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We study static and dynamic properties of an electron coupled to dispersive quantum optical phonons in the
framework of the Holstein model defined on a one–dimensional lattice. Calculations are performed using the
Lanczos algorithm based on a highly efficient construction of the variational Hilbert space. Even small phonon
dispersion has a profound effect on the low energy optical response. While the upward phonon dispersion
broadens the optical spectra due to single phonon excitations, the downward dispersion has the opposite effect.
With increasing dispersion a multi–phonon excitation (MPE) state becomes the lowest excited state of the system
at zero momentum and determines the low–frequency response of the optical conductivity where the threshold
for optical absorption moves below the single–phonon frequency. Multi–phonon states form a well defined
band–like feature just above the polaron band as clearly seen in the electron spectral function. Low–energy
MPEs should be observable in systems with strong optical phonon dispersion in optical as well as angle resolved
photoemission experiments.

PACS numbers:

I. INTRODUCTION

Interaction between electron and lattice degrees of free-
dom represents one of the fundamental paradigms in mod-
ern solid state physics. In this context the Holstein model
(HM)1 is commonly used to study the interaction between an
electron and dispersionless optical phonons. Despite its sim-
plicity, a body of past as well as recent works have been de-
voted to this model ranging from variational approaches2–14

and diagrammatic techniques,15–17 among which the momen-
tum averaged approximation has been particularly success-
ful for the description of static as well as dynamic proper-
ties of the model.18–22 Early exact diagonalization approaches
on finite lattices23–29 have been followed by various Monte
Carlo methods.30–33 In this class of approaches a combined
diagrammatic and world line Monte Carlo method34 has been
applied to determine the mobility of an electron subject to lo-
cal lattice vibrations. Density–matrix renormalization–group
techniques35,36 represent yet another class of advanced tech-
niques most successful in tackling the Holstein model in
one spatial dimension. Recently, this approach has been
extended to obtain spectral properties of the HM at finite
temperatures.37 In the limit of infinite dimension dynamical
mean field approaches38,39 dominate the research in this field.

One of the most commonly used simplifications in treat-
ing electron–phonon interaction based on the HM is to as-
sume that optical phonons are dispersionless, which results in
a singular phonon density of states. While a straightforward
generalization of the model is the introduction of dispersion
among localized (Einstein) phonons, there exist surprisingly
few attempts in the literature in this direction. Coupling of the
electron to acoustic phonons has been treated using perturba-
tive approaches.40,41 More related to our present study is the
research in Ref.42 where authors have investigated the influ-
ence of the dispersion among optical phonons on the polaron
effective mass.

Phonon dispersion also has a profound effect on the propa-

gation of an electron in a one dimensional disordered system.
Coupling of the particle to dispersive optical phonons leads to
delocalization of the particle by virtue of a subdiffusive spread
from the initially localized state while in the case of coupling
to dispersionless phonons the particle remains localized.43 Re-
cently, an important influence of phonon dispersion on the for-
mation of charge density wave order has been demonstrated in
a system with finite electron density using the Quantum Monte
Carlo technique.44

The work described here investigates dynamic properties
of an electron coupled to dispersive optical phonons in the
context of the HM in one spatial dimension. It is rather sur-
prising that despite a multitude of research devoted to the HM
with dispersionless optical phonons, there is a lack of investi-
gations describing the influence of phonon dispersion on dy-
namic quantities such as the optical conductivity and the elec-
tron spectral function. The absence of research could be either
due to difficulties introduced by extra terms in the Hamilto-
nian or due to a common belief that the phonon dispersion
does not lead to any unexpected new phenomena.

Our research was motivated in part by recent measurements
of the Holstein polaron spectral function in a surface doped
layered semiconductor MoS2.45 In most materials the band-
width of optically dispersive phonons is much smaller than the
position of the middle of the optical band. A large dispersion
of optical phonons can be expected in systems where intra-
cellular interactions are comparable to those between cells,
and where the atomic masses do not differ greatly. One such
example are GaLaAs superlattice systems where the ratio be-
tween maximum and minimum optical frequency is roughly
ω(0)/ω(qmin) ∼ 1.2.46 Moreover, in the hexagonal nitride
AlN semiconductor, with the C4

6v space group symmetry the
lowest optical modeE2 shows strong upward dispersion along
Γ–K direction with the ratio ω(K)/ω(Γ) ∼ 2.2 and down-
ward dispersion along the Γ–A direction where ω(Γ)/ω(A) ∼
1.7.47

In this work we show that introduction of dispersion among
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optical phonons can have a profound effect on the excited
states of the model. Even small phonon dispersion has a
significant effect on the low energy optical response and the
quasiparticle band dispersion observed in the electron spec-
tral function. Upward phonon dispersion broadens the op-
tical spectra due to single phonon excitations. In contrast,
the downward dispersion narrows contributions of single and
multiple phonon excitations rendering them more easily de-
tectable in the optical response.

While in the dispersionless HM the lowest excited state
consists of a polaron and an extra phonon excitation with
zero momentum, at large phonon dispersion MPEs from the
edge of the Brillouin zone form the lowest excited states that
are optically active. They shift the threshold of the opti-
cal absorption spectra towards frequencies below the single
phonon excitation frequency. A large phonon dispersion ren-
ders multi–phonon states observable in the electron spectral
function where they obtain a significant spectral weight just
above the polaron band.

The paper is organized as follows. In Section II we present
the model and give a brief description of the method. In Sec-
tion III we first introduce dynamic quantities such as the opti-
cal conductivity and the electron spectral function. In Subsec-
tion III A we present results of various static quantities where
a special emphasis is on the description of dispersion relations
of a few lowest energy bands. In Subsection III B we analyze
the influence of phonon dispersion on the optical conductiv-
ity and the electron spectral function. In Section IV we give
concluding remarks.

II. MODEL AND METHOD

We analyze a single electron coupled to dispersive optical
phonons on an infinite one–dimensional system

H = −tel
∑
j

(c†jcj+1 + H.c.) + g
∑
j

n̂j(a
†
j + aj) +

+ tph
∑
j

(a†jaj+1 + H.c.) + ω0

∑
j

a†jaj , (1)

where c†j and a†j are electron and phonon creation operators
at site j, respectively, n̂j = c†jcj represents the electron den-
sity operator and tel the nearest-neighbor hopping amplitude.
ω0 denotes the position of the center of the dispersive opti-
cal phonon band ω(q) = ω0 + 2tph cos(q). We also introduce
the dimensionless effective electron-phonon coupling strength
λ = εp/2tel = g2/2tel

√
ω2
0 − 4t2ph where εp is the polaron

energy in the limit tel = 0.42

We have used a numerical method described in detail in
Refs.4,5 The method generates the variational Hilbert space
starting from the initial single-electron Bloch state c†k|∅〉
where c†k = 1√

L

∑
j e
ikjc†j , with no phonons on an infi-

nite lattice. The variational Hilbert space is then generated
by applying the first two off-diagonal terms of Hamiltonian
in Eq. (1), representing the electron kinetic energy and the

electron–phonon coupling term, Nh times. In the interme-
diate coupling regime the method provides computation of
the ground state energy in the thermodynamic limit to ex-
tremely high accuracy, better than ∼ 22 digits. Even though
the method is based on an infinite one–dimensional lattice, the
constructed variational Hilbert space allows only a finite max-
imal distance of a phonon quanta from the electron position,
Lmax = Nh − 1. This limitation is in turn responsible for a
discrete phonon dispersion ω(q). Furthermore, the maximal
amount of phonon quanta at the electron position is given by
Nphmax = Nh while on the M − th neighboring site to the
electron, it is reduced to Nphmax = Nh −M . We have used
a standard Lanczos procedure48 to obtain static as well as dy-
namic properties of the model.

We have performed numerical calculations in the parame-
ter regime given by ω0/tel ≥ 0.5 and λ ≤ 2.0, where our
numerical approach gives most reliable results. In the adia-
batic regime, i.e. ω0/tel → 0 other semi–classical approaches
are possibly more adequate. In addition, we have limited our
calculations to one spatial dimension even though calculations
at higher dimensions are possible using our approach as have
been shown for static properties in Ref.5.

III. RESULTS

Our main focus is on dynamic properties of the model. We
first present common formulas for the real part of the op-
tical conductivity, based on the linear response theory. For
the specific model Hamiltonian in Eq. (1) the real part of the
optical conductivity can be written in two parts Reσ(ω) =
Dδ(ω) + σreg(ω) where the Drude weight, also known as the
charge stiffness D, represents the ballistic response of a sys-
tem. The regular part σreg(ω) corresponds to the absorption
of an AC field

σreg(ω) =
π

ω

∑
n

|〈ψ(n)
0 |ĵ|ψ

(0)
0 〉|2δ(ω−(E(n)(0)−E(0)(0)))

(2)
where ĵ = −itel

∑
i c
†
i+1ci − c†i ci+1 is the current oper-

ator while ψ
(n)
0 = ψ

(n)
k=0 are many–body eigenstates and

E(n)(0) = E(n)(k = 0) corresponding energies computed
at zero momentum and n indicates the n-th excited state. The
Drude weight can be determined from the following expres-
sion

D = −〈ψ(0)
0 |Hkin|ψ(0)

0 〉/2−
∑
n 6=0

|〈ψ(0)
0 |ĵ|ψ

(n)
0 〉|2

E(n)(0)− E(0)(0)
, (3)

where Hkin represents the first term in Eq. 1. Alternatively, D
can as well be determined from the properties of polaron dis-
persion relation D = 1

2d2E(0)(k)/dk2|k=0, which can serve
as a test of the method. Note also that

∫∞
0

Reσ(ω)dω =

−π2 〈ψ
(0)
0 |Hkin|ψ(0)

0 〉 represents the so called optical sum–
rule. Note that the optical spectral weight due to the optical
phonons themselves is not included. One way to think of this
is that we are modeling the case where the tight-binding lattice
is in the x−direction, the external applied electric field is also
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in the x−direction, and the optical phonon ion displacement
is in the y−direction.

We also define the electron addition spectral function

A(ω, k) =
∑
n

|〈ψ(n)
k |c

†
k|∅〉|

2δ(ω − E(n)(k)), (4)

where |∅〉 represents the electron and phonon vacuum.
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Figure 1: The energy band E(0)(k) (full lines) and the first excited
state energy E(1)(k) (dashed lines) computed at ω0 = 1, λ = 0.01
in a) and b) and λ = 0.5 in c) and d). Open circles in a) and b)
denote E1ph(k) = −2tel + ω0 + 2tph cos(k) while open squares
in b) E2ph(k) = −2tel + 2ω0 − 4tph cos(k/2). In this and in all
subsequent figures we set tel = 1 as the unit of energy. Tiny dotted
line in a) and b) denotes the free electron energy Efree(k). In this
and in all subsequent figures we have used Nh = 18.

A. Static properties

We start with the analysis of the low–lying energy spec-
tra. In Fig. 1 we present the expectation value of the low-
est energy band E(0)(k) = 〈ψ(0)

k |H|ψ
(0)
k 〉 and the first ex-

cited energy band E(1)(k) = 〈ψ(1)
k |H|ψ

(1)
k 〉 using differ-

ent values of tph. We have explored the whole range of
|tph| < ω0/2. We should also keep in mind that tph > 0 rep-
resents the downward dispersion relation of optical phonons.
We first analyze results in the limit λ → 0, presented in
Figs. 1(a) and (b). In all cases E(0)(k) at small momen-
tum approximately follows the free electron dispersion rela-
tion E(0)(k) ∼ Efree(k) = −2tel cos(k). For tph ≤ 0, the
lowest energy band at some finite momentum bends over to-
wards E(0)(k) ∼ E1ph(k) = −2tel + ω0 + 2tph cos(k). This
state is composed of a free electron with momentum kel = 0
and one phonon excitation with momentum k.49 This holds
true up to tph = 0.1. Naively, one would expect that the first
excited state at zero momentum always consists of an addi-
tional single phonon excitation which would yield an excita-
tion gap at k = 0: ∆E = ω0 + 2tph. In contrast, at tph = 0.3

and 0.4 we observe a significant decrease of the energy of the
first excited state which is due to a state that consists of an
electron with momentum kel = 0 and two phonon excita-
tions with identical momenta q1 = q2 = π + k/2 yielding
a total momentum k = kel + 2q1 and the excitation energy
E2ph(k) = −2tel + 2ω0 − 4tph cos(k/2). For tph = 0.3

and 0.4 E(0)(k) with increasing k bends over from Efree(k)
towards the two–phonon energy E2ph(k) then to E1ph(k),
which gives rise to a somewhat unusual dispersion relation.
From the condition E2ph(k = 0) = E1ph(k = 0) we ob-
tain the threshold value tthph(Mph = 2) = ω0/6 when the two
phonon excitation energy first appears below the one phonon
one. Multiple crossings also explain the polaron dispersion
relation at λ = 0.5 as shown in Fig. 1(c) and (d).

Note also that higher excited states, not shown in Fig. 1,
with Mph = 4, 6, . . . number of even phonon excitations
with qMph

= π + k/Mph lie below a single phonon exci-
tation with q = k around k ∼ 0 as long as tthph(Mph) ≥
(Mph − 1)ω0/ (2(Mph + 1)). In the case when tph = 0.4ω0

there exist Mph = 2, 4, . . . , 8 MPEs below the single phonon
one since tthph(Mph = 8) = 0.39ω0.
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Figure 2: a) the expectation number of phononsN (0,1)
ph in the ground

(full lines) and excited (dashed lines) state vs. tph for four differ-
ent values of λ and zero momentum. The dotted line represents the
strong coupling prediction42 N sc

ph, given in the text. Arrows indicate
threshold values tthph(Mph = 2); b) the Drude weight vs. tph; c)
N

(0)
ph (k) computed for two different values of λ = 0.5 and 1 and

three different values of tph = ±0.4 and 0; d) Z(k) computed using
identical parameters as in c). In all cases the phonon frequency is set
to ω0 = 1.

The existence of the two–phonon first excited state is
further analyzed by computing the expectation number of
phonons N (n)

ph (k) = 〈ψ(n)
k |

∑
i a
†
iai|ψ

(n)
k 〉 in the ground and

the first excited state, n = 0 and 1, respectively. At small
λ = 0.05 we observe a sudden jump in N

(1)
ph (k = 0) by

∆N
(1)
ph (k = 0) ∼ 1 around tph ∼ 0.18 that is very close

to the analytical estimate tthph(Mph = 2) = 0.17. The dif-
ference is due to a small finite–size effect.50 With increasing
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λ, up to λ ∼ 1.0 , the effective tthph(Mph = 2) scales with λ
as it shifts significantly towards smaller, physically more rel-
evant values. For λ = 1 we obtain tthph(Mph = 2) ∼ 0.06,
which yields the ratio ω(π)/ω(0) ∼ 1.27. Consequently, in
the intermediate electron–phonon coupling regime, MPEs can
be observed already at relatively small optical phonon disper-
sion. The ground stateN (0)

ph (k = 0) decreases as tph increases
around tph = 0 and shows no significant change in the vicin-
ity of tthph. In the strong coupling regime, at λ = 2.0, the
two–phonon excitation above the ground state crosses over
to a state with nearly identical values of N (0)

ph (k = 0) ∼
N

(1)
ph (k = 0) for tph & 0.2. The ground state N (0)

ph (k = 0)

qualitatively follows the strong coupling prediction42 N sc
ph =

2telω0λ/
√
ω2
0 − 4t2tp.

In Fig. 2(b) we present the Drude weight that as expected
decreases with increasing λ while its behavior around tph = 0
changes from increasing with tph in the weak to interme-
diate coupling regime to decreasing at λ = 2.0, consis-
tent with results of the effective mass in Ref.42. The lat-
ter can be understood within the strong coupling limit where
Dsc = exp [−2telλ/(ω0 − 2tph)].

An important difference between the upward tph > 0 and
the downward dispersion tph < 0 is also reflected in the low-
est energy state momentum dependence of N (0)

ph (k), as shown

in Fig. 2(c). While N (0)
ph (k) monotonically increases with in-

creasing momentum for tph = −0.4, it displays at tph = 0.4 a
clear non–monotonic momentum dependence. The physics of
the latter dependence is most clearly seen from the weak cou-
pling regime at λ = 0.5, where it starts around zero at k = 0

then jumps to N (0)
ph (k1 ∼ 0.2π) ∼ 2 followed by a drop to

N
(0)
ph (k2 ∼ 0.6π) ∼ 1. The lowest energy wavefunction con-

sists for k . k1 predominantly of an electron with momentum
kel = k then for k1 . k . k2 of an electron with momentum
kel near zero and two phonon excitations each with momen-
tum near q1,2 = π+ k/2 and finally for k & k2 of an electron
with kel near zero and a single phonon excitation with q ∼ k.
Such structure of the polaron wavefunction is as well reflected
in the quasiparticle weight Z(k) = |〈ψ(0)

k |c
†
k|∅〉|2 as seen in

Fig. 2(d) where for tph = 0.4 we observe a sudden decrease
with k while at tph = 0.0 the decrease is much more gradual.

B. Dynamic properties

We shall now investigate whether the existence of multi-
phonon excitations affects any measurable quantities, such as
the optical conductivity or the spectral function. In Fig. 3 we
present σreg(ω). In the weak coupling regime, i.e. at λ = 0.5
and for tph ≤ 0.2 the incoherent absorption spectra starts at
ω1ph = ω0 + 2tph. In particular, at tph = −0.2 we observe
a series of peaks that are after the initial increase monotoni-
cally decreasing with increasing ω. The response of the sys-
tem at small ω can be explained by processes where and elec-
tron with initial momentum kel = 0 emits a phonon excitation
with momentum q while the electron in this scattering pro-

Figure 3: σreg(ω) computed at ω0 = 1 for different tph as denoted
in legends where ω is in units of tel = 1. Full lines with downward
arrows denote positions of the lowest single phonon excitation above
the ground state, ω1ph = ω0+2tph, while multiple dashed lines with
arrows represent the lowest Mph = 2, 4, 6, and 8 phonon excitation
ωMph = Mph(ω0 − 2tph) threshold in all figures where ωMph <
ω1ph . We have used artificial broadening η = 0.05.

cess changes its momentum to kel = −q. Contributions due
to single–, two– or multiple–phonon excitations can not be
distinguished between each other. Discrete peaks appear due
to a limited variational Hilbert space that leads to a discrete
set of internal momenta q. Additional discussion concerning
the numerical precision of the numerical method is provided
in Appendix A. At tph = 0.0 that represents the standard
HM with dispersionless Einstein phonons we already observe
two slightly separated groups of peaks whereby the first repre-
sents single–phonon emission processes and the second two–
phonon ones. Besides a shift towards higher ω with further in-
creasing tph we observe a substantial narrowing of the single–
phonon emission spectra that is followed by another well de-
fined two–phonon emission peak, separated approximately ω0

from the first one. The narrowing of the spectra at tph > 0 is
a consequence of the downward phonon dispersion. In the
above described phonon emission process the energy of the
emitted phonon at finite q decreases in comparison to q = 0
which has the effect of narrowing the single–phonon emis-
sion spectra in comparison to tph ≤ 0. Similar effects are
even more pronounced in the intermediate coupling regime,
λ = 1.0.

Even more unexpected is the appearance of the absorption
spectra below the one–phonon emission threshold ω1ph as in
Fig. 3 indicated by vertical full lines with arrows. Dashed
lines with arrows indicate the threshold of multi–phonon
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emission spectra ωMph = Mph(ω0 − 2tph) where an elec-
tron scatters off an even number of Mph phonons, each with
momentum q = π + k/Mph while the electron shifts after
scattering from kel = 0 to kel = −k. Optical absorption due
to two phonon emission processes obtains a substantial spec-

tral weight at the intermediate coupling regime λ = 1.0, as
seen in Fig. 3 (b).

We continue with the discussion of the electron spectral
function. We first present results for a single site, i.e. for
tel = 0, where A(ω) is given by the following expression

A(ω) = e−
∑

q g̃
2
q

∞∑
mq1 ,mq2 ,...,mqNq

=0

[
Πq

g̃2mq

mq!

]
δ

(
ω +

∑
q

ωq g̃
2
q −

∑
q

mqωq

)
, (5)

where g̃q = g√
Nqωq

, Nq represents the number of discrete

q values, the average number of phonon excitations is given
by N̄ph =

∑
q g̃

2
q , the polaron energy spectrum is εp =

−
∑
q ωq g̃

2
q +

∑
qmqωq and the quasiparticle weight can be

obtained by setting all mqi = 0, which leads Zqp = e−
∑

q g̃
2
q .

In Appendix B we further elaborate on the derivation of Eq. 5
as well as on some details concerning the numerical summa-
tion to obtain A(ω) as presented in Fig. 4. In the case of
zero dispersion tph = 0, A(ω) matches well known results
for dispersionless phonons.51,52 The lowest peak is positioned
at the ground–state quasiparticle energy ε0p = −

∑
q ωq g̃

2
q

while peaks at higher ω represent multi–phonon contributions,
spaced by ω0. All peaks are represented by Lorentzian forms
of delta functions with artificial broadening and have zero
physical width. At small but finite tph = 0.05 and 0.1 all
peaks except the lowest one obtain a finite width at half max-
imum W , given by the bandwidth of the phonon spectrum,
W = 4tph. Contributions from one-, two- and multi phonon
excitations remain well separated. At even larger tph contribu-
tions from multi phonon excitation start merging into a broad
continuum. Notable is also the closing of the gap between the
quasi–particle peak and the rest of the spectra.

The introduction of optical phonon dispersion has a pro-
found effect on the electron spectral functions A(ω, k) also at
tel 6= 0 as presented in the form of density plots in Fig. 5.
As guides to the eye we also display with tiny dashed lines
the dispersion relations of the lowest energy band marking the
position of the polaron band, E(0)(k) as well as the analytical
estimate of the single phonon excitation above the lowest en-
ergy band: E1ph(k) = E(0)(k = 0) +ω0 + 2tph cos(k) using
dot–dashed lines shown only in the vicinity of the center of
the Brillouin zone.

At small λ = 0.5, see Figs. 5(a-e), in the case of the upward
dispersion, i.e. for tph = −0.2, the polaron band is mono-
tonically increasing with increasing momentum while the gap
between the quasiparticle band and the rest of the incoherent
spectrum diminishes in comparison to tph ≥ 0.2. There is
a well defined part of the incoherent spectrum above the po-
laron band around k = 0 at the position that corresponds to
the single phonon excitationE1ph(k). For tph ≥ 0.2 the spec-
tral weight of the incoherent part around E1ph(k) decreases.
The polaron band obtains a non–monotonic k–dependence

-2 -1 0 1 2 3
ω

0

1

2

3

4

5

6

7

A
(ω

)

tph=0.30
tph=0.25
tph=0.20
tph=0.15
tph=0.10
tph=0.05
tph= 0.0

ω0=1, g=1.0

Figure 4: A(ω) computed from Eq. 5 at ω0 = g = 1 for different tph
as denoted in legends. Results do not depend on the sign of tph. We
have used Nq = 10 and artificial broadening η = 0.05. For further
details see caption of Fig. B1.

as a consequence of the downward phonon dispersion. At
tph = 0.4 there is a notable deviation of the dispersive spec-
tral weight at lowest ω from E(0)(k) around k = 0.4π which
is a consequence of the existence of MPEs just aboveE(0)(k).

In the intermediate coupling regime at λ = 1.0, see
Figs. 5(f-j), we find an expected overall decrease of the po-
laron bandwidth in comparison to λ = 0.5 case, which is
more pronounced at tph > 0. The most prominent effect is
the appearance of the dispersive spectral weight between the
polaron band and the single phonon excitationE1ph(k) which
is due to two phonon excitations first observed at tph = 0.2,
presented in Fig. 5(h). At larger tph = 0.3 it shifts down in
energy and increases in the overall spectral weight, while at
tph = 0.4 we observe a broader dispersive spectral weight
due to multiple (2, 4 possibly even 6) phonon excitations just
above the polaron band. In the latter case a well defined quasi-
particle peak is observed only in a narrow interval around the
center of the Brillouin zone, consistent with the rapid decrease
of Zk seen in Fig. 2(d).

At smaller ω0 = 0.5 and λ = 1, presented in Fig. 6, we ob-
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Figure 5: A(ω, k) computed at ω0 = 1 for different tph as denoted
in legends where ω is in units of tel = 1. Dashed lines represent the
lowest energy band E(0)(k) and dot-dashed lines at the center of the
Brillouin zone represent the single phonon excitation, E1ph(k). We
have used artificial broadening η = 0.05. Identical colour coding
has been used in all panels.

serve further flattening of the polaron band in comparison to
ω0 = 1 case while the high-ω spectral weight is concentrated
around the free electron band. In the dispersionless case, i.e.
tph = 0.0, two well defined bands, spaced by ω0, are observed
above the lowest energy polaron band. They represent polaron

Figure 6: A(ω, k) computed at ω0 = 0.5 for different values of
tph as denoted in legends where ω is in units of tel = 1. Dot–
dashed lines represent the lowest energy band E(0)(k). We have
used artificial broadening η = 0.05. Identical color coding has been
used in all panels.

states with the addition of one- and two- phonon excitations.
In the case of upward phonon dispersion, tph = −0.2, the dis-
tance between low-ω bands decreases while additional bands
appear around the middle of the Brillouin zone. Squeezing
of bands is a result of the upward phonon dispersion since
additional multi phonon excitations appear at lower energies
in comparison to the dispersionless case. The opposite is ex-
pected to hold true in the case when tph > 0, nevertheless, we
observe additional structure just above the lowest energy po-
laron band that is in this case a consequence of multi–phonon
processes from the edge of the Brillouin zone.

IV. CONCLUSIONS

Despite a body of work investigating various phenomena
related to the electron phonon coupling based on the HM, the
introduction of dispersion among optical phonons opens new
pathways for future research in this field. Already a small
amount of downward dispersion narrows the absorption spec-
trum in the frequency range of single phonon excitations. It
also changes the dispersion of the polaron band as observed in
the spectral function and narrows the frequency range where
a strong quasiparticle peak is observed.

With increasing downward dispersion a MPE state appears
as the lowest excited state of the system at zero momentum
and even becomes the lowest energy state at finite momen-
tum. The lower edge of the absorption spectrum shifts below
the single phonon excitation frequency at zero momentum due
to an electron scattering off an even number of MPEs from the
edge of the Brillouin zone. Moreover, MPEs strongly influ-
ence the shape of the electron spectral function in the interme-
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diate coupling regime. They emerge as a dispersive incoherent
spectral weight below the single phonon excitation threshold
just above the polaron band. Low–energy MPEs should be ob-
servable in systems with strong optical phonon dispersion in
optical as well as angle resolved photoemission experiments.

It is important to stress that MPEs become the lowest ex-
cited states in the weak coupling limit at large optical phonon
dispersion that may not be common in experimental systems.
The analytical estimate for the threshold tthph(Mph = 2) =

ω0/6 in the λ → 0 limit yields the ratio ω(0)/ω(π) = 2.
With increasing λ the effective tthph(Mph = 2) shifts towards
smaller, physically more common values. In the case of λ = 1
we obtain tthph(Mph = 2) ∼ 0.06, which yields the ratio
ω(0)/ω(π) ∼ 1.27. Consequently, in the case of intermedi-
ate electron–phonon coupling, MPEs can be observed already
at relatively small optical phonon dispersion. They remain
observable even as the phonon dispersion is reduced. They
may no longer be the lowest energy feature, but they are still
there, with a singularity (van Hove) where they start to appear.
The existence of low–energy MPEs may have a profound ef-
fect also on nonequilibrium53–58 and finite–T properties51 of
electron–phonon coupled systems.
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Appendix A: Efficiency of the numerical method

In Fig. A1 we demonstrate the efficiency of the method by
plotting A(ω, k) for three different sizes of the Hilbert space.
Apart from barely noticeable differences at higher ω results
seem to have well converged.

In Fig. A2 we present comparison of σ(ω) at two distinct
sets of parameters of the model and 4 different sizes of the
Hilbert space. The dependence of results in terms of in-
creasing sizes of the variational Hilbert space is more pro-
nounced in the case of ’upward’ phonon dispersion, i.e. for
tph = −0.2, where a multitude of peaks becomes denser as
the system size increases. Even though the polaron is de-
fined on an infinite 1-D lattice, the variational Hilbert space
allows only a finite maximal distance between the electron
and phonon excitation given by Lmax = Nh − 1, which con-
sequently yields a discrete phonon spectrum ω(q).

Figure A1: A(ω, k) computed at ω0 = 1.0, λ = 1.0, tph = 0.2 com-
puted using three different sizes of the Hilbert space ranging from
Nst = 10391 for Nh = 12 in a), Nst = 43310 for Nh = 14 in
b), through Nst = 178617 for Nh = 16 in c). The lowest energy
band E(0)(k) is shown using dashed lines. We have used artificial
broadening η = 0.05. Identical color coding has been used in all
panels.
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Figure A2: σ(ω) computed at ω0 = 1.0, λ = 1.0 and tph = −0.2
and 0.2 in a) and b), respectively. Systems sizes were from Nst =
10391 (many–body states per site) for Nh = 12 through Nst =
731027 for Nh = 18. We have used artificial broadening η = 0.05.
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Appendix B: A(ω) for a single site

In the case when tel = 0 the Hamiltonian in Eq. 1 is reduced
to

Htel=0 =
∑
q

ωqa
†
qaq + gn̂0(a†0 + a0), (B1)

which can be solved using a Lang–Firsov59 transformation. In
the case of a single electron on site 0, i.e. n0 = 1, the ground
state is given by42

|O〉 = e−
∑

q g̃
2
q/2−g̃qa

†
qc†0|∅〉, (B2)

where g̃q = g√
Nqωq

, and excited states are obtained from

|m〉 = e−
∑

q g̃
2
q/2Πq

(
(a†q + g̃q)

mq√
mq!

e−g̃a
†
q

)
c†0|∅〉 (B3)

where |m〉 = |mq1 ,mq2 , . . . ,mqNq
〉. The energy spectrum is

given by

εm = − 1

Nq

∑
q

g2

ωq
+
∑
q

mqωq. (B4)

Finally, A(ω) in Eq. 5 is obtained using the scalar product

|〈∅|c0|m〉|2 = e−
∑

q g̃
2
q Πq

g̃
2mq
q

mq!
. (B5)

The analytical expression in Eq. 5 can be used to check the
precision of our numerical approach using the variational
Hilbert space. Comparison is given in Fig. B1.

-3 -2 -1 0 1 2 3 4 5 6
ω
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0.5

1

1.5

2

2.5

3

A
(ω

)

tph=0.3
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Figure B1: Comparison of A(ω) obtained using Lanczos approach
with tel = 0 and Nh = 18 presented with full lines and numerical
summation of Eq. 5 shown in dashed lines. Parameters of the single–
site model were ω0 = 1 and g =

√
2(ω2

0 − 4t2ph). In the latter case
the product was performed using Nq = 10 equally spaced q values,
q = 2nπ/Nq , n ∈ [1, . . . , Nq], while the summation over different
phonon quanta was limited to mqi = [0, 1, 2, 3]. In addition final
results were averaged over shifted values q, i.e. q → q + ∆q where
∆q = 2mπ/(Nq ∗Mq), m = 1, . . . ,Mq and Mq = 4. In both
cases we have used artificial broadening η = 0.05.
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227002 (2016), URL https://link.aps.org/doi/10.
1103/PhysRevLett.117.227002.

55 J. Kogoj, L. Vidmar, M. Mierzejewski, S. A. Trugman, and
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