
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Anomalous low-energy properties in amorphous solids and
the interplay of electric and elastic interactions of tunneling

two-level systems
Alexander Churkin, Shlomi Matityahu, Andrii O. Maksymov, Alexander L. Burin, and

Moshe Schechter
Phys. Rev. B 103, 054202 — Published 23 February 2021

DOI: 10.1103/PhysRevB.103.054202

https://dx.doi.org/10.1103/PhysRevB.103.054202


Anomalous low-energy properties in amorphous solids and the interplay of electric

and elastic interactions of tunneling two-level systems

Alexander Churkin,1, 2 Shlomi Matityahu,2, 3, 4 Andrii O. Maksymov,5 Alexander L. Burin,5 and Moshe Schechter2

1Department of Software Engineering, Sami Shamoon College of Engineering, Beer-Sheva, Israel
2Department of Physics, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel

3Institute of Nanotechnology, Karlsruhe Institute of Technology, D-76344 Eggenstein-Leopoldshafen, Germany
4Department of Physics, NRCN, P.O. Box 9001, Beer-Sheva 84190, Israel

5Department of Chemistry, Tulane University, New Orleans, LA 70118, USA

(Dated: February 15, 2021)

Tunneling two-level systems (TLSs), generic to amorphous solids, dictate the low-temperature
properties of amorphous solids and dominate noise and decoherence in quantum nano-devices. The
properties of the TLSs are generally described by the phenomenological standard tunneling model.
Yet, significant deviations from the predictions of this model found experimentally suggest the need
for a more precise model in describing TLSs. Here we show that the temperature dependence of the
sound velocity, dielectric constant, specific heat, and thermal conductivity, can be explained using
an energy-dependent TLS density of states reduced at low energies due to TLS-TLS interactions.
This reduction is determined by the ratio between the strengths of the TLS-TLS interactions and
the random potential, which is enhanced in systems with dominant electric dipolar interactions.

I. INTRODUCTION

Understanding the low-temperature physics of disor-
dered and amorphous materials has emerged as one of the
most intriguing and challenging problems in condensed
matter physics1,2. Below about 1K, such systems ex-
hibit physical properties that are not only qualitatively
different from those of crystalline solids, but also show
a remarkable degree of universality2–5. For instance,
the specific heat and thermal conductivity are approxi-
mately linear and quadratic in temperature, respectively,
while the internal friction Q−1 is nearly temperature-
independent and varies slightly between different mate-
rials.

This behavior of amorphous solids has been primarily
interpreted with the model of tunneling two level systems
(TLSs)6,7, which will be referred to as the standard tun-
neling model (STM), suggesting the presence of atoms
or groups of atoms that may tunnel between two nearly
degenerate configurations. There were numerous sugges-
tions targeted to describe the nature of tunneling sys-
tems and their universality, including the soft-potential
model8 and its further developments (see Ref. 9 and ref-
erences therein), interaction-based models targeted to ac-
count for quantitative universality of TLSs1,10–13, glass-
transition-based theory14,15 and models based on the po-
laron effect16,17. Similarly to the STM, all these theories
account for the existence of TLSs at low temperatures
and the resulting thermodynamic and acoustic properties
of glasses. Yet, their predictive value lies in their devi-
ations from the STM, which has to be checked against
experimental observations18.

Marked examples of discrepancies between experimen-
tal results and theoretical predictions of the STM are the
deviations from integer powers of the temperature depen-
dence of the specific heat and thermal conductivity, see
below, and the anomalous temperature dependence of the

sound velocity and dielectric constant. The STM predicts
logarithmic temperature dependence, with a maximum
for the sound velocity and a minimum for the dielectric
constant, with a slope ratio of 1 : −0.5 between the slopes
below and above the crossover temperature. Yet, experi-
ments find different value for this ratio of slopes, typically
1 : −119–23.
Whereas the original formulation of the STM neglects

interactions between the TLSs, it became apparent that
interactions play a significant role in phenomena such
as spectral diffusion and phonon echoes12,24,25. TLS-
TLS interactions lead to a reduction of the TLSs den-
sity of states (DOS) near zero energy12,26,27. This reduc-
tion of the DOS scales with the ratio of the interaction
strength to the disorder energy13,28–30, usually assumed
to be much smaller than unity.
At the same time, there is a growing body of evidence

for an energy-dependent DOS at low energies, of the form
n(E) ∝ Eµ, with 0.1 < µ < 0.3. Even stronger en-
ergy dependence of the DOS in a-SiO was recently ex-
tracted from measurements of dielectric loss using super-
conducting lumped element resonators31. These findings
are supported by earlier experiments which show indirect
evidences for energy-dependent DOS: in deviations from
STM predicted integer values for the temperature depen-
dence of the specific heat, C ∝ T 1+α, and of the ther-
mal conductivity, κ ∝ T 2−β, with α, β ≈ 0.1− 0.34,32,33;
and in the linewidth of optical transitions of ions and
molecules embedded in glasses having an unusual tem-
perature dependence ∝ T 1.334–36, which may arise due
to dipolar interactions between the TLSs, assuming a
DOS n(E) ∝ Eµ, with µ ≈ 0.337–39. In addition, a
DOS n(E) ∝ Eµ with µ ≈ 0.3 was recently assumed in
Refs.40–42 in an effort to provide a theoretical explanation
to the temperature and power dependence of 1/f noise
in superconducting resonators at low temperatures (see,
however, Ref. 43). Still, it is not clear what the origin
of such marked energy dependence of the TLS-DOS may
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be.
Here we calculate the single-particle TLS-DOS assum-

ing TLS disorder energy being not much larger than the
TLS-TLS interaction energy. At zero temperature we
find the TLS-DOS to be significantly reduced, and well-
described by a power law, the power being approximately
the ratio between interaction and disorder. Since the
single-particle TLS-DOS involves the excitation energies
of single TLSs in the environment of all other TLSs, it
is temperature dependent. Indeed, at finite temperature
the pseudo-gap at low energies closes gradually.
Intriguingly, we find that energy-dependent TLS-DOS

accounts well not only for the anomalous power laws
of the temperature dependence of the specific heat and
thermal conductivity, but also for the anomalous tem-
perature dependence of the sound velocity and dielec-
tric constant. We discuss the energy dependence of the
TLS-DOS within the Two-TLS model13 and show that
TLS-TLS interactions not much smaller than the random
fields arise once TLS-TLS interactions are dominated by
the electric dipolar interaction. Relation to experimental
results is then discussed.
The paper is organized as follows: In Sec. II we intro-

duce the generic model for TLSs, albeit allowing for arbi-
trary ratio between the typical TLS-TLS interactions at
short distances and the typical random field. In Sec. III
we first present (Sec. III A) the numerical results for the
single-particle TLS-DOS for different ratios of interac-
tions to random fields, and the resulting temperature de-
pendence of the thermal conductivity and specific heat
(Sec. III B), and of the sound velocity and dielectric con-
stant (Sec. III C). Relation to experiments is then dis-
cussed in Sec. III D. In Sec. IV we discuss, within the
Two-TLS model, the possibility of TLS-TLS interactions
enhancement as a result of dominance of electric inter-
actions over elastic interactions in amorphous solids. We
then summarize in Sec. V.

II. MODEL AND TLS-DOS

At low energies the system of interacting TLSs can be
modelled by the effective Hamiltonian6,7,11,24

HTLS =
∑

i

hiτ
z
i +

∑

i

∆0,iτ
x
i +

1

2

∑

i6=j

Jijτ
z
i τ

z
j , (1)

where τzi and τxi are the Pauli matrices that represent
the TLS at site i. The first term is the bias energy
of the TLSs resulting from their interaction with static
disorder. The total bias energy of TLS i is therefore
∆i ≡ hi +

∑

j Jijτ
z
j , and the total energy of a TLS is

given by E =
√

∆2 +∆2
0. Within the STM one as-

sumes that Jij ≪ hi, and that hi are homogeneously
distributed, leading to the ansatz P (∆,∆0) = P0/∆0

for the distribution of the bias energy ∆ and tunneling
amplitude ∆0, and the corresponding density of states
n = P0L0. Here P0 is a material-dependent constant

and L0 = ln (Ẽ/∆0,min), with Ẽ being a large energy of
the order of the disorder energy and ∆0,min denotes the
minimum tunneling amplitude of the TLSs. Generally,
however, one allows energy dependence of the TLS-DOS,
i.e. n(E) = P0(E)L0.
The second term in the Hamiltonian (1) denotes TLS

tunneling. Whereas this term is of utmost importance
to dynamic properties, it has a small effect on the TLS-
DOS, especially at energies & 10mK relevant to most ex-
periments. We therefore consider henceforth the random-
field Ising Hamiltonian

H =
∑

i

hiτ
z
i +

1

2

∑

i6=j

Jijτ
z
i τ

z
j , (2)

with hi = h0ci and Jij = cijJ0/(R
3
ij/R

3
0 + C), where ci

and cij are normally distributed random variables with
zero mean and unity variance, Rij is the distance between
TLS i and TLS j, R0 is the typical distance between
nearest TLSs, J0 denotes typical nearest neighbor TLS-
TLS interaction, C is a short distance cutoff, and h0 is
the typical random field. Generally, the interaction term
comprises both elastic and electric TLS-TLS interactions.
Below we discuss the energy-dependent TLS-DOS and

its consequences within a model of the Hamiltonian (2),
taking, however, J0/h0 to be not much smaller than unity
- possible reason may be domination of electric dipolar
interactions.
Since we consider the Hamiltonian (2), thus neglecting

∆0 in the calculation of the DOS, our numerically ob-
tained TLS-DOS can be equivalently interpreted as n(E)
or n(∆). We show below that the two interpretations give
very similar results for the various quantities of interest
to us.

III. RESULTS

A. TLS-DOS

We now calculate the TLS-DOS within the model pre-
sented by the Hamiltonian (2) with J0/h0 = 0.2 and 0.3.
To demonstrate the power-law-like energy dependence of
the low-energy TLS-DOS we perform Monte-Carlo (MC)
simulations on cubic lattices of size L3, with L = 8 and
12, and periodic boundary conditions are imposed. TLSs
are placed randomly in the lattice with concentration
x = 0.5, and we choose h0 = 10K in accordance with
its calculated value for KBr:CN44. We note that h0 is
dictated by the TLS-strain interaction, and the particu-
lar choice we make here for its value is not essential for
our results below. The choice of lattice structure is for
convenience, and the randomness of TLS positions in the
amorphous solids is retained by the random dilution and
by the randomness in ci and cij . We further note that
the lattice constant R0 denotes typical distance between
adjacent TLSs, rather than interatomic spacing. We use
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a short distance cutoff equal to R0 (i.e. C = 1) to ac-
count for the finite size of the TLSs, but decreasing the
value of the cutoff has minimal effect on our results.
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FIG. 1. (Color online) (a) Single-particle TLS-DOS at T =
0.02, 0.5K, obtained by simulated annealing MC simulations
with L = 12 and J0 = 2, 3K (J0/h0 = 0.2, 0.3). Solid black
line is a Gaussian fit (with standard deviation E0 = 21.53K)
to the data at J0 = 2K, corresponding to the limit of negligi-
ble TLS-TLS interactions. (b) Zoom in to low energies. Solid
lines describe low-energy fits in the range 0 < E < 2T , us-
ing Eq. (3), for the curves corresponding to T = 0.5K. Inset
shows fits to the form n ∝ Eµ for the curves corresponding to
T = 0.02K. Note that the power µ decreases with increasing
temperature.

Simulated annealing MC simulations are performed at
42 temperatures, starting with a random realization of
spins at 300K and decreasing the temperature down to
0.02K, running 257 MC steps at each temperature. We
then reduce the temperature to 2µK to emulate zero tem-
perature. The single-particle DOS at a given tempera-
ture n(T,E) is then calculated by measuring the excita-
tion energies of single TLSs in a given realization, and av-
eraging over 10000 independent disorder realizations for
each set of parameters. While the system does not fully

equilibrate within the simulated annealing technique, we
verify that the final state at 2µK is stable against sin-
gle and double spin flips. This constitutes the sufficient
condition for the determination of the DOS given by the
Efros-Shklovskii stability criterion26,27.
In Fig. 1 we plot n(T,E) as a function of energy

for T = 0.02K and T = 0.5K, interaction strengths
J0 = 2, 3K, and lattice size L = 12. In the absence
of interactions, the DOS is well-described by a Gaus-
sian [solid black curve in Fig. 1(a)] with width of or-
der h0 = 10K13,30. The dipolar interactions produce
an Efros-Shklovskii type pseudo-gap for energies below
∼ J0

26,27,29. As T → 0, the DOS at low energies ap-
proaches a form well-described by power-law energy de-
pendence, n(T → 0, E) ∝ Eµ, with µ ≈ 0.2 − 0.3 [the
exact value of µ depends on J0, see inset of Fig. 1(b)].
The dipolar gap is suppressed as the temperature in-
creases, yielding a DOS which at low energies is rather
well-approximated by the function

n(T,E) ≈ B(T )(T 2 + E2)µ(T )/2. (3)

The parameters B(T ) and µ(T ) are obtained for the cal-
culated TLS-DOS at a given temperature T . Fitting is
performed by requiring best fitting in the energy regime
0 < E < 2T . In Fig. 1(b) we plot a fit of Eq. (3) to
the numerical DOS at T = 0.5K. We find µ = 0.1269
for J0 = 2 and µ = 0.1517 for J0 = 3. We note that µ
values vary little in the temperature range of 0.1− 1.0K,
yet are smaller than the corresponding µ value at zero
temperature. For a table of B(T ) and µ(T ) values in the
relevant temperature range see App. D.

B. Thermal conductivity and specific heat

Being well-approximated with a power-law DOS at low
energies, we expect the TLS-DOS calculated from the
Hamiltonian (2) and plotted in Fig. 1 to account well for
the deviations from integer power-law exponents of the
temperature dependence of the thermal conductivity and
specific heat as observed in amorphous solids. Starting
from the distribution function of the STM, P (∆,∆0) =
P0(∆)/∆0, the thermal conductivity κ(T ) is found by
calculating5 κ(T ) = 1

3

∑

α

∫∞
0

Cph,α(E)vαℓph,α(E)dE,

where Cph,α(E) = E4/
(

8π2
~
2v3αT

2 sinh2(E/2T )
)

is the
contribution factor of phonons with energy E and po-
larization α to the Debye heat capacity, vα is the sound
velocity and

ℓ−1
ph,α(E) =

πγ2
α

ρv3α

∫

d∆P0(∆)

∫

√
E2−∆2

0

d∆0

∆0

E
×

tanh(E/2T )δ

(

E −
√

∆2 +∆2
0

)

(4)

is the phonon inverse mean free path due to interac-
tion with resonant TLSs (i.e., TLSs with energy split-
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FIG. 2. (Color online) Temperature dependence of (a) Ther-
mal conductivity (in arbitrary units) and (b) specific heat,
obtained by Eqs. (5) and (6) with the TLS-DOS n(T,E) com-
puted by simulated annealing MC simulations with L = 8, 12
and J0 = 2, 3K (isolated points). Solid lines are fits to the
form κ ∝ T 2−β and C ∝ T 1+α. Calculations correspond to a
relaxed system close to equilibrium, see text.

ting equal to the phonon energy), characterized by the
coupling strength γα, where ρ is the mass density.
In order to relate P0(∆) to the numerical TLS-DOS,

calculated for the Hamiltonian (2), we take E = ∆ [i.e.
we neglect ∆0 in the delta function in Eq. (4)]. The
expression for the thermal conductivity then reads

κ(T ) ∝
∫ ∞

0

E3dE

T 2 sinh2(E/2T ) tanh(E/2T )P0(E)
. (5)

The prefactor in Eq. (5) contains material-dependent
constants which are independent of temperature. To
study the temperature dependence of the thermal con-
ductivity we calculate the last integral in Eq. (5) with
P0(E) replaced by the numerically calculated TLS-DOS
n(T,E), and represent the thermal conductivity in ar-
bitrary units. For a similar calculation using the inter-
pretation of the calculated TLS-DOS as n(∆), without
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FIG. 3. (Color online) Temperature dependence of acous-
tic velocity, derived from the TLS-DOS obtained numerically
from Eq. (2), for 12 different temperatures, for L = 12, J0 = 2
(circles) and J0 = 3 (squares). Solid lines are fits by the sum
of Eqs. (7) and (8), using Eq. (3) for the TLS-DOS with tem-
perature independent µ as a fitting parameter. Discrepancy
between the power of the calculated energy-dependent DOS
[µ = 0.2, 0.27 for J0 = 2, 3, respectively, see Fig. 1(b)] and
fit (µ = 0.13, 0.2 for J0 = 2, 3, respectively) is in accordance
with the reduced value of µ obtained in fitting the numerical
TLS-DOS at finite temperatures using Eq. (3) (see Fig. 1).
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FIG. 4. (Color online) Temperature dependence of the ther-
mal conductivity of vitreous silica (Suprasil and Suprasil W).
Data can be well fit to the functional form T 1.9533. Solid lines
correspond to fits by Eq. (5). The DOS is taken from Eq. (3)
using temperature independent µ as a fitting parameter.

performing the approximation E = ∆ in Eq. (4), see
App. A. The difference between the two approximations
is exemplified also in the calculation of the velocity, by
comparing Eq. (8) and Eq. (A2); yet the results obtained
differ only negligibly, as both approximations differ by
logarithmic corrections.
Similarly, the specific heat C(T ) is evaluated, taking
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FIG. 5. (Color online) Temperature dependence of (a) sound
velocity23 and (b) dielectric constant of vitreous silica22 , and
(c) sound velocity of coverglass47 . Solid lines correspond to
fits by the sum of Eqs. (7) and (8), using for ω the exper-
imental values [90KHz in (a), 1KHz in (b), 5.1KHz in (c)],
and using the fitting parameters A [9.4MHz in (a), 7.9MHz
in (b), 5.6MHz in (c)] and P0γ

2/ρv2 [3.2 ·10−4 in (a), 8 ·10−4

in (b), 4.2 · 10−4 in (c)]. The DOS is taken as Eq. (3) with
temperature-independent µ as a fitting parameter. Dashed
lines are best fits with µ = 0 as is given by the STM.

the Boltzmann constant kB = 1, as5

C(T ) =

∫ ∞

0

n(T,E)E2dE

4T 2 cosh2 (E/2T )
. (6)

Figure 2 shows log-log plots of the thermal conductiv-
ity and the specific heat as a function of temperature,
for J0 = 2, 3K and L = 8, 12. In all cases, the ther-
mal conductivity and the specific heat obey a power-law
dependence, κ ∝ T 2−β and C ∝ T 1+α, with α and β
in the range 0.1 − 0.2. Note that we do not consider
here the slow logarithmic time dependence of the specific
heat, resulting from the large variance in TLS relaxation
times, that can enhance the temperature dependence of
the specific heat45,46. Our results correspond to a given
long time, as the system is out of equilibrium. Taking
into account the time dependence of the specific heat
would therefore result in a stronger temperature depen-
dence compared to our results here.

C. Sound velocity and dielectric constant

Given the above mentioned long-standing discrepancy
between STM predictions and experimental results, it is
of interest to study the consequences of energy-dependent
TLS-DOS on the temperature dependence of the sound
velocity and dielectric response at low temperatures. The
temperature dependence of these quantities has two con-
tributions coming from the resonant and relaxation pro-
cesses5. Considering the sound velocity, the contribution
of the resonant process is of the form

δvres
v

= − 1

L0

γ2

ρv2

∫ ∞

0

n(T,E)dE

E
tanh

(

E

2T

)

, (7)

where v and γ are characteristic values for the velocity
and for the interaction constant. For the relaxation pro-
cess one has

δvrel
v

=− 1

L0

γ2

ρv2

∫ ∞

0

n(T,E)dE

2T cosh2 (E/2T )

×
∫ 1

0

√
1− x2dx

x

1

1 + ω2

[Ax2E3 coth(E/2T )]2

, (8)

such that δv/v = (δvres + δvrel)/v. Here ω is the probing
frequency and A ≡ ω/T 3

0 , where T0 is a crossover temper-
ature of the order of the temperature at which the sound
velocity obtains a maximum value5. The corresponding
expressions for the dielectric constant ǫ are obtained by
substituting γ2/(ρv2) → p2/(4πǫǫ0), where p is the TLS
dipole moment and ǫ0 is the vacuum permittivity (see
App. A for a similar calculation using the interpretation
of the DOS as n(∆)).
In Fig. 3 we plot the sound velocity calculated as the

sum of Eqs. (7) and (8), using the numerically calculated
DOS for the Hamiltonian (2) with ratios J0/h0 = 0.2, 0.3,
for twelve temperatures below and above the tempera-
ture corresponding to the maximum in sound velocity.
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We find the ratio between the logarithmic slopes below
and above the crossover temperature to be roughly 1 : −1
for J0/h0 = 0.2, and even a steeper descent beyond the
crossover temperature for J0/h0 = 0.3.

D. Relation to experiments

Our numerical results motivate us to use energy-
dependent TLS-DOS to fit the experimental data for
the temperature dependence of the thermal conductiv-
ity, sound velocity, and dielectric constant. Yet, such
a task requires a numerical calculation of the TLS-DOS
n(T,E) at many values of the ratio J0/h0, which is rather
complicated. We therefore take a simpler approach and
consider the dependence of the TLS-DOS on energy and
temperature as given in Eq. (3), allowing the power µ
to serve as a free fitting parameter, albeit independent
of temperature. We first test this approach by fitting
our numerical results in Fig. 3. As can be seen, a good
fit is obtained by using Eq. (3), with a fixed power µ,
for the TLS-DOS in the sum of Eqs. (7) and (8). We
note, however, that the temperature-independent values
obtained (µ = 0.13, 0.2 for J0/h0 = 0.2, 0.3, respectively)
are smaller than the powers µ describing the numerically
simulated TLS-DOS at zero temperature (µ = 0.2, 0.27
for J0/h0 = 0.2, 0.3, respectively, see inset of Fig. 1b).
We now consider experimental data, starting with the

anomalous power of the power-law functional form of the
temperature dependence of the thermal conductivity of
amorphous solids. An example for vitreous silica is shown
in Fig. 4. We find an excellent fit of the data by Eq. (5),
using the DOS n(T,E) given by Eq. (3), within the ap-
proximation of temperature-independent power µ. Here,
too, the value of µ = 0.04 of the fit function is somewhat
smaller than the power 0.05 one would obtain using zero
temperature TLS-DOS n(E) ∝ Eµ.
We consider next the temperature dependence of the

sound velocity and dielectric response in amorphous
solids. In Fig. 5 we show data for vitreous silica and for
coverglass, displaying the usually found ratio of approxi-
mately 1 : −1 between the slopes of the logarithmic tem-
perature dependence below and above the crossover tem-
perature. Good fits are obtained by the sum of Eqs. (7)
and (8), using the DOS n(T,E) of Eq. (3) within the ap-
proximation of temperature-independent power µ. Given
the similar fitting of the numerical data in Fig. 3, it is
suggestive that the TLS-DOS of vitreous silica and cov-
erglass are energy-dependent, and can be described by a
power-law, with a power somewhat larger than the µ val-
ues found in the corresponding fits. We further note the
larger µ value for coverglass in comparison to those found
for vitreous silica, which suggests a larger ratio of inter-
actions to disorder in the former. We argue below that
this difference may be related to the relative largeness of
the strength of the electric dipole-dipole interactions in
coverglass in comparison to vitreous silica.
An intriguing issue is exemplified in the data of Classen

et. al.47 for the temperature dependence of the sound
velocity taken at driving voltages of 0.7V and 10V.
Classen et. al. argue that consistently, data taken at
non-equilibrium (10V plot here) displays agreement with
the 1 : −0.5 slope ratios for the logarithmic temperature
dependence of the sound velocity below and above the
crossover temperature, as predicted by the STM, while
data taken in equilibrium shows slope ratios of roughly
1 : −1. An explanation of this observation is beyond
the scope of this paper. Yet, we would like to note that
within our approach, the physics behind the anomalous
temperature dependence of the sound velocity, i.e., the
energy dependence of the TLS-DOS, requires the system
to be close to equilibrium.

IV. ELECTRIC DIPOLAR TLS-TLS

INTERACTIONS

The consideration of TLS-strain interaction as an ad-
dition to the STM was introduced by Jackle48 to explain
internal friction experiments. TLS-strain interactions
result in effective TLS-TLS interactions, which lead to
spectral diffusion24, and to the dipolar gap in the single-
particle TLS-DOS at low energies, which at T = 0 takes
the form11,24,29

n(E) =
n0

1 + cJ̃0n0 · log (J̃0/R3
0E)

, (9)

where c = 2π/3, J̃0 ≡ J0R
3
0 is the interaction con-

stant, and n0 ≡ n(E = J0) = 1/(h0R
3
0). Phonon at-

tenuation data at low temperatures dictates, assuming
solely strain mediated TLS-TLS interactions, a value of
J0/h0 = J̃0n0 ≈ 0.036,7,48, which corresponds to near
power-law energy-dependent TLS-DOS with µ ≈ 0.03.
In this paper we suggest that larger values of the ra-
tio J0/h0 result in enhanced energy dependence of the
single-particle TLS-DOS, which in turn may explain the
anomalous behavior of the acoustic velocity and dielec-
tric constant, as well as the anomalous powers of the
temperature dependence of the specific heat and thermal
conductivity. We now discuss what may be a cause for
an enlarged ratio of interaction strength to random field
strength, and specifically the consequences of TLSs hav-
ing larger electric dipolar interaction compared to their
phonon-mediated interaction. The emergence of a larger
ratio of J0/h0 in the presence of dominant electric dipo-
lar interactions is naturally obtained within the theoret-
ical framework of the Two-TLS model13. We thus begin
with a presentation of the main features of the Two-TLS
model relevant to our discussion. A more detailed dis-
cussion of the model is deferred to Appendix B.
First considering only elastic interactions, the Two-

TLS model divides TLSs into two groups, with bi-
modal distribution of their interaction strengths with the
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Interaction between

NN general defects
TLS disorder energy Interaction between NN TLSs

Two-TLS model ∼ γ2
s /(ρv

2R3
0) ∼ Tg ≈ 300− 1000K h0 ∼ γsγw/(ρv

2R3
0) ≈ 10K J0 ∼ γ2

w/(ρv
2R3

0) ≈ 0.1 − 0.3K

Two-TLS model with strong

electric dipolar interactions
∼ γ2

s /(ρv
2R3

0) ∼ Tg ≈ 300− 1000K h0 ∼ γsγw/(ρv
2R3

0) ≈ 10K J0 ∼ p2/(4πǫǫ0R
3
0) ≈ 2− 3K

TABLE I. Comparison between: typical energy scales of the interactions between nearest neighbor (NN) defects; the resulting
disorder energies for the abundant (τ )-TLSs at low energies, dominating low-temperature physics; and the interactions between
(τ )-TLSs. (i) (top row) as derived by the Two-TLS model with dominant elastic interactions13, (ii) (bottom row) as presented
here for the Two-TLS model with strong electric dipolar interactions. Note the small TLS disorder energies in comparison to
the value of 300− 1000K assumed by the STM.

strain, denoted by γw for the weakly interacting τ -TLSs,
which correspond to the abundant TLSs at low energies,
and by γs for the other defects, where g ≡ γw/γs ≈
0.0213,44,49–52. The Hamiltonian 2 is then derived as
the low-energy effective Hamiltonian of the system (see
Ref.13 and also App. B), with

hi ≈
ciγwγs
ρv2R3

0

; Jij ≈
cijγ

2
w

ρv2R3
ij

. (10)

Here, R0 is the typical distance between nearest two-level
defects, Rij denotes the distance between τ -TLS i and τ -
TLS j, and the parameters ci, cij ∼ O(1) can be regarded

as normally distributed random variables49.
The form of the Hamiltonian (2) is equivalent to that of

the STM Hamiltonian, i.e. the weakly interacting τ -TLSs
in the Two-TLS model are equivalent to the TLSs in the
STM. However, within the Two-TLS model one can de-
rive the typical magnitude of the interactions between
the weakly interacting TLSs, as well as the typical magni-
tude of the random field. Since typical disorder energy at
nearest neighbor distance is ≈ γ2

s /(ρv
2R3

0) ∼ Tg, where
Tg ≈ 300−1000K is the glass transition temperature, one
finds that the typical disorder energy for a τ -TLS, which
is g times smaller, is given by h0 ≈ 10K13,30,44,51, and
that TLS-TLS interactions at nearest neighbor distance
have a typical value of J0 ≈ gh0 ≈ 0.3K ≪ h0

13,30,51.
Consider now the electric dipolar interaction,

Jij ≈
cijp

2

4πǫǫ0R
3
ij

. (11)

The above characteristics of the weakly interacting τ-
TLSs within the Two-TLS model, including the relative

smallness of the random fields exerted on the τ-TLSs,
and the extreme smallness of the elastic τ-TLS—τ-TLS
interaction, allow for the possibility of electric dipole in-

teractions to dominate over the elastic τ-TLS—τ-TLS
interactions, and to be not much smaller than the typ-

ical bias energies of the weakly interacting τ-TLSs, i.e.

J0/h0 . 1.
In table I we summarize the typical energy scales of (a)

interactions between general defects, which is of the order
of the glass transition, (b) disorder energy and (c) typical
TLS-TLS interaction energy - for the abundant (τ -)TLSs

at low temperatures. All energy scales are denoted within
the Two-TLS model with: (i) dominant elastic TLS-TLS
interactions, and (ii) strong electric dipolar TLS-TLS in-
teractions.

Experimentally, the ratio r between the electric and
elastic interactions (see App. C for an exact definition)
varies strongly between different amorphous materials. It
can be deduced from combined measurements of dielec-
tric loss and acoustic loss on the same material. Such
measurements were carried out for vitreous silica, BK7
and coverglass53, indicating a value of r = 0.3 for amor-
phous silica and r = 1.51 for BK7 and coverglass (see
detailed analysis in App. C). While all amorphous mate-
rials display slope ratios of roughly 1 : −1 in the temper-
ature dependence of the velocity and dielectric constant,
the detailed functional behavior differs between materi-
als, and corresponds to quite different energy dependence
of the TLS-DOS, as displayed in Fig. 5. Indeed, fitting
the data for the acoustic velocity in amorphous silica and
in coverglass, we find a smaller power µ in the former in
comparison to the latter.

For some other amorphous materials, the above ratio
r cannot be inferred directly from experiments. Yet, it
can be approximated by measured values of the acous-
tic interaction constant and the dipole moment of TLSs
in these materials. While for vitreous silica the mea-
sured dipole moment is small (0.5D54), typical values of
γw ≈ 1 − 2 eV55–58 and the corresponding parameters
(mass density, sound velocity and dielectric constant),
and dipole moment values p ≈ 3 − 6D58–63 of selected
amorphous solids (including amorphous solids relevant
to modern superconducting qubits and microresonators,
such as Al2O3 and Si3N4

64), suggest that values r larger
than unity may be present in these materials. In turn,
that would correspond to power-law dependence of the
TLS-DOS at low energies with µ ≥ 0.1.

The relation suggested above between the magnitude
of the power of the energy dependence of the TLS-DOS
and the dominance of the electric dipolar interaction over
the elastic interaction can be further examined by con-
sidering disordered lattices, where the TLS concentration
can be varied65. Two protocols exist for the variation of
the concentration of TLSs23,66. In the first, TLSs are the
sole defects in the lattice. In this case, increasing TLS
concentration increases the strain in the system, and thus
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FIG. 6. (Color online) Temperature dependence of acoustic
velocity. Points denote experimentally obtained values, taken
at ω = 90KHz23. Solid lines correspond to fits by the sum of
Eqs. (7) and (8), using Eq. (3) for the DOS with finite µ > 0
as a fitting parameter. Dashed lines are best fits within the
STM, i.e. with µ = 0. (a) For (SrF2)1−x(LaF3)x. Here as
x is enhanced so does the strain, and consequently the ratio
of dipolar interaction to elastic interaction is decreased. Re-
duction of the power µ is in agreement with theory. Param-
eters used for best fits are P0γ

2/ρv2 = 1.9 · 10−5, 2.5 · 10−5

and A = 7.9MHz, 4.6MHz, for x = 0.17, 0.32 respectively.
(b) For [(BaF2)0.5(SrF2)0.5]1−x(LaF3)x. Here the strain, and
thus the ratio of electric to elastic interactions, are inde-
pendent of x. Independence of the power µ on x is in
agreement with theory. Parameters used for best fits are
P0γ

2/ρv2 = 2.1 · 10−5, 4.5 · 10−5 and A = 3.5MHz, 3.9MHz,
for x = 0.04, 0.07 respectively.

the coupling of τ -TLSs to the phonon field13,49. In the
second, TLS concentration is varied in a mixed lattice,
in which strain is large already in the absence of TLSs.
Thus, in the second protocol elastic and electric dipole
interactions strengthen equally with increased TLS con-
centration, as a result of the reduced typical distance be-
tween TLSs. However, in the first protocol, in addition to
the reduced distance between TLSs, the increased strain

with TLS concentration results in a decreased ratio of the
electric dipolar to elastic TLS-TLS interactions. This is
reflected in the temperature dependence of the sound ve-
locity as fitted with the DOS of Eq. (3), with a smaller
power µ as TLS concentration is increased [Fig. 6(a)].
However, in the mixed crystal plotted in Fig. 6(b) strain
is large and independent of TLS concentration, leading
to a similar and small value of µ at TLS concentrations
of 4% and 7%.

V. SUMMARY

We have considered TLSs in amorphous solids for
which their mutual interactions are not much smaller
than the randomness in their bias energies. Such a sce-
nario emerges naturally within the Two-TLS model, pro-
vided that electric interactions dominate over elastic in-
teractions. Data for BK7 and coverglass53 attest for
larger electric dipolar than elastic interactions in these
materials, and typical parameters for amorphous solids
used in superconducting resonators suggest that stronger
dominance of the electric dipolar interactions may be ex-
pected. Our results clearly indicate the relation between
the strength of the TLS-TLS interaction strength and
the temperature dependence of the thermal conductivity,
acoustic velocity, and dielectric constant in amorphous
solids and disordered lattices. While more comprehen-
sive data and its analysis is desirable, our results seem to
support the origin of such relatively strong TLS-TLS in-
teractions lying in the dominance of electric over acoustic
TLS-TLS interactions in certain materials. We thus sug-
gest a possible microscopic origin for the power-law de-
pendence of the single-particle TLS-DOS at low energies,
as found experimentally, and for the resulting anoma-
lous exponents of the low-temperature thermal conduc-
tivity and specific heat and the temperature dependence
of the acoustic velocity and dielectric constant at low-
temperatures.
Energy-dependent TLS-DOS, albeit weaker, is ob-

tained also within the dipolar gap theory of the STM29.
A comprehensive study of the relation between the acous-
tic and dielectric responses in various amorphous solids
could examine whether systems in which dipolar interac-
tions dominate over elastic interactions are abundant, as
well as the relevance of the dipolar gap theory and the
Two-TLS model in describing the low-energy properties
of amorphous solids at low temperatures.
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Appendix A: Calculation of the thermal

conductivity and of the acoustic velocity

Our numerical calculation of the TLS-DOS was per-
formed under the approximation of zero tunneling am-
plitude. Deviations resulting from finite tunneling am-
plitude are expected to be significant only at the lowest
energies, and to have only small, logarithmic corrections
to the physical quantities of interest in this work, and
thus no qualitative effect on our results.
With regard to the thermal conductivity, the calcula-

tion in the main text was performed under the assump-
tion that E = ∆. An alternative approach would be to
perform the integral over ∆0 in Eq. (4), assuming that
P0(∆) is proportional to the numerically calculated TLS-
DOS. The resulting expression for the thermal conduc-
tivity is:

κ(T ) ∝
∫ ∞

0

E4dE

T 2 sinh2(E/2T ) tanh(E/2T )
∫ E

0 P0(∆)d∆
.

(A1)

We now replace P0(∆)d∆ by n(T,E′)dE′. This equa-
tion thus transforms into Eq. (5) by replacing the inte-
gral in the denominator by its value at its upper limit.
Since phonon energies of order temperature dominate the
thermal conductivity, and since n(T,E′) ≈ n(E = T ) for
E′ ≤ T , we expect thermal conductivities calculated via
Eq. (A1) and Eq. (5) to differ negligibly, as is indeed
verified numerically, see Fig. 7.
Similar considerations apply to the calculation of the

sound velocity and equivalently to the calculation of the
dielectric constant. Considering the sound velocity, Eq. 7
for the resonant contribution remains intact. For the
relaxation contribution one obtains

δvrel
v

=− 1

L0

γ2

ρv2

∫ ∞

0

dE

2T cosh2 (E/2T )

×
∫ 1

0

√
1− x2dx

x

n(T,E
√
1− x2)

1 + ω2

[Ax2E3 coth(E/2T )]2

. (A2)

Note that by replacing n(T,E
√
1− x2) with n(T,E) one

obtains again Eq. (8) in the main text. Indeed, we have
repeated the calculation of the thermal conductivity and
acoustic velocity. Here too, using the numerically calcu-
lated TLS-DOS and Eqs. (7) and (A2), we re-obtain the
results in Fig. 3 up to negligible differences. We empha-
size that neither interpretation of the numerically calcu-
lated TLS-DOS, i.e. as n(E) (main text) or n(∆) (here)
is exact, since the latter assumes for n(∆) a value ob-
tained by considering the Efros-Shklovskii argument for
the full energies.
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FIG. 7. (Color online) (a) Thermal conductivity calculated
numerically using (i) Eq. (5) as in the main text, assuming
the numerically calculated TLS DOS to be n(E), and (ii)
Eq. (A1) derived in App. A, assuming the numerically cal-
culated TLS DOS to be n(∆). Plots demonstrate negligible
differences between the two approximations. (b) Similarly,
negligible differences are found for the sound velocity calcu-
lated numerically using (i) Eq. (8) as in the main text, and
(ii) Eq. (A2) derived in App. A.

Appendix B: Two-TLS model

While Hamiltonian (2) is standard in the theory of in-
teracting TLSs24, we now derive it as a low-energy effec-
tive Hamiltonian of the Two-TLS model13. This allows
the determination of the energy scales of the TLS-TLS in-
teractions and of the random fields, and the ratio between
the two energy scales for both cases of elastic dominated
and electric dominated TLS-TLS interactions.

The Two-TLS model was microscopically derived13

and thoroughly validated 44,49–52 for disordered lattices
which share the same universal low temperature phenom-
ena with amorphous solids2. Here we assume the general-
ized validity of the Two-TLS model in describing TLSs in
amorphous solids. Such a view point is supported by: (i)
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TLS-dictated low-energy properties show the same uni-
versal phenomena in disodered lattices and in amorphous
solids2, and careful experimental work suggests that uni-
versality in both groups of systems is of the same ori-
gin65,67,68 (ii) The Two-TLS model derives the smallness
and universality of phonon attenuation as is given by
the universal dimensionless “tunneling strength”2,6,7 for
both disordered lattices and amorphous solids (iii) the
Two-TLS model was found useful in explaining TLS pure
dephasing and nonlinear absorption in superconducting
qubit and microresonator circuits, not accounted for by
the STM69–71.

First considering only elastic interactions, the Two-
TLS model divides TLSs into two groups, with bimodal
distribution of their interaction strengths with the strain,
leading to the TLS-phonon interaction Hamiltonian13

Hint = −
∑

i

∑

α,β

(

ηiδαβ + γi
w,αβ τ

z
i + γi

s,αβ S
z
i

)

εiαβ.

(B1)

Here, εiαβ is the strain tensor at TLS i, and the sum over
α and β runs over the three Cartesian coordinates x, y
and z. τ -TLSs possess an intrinsically small interaction
with the strain, and as a result weak TLS-TLS interac-
tions13,44,49–52. Such TLSs constitute the predominant
degrees of freedom at low energies13,30,44; their state is
described by the Ising variable τzi (τzi = ±1) and its weak
coupling to the strain is given by the tensor γi

w,αβ . S-

TLSs are described by the Ising variables Sz
i (Sz

i = ±1)
and are coupled much more strongly to the strain field,
with |γi

s,αβ | ∼ γs, where g ≡ γw/γs ≈ 0.0213,44,49–52. The

first term of Eq. (B1) describes a volume energy due to
the strain field which is independent on the orientation
of defects, where usually ηi . γs.

The density of states (DOS) of S-TLSs strongly di-
minishes at low energies13,30,44, and at low temperatures,
for most purposes, these TLSs can be treated as frozen
variables having no dynamics. They then contribute an
additional term to the energy of the same order of mag-
nitude (∝ γs) as the volume term. By integrating out the
phonon amplitudes, at lowest order perturbation theory,
one obtains the Hamiltonian (2) as the low-energy effec-
tive Hamiltonian of the system13, with typical random
fields and interactions as are given in Eq. (10) in the
main text.

Appendix C: Magnitude of the elastic and electric

interactions

The parameters ci, cij ∼ O(1) in Eq. (10) contain the
angular dependence of the random field and the interac-

tion. Generally, the cij parameters have a complicated
dependence on the relative orientation and position of
the TLSs, and can be regarded as normally distributed
random variables49. Under this assumption one can es-
tablish a connection between the interaction strength ex-
pressed as the dimensionless parameter P0 〈|J̃0,el|〉 for the
elastic interaction and P0 〈|J̃0,dip|〉 for the electric dipolar
interaction, assuming that only terms with the transverse
sound velocity vt are significant for the elastic interaction.

Here J̃0,el and J̃0,dip are interaction constants for elastic
and electric interactions, respectively.
Then for the elastic interaction one can express the

internal friction as Q−1 = π
2P0γ

2
0/(ρv

2
t ), where γ2

0 is
the average squared of the off-diagonal component of the
TLS-strain interaction constant tensor, and the logarith-
mic slope of the temperature dependence of the sound
velocity in the resonant regime as Cel = P0γ

2
0/(ρv

2
t )

53.
The average absolute value of TLS-TLS interaction
constant12,49 has been evaluated numerically assuming
independent Gaussian distributions of elastic tensor com-
ponents, similarly to Ref. 72, and it can be expressed
as P0 〈|J̃0,el|〉 ≈ 1.1Q−1 = 1.74Cel. Similar analysis

for the electric dipolar interaction yields P0 〈|J̃0,dip|〉 ≈
0.36 tan δ = 0.56Cdip, where Cdip is the slope of the log-
arithmic temperature dependence of the dielectric con-
stant. Consequently, the ratio of the two averaged inter-
action constants r ≡ 〈|J̃0,dip|〉 / 〈|J̃0,el|〉 can be expressed

as r = 0.36 tan δ/(1.1Q−1) = 0.56Cdip/1.74Cel. Using
the available experimental data for loss tangent and inter-
nal friction we find for SiO2 that elastic interactions dom-
inate (Cel = 0.17− 0.23 · 10−373, Q = 3.3 · 10−474, yields
r = 0.3); yet for BK7 and coverglass53 we find dominant
electric dipolar interactions (BK7: Cdip = 1.51 · 10−3,

Cel = 3.2 · 10−4 yields r = 1.51, coverglass: Cdip =

1.69 ·10−3, Cel = 3.6 ·10−4 also yields r = 1.51). It would
be of much interest to further investigate experimentally
the magnitudes of the elastic and electric TLS-TLS in-
teractions in amorphous solids. We further note that our
estimates above neglect variations at short range of the
elastic interaction and of the dielectric constant, both of
which may enhance the magnitude of the electric TLS-
TLS interactions in comparison to the magnitude of the
elastic TLS-TLS interactions and in comparison to the
elastically dominated typical random fields.

Appendix D: Fitting parameters for the

approximate equation for the TLS-DOS

We detail here the values of B(T ) and µ(T ) obtained
by fitting the function form in Eq. (3) to the numerical
simulated data of n(E, T ). For each temperature fitting
was performed by requiring best fits in the energy range
0 < E < 2T .
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J0 = 2K

T B(T ) µ(T )

0.1 0.0118 0.103

0.2 0.0126 0.119

0.4 0.0133 0.122

0.5 0.0135 0.127

0.6 0.0137 0.126

0.8 0.0140 0.104

1 0.0142 0.118

J0 = 3K

T B(T ) µ(T )

0.1 0.0077 0.081

0.2 0.0090 0.141

0.4 0.0097 0.151

0.5 0.0100 0.152

0.6 0.0102 0.152

0.8 0.0105 0.165

1 0.0108 0.158

TABLE II. B(T ) and µ(T ) values for J0 = 2, 3K.
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