized for

0.3 . Hx . 1, whose region is larger compared to that at

K = 0.1 in Fig. 22(a). For 1.1 . Hx . 1.8, we find a triple-

Q state with similar spin and chirality structures to the state

for Hx ≃ 0.2. In the higher-field region for 1.8 . Hx . 2,
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(b)
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 1(a)

(d)(c)

FIG. 24. Real-space spin configurations of (a) the anisotropic triple-

Q state at Hx = 1.1, (b) the single-Q conical state at Hx = 1.6,

(c) the single-Q fan state at Hx = 1.8, and (d) the fully-polarized

state at Hx = 2 for K = 0 and A = −0.1. The contour shows the

z component of the spin moment, and the arrows represent the xy
components.

a different type of the triple-Q state appears, which is charac-

terized by the triple-Q fan structure by superposing (my
Qν

)2

for ν = 1-3 with equal intensities, as shown in Fig. 23(a).

Figures 25(d)-25(f) show the real-space spin textures of the

triple-Q fan state. The result indicates that there are no modu-

lations for x- and z-spin components, while the y component

forms a staggered hexagonal lattice satisfying threefold rota-

tional symmetry.

In the case of A = −0.3 in Fig. 23(b), the behavior of

the xy components is qualitatively similar to that for A =
−0.1 in Fig. 23(a), except for the anisotropic triple-Q state

at Hx ≃ 0.2 and 0.3 . Hx . 1.1. For 0 < Hx . 0.2,

the in-plane anisotropic triple-Q state with nonzero (my
Q1

)2,

(mx
Q2

)2, and (my
Q3

)2 is stabilized. For 0.2 . Hx . 1.2,

the xy-spin components are similar to those in the state for

0.3 . Hx . 1.1 at A = −0.1 in Fig. 23(a), i.e., the xy-

spin structures are characterized by the dominant (my
Q1

)2 and

the subdominant (mx
Q1

)2, (mx
Q2

)2, (my
Q2

)2, (mx
Q3

)2, and

(my
Q3

)2. We note that there are two types of the triple-Q

state for 0.2 . Hx . 1.2, which are almost energetically de-

generate: One has equal intensities with (mx
Q2

)2 and (mx
Q3

)2

[and (my
Q2

)2 and (my
Q3

)2], and the other does not. These

two states are interchanged with each other depending on the

value of Hx. Meanwhile, the states for 1.2 . Hx . 1.7
and 1.7 . Hx . 2 have similar spin structures to the triple-

Q state for 1.1 . Hx . 1.8 and the triple-Q fan state for

1.8 . Hx . 2 at A = −0.1, respectively.
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FIG. 25. Real-space spin configurations of (a)-(c) the triple-Q copla-

nar bubble crystal at K = 0, A = −0.3, and Hx = 1 and (d)-(e) the

triple-Q coplanar fan state at K = 0.3, A = −0.1, and Hx = 1.8.

The contour shows the (a) and (d) z, (b) and (e) x, and (c) and (f) y
components of the spin moment, and the arrows in (a) and (d) repre-

sent the xy components.

3. Discussion

The results obtained in this section are summarized in

Fig. 1(b). Similar to the case with the magnetic field along

the z direction in Sec. IV B, we found a variety of multiple-

Q instabilities in the presence of the single-ion anisotropy A
by applying the magnetic field along the x direction. Among

them, we obtained both nsk = 2 and nsk = 1 skyrmion

crystals, although their spin and chirality textures are differ-

ent from those in Sec. IV B. In the following, we discuss the

characteristics of the skyrmion crystals comparing the effects

of easy-axis and easy-plane anisotropy.

The nsk = 2 skyrmion crystal is widely stabilized for large

K under easy-axis anisotropy A > 0, as shown in Fig. 18.

The in-plane magnetic field modulates its spin patterns from

the triple-Q sinusoidal waves to the single-Q sinusoidal and

double-Q checker-board-type waves, as shown in Fig. 19.

Meanwhile, for easy-plane anisotropy A < 0, the nsk = 2
skyrmion crystal is limited to large K and small |A|, as shown

in Fig. 23(a). The critical field to destabilize the nsk = 2
skyrmion crystal is larger for A > 0 [Fig. 18(a)] than A < 0
[Fig. 23(a)].

We also obtained the nsk = 2 skyrmion crystal in the

intermediate-field region for K = 0.3 and A = 0.4
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[Fig. 18(b)], where the spin texture is characterized by a su-

perposition of the single-Q sinusoidal and double-Q checker-

board-type waves in Figs. 20(e)-20(h). This indicates that the

materials with easy-axis anisotropy may show the nsk = 2
skyrmion crystal in the in-plane magnetic field.

On the other hand, the nsk = 1 skyrmion crystal is found

only for K = 0.3 and A = 0.2 under easy-axis anisotropy,

as shown in Fig. 18(a). This suggests that large K and mod-

erate A are necessary to stabilize the nsk = 1 skyrmion crys-

tal under the in-plane field, which is in contrast to the case

under the out-of-plane field in Sec. IV B 2. On the other

hand, the nsk = 1 skyrmion crystal appears for small |A|
irrespective of K for easy-plane anisotropy with A < 0, as

shown in Figs. 21(a), 22(a), and 23(a). Furthermore, the

nsk = 1 skyrmion crystal is stabilized even without K for

A < 0, similar to the situation for A > 0 and Hz > 0 in

Sec. IV B 2. These results indicate that the materials showing

a single-Q spiral state in the xy plane at zero field under easy-

axis anisotropy are potential candidates for the field-induced

nsk = 1 skyrmion crystal in the in-plane magnetic field.

Besides the skyrmion crystals, we found several intriguing

multiple-Q spin textures under the in-plane magnetic field.

In particular, for A < 0, we found two types of interest-

ing magnetic structures without scalar chirality: the triple-

Q coplanar bubble crystal with additional in-plane modula-

tions for large |A| irrespective of K shown in Figs. 25(a)-

25(c), and the triple-Q coplanar fan state for large K shown in

Figs. 25(d)-25(f). While the former triple-Q coplanar bubble

crystal shows a similar magnetization curve to the nsk = 1
skyrmion crystal, it is useful to measure the topological Hall

effect to distinguish the triple-Q state with and without uni-

form scalar chirality. Meanwhile, the latter triple-Q coplanar

fan state appears only for large K , its observation provides an

evidence of the importance of the itinerant nature of electrons.

D. Field rotation in the xz plane

In this section, we examine the multiple-Q instability

by rotating the magnetic field in the xz plane as H =
H(sin θ, 0, cos θ) for 0◦ ≤ θ ≤ 90◦. We fix the magnitude of

the field at H = 0.8 for which the skyrmion crystals are stabi-

lized at θ = 0◦, i.e., for the [001] field, and θ = 90◦, i.e., for

the [100] field. The results are the same for the magnetic field

rotated in the yz plane due to spin rotational symmetry in the

xy plane in the absence of the bond-dependent anisotropy, i.e.,

HBA = 0. We show the results under the easy-axis anisotropy

in Sec. IV D 1 and the easy-plane anisotropy in Sec. IV D 2.

We discuss the results in this section in Sec. IV D 3.

1. With easy-axis anisotropy

First, we discuss the results for easy-axis anisotropy with

A = 0.2 shown in Figs. 26(a), 27(a), and 28(a). Figure 26(a)

shows the result for K = 0. The nsk = 1 skyrmion crystal

with (mQ1
)2 = (mQ2

)2 = (mQ3
)2 is stabilized at θ = 0◦,

whose spin texture is presented in Fig. 7(a). With an increase

0.0
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FIG. 26. θ dependence of (first row) mz
0, mx

0 , and (χ0)
2, (second

row) (mx
Qν

)2 and (my

Qν
)2, (third row) (mz

Qν
)2, and (fourth row)

(χQν )
2 for K = 0 at (a) A = 0.2 and (b) A = 0.4. In the second

row in (a), the dashed line represents (mxy

Q1
)2, while the solid lines

represent (mxy

Q2
)2 and (mxy

Q3
)2. The magnitude of the magnetic field

is fixed at H = 0.8.

of θ, the intensities of the triple-Q peaks in the spin struc-

ture factor become different and split into two and one; see

the dashed and solid lines in the second panel of Fig. 26(a).

This means that the threefold rotational symmetry is broken

by the in-plane component of the applied field. The symme-

try breaking can be clearly seen in the real-space spin and

chirality configurations, exemplified for θ = 5◦ and 45◦ in

Fig. 29. While increasing θ, the almost circular skyrmions

in Fig. 29(a) are slightly deformed in an elliptical form along

the Q1 direction, as shown in Fig. 29(e). At the same time,

the x-spin component shows an elongated hexagonal crystal

of the bubbles as shown in Fig. 29(f), whose centers defined

by the minima of Sx are different from those of the skyrmions

with the minima of Sz , as indicated by the green squares and

circles in Figs. 29(e) and 29(f). The y-spin component shows

checker-board type modulation for both θ = 5◦ and θ = 45◦,

as shown in Figs. 29(c) and 29(g), respectively. These spin

configurations imply that the spin axis at the skyrmion cores

is tilted from the z to x direction by increasing θ. Accordingly,

the texture of the scalar chirality is modulated in an asymmet-

ric form in the x direction while increasing θ, as shown in
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FIG. 27. The same plots as in Fig. 26 for K = 0.1.

Figs. 29(d) and 29(h). This is due to the fact that the intensi-

ties of (χQν
)2 are also split into two and one, as shown in the

lowest panel of Fig. 26(a).

The nsk = 1 skyrmion crystal remains stable against the

rotation of the magnetic field up to θ ≃ 49◦, and then changes

into a different triple-Q state, as shown in Fig. 26(a). The

triple-Q state for 49◦ . θ . 63◦ is characterized by the dom-

inant peak at Q1 and two subdominant peaks at Q2 and Q3 in

the spin and by the two peaks at Q2 and Q3 in the chirality.

While further increasing θ, this state smoothly changes into

the single-Q helical state discussed in Sec. IV C 1. It should

be noted that a small (χ0)
2 is induced for θ & 49◦ due to the

staggered arrangement of the scalar chirality.

When we switch on K , the nsk = 1 skyrmion crystal be-

comes more robust against θ; it extends up to θ ≃ 63◦ for

K = 0.1 as shown in Fig. 27(a). Meanwhile, the single-Q he-

lical state for large θ is unstable and taken over by the triple-Q
state found in the region for 49◦ . θ . 63◦ in Fig. 26(a). In

the large θ region, however, the triple-Q state changes its sym-

metry for θ & 85◦ with the different intensities at Q2 and Q3

in both spin and chirality. The tendency that K favors the

multiple-Q states is consistent with the results in Secs. IV B

and IV C.

For larger K , the region where the nsk = 1 skyrmion crys-

tal is stabilized is further extended to larger θ ≃ 67◦ for

K = 0.3, as shown in Fig. 28(a). Within the region, however,
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FIG. 28. The same plots as in Fig. 26 for K = 0.3.

mQν
and χQν

show discontinuity at θ ≃ 45◦, while (χ0)
2

appears to be continuous. The discontinuity is ascribed to fur-

ther deformation of the skyrmions. We show the real-space

spin and chirality configurations at θ = 63◦ in Fig. 30. Due to

the anisotropic triple-Q structure for the y-spin component in

Fig. 30(c) in contrast to the double-Q structure in Fig. 29(c),

the positions of the minima of Sx and Sz are different in not

only the x but also y direction, as shown by the green squares

and circles in Figs. 30(a) and 30(b). Accordingly, the scalar

chirality is distributed in an asymmetric form in both x and y
directions, as shown in Fig. 30(d). These spin configurations

imply that the spin axis at the skyrmion cores is tilted from the

z to both x and y directions. We thus deduce that the phase

transition at θ ≃ 45◦ is caused by a phase shift among the

constituent waves, similar to that found for in Sec. IV C 1 (see

Fig. 20). For larger θ, the nsk = 1 skyrmion crystal changes

into the anisotropic triple-Q state at θ ≃ 67◦, which smoothly

turns into the state obtained at θ = 90◦ in Sec. IV C 1.

The results for larger single-ion anisotropy A = 0.4 are

shown in Figs. 26(b), 27(b), and 28(b). The critical angles

where the nsk = 1 skyrmion crystal is destabilized are almost

the same as those at A = 0.2 in the cases of K = 0 and

K = 0.1, although (χ0)
2 is suppressed due to the reduction

of (mx
Qν

)2 and (my
Qν

)2, as shown in Figs. 26(b) and 27(b).

Meanwhile, the situation for K = 0.3 looks more compli-

cated than for K = 0 and 0.1, as shown in Fig. 28(b). In this
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FIG. 29. Real-space spin and chirality configurations of the nsk = 1
skyrmion crystals at (a)-(d) θ = 5◦ and (e)-(h) θ = 45◦ for K = 0
and A = 0.2. The contour shows the (a) and (e) z, (b) and (f) x,

and (c) and (g) y components of the spin moment, and the arrows in

(a) and (e) represent the xy components. In (d) and (h), the contour

shows the scalar chirality. In (e)-(h), the green squares and circles

represent the positions of the minima of Sz and Sx, respectively.

case, we find two skyrmion crystals: the nsk = 1 skyrmion

crystal for 0◦ . θ . 18◦ and the nsk = 2 skyrmion crystal

for 81◦ . θ . 90◦. The former is similar to that found at

K = 0.1 in Fig. 27(b). We also obtain the other chiral mag-

netic states which are topologically trivial (the skyrmion num-

ber is zero) next to the skyrmion crystal (18◦ . θ . 22◦) and

in the intermediate field region (54◦ . θ . 67◦). The real-

space spin and chirality configurations of the intermediate-

field state are shown in Figs. 31(a) and 31(b), respectively. Al-

though the spin texture looks similar to the nsk = 1 skyrmion

crystal in Fig. 30(a), this state has zero skyrmion number.

The results imply that the topological nature can be switched

by keen competition among the different spin textures in the

rotated magnetic field under the strong influence of itinerant

nature of electrons. Between these chiral states, we obtain
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FIG. 30. Real-space spin and chirality configurations of the nsk = 1
skyrmion crystal at θ = 63◦ for K = 0.3 and A = 0.2. The contour

shows the (a) z, (b) x, and (c) y components of the spin moment, and

the arrows in (a) represent the xy components. In (d), the contour

shows the scalar chirality. The green squares and circles represent

the positions of the minima of Sz and Sx, respectively.
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FIG. 31. Real-space spin and chirality configurations of the triple-Q
state with nonzero (χ0)

2 at θ = 58.5◦ for K = 0.3 and A = 0.4.

The contour shows (a) the z component of the spin moment, and the

arrows represent the xy components. In (b), the contour shows the

scalar chirality.
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FIG. 32. Real-space spin and chirality configurations of the triple-Q
state with the bubble crystal like structure at θ = 31.5◦ for K = 0.3
and A = 0.4. The contour shows (a) the z component of the spin

moment, and the arrows represent the xy components. In (b), the

contour shows the scalar chirality.
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two triple-Q states with (χ0)
2 = 0 for 22◦ . θ . 54◦ and

67◦ . θ . 81◦. While the latter is similar to the one found

in the case with A = 0.2 in Fig. 28(a), the former appears

only for larger A and has a bubble crystal like structure. The

spin and chirality configurations are shown in Figs. 32(a) and

32(b), respectively. The xy-spin components do not rotate

around the cores denoted by the blue regions in Fig. 32(a);

they rotate in an opposite way between the left and right sides

of the cores. Thus, the local scalar chirality with the opposite

sign is induced around the core, but they are canceled out with

each other, as shown in Fig. 32(b).
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FIG. 33. θ dependence of (first row) mz
0, mx

0 , and (χ0)
2, (second

row) (mx
Qν

)2 and (my

Qν
)2, (third row) (mz

Qν
)2, and (fourth row)

(χQν )
2 for K = 0 at (a) A = −0.1 and (b) A = −0.3. The

magnitude of the magnetic field is fixed at H = 0.8.

2. With easy-plane anisotropy

Figures 33-35 show the results in the presence of easy-

plane anisotropy when the field is rotated in the xz plane.

For A = −0.1, the nsk = 1 skyrmion crystal is stabilized

at θ = 90◦ irrespective of K , as shown in Figs. 33(a), 34(a),

and 35(a). The critical angles where the nsk = 1 skyrmion

crystal is destabilized are θ ≃ 65◦ for K = 0, θ ≃ 42◦ for

K = 0.1, and θ ≃ 42◦ for K = 0.3. This indicates that

nonzero K enhances the stability of the nsk = 1 skyrmion
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FIG. 34. The same plots as in Fig. 33 for K = 0.1.

crystal, while the critical angle appears to saturate for large

values of K . By further tilting the magnetic field to the z di-

rection, the nsk = 1 skyrmion crystal at K = 0 is replaced

with the triple-Q state accompanied with the double-Q chi-

rality density wave and the staggered component of (χ0)
2 for

θ . 65◦, as shown in Fig. 33(a). While further decreasing θ,

the intensities of (mQ2
)2 and (mQ3

)2 are suppressed and be-

come zero at θ ≃ 33◦. In other words, the anisotropic triple-Q
state changes into the single-Q state, in which (mα

Q1
)2 change

gradually so that the spiral plane keeps being perpendicular to

the field direction. For K = 0.1, the behavior against θ is sim-

ilar to that for K = 0 except that another triple-Q state with

different intensities at Q1, Q2, and Q3 appears for θ . 11◦,

which continuously turns into the state at θ = 0◦ obtained in

Sec. IV B 3, as shown in Fig. 34(a). In the case of K = 0.3,

as shown in Fig. 35(a), yet another triple-Q state with the

single-Q chirality density wave is realized for θ . 42◦, which

also continuously turns into the state at θ = 0◦ obtained in

Sec. IV B 3.

When the easy-plane anisotropy becomes stronger, the

nsk = 1 skyrmion crystal is destabilized for all K , as shown

in Figs. 33(b), 34(b), and 35(b) for A = −0.3. For K = 0
and 0.1, there remains a phase transition between the single-

Q conical state realized at θ = 0◦ and the anisotropic triple-

Q state realized at θ = 90◦, at θ ≃ 47◦ for K = 0 and

θ ≃ 34◦ for K = 0.1, as shown in Figs. 33(b) and 34(b), re-
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FIG. 35. The same plots as in Fig. 33 for K = 0.3.

spectively. For K = 0.3, however, the single-Q conical state

disappears and there are multiple phase transitions between

three different types of triple-Q states, as shown in Fig. 35(b).

The state for 0◦ < θ . 7◦ is continuously modulated from

the anisotropic double-Q state found for the θ = 0 case in

Fig. 13(b), by acquiring a small nonzero (my
Q3

)2 for nonzero

θ. On the other hand, the state for 47◦ . θ < 90◦ is also con-

tinuously modulated from the one for θ = 90◦ in Fig. 23(b).

For 7◦ . θ . 47◦, the state for 47◦ . θ < 90◦ is almost en-

ergetically degenerate with a different triple-Q state, and the

competition causes phase transitions at θ ≃ 16◦ and 25◦, as

found in Fig. 23(b) while changing Hx.

3. Discussion

The results obtained in this section are summarized in

Fig. 1(c). We found similar tendency with respect to the stabil-

ity of the nsk = 1 skyrmion crystal for bothA > 0 and A < 0;

the range of the field angle θ for the nsk = 1 skyrmion crystal

becomes wider for larger K . We found, however, that the spin

axis at the skyrmion cores is tilted from the z direction to the

xy plane in the case of A > 0, as shown in Figs. 29(e), 29(f),

30(a), and 30(b). In the case of A < 0, a similar tilting occurs

from the x direction to the yz plane (not shown).

In addition to the skyrmion crystal, we found a triple-Q
state with nonzero (χ0)

2 in the rotated field, as shown in

Fig. 31. We also found a bubble crystal with (χ0)
2 = 0 be-

tween the topological states, where the opposite sign of the

scalar chirality is distributed around the single core, as shown

in Fig. 32. As these peculiar states are obtained only for large

K and A, it is desired to target the materials with large spin-

charge coupling and easy-axis anisotropy for exploring them.

V. BOND-DEPENDENT ANISOTROPY

In this section, we examine the effect of the bond-dependent

exchange interaction IA by considering the Hamiltonian H =
HBBQ+HBA+HZ (i.e., HSIA = 0). The magnetic phase dia-

gram at zero magnetic field is shown in Sec. V A. In Sec. V B,

we present the results in the magnetic field applied to the z
direction. In contrast to the case with single-ion anisotropy,

we could not find any instability toward the skyrmion crystals

in the in-plane magnetic field, and hence, we do not show the

results for the in-plane magnetic field as well as the rotated

field. We discuss the results in this section in Sec. V C.

A. At zero field

n
sk

=2 skyrmion

 0.0

 0.1

 0.2

 0.3

0.0 0.2 0.4  0.6  0.8  1.0

2Q helical

2Q coplanar

2Q 

chiral stripe
2Q’ coplanar

1Q 

spiral

FIG. 36. Magnetic phase diagram of the model in Eq. (1) with

HSIA = HZ = 0 obtained by the simulated annealing at T = 0.01.

First, we present the magnetic phase diagram for the model

in Eq. (1) with HSIA = HZ = 0 obtained by the simulated an-

nealing in Fig. 36. There are six phases including the single-Q
spiral state at K = 0 and IA = 0, whose spin and chirality

configurations are exemplified in Figs. 37 and 38. The spin
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FIG. 37. Real-space spin configurations of (a) the double-Q (2Q)

chiral stripe state at K = 0.1 and IA = 0.1, (c) the 2Q helical state

at K = 0.1 and IA = 0.4, and (e) the nsk = 2 skyrmion crystal at

K = 0.3 and IA = 0.5. The contour shows the z component of the

spin moment, and the arrows represent the xy components. (b), (d),

and (f) display the real-space chirality configurations corresponding

to (a), (c), and (e), respectively.
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FIG. 38. Real-space spin configurations of (a) the double-Q (2Q)

coplanar state at K = 0.1 and IA = 0.6 and (b) the anisotropic 2Q
(2Q′) coplanar state at K = 0.1 and IA = 1. The contour shows

the z component of the spin moment, and the arrows represent the

xy components.

and chirality related quantities are plotted in Fig. 39 as func-

tions of IA for K = 0, 0.1, and 0.3.

At K = 0, the introduction of IA stabilizes a double-Q
state with different intensities at Q1 and Q2; the dominant

component is characterized by Q1 whose spiral plane lies on

the yz plane, i.e., (mQ⊥

Q1
)2 and (mz

Q1
)2, whereas the subdom-

inant component is induced along the direction perpendicular

to Q2, i.e., (mQ⊥

Q2
)2, as shown in the middle two panels of

Fig. 39(a). The Q2 component is increased by IA. We note

that (m
Q‖

Q1
)2 and (m

Q‖

Q2
)2 are also induced by IA, as shown in

the second panel of Fig. 39(a). The real-space spin and chiral-

ity configurations in this phase obtained by the simulated an-

nealing are exemplified in Figs. 37(a) and 37(b), respectively.

The chirality has a stripe pattern with the Q2 component, as

indicated by nonzero (χQ2
)2 in the lowest panel of Fig. 39(a).

The result indicates that the single-Q spiral state at IA = 0
turns into the double-Q chiral stripe state even in the case of

K = 0.

While increasing IA, the double-Q chiral stripe state

changes into the double-Q helical state for 0.37 . IA . 0.47.

In this state, the spin pattern is characterized by two dominant

contributions from (mQ⊥

Q1
)2 and (mQ⊥

Q2
)2 and subdominant

contributions from (mz
Q1

)2, (mz
Q2

)2, (m
Q‖

Q1
)2, and (m

Q‖

Q2
)2,

as shown in the middle two panels of Fig. 39(a). Due to the

small contributions from (mz
Q1

)2 and (mz
Q2

)2, this spin state

is noncoplanar, which is also indicated from nonzero (χQ1
)2

and (χQ2
)2 shown in the lowest panel of Fig. 39(a). The real-

space spin and chirality configurations in this phase are shown

in Figs. 37(c) and 37(d), respectively.

While further increasing IA, (χQ1
)2 and (χQ2

)2 vanish

continuously at IA ≃ 0.47, whereas the xy components of

(mQ1
)2 and (mQ2

)2 are almost unchanged. This means that

a double-Q coplanar state is realized for IA & 0.47. There

are two types of the double-Q coplanar states: the isotropic

one with (mQ1
)2 = (mQ2

)2 for 0.47 . IA . 0.58 (de-

noted as 2Q coplanar in Fig. 36) and the anisotropic one with

(mQ1
)2 > (mQ2

)2 for IA & 0.58 (denoted as 2Q′ coplanar

in Fig. 36). The spin configurations of these two states are

shown in Figs. 38(a) and 38(b).

Thus, the results indicate that the anisotropic bond-

dependent interaction IA induces various double-Q states

even for K = 0 and Hz = 0. This is in contrast to the re-

sult under the single-ion anisotropy in Sec. IV A where no

multiple-Q states appear for K = 0 and Hz = 0.

These double-Q states remain robust against the introduc-

tion of K , as shown in Fig. 36. At IA = 0, the system un-

dergoes the phase transitions from the single-Q spiral state at

K = 0, to the double-Q chiral stripe state for 0 < K . 0.19,

and to the nsk = 2 skyrmion crystal for K & 0.19. The

result is consistent with that obtained in Ref. 85. The phase

boundary between the double-Q chiral stripe and the nsk = 2
skyrmion crystal shifts downward while increasing IA, as

shown in Fig. 36; namely, IA stabilizes the nsk = 2 skyrmion

crystal against the double-Q chiral stripe state. This is quali-

tatively understood from their spin configurations as follows.

For IA > 0, the spin pattern in the nsk = 2 skyrmion crystal

is modulated so that all the parallel components of the mag-

netic moments with Qν , (m
Q‖

Qν
)2, become zero, as shown in

the second panel of Fig. 39(c); namely, the spin texture for

IA > 0 is characterized by a superposition of three sinu-

soidal waves perpendicular to Qν , as schematically shown

in Fig. 40(a). Each sinusoidal component is composed of a

linear combination of mQ⊥

Qη
and mQz

Qη
. On the other hand,

the spin pattern in the double-Q chiral stripe state is given
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FIG. 39. IA dependence of (first row) mz
0 and (χ0)

2, (second row) (m
Q⊥
Qν

)2 and (m
Q‖

Qν
)2, (third row) (mz

Qν
)2, and (fourth row) (χQν )

2 for

(a) K = 0, (b) K = 0.1, and (c) K = 0.3 in the absence of the magnetic field.

by a superposition of the single-Q helical and single-Q sinu-

soidal waves. As the sinusoidal direction is perpendicular to

the helical plane in spin space, the second-Q (Q2) compo-

nent is represented by a linear combination of (mQ⊥

Q2
)2 and

(m
Q‖

Q2
)2, as schematically shown in Fig. 40(b). Thus, the

double-Q chiral stripe state has both (mQ⊥

Qη
)2 and (m

Q‖

Qη
)2

components for η = 1 and 2, as shown in the middle two

panels of Fig. 39(b). Since the bond-dependent interaction

IA prefers a proper screw with the spiral plane perpendicu-

lar to the helical direction, the above argument suggests that

the energy gain by the introduction of IA becomes larger for

the nsk = 2 skyrmion crystal than the double-Q chiral stripe

state. This is consistent with our result in Fig. 36 where the

phase boundary between the two states is shifted to lower K
while increasing IA in the small IA region.

In the nsk = 2 skyrmion crystal in the large K region,

the uniform ferromagnetic moment along the z direction, mz
0,

is induced by the introduction of IA, as shown in the top

panel of Fig. 39(c). The real-space spin and chirality con-

figurations obtained by the simulated annealing are shown in

Figs. 37(e) and 37(f), respectively; they show a positive out-

of-plane magnetization (mtotal =
∑

i S
z
i > 0) and a negative

scalar chirality (χtotal =
∑

R χR < 0). We note that the state

is energetically degenerate with the one with mtotal < 0 and

χtotal > 0. This is in contrast to the situation in the absence

of IA where mtotal = 0 and χtotal takes either a positive or

negative value. The nonzero mtotal indicates that the remain-
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(a) (b)

FIG. 40. Schematic pictures of (a) three sinusoidal waves consist-

ing the nsk = 2 skyrmion crystal and (b) the single-Q helical and

single-Q sinusoidal waves consisting the double-Q chiral stripe state

in Fig. 36 for IA > 0 at zero field. See also Figs. 37(a), 37(b), 37(e),

and 37(f) .

ing degeneracy for IA > 0 can be lifted by a magnetic field,

as indeed shown in Sec. V B.

In the region for 0.37 . IA . 0.47, the double-Q helical

state changes into the nsk = 2 skyrmion crystal in the range

of 0.1 . K . 0.15, as shown in Fig. 36. The phase boundary

moves upward while increasing IA, which indicates that the

energy gain by IA is larger for the double-Q helical state than

the nsk = 2 skyrmion crystal, in contrast to the case for the

double-Q chiral stripe state discussed above. The isotropic

double-Q state for 0.47 . IA . 0.58 shows a similar behav-

ior; it changes into the nsk = 2 skyrmion crystal in the range

of 0.15 . K . 0.2, where the critical value of K increases

while increasing IA. For IA & 0.58, the anisotropic double-

Q state turns into the isotropic double-Q state, and then, into

the nsk = 2 skyrmion crystal while increasing K . In this re-

gion, the critical value of K between the isotropic double-Q
state and the nsk = 2 skyrmion crystal is almost unchanged

against IA, indicating the energy gain from IA is almost the

same for these two states in the large IA region.

Meanwhile, the phase boundaries between the four differ-

ent double-Q states show distinct behavior in the IA-K plane,

as shown in Fig. 36. This is qualitatively understood as fol-

lows. In the double-Q chiral stripe state, the Q2 component

becomes more dominant and mz
Q1

becomes smaller for larger

K , namely, the state is gradually modulated to approach the

adjacent double-Q helical one. This suggests that the phase

boundary between the two states shifts to a smaller IA region

while increasing K as shown in Fig. 36, although the bound-

ary looks almost independent of IA in the small K region.

With regard to the boundary between the double-Q helical

and isotropic double-Q states, both states are isotropic with

respect to the two components, and hence, the energy gain

from K is almost the same and the boundary is almost inde-

pendent of IA. On the other hand, the boundary between the

isotropic and anisotropic double-Q states shifts to a larger IA
region while increasing K , as K favors the isotropic multiple-

Q state.

B. Field along the z direction

Next, we examine the effect of the magnetic field along the

z direction, Hz , on each magnetic phase obtained in Fig. 36.

In the following, we present the results for the 3 × 3 param-

eter sets with K = (0, 0.1, 0.3) and IA = (0.2, 0.4, 0.6) to

show the systematic evolution with Hz of the five multiple-Q
phases in Fig. 36.

Figure 41 shows the result at IA = 0.2 for K = 0, 0.1,

and 0.3. For K = 0 in Fig. 41(a), the introduction of Hz

induces small Q3 components, e.g., (m
‖
Q3

)2 ≃ 0.001 and

(m⊥
Q3

)2 ≃ 0.004 at Hz = 0.3. This means that nonzero

Hz changes the double-Q chiral stripe state into a triple-Q
state. The triple-Q state turns into the nsk = 1 skyrmion

crystal at Hz ≃ 0.4. It is noteworthy that IA can result in

the nsk = 1 skyrmion crystal even without K . There are

two types of the nsk = 1 skyrmion crystals, which are sep-

arated at Hz ≃ 0.65 where (χ0)
2 exhibits a clear jump, as

shown in the top panel of Fig. 41(a). The spin structure for

0.4 . Hz . 0.65 is characterized by the dominant double-

Q peak at Q1 and Q2 and the subdominant single-Q peak

at Q3, while that for 0.65 . Hz . 1.3 is by the triple-Q
peak with equal intensities, as shown in the middle two panels

of Fig. 41(a). Accordingly, the chirality structure is charac-

terized by (χQ1
)2 = (χQ2

)2 > (χQ3
)2 in the lower-field

state, whereas (χQ1
)2 = (χQ2

)2 = (χQ3
)2 in the higher-

field state, as shown in the lowest panel of Fig. 41(a). Thus,

the threefold rotational symmetry is broken in the former,

while it is recovered in the latter. The symmetry difference is

clearly seen in the real-space spin and chirality configurations

as well, as shown in Fig. 42: The spin and chirality distribu-

tions around the skyrmion cores are elongated along the Q3

direction in the lower-field state as shown in Figs. 42(a) and

42(b), while they are isotropic with respect to Q1, Q2, and

Q3, and form a hexagonal lattice in the higher-field one as

shown in Figs. 42(c) and 42(d).

For these nsk = 1 skyrmion crystals, the application of

Hz in the presence of IA chooses the state with fixed signs

of mtotal > 0 and χtotal < 0, as deduced in the end of in

Sec. V A. In terms of the helicity and vorticity, the obtained

skyrmion crystals are categorized into the Bloch-type ones

with the helicity ±π/2 and the vorticity 1, where the states

with the helicity π/2 or −π/2 are energetically degenerate in

contrast to the skyrmion crystals stabilized in the chiral lattice

structures by the DM interaction19. When the sign of IA is

reversed, the Néel-type skyrmions with the helicity 0 or π and

the vorticity 1 are realized. The antiskyrmions with the vor-

ticity −1, however, are not stabilized in the present system.

While increasingHz , the z-spin component at the skyrmion

core takes almost zero and the chirality reduces, as shown in

Figs. 43(a) and 43(b), while the skyrmion number remains

one. It turns into another triple-Q state at Hz ≃ 1.4, as shown

in Fig. 41(a). This state is characterized by the dominant

double-Q structure with (mQ⊥

Q1
)2 and (mQ⊥

Q2
)2, accompanied

by a small (mz
Q3

)2, which results in the chirality density wave

with (χQ3
)2, as shown in the lowest panel of Fig. 41(a). The

uniform component (χ0)
2 vanishes in this state, as shown in
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FIG. 41. Hz dependence of (first row) mz
0 and (χ0)

2, (second row) (mQ⊥
Qν

)2 and (m
Q‖
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Qν
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2 for

K = 0 for (a) K = 0, (b) K = 0.1, and (c) K = 0.3 at IA = 0.2.

the top panel of Fig. 41(a). The real-space spin and chirality

configurations in this state are shown in Fig. 44. It is noted

that this state has an additional component at Q1 −Q2 in the

chirality in addition to that at Q3 (not shown), leading to the

checkerboard-like pattern shown in Fig. 44(b). While further

increase of Hz , the triple-Q state changes its spin and chiral-

ity structures to have the same intensities at Q1, Q2, and Q3

for 1.9 . Hz . 2.4, as shown in the middle two panels of

Fig. 41(a). The real-space spin structure changes into a pe-

riodic array of two types of vortices with the vorticity 1 and

−2, as shown in Fig. 45(a). The opposite sign of the vortic-

ity leads to the opposite sign of the scalar chirality, as shown

in Fig. 45(b). The number of vortices with the vorticity 1 is

twice as that of vortices with the vorticity −2, and (χ0)
2 can-

cels out between the two types of the vortices, as plotted in

the top panel of Fig. 41(a).

For K = 0.1 and 0.3, the results are qualitatively the

same as those for K = 0, except for the low-field region

for 0 < Hz . 0.4 and the intermediate-field region for

1.3 . Hz . 1.4, as shown in Figs. 41(b) and 41(c), respec-

tively. For both values of K , there are four phases in addition

to the fully-polarized state for Hz & 2.4. The low-field phase

for 0 < Hz . 0.4 corresponds to the nsk = 2 skyrmion crys-

tal with mtotal > 0 and χtotal < 0 similar to the case with

IA = 0. Meanwhile, in the region for 0.4 . Hz . 1.2, we

obtain only one type of the nsk = 1 skyrmion crystal, which
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FIG. 42. Real-space spin and chirality configurations of the nsk = 1
skyrmion crystals at K = 0 and IA = 0.2. The magnetic field

is taken at Hz = 0.5 for (a) and (b), and at Hz = 1 for (c) and

(d). In (a) and (c), the contour shows the z component of the spin

moment, and the arrows represent the xy components. In (b) and

(d), the contour shows the scalar chirality.
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FIG. 43. Real-space spin and chirality configurations of the (a), (b)

nsk = 1 skyrmion crystal at K = 0 and (c), (d) the triple-Q crystal

at K = 0.1 for IA = 0.2 and Hz = 1.3. In (a) and (c), the contour

shows the z component of the spin moment, and the arrows represent

the xy components. In (b) and (d), the contour shows the scalar

chirality.

has threefold rotational symmetry similar to the one found for

0.65 . Hz . 1.4 at K = 0. This is presumably owing to the

tendency that K favors isotropic multiple-Q states rather than

anisotropic ones. Such a tendency is also found in the case

of IA = 0 where the anisotropic double-Q chiral stripe is re-

placed by the isotropic nsk = 2 skyrmion crystal, as discussed

in Sec. V A. In the higher-field region, there are two states;

(a) (b)

-1
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 1
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 1

FIG. 44. Real-space spin and chirality configurations of the

anisotropic triple-Q state at K = 0, IA = 0.2, and Hz = 1.5.

In (a), the contour shows the z component of the spin moment, and

the arrows represent the xy components. In (b), the contour shows

the scalar chirality.
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FIG. 45. Real-space spin and chirality configurations of the isotropic

triple-Q state at K = 0, IA = 0.2, and Hz = 2. In (a), the contour

shows the z component of the spin moment, and the arrows represent

the xy components. In (b), the contour shows the scalar chirality.

the triple-Q crystal with nonzero (χ0)
2 for 1.3 . Hz . 1.4

and the other triple-Q crystal for 1.4 . Hz . 2.4, both of

which have the same intensities at Q1, Q2, and Q3. The latter

triple-Q crystal corresponds to the state for 1.9 . Hz . 2.4
at K = 0. The change of the skyrmion number at Hz ≃ 1.3
is owing to the positive z-spin component at the vortex core

in Fig. 43(c), which is in contrast to the small negative z-spin

component at the vortex core in the nsk = 1 skyrmion crystal

[for comparison, see Fig. 43(a) as an example]. Meanwhile,

the scalar chirality distributions for these states are similar

with each other as shown in Figs. 43(d) and 43(b). Com-

pared to the results at K = 0, these isotropic states appear in

wider field ranges, overcoming the anisotropic triple-Q state

for 1.4 . Hz . 1.9 at K = 0, from the same reason stated

above.

Next, we discuss the results for IA = 0.4 shown in Fig. 46.

For K = 0, a small but nonzero (χ0)
2 is induced by applying

the magnetic field to the double-Q helical state, as shown in

the top panel of Fig. 46(a). This is in contrast to the result

for IA = 0.2 where no (χ0)
2 is induced from the double-Q

chiral stripe state by the magnetic field [see the top panel of

Fig. 41(a)]. The spin and chirality patterns at Hz = 0.1 are

shown in Figs. 47(a) and 47(b), respectively. The in-plane

magnetic moments form a vortex crystal and the out-of-plane

ones Sz
i show a checkerboard modulation, both of which are

represented by the dominant double-Q structure with Q1 and

Q2 shown in the middle two panels of Fig. 46(a). The real-
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FIG. 46. The same plots as in Fig. 41 for IA = 0.4.

space distribution of the chirality χR also has a checkerboard

modulation, which is described by the anisotropic triple-Q
structure in χQν

shown in the lowest panel of Fig. 46(a). In

Figs. 47(a) and 47(b), the magnitude of Sz
i (χR) in the red

(blue) regions is larger than that in the blue (red) regions, re-

sulting in nonzero mz
0 [(χ0)

2] in the top panel of Fig. 46(a).

By calculating the skyrmion number, we find that this state for

0 < Hz . 0.1 has nsk = 1 consisting of three vortices with a

positive topological charge around 1/2 denoted as the green

triangle in Fig. 47(a) and one vortex with a negative topo-

logical charge around −1/2 denoted as the green square in

Fig. 47(a) in the magnetic unit cell. Since these vortices have

meron-like spin textures and the skyrmion number becomes

+1 by summing up the skyrmion number in the magnetic unit

cell, we call this state the nsk = 1 meron crystal.

While increasing Hz , another topological spin texture ap-

pears for 0.1 . Hz . 0.4. In this state, (mQ⊥

Qν
)2 and

(m
Q‖

Qν
)2 are similar to those in the lower-field meron crys-

tal, while (mz
Qν

)2 and (χQν
)2 show distinct features with

a single-Q structure, as shown in the lower three panels of

Fig. 46(a). The real-space spin and chirality configurations

are shown in Figs. 47(c) and 47(d), respectively. Interestingly,

we find that this state has nsk = 2 in the magnetic unit cell,

although the spin texture looks very different from that in the

nsk = 2 skyrmion crystal exemplified in Fig. 37(e). In fact,

the real-space spin texture is charactered by the periodic ar-

ray of the clockwise and counterclockwise vortices, as shown

in Fig. 47(c). In other words, the spin structure includes four

different vortices in the magnetic unit cell, all of which have
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FIG. 47. Real-space spin and chirality configurations at K = 0 and

IA = 0.4. The magnetic field is taken at Hz = 0.1 for (a) and (b) the

nsk = 1 meron crystal, Hz = 0.3 for (c) and (d) the nsk = 2 meron

crystal, and Hz = 1.2 for (e) and (f) the anisotropic triple-Q state.

In (a), (c), and (e), the contour shows the z component of the spin

moment, and the arrows represent the xy components. In (b), (d), and

(f), the contour shows the scalar chirality. The green triangles and

squares represent the cores with the positive and negative skyrmion

numbers, respectively.

negative topological charges. Since this is regarded as four

meron-like structures in each magnetic unit cell in the real-

space picture, we call this state the nsk = 2 meron crystal.

With a further increase of Hz , there is a topological phase

transition from the nsk = 2 meron crystal to another triple-Q
state with nsk = 0 at Hz ≃ 0.4. Despite the change in nsk,

the spin and chirality related quantities are continuous through

this transition, as shown in Fig. 46(a). The spin texture looks

similar to that in the lower-field nsk = 2 meron crystal, as

shown in Fig. 47(e). By closely looking into the spin config-

urations in Figs. 47(c) and 47(e), however, we notice that two

of four vortices in the nsk = 2 meron crystal have a negative

z-spin component at the cores, while all the vortices for the

higher-field triple-Q state have a positive z-spin component

at the cores. Thus, the skyrmion number is canceled out for

the higher-field triple-Q state and becomes zero. The cor-

responding chirality pattern is displayed in Fig. 47(f); the re-

gions with positive and negative chirality form a stripy pattern,

but the cancellation between them is not perfect and results in

the nonzero (χ0)
2, as plotted in the top panel of Fig. 46(a). As

Hz increases, the cancellation approaches perfect, and (χ0)
2
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FIG. 48. Real-space spin and chirality configurations at K = 0.3
and IA = 0.4. The magnetic field is taken at Hz = 0.1 for (a)

and (b) the nsk = 2 skyrmion crystal, Hz = 0.6 for (c) and (d) the

nsk = 1 skyrmion crystal, Hz = 1.3 for (e) and (f) the triple-Q
state with nonzero (χ0)

2, and Hz = 1.6 for (g) and (h) the triple-Q
state without (χ0)

2. In (a), (c), (e), and (g), the contour shows the

z component of the spin moment, and the arrows represent the xy
components. In (b), (d), (f), and (h), the contour shows the scalar

chirality. In (a)-(f), the green squares and circles represent the cores

of the type-I and II vortices with vorticity +1, respectively, whereas

the green triangles represent the cores of the vortices with vorticity

−2. See the main text in the details.

decreases with the suppression of (mz
Q3

)2 plotted in the third

panel of Fig. 46(a). (χ0)
2 vanishes at Hz ≃ 1.9, where the

system undergoes a transition to the triple-Q state whose spin

and chirality configurations are similar to those obtained at

IA = 0.2 in Figs. 45(a) and 45(b), respectively.

For K = 0.1 and 0.3, the Hz dependences of (mQν
)2

and (χQν
)2 are similar to each other, except for the low-field

region for Hz . 0.2, as shown in Figs. 46(b) and 46(c). In the

case with K = 0.1, the nsk = 2 meron crystal is obtained for

0 < Hz . 0.2, and the nsk = 2 skyrmion crystal is realized
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for 0.2 . Hz . 0.6. The spin and chirality configurations

are similar to those in Figs. 47(c) and 47(d), Figs. 37(e) and

37(f). Meanwhile, for K = 0.3, the nsk = 2 skyrmion crystal

is stabilized for 0 < Hz . 0.5, and the nsk = 2 meron crystal

does not appear. For both K = 0.1 and 0.3, there are three

triple-Q states in the larger Hz region, and all of them retain

the threefold rotational symmetry with equal intensities at the

three wave numbers, as shown in the lower three panels of

Figs. 46(b) and 46(c). In this field region, the uniform (χ0)
2

decreases monotonically as increasing Hz as shown in the top

panels of Figs. 46(b) and 46(c). There are two topological

phase transitions with changes in nsk: One is from the nsk = 2
skyrmion crystal to the nsk = 1 skyrmion crystal at Hz ≃
0.6 for K = 0.1 and at Hz ≃ 0.5 for K = 0.3 and the

other is from the nsk = 1 skyrmion crystal to another chiral

magnetic state with nsk = 0 at Hz ≃ 1.1 for K = 0.1 and

at Hz ≃ 1 for K = 0.3. While further increasing Hz , (χ0)
2

vanishes at Hz ≃ 1.8 for K = 0.1 and at Hz ≃ 1.6 for

K = 0.3, where the system undergoes a phase transition to

a nonchiral triple-Q state. We note that similar changes with

monotonous decrease of (χ0)
2 while keeping equal intensities

(mQ1
)2 = (mQ2

)2 = (mQ3
)2 against the magnetic field

have also been found in itinerant magnets with an anisotropic

bond interaction on a square lattice108,147.

The spin and chirality configurations for the three triple-Q
states as well as the nsk = 2 skyrmion crystal are displayed

in Fig. 48 for K = 0.3. In the nsk = 2 skyrmion crystal for

0 < Hz . 0.5, the spin and chirality patterns in Figs. 48(a)

and 48(b), respectively, look similar to those obtained at zero

field in Figs. 37(e) and 37(f). By closely looking into the real-

space spin structure in Fig. 48(a), the spin texture consists of

two types of vortices: one with vorticity −2 around Sz ≃ +1
(denoted as the green triangle) and the other with vorticity +1
aroundSz ≃ −1 (denoted as the green square and circle). The

number of the former is half of the latter. It is noted that the

latter vortices are equivalent between the green square and cir-

cle ones in this state, although they show different behaviors in

the states for larger Hz , as discussed below. In the following,

we call the green square ones type-I vortices, while the green

circle ones types-II vortices. In this state, all the vortices give

a negative chirality as shown in Fig. 48(b).

When the system enters into the nsk = 1 skyrmion crystal

by increasing Hz , the type-I and type-II vortices with vortic-

ity +1 becomes inequivalent; the z-spin component near the

type-I vortex core changes gradually from negative to posi-

tive, while that near the type-II vortex remains Sz
i < 0, as

shown in Fig. 48(c). Accordingly, the scalar chirality around

the type-I vortex is reversed, as shown in Fig. 48(d). In spite

of the continuous changes of the spin and chirality configu-

rations, we find that the skyrmion number remains one in the

entire region of 0.5 . Hz . 1.

While further increasing Hz to the state for 1 . Hz . 1.6
appearing after the nsk = 1 skyrmion crystal, the z-spin com-

ponents in the type-I and II vortices become equivalent as

shown in Figs. 48(e) and 48(f), each of which retains the same

skyrmion number. Consequently, these contributions cancel

out that from the vortex with vorticity −2, resulting in the

skyrmion number of zero, although (χ0)
2 retains a nonzero

small value as shown in the top panel of Fig. 46(c). While fur-

ther increasing Hz , (χ0)
2 vanishes continuously in the triple-

Q state for Hz & 1.8, whose spin and chirality configurations

remain similar, as shown in Figs. 48(g) and 48(h).

Figure 49 shows the results at IA = 0.6. For K = 0,

the anisotropic double-Q coplanar state stabilized at Hz = 0
is deformed to show nonzero (mz

Q3
)2, as shown in the third

panel of Fig. 49(a). Accordingly, (χ0)
2 is induced, as shown

in the top panel of Fig. 49(a). The resultant spin and chi-

rality textures are similar to those realized in the region for

0.4 . Hz . 1.9 at K = 0 and IA = 0.4 shown in Figs. 47(c)

and 47(d). The spin and chirality structures are shown in

Figs. 50(a) and 50(b), respectively, which is similar to those

in Figs. 47(e) and 47(f). While further increasing Hz , this

triple-Q state changes into an isotropic one with (mQ1
)2 =

(mQ2
)2 = (mQ3

)2 and (χQ1
)2 = (χQ2

)2 = (χQ3
)2 for

2.1 . Hz . 2.5, whose spin and chirality textures are sim-

ilar to those shown in Figs. 48(i) and 48(j) for IA = 0.4.

The skyrmion number is zero also in this state despite nonzero

(χ0)
2. Finally, (χ0)

2 vanishes at Hz ≃ 2.5, and the system

turns into the nonchiral triple-Q state.

In the case of K = 0.1 where the double-Q coplanar state

with equal intensities at Q1 and Q2 is stabilized at zero field,

the nsk = 2 meron crystal with nonzero (χ0)
2 appears for

0 < Hz . 0.3, as shown in Fig. 49(b). It turns into the other

triple-Q state at Hz ≃ 0.3. This is a triple-Q state with a

small contribution from (mz
Q3

)2 as shown in the third panel

of Fig. 49(b), leading to the nonzero (χ0)
2. While increasing

Hz , the system undergoes a phase transition at Hz ≃ 0.5
by showing a jump of (χ0)

2 as shown in the top panel of

Fig. 49(b); the spin texture changes into the isotropic triple-

Q structure and the skyrmion number changes from 0 to 2.

In other words, the anisotropic triple-Q state changes into the

nsk = 2 skyrmion crystal at this transition. The spin and chi-

rality structures in this nsk = 2 state are shown in Figs. 51(a)

and 51(b), which is similar to those in Figs. 48(a) and 48(b).

While increasing Hz , the nsk = 2 skyrmion crystal changes

into the triple-Q state with nsk = 0 at Hz ≃ 0.7. The spin and

chirality configurations in this state are shown in Figs. 51(c)

and 51(d), which is similar to the triple-Q state in Figs. 48(e)

and 48(f). While further increasing Hz , the system under-

goes a phase transition to the state with vanishing (χ0)
2 at

Hz ≃ 2.1. The spin and chirality textures are similar to those

obtained at K = 0.1; see Figs. 48(g) and 48(h).

The result at K = 0.3 and IA = 0.6 shown in Fig. 49(c) is

similar to that at K = 0.3 and IA = 0.4 shown in Fig. 46(c),

except for the nsk = 1 skyrmion crystal for IA = 0.4; in the

case with IA = 0.6, the nsk = 2 skyrmion crystal directly

turns into the chiral triple-Q state with nsk = 0 at Hz ≃ 0.6.

While increasing Hz , the chiral triple-Q state turns into the

triple-Q state with vanishing (χ0)
2 at Hz ≃ 1.9.

C. Discussion

The results obtained in this section are summarized in

Fig. 1(d). While the bond-dependent anisotropy IA and the

single-ion anisotropy A are both rooted in the spin-orbit cou-
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FIG. 49. The same plots as in Fig. 41 for IA = 0.6.

pling, we obtained a further variety of the multiple-Q insta-

bilities by IA, especially toward chiral magnetic spin textures

different from the nsk = 1 and nsk = 2 skyrmion crystals.

In the following, we discuss the main results obtained in this

section.

In the absence of the magnetic field, we obtained the nsk =
2 skyrmion crystal in the wide parameter range of IA and K .

We showed that IA induces nonzero out-of-plane magnetiza-

tion in the nsk = 2 skyrmion crystal. The sign of the scalar

chirality is set to be opposite to that of the magnetization. This

is in contrast to the situation in the absence of IA where the

magnetization is zero and the sign of the chirality is free due

to the in-plane spin rotational symmetry. We also showed that

IA brings about multiple-Q instabilities even without K and

Hz , which is also in contrast to the case with the single-ion

anisotropy A.

When the magnetic field is applied along the z direction, we

found further intriguing chiral phases including the skyrmion

crystals. Similar to the cases with nonzero A, we obtained

the nsk = 1 skyrmion crystal for nonzero IA even without

K , as shown in Fig. 41(a). The difference from the result

for nonzero A is found in the degeneracy lifting between the

states with different vorticity; the Bloch(Néel)-type skyrmion

is stabilized for IA > 0 (IA < 0), while in the absence of

IA, the energy for different types of the skyrmion crystals is

degenerate for A 6= 0.

Besides the skyrmion crystals, we obtained a variety of chi-

ral magnetic states with nonzero scalar chirality, which have
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FIG. 50. Real-space spin and chirality configurations of the

anisotropic triple-Q state at K = 0 and IA = 0.6. The magnetic

field is taken at Hz = 0.5. In (a), the contour shows the z component

of the spin moment, and the arrows represent the xy components. In

(b), the contour shows the scalar chirality.
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FIG. 51. Real-space spin and chirality configurations of the nsk = 1
skyrmion crystals at K = 0.1 and IA = 0.6. The magnetic field is

taken at Hz = 0.5 for (a) and (b) and Hz = 1 for (c) and (d). In (a)

and (c), the contour shows the z component of the spin moment, and

the arrows represent the xy components. In (b) and (d), the contour

shows the scalar chirality.

not been obtained in the case with the single-ion anisotropy.

The double-Q helical state is modulated to exhibit nonzero

scalar chirality by applying the magnetic field, being the

nsk = 1 meron crystal composed of one meron- and three

antimerion-like spin textures in the magnetic unit cell for

0 < Hz . 0.1 at K = 0 and IA = 0.4 [Fig. 46(a)]. We

also obtained the nsk = 2 meron crystal composed of four

meron-like spin textures in the magnetic unit cell [Figs. 46(a),

46(b), and 49(b)]. Moreover, we found multiple-Q states with

nonzero scalar chirality in the wide range of Hz (Figs. 41,

46 and 49). The competition between these multiple-Q states

leads to a plethora of topological phase transitions accompa-

nied by changes in the skyrmion number.

The present results are useful to narrow down the origin

of the multiple-Q magnetic states found in experiments. The

conditions for the emergence of the nsk = 1 and nsk = 2

skyrmion crystals are similar to those in the case of the single-

ion anisotropy. The nsk = 2 skyrmion crystal is realized only

for nonzero K , while the nsk = 1 one is stabilized even with-

out K . Meanwhile, the stability of the other multiple-Q states

except for the skyrmion crystals are strongly dependent of the

type of anisotropy and K , as shown in Fig. 1. Thus, the sys-

tematic study of the phase diagram in the magnetic field in ex-

periments provides which interactions play an important role

in the target materials.

VI. CONCLUDING REMARKS

We have theoretically investigated the instabilities toward

multiple-Q states in centrosymmetric itinerant magnets, fo-

cusing on the effects of single-ion anisotropy and bond-

dependent anisotropy. By performing the simulated annealing

for the effective spin model on a triangular lattice, we found

a plethora of multiple-Q states with and without the scalar

chirality in the wide range of the model parameters. As we

have already shown the brief summary of the results in Sec. II

and the discussions in Secs. IV B 4, IV C 3, IV D 3, and V C,

we here make some remarks on the relevant parameters to the

emergence of topological spin textures, which would be useful

for experimental identification of the microscopic mechanism.

On the whole, we obtained four types of topological spin

textures with nonzero skyrmion numbers: the nsk = 1
skyrmion crystal, the nsk = 2 skyrmion crystal, the nsk = 1
meron crystal, and the nsk = 2 meron crystal. Among

them, we showed that there are several mechanisms for sta-

bilizing the nsk = 1 skyrmion crystal in a magnetic field;

either the biquadratic interaction, single-ion anisotropy, or

bond-dependent anisotropy can stabilize it. Thus, one can ex-

pect that the nsk = 1 skyrmion crystal prevails in a wider

range of materials compared to the other topological spin

textures in centrosymmetric itinerant magnets. In fact, the

nsk = 1 skyrmion crystal has been recently observed in sev-

eral centrosymmetric compounds, such as Gd2PdSi3
121–125,

Gd3Ru4Al12
126, and GdRu2Si2

128,129.

Meanwhile, the various stabilization mechanisms for the

nsk = 1 skyrmion crystal make it difficult to identify its mi-

croscopic origin. To narrow down the origin of the nsk =
1 skyrmion crystal, it is useful to investigate the magnetic

phases around it, especially (i) in the lower- and higher-field

regions and (ii) in the different field directions. With respect

to (i), our results indicate that the lower-field state becomes

the single-Q spiral state when the single-ion anisotropy is the

key parameter for the nsk = 1 skyrmion crystal. When the

itinerant nature of electrons becomes important (i.e., the bi-

quadratic interaction becomes large in our model), the lower-

field state of the nsk = 1 skyrmion crystal becomes the

anisotropic triple-Q state or the nsk = 2 skyrmion crys-

tal. Meanwhile, the nsk = 1 and nsk = 2 meron crys-

tals will be observed when the bond-dependent interaction

has a significant contribution. On the other hand, in the

higher-field region, the anisotropic triple-Q state appears un-

der the biquadratic interaction and the single-ion anisotropy,

whereas the isotropic triple-Q state is stabilized under the
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bond-dependent anisotropy. With respect to (ii), the nsk = 1
skyrmion crystal remains stable against the field rotation when

the biquadratic interaction is predominant owing to spin-

rotational symmetry, while it is unstable when the single-ion

or bond-dependent anisotropy is relevant.

In this way, the systematic investigation of the phase dia-

gram by changing the magnitude and direction of the mag-

netic field in experiments will provide which interaction plays

an important role in stabilizing the skyrmion crystals. Our

study gives a good starting reference to understand the origin

of topological magnetism and a guiding principle to explore

further exotic magnetic textures in centrosymmetric itinerant

electrons.
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ral magnet, Science 323, 915 (2009).
18 X. Z. Yu, Y. Onose, N. Kanazawa, J. H. Park, J. H. Han, Y. Mat-

sui, N. Nagaosa, and Y. Tokura, Real-space observation of a

two-dimensional skyrmion crystal, Nature 465, 901 (2010).
19 N. Nagaosa and Y. Tokura, Topological properties and dynamics

of magnetic skyrmions, Nat. Nanotech. 8, 899 (2013).
20 M. V. Berry, Quantal phase factors accompanying adiabatic

changes, Proceedings of the Royal Society of London A: Mathe-

matical, Physical and Engineering Sciences 392, 45 (1984).
21 D. Loss and P. M. Goldbart, Persistent currents from Berry’s

phase in mesoscopic systems, Phys. Rev. B 45, 13544 (1992).
22 D. Xiao, M.-C. Chang, and Q. Niu, Berry phase effects on elec-

tronic properties, Rev. Mod. Phys. 82, 1959 (2010).
23 J. Ye, Y. B. Kim, A. J. Millis, B. I. Shraiman, P. Majumdar,
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