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Metasurfaces are ultrathin planar arrays of carefully tailored subwavelength particles that 

enable agile and flexible manipulation of the impinging waves. Originally introduced in optics, 

their application to acoustic waves has recently opened exciting opportunities for exotic sound 

control. In conventional acoustic inclusions, the interactions with the impinging pressure and 

velocity are decoupled, limiting the functionalities that arrays of them can achieve. While the 

coupling between these two quantities in symmetry-breaking inclusions, known as Willis 

coupling, has been discussed for several years, only recently it has been realized that these 

phenomena can become nonperturbative in suitably tailored resonant scatterers. Here, we 

explore the opportunities that these Willis meta-atoms open in the context of acoustic 

metasurfaces, offering new knobs to manipulate and tailor sound. The general response of 

Willis metasurface is analytically derived, yielding fundamental bounds and optimal surface 

responses enabling unprecedented control of the impinging acoustic wavefront. 



1 Introduction 

Acoustic metamaterials and metasurfaces have provided a rich playground for the design and 

engineering of acoustic waves, exhibiting unprecedented responses in the realm of wave-matter 

interaction [1]. An abundance of novel ideas have sprouted to achieve extreme values of 

material properties [2], including simultaneous negative mass density and bulk modulus [3], [4] 

near-zero mass density [5], [6] and compressibility [7]. In turn, these properties have enabled 

new functionalities, such as acoustic cloaking [8], lensing [9], non-reciprocity [10] and orbital 

angular momentum [11], [12]. In order to realize these concepts, significant research efforts 

have been also spent on the suitable homogenization [13], [14] and modeling of these structures 

[15]. 

Recently, in analogy with magneto-electric coupling in electromagnetics [11], the idea of 

leveraging Willis coupling, i.e., the coupling between pressure and velocity arising in 

asymmetric scatterers, as an additional knob to control acoustic waves has been receiving 

significant attention [12],[13], [16]- [17]. Homogenization techniques have been developed to 

describe 1D Willis metamaterials [18], and experimental measurements of Willis coupling in 

one-dimensional meta-atoms have been reported [19]. For a long time Willis coupling has been 

considered a perturbative phenomenon of limited practical relevance, however recently Willis 

meta-atoms with cross-coupling as large as the direct response to pressure and velocity have 

been proposed [20] and experimentally validated [21], and retrieval methods to measure these 

quantities have been developed in [22], [23]. Active acoustic and mechanical components have 

also been leveraged to demonstrate asymmetric Willis polarizabilities and nonreciprocal 

responses [24], [25]. While metasurfaces based on Willis meta-atoms have been recently 

considered [26]- [27], rigorous and robust modeling of the interactions among closely spaced 

Willis elements, which can capture their coupling and rigorously model their collective 



response, is missing. Thus, a mathematical tool to understand new opportunities arising in 

Willis metasurfaces and the ultimate bounds in tailoring sound with such structures is required. 

In this article, we establish the foundations and study the general properties of 2D arrays of 

Willis acoustic particles – a Willis metasurface. We rigorously model and explore the effects 

of inter-particle coupling in these arrays by defining an effective polarizability, which describes 

the array response, and evaluate the interaction coefficients within the array [28], [29]. Finally, 

using effective polarizability we rigorously homogenize Willis metasurfaces and model their 

sound interactions in an efficient way. Next, we consider the scattering of sound by a general 

Willis metasurface and derive transmission, reflection and absorption in terms of its effective 

parameters, and using these relations we derive the bounds on wave manipulation. Finally, we 

apply our formulation to model practical Willis metasurfaces, validating our results with full-

wave simulations performed using commercial software [30]. 

2 Response of a single Willis particle 

Consider an individual subwavelength inclusion placed in a fluid characterized by mass density 

𝜌! and sound speed 𝑐!, shown in the inset of Figure 1a. Given its small size, we can generally 

describe its acoustic scattering response as the superposition of an acoustic monopole and three 

orthogonal dipole moments induced in the particle. If the meta-atom exhibits Willis coupling, 

these multipole moments can be excited by both the local pressure and particle velocity, hence 

the general scattering process is captured by the polarizability tensor 𝜶 through [18], [20] 
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where 𝑀 = ∫ 𝜌𝑑𝑉)  is the acoustic monopole, 𝑫 = ∫ 𝜌𝒓𝑑𝑉)  is the acoustic dipole vector, r is 

the density distribution in the particle, 𝑉 is the volume of the particle,  𝑝"#$ is the local pressure 

(defined as the total pressure at the center of the particle in its absence), and 𝒖"#$ the local 



velocity field. The elements of the polarizability tensor depend on the geometry, structure and 

material composition of the particle. In particular, 𝛼%& is a scalar that describes the monopole 

generated by the local pressure. Similarly, the Willis cross-coupling terms are 𝜶%' (1 × 3 row 

vector), which determines the monopole excited by the local velocity, and 𝜶(& (3 × 1 column 

vector), which links the local pressure to the induced dipole moment. Finally, 𝜶(' (3 × 3 

tensor) relates the induced dipole moment to the velocity field.  

As an example, Figure 1b shows the geometry of an asymmetric Helmholtz resonator and 

Figure 1c the corresponding lossless polarizability tensor elements as a function of frequency 

around the resonance, derived using a numerical retrieval procedure described in [31] (based 

on calculating the scattered field multipole components), and an analytical model developed in 

detail in Appendix A – Polarizability of a Helmholtz resonator. It is observed that polarizability 

components derived using both methods match with high accuracy and the relevant 

polarizability elements go through a resonance assuming their peak values around 730 Hz. 

In [20], bounds on the various elements of 𝜶 for passive inclusions have been derived based on 

energy conservation: 

 𝐷𝑖𝑎𝑔:𝑘!*𝑐!+<𝜶′∗-𝜶′=> ≤ 𝐷𝑖𝑎𝑔:6𝜋𝑖<𝜶′∗- − 𝜶′=>,  (2) 

and on reciprocity: 

 𝜶′ = 𝜶′-.,  (3) 

where 𝜶′ is the normalized polarizability, as defined in Appendix B – Normalized 

polarizability, to ensure that all terms in the matrix have the same physical units of [𝑚. 𝑠+], and 

𝑇 − indicates the transpose operation with sign reversal of the off-diagonal elements. The 

equality in (2) is satisfied for lossless particles. In the following, we will consider also particles 

with non-reciprocal responses, not obeying (3). While expressions (2) and (3) present two 



fundamental constraints on the particle response (passivity and reciprocity), these relations can 

also be used as a sanity check, to verify the analytically derived or numerically calculated 

individual polarizability of known inclusions. For example, a hard sphere or a Helmholtz 

resonator like the one analyzed in Fig. 1 are both passive and reciprocal particles, thus the 

individual polarizabilities derived in [31] and in Appendix A – Polarizability of a Helmholtz 

resonator and plotted in Fig. 1 obey both (2) and (3). 

Based on the symmetries of the polarizability matrix, bianisotropic particles in electromagnetics 

have been classified into four categories: omega, chiral, moving and Tellegen [38]. Due to the 

longitudinal nature of acoustic waves, however, some of the functionalities and wave-matter 

interactions available in electromagnetics do not find a direct acoustic analogue. We can look 

at the energy balance from an impinging wave [39] to introduce a basic classification of acoustic 

Willis inclusions. If we assume an excitation wave propagating along �̂� and with only a �̂� 

component of velocity, the extinction power from the particle can be written in closed form as 
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as derived in Appendix C – Extinction power, with 𝜂 = 𝑝/𝑢 being the wave impedance [40], 

which for far-field excitation is 𝜂 = 𝜂! = 𝜌!𝑐!. The contribution of the Willis coupling term to 

the extracted power comes from the second expression in (4). Without loss of generality, we 

can write 𝛼′:
(& = 𝛼′;< + 𝛼′< , 𝛼′:%' = 𝛼′;< − 𝛼′<, where 𝛼′< describes the reciprocal 

contribution to Willis coupling, stemming from geometrical asymmetries as a time-reversal-

symmetric phenomenon (satisfying relation (3)), whereas 𝛼′;< captures possible nonreciprocal 

responses arising from a bias that breaks time-reversal symmetry, yielding an odd-symmetric 

response [18]. Thus, an acoustic Willis particle with 𝛼′;< = 0 is even-symmetric and 𝛼′< = 0 

is an odd-symmetric particle. The Willis contribution to the extinction power can then be 

generally written as  



 𝛱/01,>?""?@ =
2$#3&!3

"

+√*
𝐼𝑚(2𝛼′;< 𝑅𝑒[𝜂.5] − 2𝑗𝛼′< 𝐼𝑚[𝜂.5]).  (5) 

We can see that reciprocal particles interact with the incoming wave through their (even) Willis 

coefficient only with reactive (imaginary) impedances, as in a standing wave, which is 

analogous to omega particles in electromagnetics [39]. Conversely, energy extraction from 

traveling waves with real impedance happens through Willis coupling only when nonreciprocal 

(odd) interactions arise. In the case of purely odd Willis coupling, i.e., when the particle is 

geometrically symmetric and 𝛼′< = 0, the Willis particle becomes analogous to a moving 

electromagnetic particle [39]. 

3 Willis metasurfaces - Effective homogenized surface 
parameters 

3.1 Effective polarizabilities 

Having defined the general properties of a Willis particle, we can now extend our analysis to a 

Willis metasurface, consisting of a 2D square lattice of Willis inclusions with lattice constant 

𝑑, shown in Figure 1a. The response of each particle is described by Eq. (1), where the local 

fields contain the incident field and the contribution from the other particles in the array 
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The units of 𝜷 and its blocks are the same as 𝜶. For normal incidence, all the excited monopoles 

and dipoles are equal, and symmetry considerations force 𝜷 to be a diagonal matrix, as shown 

in [31] . Following (6), we hence define the effective polarizability tensor �̀� of the array as  
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Its expression includes the interaction coefficients and the particle polarizabilities through 
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with  
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where 𝒂⊗ 𝒃 is the dyadic product. Several approaches can be used to efficiently evaluate the 

interaction coefficients, as comprehensively discussed and evaluated, for the first time to our 

knowledge in acoustics, in [31], and summarized in Appendix G. 

3.2 Conservation of energy constraints  

Following the procedure used to derive equation (2) for a single particle, we can also derive 

general energy conservation constraints on �̀� for passive metasurfaces, which consequently 

results in constraints on 𝜷. We start by examining radiated (𝛱HIJ) and extinction power (𝛱/01) 

for a single monopole/dipole scatterer, evaluated in Appendix D - Radiated fields and power 

from a point source and Appendix C – Extinction power, respectively. Assuming that the 

scatterer is lossless, we can plug their expressions in 𝛱HIJ = 𝛱/01, yielding  

 𝐼𝑚{(𝛼%&).5} = 𝑘*𝑐+/4𝜋,  (10) 

for a monopole scatterer, and 

 𝑅𝑒{(𝛼KK(').5} = 𝑘*𝜔/12𝜋𝜌!  (11) 



for a dipole scatterer, where 𝜀 = {𝑥, 𝑦, 𝑧}. To determine the energy constraint in an array of 

particles, we assume a square array of tightly packed polarizable scatterers in the 𝑥𝑦 plane, for 

which only the zeroth order diffraction order contributes to power considerations. In this case, 

we use (7), (8) and (9) to determine 𝑀 and 𝑫, along with the corresponding fields generated by 

an array of such elements as calculated explicitly in Appendix E – Fields excited by an infinite 

array of monopoles / dipoles, and plug these into 𝛱HIJ = 𝛱/01 [31]. This results into the 

compact relations 
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Analogous to Eq. (2) for individual particles, conservation of energy dictates a relation on the 

interaction coefficients, which implies an overall bound on the effective polarizability of the 

metasurface. The existence of additional diffraction orders, in the case where the lattice constant 

𝑑 is comparable to the incidence wavelength, contributes additional terms to equation (12). 

These would correspond to the relative power scattered into these additional harmonics, and 

the balance of the total scattered power with the incident power.  

3.3 Willis metasurface impedance tensors 

In electromagnetics it is common to homogenize a dense metasurface that does not support 

higher diffraction orders using its average surface impedance tensor [28], [41]- [42]. In analogy, 

we can define an acoustic surface impedance that averages the induced monopole and dipole 

currents in the array. Following the definition of equivalent currents in Appendix F – Definition 

of equivalent currents, we start by defining the induced surface currents 
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where 𝐴 is the area of one unit cell in the array. To relate the currents to the acoustic fields, we 

start from Eq. (7) and define  
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Using Eq. (14), (15) and (16) together with the results in Appendix E – Fields excited by an 

infinite array of monopoles / dipoles, and limiting ourselves for simplicity of notation to 

uniaxial acoustic resonators, which respond only to the 𝒛a component of velocity, we obtain  
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where it was also assumed that the monopole-velocity coupling vector �̀�?'% and the dipole-

pressure coupling vector �̀�?
&( have only �̂� components, because the particles are uniaxial. This 

relation fully describes and captures the acoustic Willis properties of the metasurface, and 

extends to the acoustic domain the boundary conditions obtained in electromagnetic 

bianisotropic metasurfaces [28], [43]. The general expression to describe metasurfaces with 

arbitrary Willis inclusions using boundary impedances is outlined in [31], relating the relevant 

impedance expressions to the inclusion and surface properties through the polarizabilities and 

interaction coefficients. In addition, the metasurface is described using standard 𝑇 − and 

Π −circuit models, connecting the impedances to the reflection and transmission coefficients. 

4 Reflection and transmission coefficients 

Using the effective polarizabilities derived in Section 3.1, we are now ready to evaluate the 

reflection and transmission properties for plane wave excitation of general Willis metasurfaces. 



We limit our analysis to normal incidence for simplicity of notation, but similar principles can 

be applied to arbitrary incidence angles [44]. Consider a plane wave incident on the array, with 

fields 

 𝑝? = 𝑝!𝑒±?L#:𝑒.?21	

                                                          𝒖? = ±�̂� &#
8#
𝑒±?L#:𝑒.?21,  (18) 

with ± representing propagation in the ±�̂� direction. Using Appendix E – Fields excited by an 

infinite array of monopoles / dipoles, the amplitudes of reflected and transmitted fields can be 

written in terms of the induced monopole and dipole moments as 
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where we have again assumed that the array is dense, hence only normally outgoing waves are 

scattered. Next, we use the definitions of effective polarizability as in Eq. (7) to omit 𝑀 and 

𝐷:	and obtain the reflection and transmission coefficients as 
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where 𝛼aW is the normalized effective polarizability of the array. In the reciprocal case, 𝛼a′:(& =

−𝛼a′:%', the transmission is independent of Willis coupling, and therefore reciprocal Willis 

coefficients, which are inherently even, introduce only an asymmetry in the reflection 

properties, and do not control transmission. Dually, purely odd Willis coupling coefficients, 

associated with non-reciprocal phenomena, do not affect the reflection properties but introduce 

transmission asymmetries. 



Using Eq. (19), the acoustic Willis metasurfaces can be modeled using a lumped circuit 

analogy, which provides a straightforward tool to analyze and design these structures. The 

derivation of the lumped circuit components in T- and Π-topologies has been explained in [31], 

showing that in reciprocal (𝑇B = 𝑇.)	and symmetric structures (𝑅B = 𝑅.) the lumped circuit 

components follow 
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for T-topology. It is observed that for an array of reciprocal and symmetric particles, the series 

components are purely dipolar; however, the parallel component has the contribution of both 

dipole and monopole. These relations can be used to design and synthesize a Willis metasurface 

or retrieve the effective monopole and dipole moments of particles, when the lumped element 

topology of the metasurface is known. 

4.1 Total reflection 

Total reflection occurs in the lossless scenario when 𝑇 = 0, which arises at the metasurface 

resonance. Using Eq. (20) and assuming reciprocity, the required condition to achieve fully 

reflective Willis metasurfaces is 
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which corresponds to the metasurface resonance. In particular, for Eq. (22) to be satisfied we 

notice that the polarizability terms must be purely imaginary, or have real parts that cancel each 

other. Using a 2D square array of Helmholtz resonators shown in Figure 1b, whose 

polarizability is explicitly calculated in Appendix A – Polarizability of a Helmholtz resonator, 

the required particle dimensions and array configuration can be defined to support total 



reflection. Figure 2(a-c) shows the absolute value of the left-hand side of Eq. (22) as we sweep 

one of the geometrical parameters of the resonator while the others are fixed at 𝑎 = 2𝑐𝑚, ℓ =

5.6𝑚𝑚, 𝑟;/$L = 5𝑚𝑚 and 𝑑 = 5𝑐𝑚. The condition for total reflection is satisfied when the 

magnitude goes to zero, corresponding to the dark regions in these figures. Figure 2(d-f) show 

the amplitude of the reflection and transmission coefficients for specific values of parameters, 

with values shown in each panel. The resonator dimensions can be used to control the frequency 

and bandwidth of the reflection response. 

While Eq. (20) reveals that reciprocal Willis coupling coefficients do not play a role in the 

acoustic transmission through a Willis metasurface, it also discloses that the coupling terms can 

be used to tailor the reflection coefficient and achieve asymmetric reflection. Figure 3a shows 

the amplitude of the reflection and transmission coefficients for a 2D array of Helmholtz 

resonators for normal incident excitation. The good agreement between numerical and 

analytical results confirms the validity and robustness of the proposed analytical procedure to 

calculate the response of the Willis metasurfaces. Furthermore, the presented analytical 

framework can be used to gain insight into the physics of Willis particles arranged in 2D arrays. 

Since we are considering lossless particles, energy conservation requires that the asymmetry in 

reflection when excited from opposite sides is found only in terms of the phase. As an example, 

the phase of the reflection and transmission coefficients is shown in Figure 3b, showcasing 

largely different reflection phases for propagation along +z and -z. 

Indeed, the phase of the reflection coefficient changes when the incident wave impinges from 

opposite sides, and this asymmetry can be engineered directly via the even Willis coupling 

coefficients. Looking closer at Eq. (19), and replacing 𝑅	± = 𝑒?[±,	𝑇 = 0 elucidates the relation 

of the reflection phase to the balance of excited monopoles and dipoles [31] 
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Relations derived based on effective polarizabilities, such as Eq. (20) and Eq. (22), provide a 

concise, accurate and design friendly model of the Willis metasurface. However, expressions 

that explicitly incorporate the monopole and dipole moments, such as Eq. (19) and Eq. (23), 

provide more physical insight on which fundamental particles contribute to a specific peculiar 

behavior of the metasurface. 

4.2 Asymmetric absorption 

Investigating the relation between reflection and transmission coefficients in Eq. (20) outlines 

the connection between the effective polarizability of the Willis particles and the metasurface 

scattering features. Reciprocity dictates that the transmission properties are equal from either 

direction, but by properly engineering the Willis response, we can control the reflection phase 

asymmetry in the lossless case, as discussed in the previous section, and more generally tailor 

the balance between reflection and absorption in the case in which the particles can absorb. This 

allows us to achieve asymmetric absorption properties with respect to the incidence direction 

of the acoustic waves. Figure 4 shows the reflection and transmission properties of a Willis 

metasurface with asymmetric reflection phase and amplitude, composed of Helmholtz 

resonators with similar geometrical dimensions as in the lossless case and filled with porous 

absorbing materials. The polarizability of the individual particles was numerically extracted 

from numerical simulations and then substituted into our analytical formulas to evaluate the 

reflection and transmission, comparing it with full-wave numerical simulations of the entire 2D 

array. While in the lossless case presented in Figure 3 the geometrical asymmetry responsible 

for Willis coupling introduces just an asymmetry in the reflection phase, in the lossy scenario 

it affects both amplitude and phase of the reflected fields. Good agreement between numerical 

and analytical results validates our model, and it captures the physics of lossy Willis 

metasurfaces and their potential to realize asymmetric absorption. While Eq. (20) offers the 

freedom to design a Willis metasurface with desired asymmetrical reflection and absorption, 



the geometrical parameters of the unit cell set limit on the feasibility of the targeted amount of 

reflection, absorption and transmission. For example, it can be proved that the maximum 

amount of achievable absorption for a purely monopolar array of resonators is 50% [31], [45] 

and due to the highly monopolar response of the proposed Helmholtz configuration the 

maximum amount of absorption turns out to be ∼ 60%. In order to achieve total asymmetric 

absorption/reflection properties <𝑅B = 0, 𝑅. = 𝑒.?[ , 𝑇± = 0=, a metasurface with a 

specifically defined effective monopolar and dipolar behavior should be designed, which 

follows [31] 
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Additional conditions and relations for Willis metasurfaces with other peculiar behaviors, such 

as to yield full transmission, which results in a transparent array, or total absorption, are 

discussed in [31]. It should be noted that the exotic responses considered here can be achieved 

leveraging the additional degree of freedom arising from pressure-velocity coupling, described 

by the Willis coefficients. This claim can become more evident when comparing the reflection 

and transmission coefficient of a 2D array of acoustic hard spheres, shown in Figure 12 in [31] 

and Willis particles in Figure 3 and Figure 4, which highlight more extreme variations, and the 

existence of reflection asymmetries. In general, the physical limitations stemming from 

reciprocity and power conservation, described in Eqs. (2) and (3), combined with the lack of 

additional design knobs (zero Willis coefficients), in conventional metasurfaces formed by 

inclusions with zero or weak Willis coupling, cannot support several of the exotic features 

explored in this work.  

5 Conclusions 

In this paper, we introduced a general analytical model to analyze and homogenize acoustic 

Willis metasurfaces, ideally suited for design and optimization purposes, revealing physical 



insights into the effect of Willis coupling phenomena on the scattering properties of these 

arrays. To this end, we first rigorously calculated the interaction coefficients describing the 

coupling in Willis metasurfaces. Then, we employed our analytical findings to formulate an 

effective representation of a 2D array of bianisotropic particles in terms of both effective 

polarizability and homogenized metasurface impedance incorporating an effective boundary 

condition that utilizes monopolar and dipolar equivalent currents. Using conservation of energy, 

we derived the bounds of these parameters, and verified our analytical results in realistic 

implementations, tailored to achieve perfect reflection, asymmetric reflection and absorption, 

showing excellent agreement between the proposed analytical model and full-wave numerical 

simulations.     

6 Appendices 

6.1 Appendix A – Polarizability of a Helmholtz resonator 

Based on the expressions given in [40], the polarizability of a spherical Helmholtz resonator 

shown in Figure 1(b) has been calculated in [31] materials and it is expressed as 
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where 𝑎 is the radius of the resonator, 𝑠𝑖𝑛(𝜃!) = 𝑟;/$L/𝑎, 𝑗a′, ℎa
(5)′ are the derivatives of the 

spherical Bessel and Hankel function of the 1st kind of order 𝑚, and the resonator impedance 

parameters are expressed as 

  𝑅@ =
4#$#
MN

𝑘+, 𝐶@ =
MNI.

*4#$#"
$1 + 5

5b
𝑘+𝑎+' , 𝐿@ =

4#
MNI

(𝜋 − 𝜃!) 𝑐𝑜𝑡(𝜃!/2) + 𝐿;/$L .  (26) 

The inductance correction due to the neck is 𝐿;/$L = 𝜌!ℓ/𝜋𝑟;/$L+ , where ℓ is the length and 

𝑟;/$L is the radius of the neck [40]. These provide the aperture impedance 

 𝑍 = 𝑅 − 𝑖𝑋 = 𝑘𝑎 ⋅ MNI
"

*4#$#
(𝑅@ − 𝑖𝜔𝐿@ + 𝑖/𝜔𝐶@).  (27) 

 

6.2 Appendix B – Normalized polarizability 

The normalized polarizability is defined following [20] using the relation  

 *−√3𝑀𝑖𝑘!𝑫
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6.3 Appendix C – Extinction power 

Following the expressions derived in [31], the extinction power of a single particle can be 

written as  

 𝛱/01 =
2
+4#

𝐼𝑚(𝜌!𝑐!𝒖?∗ ⋅ 𝑖𝑘!𝑫− 𝑝?∗𝑀),  (29) 

where 𝒖? , 𝑝? are the incident velocity and pressure fields. Using the normalized polarizability  

 𝛱/01 =
2
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*
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If we limit ourselves to the case of uniaxial resonators, with response in the 𝒛a direction, and to 

incident fields that propagate in the 𝒛a direction, we obtain 

 𝛱/01 =
2
+4#
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Since the incident wave propagates in the 𝒛a direction, we can write 𝑢: = 𝑝/𝜂 where 𝜂 is the 

acoustic impedance of the incident fields. Substituting this into (31) yields  
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6.4 Appendix D - Radiated fields and power from a point source 

6.4.1 Acoustic Monopole 

If we generate sound by periodically introducing and withdrawing fluid from a small symmetric 

region of space, we produce a monopole. The excited pressure wave satisfies 

 𝛻+𝑝 − 5
$"

c"&
c1"

= − c"%
c1"

𝛿(𝒓),  (33) 

where 𝑀 = ∫ 𝜌𝑑𝑉)#
. Using the free-space Green’s function [46], we obtain the solution  

 𝑝% = .2"%
MNH

𝑒.?21𝑒?LH , (34) 

which in turn yields the total radiated power  
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6.4.2 Acoustic Dipole 

If sound is produced by moving a portion of fluid back and forth, and no mass is added or 

removed, we have dipole radiation. This can also be interpreted as two equal, but anti-phase 

monopoles adjacent to each other. The excited pressure wave satisfies 



 𝛻+𝑝 − 5
$"

c"&
c1"

= 𝛻 ⋅ ]c
"𝑫
c1"

𝛿(𝒓)_  (36) 

where 𝐷 = ∫ 𝜌𝒓𝑑𝑉)#
. Using the free-space Green’s function [46] the pressure associated with 

the acoustic dipoles reads [31] 

 𝑝 = 𝜔+(𝑫 ⋅ �̂�) (?LH.5)
MNH"

𝑒.?21𝑒?LH  (37) 

and the corresponding particle velocity can be calculated as c𝒖
c1
= .5

4
𝛻𝑝. Thus, the total radiated 

power is [31] 

 𝛱HIJ( = L.2.|𝑫|"

+M4N
.  (38) 

6.5 Appendix E – Fields excited by an infinite array of monopoles / dipoles 

6.5.1 Infinite sheet of acoustic monopoles 

The acoustic pressure and velocity fields created by an infinite acoustic monopole sheet can be 

calculated using the conservation of mass  

 𝛻 ⋅ 𝒖 + 5
4$"

c&
c1
= 5

4
c%
c1
𝛿*(𝑟) . (39) 

Let us use the set up shown in Figure 1(a), considering only a monopole excitation. If an 

infinitesimally small volume 𝑉! intersects the monopole sheet, relation (39) should hold inside 

𝑉!. Thus, using the divergence theorem we have  

 ∫ 𝒖 ⋅ 𝑑𝒔 + 5
4$"g#

∫ c&
c1)#
𝑑𝑉 = 5

4
c%
c1 ∫ 𝛿*(𝑟))#

𝑑𝑉 . (40) 

The radiation from an acoustic monopole is a spherically symmetric diverging wave [40], thus 

the radiation field from a monopole sheet (a dense monopole array) is a plane wave. Therefore, 

by substituting 𝑝 = 𝑝!𝑒.?21𝑒?L: and 𝒖 = &#
8#
𝑒.?21𝑒?L:�̂� into relation (40), and letting the 

envelope approach a very flat disc around the sheet, the second integral on the left hand side 



will be zero and the value of 𝑝! can be calculated. Thus, the pressure field radiated from an 

acoustic monopole sheet reads 

 𝑝% = −𝑖 2
"%
+LO

𝑒.?21𝑒?L:,  (41) 

where 𝐴 is the cross section of the integral volume and the monopole sheet and 𝑀 is the total 

acoustic monopole in the integral volume. The radiated power per surface area is also calculated 

as 

 𝛱HIJ% = ∮ 5
+
𝑅𝑒[𝑝𝒖∗] ⋅ 𝑑𝒔 =g

27|%|"

M8#OL"
.  (42) 

6.5.2 Infinite sheet of acoustic in-plane dipoles 

Using the definition of acoustic dipole, the problem of radiation from an acoustic sheet of in-

plane dipoles can be interpreted as the superposition of two out of phase monopole sheets 

shifted in the 𝑥 or 𝑦 direction by 𝛿, where 𝛿 → 0 . Hence, using (41) and considering that the 

radiation of the monopole sheet is not a function of 𝑥 or 𝑦, we can write for in-plane acoustic 

dipoles 𝐷0 and 𝐷P 

 𝑝(8 = 𝑝(9 = 𝑙𝑖𝑚
h→!

�𝑝
.:"

% − 𝑝
B:"

% � = 0.  (43) 

Using relation (43) we conclude that the radiated power per surface area is also zero  

 𝛱HIJ
(8 = 𝛱HIJ

(9 = 0.  (44) 

6.5.3 Infinite sheet of acoustic out-of-plane dipoles  

The acoustic pressure and velocity fields created by an infinite sheet of acoustic out of plane 

dipoles can be calculated using conservation of momentum 

 𝛻𝑝 + 𝜌 c𝒖
c1
= c"($

c1"
𝛿*(𝑟)�̂�.  (45) 



If an infinitesimally small volume 𝑉! intersects the dipole sheet, the relation (45) should hold 

inside 𝑉!. Thus, using the divergence theorem we have 

 ∫ 𝑝𝑑𝒔 + 𝜌g#
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From similar considerations, we assume that the radiation from a tightly arranged dipole array 

is a plane wave, and utilize the same mathematical process, to obtain 
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and  

 𝛱HIJ
($ = ∮ 5

+
𝑅𝑒[𝑝𝒖∗] ⋅ 𝑑𝒔 =g

27|($|"

M8O
,  (48) 

where 𝑝B and 𝑝. are the propagating pressure field in the front (+�̂�) and back (−�̂�) of the 

dipole sheet, respectively.   

6.6 Appendix F – Definition of equivalent currents 

Let us consider a 2D square lattice populated by acoustic monopoles 𝑀 and acoustic dipoles 

𝐷:, with �̂� being the normal to the array plane. If we start from the mass conservation  

 𝛻 ⋅ 𝒖 + 5
4$#"

c&
c1
= 𝑞,  (49) 

where 𝑞 is a source term associated with time variation of mass in space – typical of monopoles, 

and employ a localization process by volume integrating the equation inside a very thin box 

containing the surface, we find that  

 𝜌(𝑢+: − 𝑢5:) =
.?2%
O

, (50) 

where 𝑀 is the acoustic monopole defined by Eq. (1). Thus, we can define an equivalent 

monopole current 𝐽% = −𝑖𝜔𝑀/𝐴 and we obtain the familiar form of boundary condition  



 𝜌(𝑢+: − 𝑢5:) = 𝐽%.  (51) 

Alternatively, we start from the conservation of momentum 

 𝛻𝑝 + 𝜌 c𝒖
c1
= 𝑓,  (52) 

𝑓 being a source term associated with the force per unit volume exerted on the fluid – typical 

of dipoles. If we follow the same procedure, we obtain 

 (𝑝+ − 𝑝5) = −2"(
O

.  (53) 

If we define 𝐽( = −𝑖𝜔𝐷/𝐴, then we obtain the boundary condition as  

 (𝑝+ − 𝑝5) = −𝑖𝜔𝐽(.  (54) 

6.7 Appendix G – Interaction coefficients 

The closed form relations for pressure and velocity interaction coefficients have been developed 

using three different methods and explained in the [31], which is presented here: 
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Where 𝑘 is the wave number in the medium and ℎ and 𝑑, are the periodicity of the array in 𝑥a 

and 𝑦a, respectively. It should be noted that the interaction coefficient forms a diagonal matrix 

and all the non-diagonal terms are zero.   
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Figures 

 

Figure 1. (a) An acoustic Willis metasurface composed of an infinite array of Willis particles 

(one shown in the inset) in a square lattice. In response to an incident plane wave, the array 

scatters reflected and transmitted plane waves driven by the induced monopole and dipole 

moments, with patterns depicted by yellow and green shapes in the inset. (b) Geometry of a 

Helmholtz resonator. (c) Acoustic polarizability of the lossless Helmholtz resonator retrieved 

numerically and compared to our analytical model.  In this example 𝑟;/$L = 5𝑚𝑚, 𝑎 =

20𝑚𝑚, ℓ = 5.6𝑚𝑚. 

 

 



 

Figure 2. Absolute value of the left-hand side in Eq. (22). The zeros (corresponding to dark 

curves) imply a full reflective Willis metasurface. The surface consists of a square lattice of 

Helmholtz resonators with base dimensions 𝑎 = 2[𝑐𝑚], ℓ = 5.6[𝑚𝑚] , 𝑟;/$L = 5[𝑚𝑚] and 

lattice constant 𝑑 = 5[𝑐𝑚]. For each plot, three of the parameters are fixed and Eq. (22) is 

swept over (a) length of the neck ℓ, (b) radius of the neck 𝑟;/$L and (c) radius of the resonator 

𝑎. (d) A cross section of the reflection and transmission coefficient for two different neck 

lengths. (e),(f) same as (d), but for the neck radius and resonator radius, respectively.   

 

 



 

Figure 3. Analytically vs numerically calculated reflection and transmission coefficients of a 

2D array of lossless spherical Helmholtz resonators excited by a normally incident wave. (a) 

Amplitude, (b) phase. The geometrical parameters are 𝑎 = 2[𝑐𝑚], ℓ = 5.6[𝑚𝑚], 𝑟;/$L =

5[𝑚𝑚] and lattice constant 𝑑 = 5[𝑐𝑚]. 

  



 

Figure 4. Analytical vs numerical reflection and transmission coefficients of a 2D array of lossy 

spherical Helmholtz resonator subject to normal incident wave (a) Amplitude (b) Phase. 

Helmholtz resonator and array dimensions are the same as Figure 3, while the inner part of the 

resonator has been filled with a porous material of thickness 𝑡" = 3[𝑚𝑚] and flow resistivity 

𝑅U = 1573.4[𝑘𝑔/(𝑚*𝑠)]. 

 


