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Relaxor ferroelectrics, which form a peculiar class of functional materials, are often composed of complex
perovskites Pb(BB′)O3, as represented by Pb(Mg1/3Nb2/3)O3 where the compositional ordering of Mg and Nb
is believed to be essential to its properties. In this work, analysis using a first-principles-based model shows that,
while the electrostatic interactions are important, the nearest neighbor assumption, which was used for metallic
alloys, can be adopted to understand the compositional ordering in Pb(BB′)O3. Numerical simulations with the
Kawasaki Monte-Carlo method can model the experimentally observed compositional ordering by maximizing
the number of the unlike B-B′ pairs (or the Bethe’s parameter), which is the overriding factor that determines
the ordering. Subtle points of configuration energy degeneracy are also discussed, which explains the partial
disorder inherently present in such systems.

Complex perovskites of general formulae A(BB′)O3 are ac-
tively sought after to achieve specific properties such as re-
laxor ferroelectricity with high dielectric constant and excel-
lent electromechanical response. One of the canonical relaxor
ferroelectric materials is Pb(Mg1/3Nb2/3)O3 (PMN)1–4. The
ordering (disordering) of the cations on the B-site has crucial
influence on their properties. For instance, it has been argued
that fully ordered perovskites cannot be true relaxors5,6 and a
change in the compositional order parameter can change dra-
matically the ferroelectric or relaxor properties7,8. The order-
ing/disordering problem has been studied intensively in the
last few decades9–11, but remains a puzzling issue. Some re-
cent studies include the use of TEM to show gradient ordering
in PMN12 and the examination of the relaxor behavior in or-
dered PMN thin films13. However, the reason why PMN pos-
sesses alternating (111) planes is obscure to many researchers,
especially when the Coulomb interaction between the B and
B′ ions is emphasized11,14,15. In contrast, the nearest neigh-
bor approach established in this work provides a clear-cut ex-
planation to this unique phenomenon associated with relaxor
physics.

The determination of complex perovskite structure is a
challenging task. Experimentally, the compositional or-
dering can be determined with X-ray, neutron, or electron
diffraction16. While it is generally realized that the more dif-
ferent the size and charge of B and B′ are, the more likely
A(BB′)O3 has an ordered structure, a quantitative understand-
ing of the compositional ordering is not fully achieved yet.
For instance, despite some degrees of disorder, it is found that
a great portion of PMN (and similar systems) has the rocksalt
configuration where one layer of Nb alternates with another
layer of mixed Nb and Mg along the 〈111〉 direction and there
exist the βI and βII sublattices12,13. Interestingly, many other
systems with the 1:1 cation ratio, such as Pb(Sc1/2Nb1/2)O3,
also have this feature17, giving rise to the universal βI and
βII sublattices16. This unique phenomenon strongly indicates
an underlying principle exitsts, which can quantitatively and
simply explain the special compositional structure. Revealing

such a principle requires a computationally tractable model
based on first-principle calculations.

Figure 1: Two configurations with different distribution of the B or
B′ ions are shown in (a) and (b). The Pb ions have been omitted for
clarity.

If we strip the Pb and O atoms from the system, the re-
maining of Pb(BB′)O3 is nothing but a binary alloy, which
has been investigated using the nearest neighbor assumption
(NNA) by Bragg, Williams, and Bethe18,19. Given the sim-
ilarity, it is sensible to consider the NNA in the modeling of
Pb(BB′)O3. In fact, Welberry built models to simulate scatter-
ing data20, based on the NNA without considering the long-
range Coulomb interactions. Bokov et al showed that the tem-
perature dependence of the compositional order parameter, s,
of Pb(Yb0.5Nb0.5)O3, derived based on the NNA, can well fit
the experimental data9. On the other hand, since B and B′ (e.g.
Mg2+ and Nb5+ in PMN) have different valence states, their
Coulomb interactions cannot be ignored11. Can such different
approaches both be applied to understand the ordering in com-
plex perovskites? Here, we show that both perspectives are
needed to model Pb(BB′)O3 accurately and predict its com-
positional ordering. We find that, while the electrostatic en-
ergy is strong, the NNA can be adopted, which implies that
maximizing the number of unlike pairs (B-B′) explains the
compositional ordering.

We use both the NNA and the Coulomb energy11 to model
the total energy:
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Etotal = E0 +ENNA +Ecc (1)

where E0 is the background energy independent of composi-
tional ordering, and ENNA = ε̃BB′NBB′ + ε̃BBNBB + ε̃B′B′NB′B′

is the NNA energy arising when two unit cells are put as
nearest neighbors. Omitting Pb and O, there are two types
of like pairs (B-B, B′-B′) and one type of unlike pair (B-B′)
(see Fig. 1), and their numbers denoted by NBB, NB′B′ , and
NBB′ , respectively. ε̃ is the “bare” short-range energy be-
tween pairs; later we will also define εBB′ , which includes
the Coulomb contribution from neighboring B and B′ ions.
Ecc = ∑i j Qi j∆qi∆q j is the Coulomb energy, where Qi j is the
Ewald Coulomb matrix element connecting the ith and jth
charges21 and ∆qi is the effective charge of the B or B′ ion
on site i. In a Pb(B1/3B′2/3)O3 compound, to ensure the elec-
tric neutrality, we assume that the effective charge of B is
∆qB =−2q0 and ∆qB′ = q0 for B′.

The numbers of pairs are not independent since18 NBB =
3NB− 0.5NBB′ and NB′B′ = 3NB′ − 0.5NBB′ , only one of them
being the independent variable (here we choose NBB′ ). There-
fore, the total energy is

Etotal =E ′0 +∑
i j

Qi j∆qi∆q j + ε
′
BB′NBB′ , (2)

where ε′BB′ defines the NN interaction and the second
Coulomb term has been used in the electrostatic model11.

Table I: Fitting results for PCN and PMN using the 3×3×2 super-
cell. Note that εBB′ is not a direct fitting parameter; it is discussed in
the manuscript.

Parameter E ′0 (eV) q0 (|e|) ε′BB′ (eV) εBB′ (eV)

PCN -616.713 0.1672 -0.19043 -0.52512

PMN -648.309 0.2763 -0.28393 -1.22052

The parameters in Eq. (2) can be obtained by fitting ab
initio results. We use SUPERCELL22 to generate a series
of 3× 3× 2 PMN and Pb(Cd1/3Nb2/3)O3 (PCN) supercells
with their lattice constants set to the experimental values
(aPMN = 4.040 Åand aPCN = 4.138 Å), and perform ab initio
computation to obtain their energies, which are then used to
extract the parameters by fitting. The SUPERCELL automat-
ically generates symmetry nonequivalent configurations, re-
sulting in 178 different 3×3×2 supercells with energies dis-
tributed over a wide range. All ab initio calculations are per-
formed with GPAW23 using plane-waves (PW) with a cutoff
energy of 750 eV, a 3×3×4 Brillouin-zone sampling grid24,
and the Perdew-Burke-Ernzerhof (PBE) exchange-correlation
functional25. The fitting algorithm is the least square method
from SciPy26.

Figures 1(a) and (b) show the configurations with the lowest
and highest energies, respectively. Table II shows the param-
eters for PMN and PCN obtained by the fitting as shown in
Figs. 2(a) and (b). Figures 2(c) and (d) compare the GPAW
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Figure 2: The fitting results (red dots) are compared to the GPAW
calculation results (black dots) for PMN (a) and PCN (b). The ac-
curacy of the fitting is demonstrated for PMN (c) and PCN (d) by
plotting the fitting energy against the GPAW energy. In (e) and (f),
order parameters of 〈SR〉 and Bethe’s parameter σ versus tempera-
ture are shown, where (g) and (h) show the results after the melting
temperature is used to refine the theory.

results to its fitting, showing that the model of Eq. (2) is ad-
equate. The parameters shown in Tab. I are not sensitive to
the lattice parameter. For instance, the same calculation for
PMN with lattice constant of 4.08 Å(the extrapolated high-
temperature value) obtains similar values for the parameters.
We note that fitting results (not shown here) with only the
long-range energy or the short-range energy for PMN are re-
duced in accuracy, indicating the importance to include both
the long-range and short-range interactions.

Having obtained the parameters, we use the Monte-Carlo
(MC) Kawasaki algorithm27 to numerically obtain the compo-
sitional ordering of PMN and PCN on a 12×12×12 supercell
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Figure 3: (a) Some 〈110〉 columns that contain only Nb (grey) form a
series of (111) planes, which alternates with planes containing both
Cd (blue) and Nb. (b) Projection along one [110] direction shows
alternating columns as type I (NCd > 3) or type II (NCd < 3) lattices.
Two low-energy configurations, which are denoted as 1:1 (c) and 1:2
(d), both having special (111) planes.

(1728 unit cells), and gradually cool down the system from
10,000 K to 100 K with a step of 100 K. At each temperature,
we sweep the system 20,000 times, in each sweep, we try to
exchange each B (B′) with a randomly selected B′ (B) ion, and
decide whether or not to accept the exchange according to the
energy change. In total, at each temperature, 20,000×1,728
attempted exchanges are made. A typical simulation result for
PCN or PMN is shown in Fig. 3(a) where two types of atom
columns can be seen along the 〈110〉 direction. The alternat-
ing structure becomes obvious when the columns are shown
differently according to whether they contain all Nb ions or a
mixture with more than two of the minority ion (Mg for PMN,
or Cd for PCN) in Fig. 3(b), which constitute the βI and βII

B-site sublattices12,13.

Given the special 〈110〉 columns and the (111) planes, we
calculate the long-range order parameter, i.e., the R-point av-
eraged sum:

SR =∑
i

σi (−1)ix+iy+iz ,

where σ = 1 for Nb and σ = −1 for Cd (or Mg), and ix, iy
and iz are the x, y and z coordinates of the ith site. For each
temperature, we collect many snapshots of the configuration,
calculate SR for each of them, which are then averaged to ob-
tain 〈SR〉. Figure 2(e) shows that 〈SR〉 has as sudden change
at 6000 K and 4000 K for PMN and PCN, respectively, which
signifies a compositional order-disorder phase transition.

It is commonly believed that the major driving forces re-
sponsible for compositional ordering in perovskites arise from
the differences in the valence and size of the mixed ions28 so
that the order-disorder transition temperature should be higher
in those Pb(B1/3B′2/3)O3 perovskites in which the ionic radius
difference, ∆R = |RB−RB′ |, is larger. However, it was also
suggested that, in contrast, the difference in ionic sizes is not
a significant factor29. Our calculations agree with this sug-
gestion. Indeed, given RNb = 0.64 Å, RMg = 0.72 Åand RCd =
0.95 Å30, ∆R = 0.36 Å for PCN is significantly larger than ∆R
= 0.08 Å for PMN, while the transition temperature is signifi-
cantly smaller (Fig. 2(e) ).

We now discuss the underlying principle that generates the
typical configurations reported for PMN and other similar re-
laxor ferroelectrics31,32 from the energy point of view. The
Coulomb energy in Eq. (2) can be split into two parts, the
nearest neighbor (NN) part and the rest. For the NN part,
there are only three types: Q01∆qB∆qB, Q01∆qB′∆qB′ and
Q01∆qB∆qB′ , where Q01 is the Ewald matrix element for the
NN Coulomb interaction21. Given the fact that only NBB′ is
independent, the total energy can be converted to

Etotal =E ′′0 +
′

∑
i j

Qi j∆qi∆q j + εBB′NBB′ , (3)

where ′ in the ∑ indicates a sum without NN and εBB′ = ε′BB′−
9Q01q2

0 and its value is shown in Tab. I for the 12×12×12 su-
percell. We have verified that for PMN and PCN the Coulomb
energy excluding the NN part is smaller than the others in-
cluding both the NN Coulomb interaction and the ENNA term
(the former is about 10% of the latter for the low-in-energy
configurations).

The above analysis demonstrates the significance of the
NNA when the second term in Eq. (3), which is rel-
atively small, is omitted. It reveals an interesting situ-
ation that the nearest neighbor interaction (the last term
in Eq. (3)) can still dominate the energy even when the
Coulomb interaction is included. In his seminal work on
metallic alloys33, Bethe introduced an order parameter σ =
[q−q(rand)]/ [q(max)−q(rand)] where q = NB-B′/N is the
fraction of the unlike pairs among all the NN pairs. For per-
fect and random order, q has the value q(max) and q(rand), re-
spectively. For Pb(B1/3B′2/3)O3, we have q(max) = 2/3 and
q(rand) = 4/9, and it becomes σ = 9q/2−234. The virtue of
using Bethe’s parameter is that no prior information regarding
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ordering is needed, unlike SR, to obtain the relation between
the ordering parameter and temperature (see Fig. 2(f)).

It is easy to prove that minimizing the formation energy
in Eq. (3) requires maximizing σ, which is achieved by im-
plying the NNA. Configurations with maximal σ indeed ap-
pear in our MC simulations with two examples shown in Figs.
3(c) and (d) for a 6× 6× 6 supercell, both of which have
σ = 1 (q = 2/3) with 432 B-B′ pairs, although the 1:2 con-
figuration in Fig. 3(d) is extremely rare to be seen. Lo-
cally or globally maximizing Bethe’s parameter thus consti-
tutes a principle to understand the compositional ordering
in Pb(B1/3B′2/3)O3, consistent with the experimental find-
ings that the special 〈110〉 columns or (111) planes are of-
ten observed12,14. The parallel between complex oxides (e.g.,
PMN and PCN) and binary metallic alloys regarding compo-
sitional ordering is remarkable.

Table II: The energies of PMN corresponding to the two configura-
tions shown in Fig. 3(c) and (d), where E0 = −35.1392 eV is the
same for them.

Configuration 1:2 1:1

NN (eV) -1.8848 -1.8848

Coulomb energy except first NN (eV) 0.0369 0.0547

Sum (eV) -1.8479 -1.8301

The implication of NNA also reveals the configuration de-
generacy which in turn explains why perfect ordering is of-
ten hard to achieve in Pb(B1/3B′2/3)O3. For instance, the two
configurations shown in Fig. 3(c) and (d) have exactly the
same energy (see Tab. II) if only the NN interaction in in-
cluded. However, comparing to a simple 1:1 binary metallic
alloy, Pb(B1/3B′2/3)O3 can exhibit more variants in terms of
configuration as they can (i) exchange B and B′ cations in the
βII columns, and (ii) form domain boundaries12, due to the
anti-phase (or “out-of-step”) domains18 without changing the
number of unlike pairs. The degenerate configurations under
NNA can only be distinguished by considering the Coulomb
interaction beyond the NNs, which is smaller as demonstrated
in Tab. II. Interestingly, results in Tab. II also indicate that,
if only the Coulomb interaction is included, the 1:2 structure
will be preferred because of its lower energy.

It is worth noting that the non-NN Coulomb energy has
an opposite trend than the NN energies, implying these two
types of energies compete with each other. As a matter of
fact, our simulations show that if the Coulomb interactions be-
yond the NN are removed, the order-disorder transition tem-
perature will increase to 24,000 K and 10,000 K for PMN
and PCN, respectively, indicating that non-NN Coulomb in-
teraction prevents the ordered configurations from forming.
This can be understood by the fact that the first and second
NN Coulomb interactions both favor unlike pairs, effectively
working against each other and making the ordering more dif-
ficult.

We note that the lowest-in-energy configuration is not often
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Figure 4: Energy configuration statistics of PMN for 3×3×2 super-
cells. There are a total of 18,564 different configurations (including
symmetrically equivalent ones), and the structures with the lowest
energy only make up a small fraction.

found in experiments (or in our simulations) due to the en-
tropy related to the number of equivalent configurations. For
instance, there are only a few equivalent states for the 1:2 con-
figuration with a perfect long-range order as shown in Fig.
3(d), while many more for the 1:1 configuration as shown in
Fig. 3(c). By enumerating every possible configuration, we
plot the distribution of configurations for the 3×3×2 super-
cell (see Fig. 4). Even with such a small supercell, the number
of configurations at the lowest energy can be much smaller
than at a higher energy, indicating that the entropy is also
a factor to determine the final configuration, which explains
why partially disordered configurations are often observed in
PMN.

Moreover, we have studied a few other well-known relaxor
ferroelectrics, and find that their εBB′ are all negative. Such
results are not accidental because it is a necessary condition
to form the complex perovskite with mixed occupancy on the
B-site. It will be interesting to find ion pairs with positive εBB′ .
Such pairs, if exist, may be used (e.g., by substitution) to tune
the ionic distribution or configuration in a complex perovskite.

Figures 2(e) and (f) show that the the predicted order-
disorder transition temperature is quite high, which is most
likely due to the fact that ab initio calculations (with GPAW
in our case) can only provide 0 K results, not taking into ac-
count the kinetic energy of ions. At a finite temperature, the
energy spreading (see Fig. 2(a) and (b) ) could be smaller,
which will lead to smaller fitting parameters and lower tran-
sition temperature. We can resolve this issue phenomenologi-
cally by employing the melting temperature as a reference and
predict the order-disorder transition temperature.

In order to include the influence of finite temperature, we
focus on the high-temperature end and use the Dulong-Petit
law35 to argue that the binding energy at a finite temperature
T is given by

EB (T ) =E0−NkBT, (4)

where E0 is the energy at 0 K calculated by GPAW and NkBT
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is the kinetic energy. Since the actual degree of freedom con-
tributing to the kinetic energy is not reliably known, the pa-
rameter N needs to be determined using additional informa-
tion. Equation (4) shows that the binding energy decreases
with temperature, at the melting temperature Tm, the material
will break down where EB (Tm)' 0, leading to

EB (T ) =E0

(
1− T

Tm

)
. (5)

Given this additional constraint set by the melting tempera-
ture, it is natural that the fitting parameters in Eq. (2) shall
scale with the temperature as q0 (T ) = q0

√
1−T/Tm and

ε′BB′ (T ) = ε′BB′ (1−T/Tm) . In essence, such variations of the
fitting parameters are results of the energy landscape (with
respect to the 178 alloy configurations) change with tempera-
ture.

With the temperature-dependent parameters, we again per-
formed MC simulations for PMN and PCN with the melting
temperature 1600 K36 and 1350 K, respectively. Figure 2(g)
and (h) show how the R-point averaged sum and the Bethe’s
parameter σ change with the temperature. It can be seen that
the order-disorder phase transition of PMN and PCN occurs
around 1200K and 900K, consistent with known values from
experiments14,37,38. Interestingly, Fig. 2(g) shows a sharp
phase transition [unlike Fig. 2 (e)], which is consistent with
Ref. [19]; Fig. 2(h) shows that σ occupies the entire interval
from zero to one, indicating that the system has continuously
become more ordered (at least locally) as the temperature de-
creases from the melting point.

The approximation employed in Eq. (4) results from two
considerations: (i) At high temperatures (~1000 K) the Ein-
stein or the Debye model39 converges to the Dulong-Petit law
since the Debye temperature of PMN is known to be less than

600 K40–42, and PCN is expected to be even lower accord-
ing to the Lindemann melting formula43; (ii) After the order-
disorder phase transition at a rather high temperature [see Fig.
2(g)], no matter which equation is used for the kinetic energy,
the system remains ordered, not affecting the predicted tran-
sition temperature. This approach indeed results in a satisfac-
tory prediction of the order-disorder transition temperature.

In summary, using first-principles-based numerical simula-
tions, we have shown that NNA is a key factor accounting for
the compositional ordering in complex perovskite Pb(BB′)O3
even when the electrostatic energy is included. The analy-
sis reveals that NNA is responsible for giving rise to the βI

and βII sublattices seen in PMN and PCN. In addition, we
have found that the configuration degeneracy with respect to
energy contributes to the partial order/disorder observed in
Pb(B1/3B′2/3)O3. We hope that our study helps achieve a bet-
ter understanding of the ordering in relaxor ferroelectrics of
complex perovskite structure.
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