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Quasiparticle self-consistent GW band structures and high-pressure phase transitions
of LiGaO2 and NaGaO2

Santosh Kumar Radha, Amol Ratnaparkhe and Walter R. L. Lambrecht
Department of Physics, Case Western Reserve University,
10900 Euclid Avenue, Cleveland, Ohio 44106-7079, USA

Quasi-particle self-consistent GW calculations are presented for the band structures of LiGaO2

and NaGaO2 in the orthorhombic Pna21 tetrahedrally coordinated crystal structures, which are
closely related to the wurtzite structure of ZnO. Symmetry labeling of the bands near the gap is
carried out and effective mass tensors are extracted for the conduction band minimum and crystal
field split valence band maxima at Γ. The gap is found to be direct at Γ and is 5.81 eV in LiGaO2

and 5.46 eV in NaGaO2. Electron-phonon coupling zero-point normalization is estimated to lower
these gaps by about 0.2±0.1 eV. Optical response functions are calculated within the independent
particle long wavelength limit and show the expected anisotropy of the absorption onsets due to the
crystal field splitting of the VBM. The results show that both materials are promising candidates as
ultrawide gap semiconductors with wurtzite based tetrahedrally bonded crystal structures. Direct
transitions from the lowest conduction band to higher bands, relevant to n-type doped material
and transparent conduction applications are found to start only above 3.9 eV and are allowed for
only one polarization, and several higher band transitions are forbidden by symmetry. Alternative
crystal structures, such as R3̄m and a rocksalt type phase with tetragonally distorted P4/mmm
spacegroup, both with octahedral coordination of the cations are also investigated. They are found
to have higher energy but about 20 % smaller volume per formula unit. The transition pressures
to these phases are determined and for LiGaO2 found to be in good agreement with experimental
studies. The R3̄m phase also has a comparably high but slightly indirect band gap while the rocksalt
type phase if found to have a considerably smaller gap of about 3.1 eV in LiGaO2 and 1.0 eV in
NaGaO2.

I. INTRODUCTION

LiGaO2 is a transparent ceramic material which has
been considered for piezoelectric[1–3] and non-linear op-
tical applications [4, 5] in the past and can be grown
in bulk single crystal form,[6, 7] which has among other
led to its use as closely lattice matched substrate[8–
10] for GaN epitaxial growth. It can be viewed as
a I-III-VI2 analog of the II-VI material ZnO with a
wurtzite based crystal structure, consisting of an or-
dered arrangement of the Li and Ga atoms on the
cation sublattice of the wurtzite. In particular it has
the Pna21 spacegroup. Mixed alloy systems of ZnO
and LiGaO2 and ZnO/LiGaO2 heterojunctions have also
been studied.[11–13]

Although mostly considered an insulating material, it
has recently been proposed that LiGaO2 can be doped
n-type with Si or Ge, which would make it promising for
ultrawide gap semiconductor applications.[14–18] From
this point of view it may have some advantages relative
to the now widely pursued β-Ga2O3.[19, 20] It has a sim-
pler crystal structure with all atoms tetrahedrally coor-
dinated and it appears to have an even wider band gap.

However, the band gap is not yet fully established.
While experiments indicate a gap of about 5.3-5.6 eV,
a prior GW calculations predicted an even larger gap of
6.25 eV.[14] Optical absorption data give a direct gap of
5.5 eV [13, 21] to 5.26 eV [22] while X-ray absorption
and emission data [23] gives a gap of 5.6 eV. Boonchun
and Lambrecht[14] tried to explain their band gap over-
estimate compared to experiment in terms of tempera-

ture dependence of the gaps and zero-point motion cor-
rection by electron-phonon coupling. However, at that
time no accurate predictions of these effects were possi-
ble. Since then, we have found in various other systems
that k-point and basis set convergence can significantly
affect the QSGW band gap results.[24, 25] In this paper
we re-evaluate the band structure of LiGaO2 with well-
converged quasiparticle self-consistent GW calculations
and review the estimates of the electron-phonon coupling
effects.

Secondly, we consider a related material of the same
family, NaGaO2 to evaluate the possibility of band gap
tuning by varying the alkali metal component. One of
the practical problems found in the past with LiGaO2

as substrate is the ionic mobility of Li, which tends to
easily diffuse. In particular for high-power applications
with at high temperature or in the presence of strong
electric fields, ion mobility might be expected to be a
problem. Therefore replacing it by a less diffusive ele-
ment Na might be beneficial. Indeed one of the main at-
tractive features of ultrawide gap semiconductors is their
large breakdown field. But then we also need to ensure
that these high fields do not lead to ionic diffusion or loss
of Li from the system.

The known ground state structure of LiGaO2 is the
Pna21 structure,[6] for which the prototype is β-NaFeO2.
This structure is shown in Fig. 1. In this standard setting
of the space group, b > a > c with b ≈ 2aw, a ≈

√
3aw

and c = cw in relation to the wurtzite hexagonal lattice
constants. Note that in some previous literature,[3] the
lattice constants a and b are reversed, a > b > c in which
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FIG. 1: Pna21 crystal structure.

FIG. 2: R3̄m crystal structure.

case the space group setting is Pbn21. The notation n
corresponds to a glide mirror plane with two glides, a
or b to a glide plane with one glide along the indicated
direction, so in the Pna21 notation n is in the bc plane
and a in the ac plane and in both cases 21 indicates a
two-fold screw-axis along c.

However, it is also worthwhile to study the compet-
ing α-NaFeO2 structure, which has spacegroup R3̄m
and is shown in Fig. 2. In that structure, all atoms
are octahedrally coordinated and the structure can be
viewed as a layered structure. According to the Mate-
rials Project (MP)[26] this structure has higher energy
than the Pna21 structure for LiGaO2 by 61 meV/atom.
These results are obtained within density functional the-
ory (DFT) in the Perdew-Burke-Ernzerhof (PBE) [27]
generalized gradient approximation (GGA) approach and
using high-throughput calculations. While providing im-
portant guidance, it is still important to check these re-
sults carefully for accuracy of small relative energy differ-
ences. This structure is commonly found in many ABO2

systems with metallic elements functioning as cations.
For example this structure is found for LiCoO2, a well
known battery material, in which the Li content can
to some extent be varied by chemical or electrochemical
means.

It is important to check the relative stability of the two
structures and determine the energetic preference for oc-

FIG. 3: P4/mmm distorted rocksalt based structure
with ordering of Li and Ga atoms in successive (001)

planes.

tahedral vs. tetrahedral coordination of the Ga and al-
kali elements Li and Na. We therefore here also study
the R3̄m band structures and relative stability of the
two structures. In LiGaO2, disordered rocksalt phases
have also been reported and these are also considered
here. More specifically, instead of the disordered rock-
salt phase, which would require averaging over a random
arrangement of Li and Ga atoms on the cation sublat-
tice of the cubic rocksalt phase, we use a simpler ordered
arrangement of Li and Ga in alternating (001) planes of
the face centered cubic cation sublattice, which then has
spacegroup P4/mmm and is shown in Fig. 3.

Finally, besides the electronic band structure, which is
here provided in more detail than in Ref. 14, we also
study the interband transition response functions related
to optical absorption.

II. COMPUTATIONAL METHODS

The calculations in this work are done using the full-
potential linearized muffin-tin orbital (FP-LMTO) all-
electron method within either density functional theory
(DFT) or many-body-perturbation theory (MBPT) con-
text. The FP-LMTO method is used as implemented in
the questaal package,[28, 29] and based on the work by
Methfessel et al [30] and since then improved to allow
for inclusion of augmented plane waves as additional ba-
sis functions,[31] which allows for a systematic check of
the basis set convergence. We start our calculations from
the structures available at the Materials Project (MP)
[26] and then check the smallness of the residual forces
within FP-LMTO or further relax the atomic positions
within the cell. For materials not yet available in MP, we
used the Quantum Espresso code [32] to relax the atomic
positions and lattice constants simultaneously before ad-
ditional testing with FP-LMTO. As DFT functional, we
use the PBE-GGA[27].

A main advantage of the questaal package is that it
has one of the few all-electron implementations of the
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GW MBPT method. Here G and W refer to the one-
particle Green’s function and screened Coulomb inter-
action W ,[33, 34] which define the self-energy operator
Σ = iGW in a schematic notation. Furthermore, this
implementation uses a mixed-product-interstitial-plane-
wave basis instead of only plane waves to represent all
two-point quantities, such as the bare Coulomb inter-
action v, screened Coulomb interaction W = ε−1v =
[1 − vP ]−1v, polarization propagator P and inverse di-
electric response function ε−1. This representation is far
more efficient to represent the response and does not re-
quire one to include as many high-energy empty bands
for convergence. Details of the GW implementation can
be found in Kotani et al [35] and Ref. 29.

The GW method is here used in the quasiparticle self-
consistent version, known as QSGW . In this approach,
the energy dependent Σ(ω)ij is replaced by an energy-

independent Hermitian average Σ̃ij = 1
2Re[Σij(εi) +

Σij(εj)], represented in the basis of initial H0 eigen-
states, where H0 is the DFT starting Hamiltonian. The
Σ̃ij − vDFTxc is then added to the H0 Hamiltonian in
each iteration, providing a new G0 Green’s function from
which a new W 0 and Σ0 = iG0W 0 is obtained in the
next step. At convergence, the eigenvalues of the Kohn-
Sham Hamiltonian H0 are equal to the quasiparticle en-
ergies. Hence the name quasiparticle self-consistent. In
other words, we are here focused on obtaining the real
quasiparticle energies, independent of the DFT starting
point, rather than the full energy dependent complex self-
energy or Green’s function which would contain a more
comprehensive description of the quasiparticle spectral
function.

Thanks to the atom-centered LMTO basis set, to
which the self-energy can be converted, a natural route
to interpolating the self-energy eigenvalue shifts to other
k-points than the mesh on which Σ̃(k)ij is calculated
is available. In fact, it means that one can do a
Fourier transform to represent the self-energy in real
space Σ̃RL,R′+TL′ and then Fourier transform back to
any k-point desired. Here R label atoms in the cell, T
is the translation vector defining the unit cell, and L
includes angular momentum, lm, and other labels spec-
ifying the muffin-tin orbital basis functions. This is es-
sentially equivalent to a Wannier function interpolation.
Hence GW -accuracy energy bands and effective masses
are obtained along the symmetry lines, or, on a fine mesh
for density of states or optical response functions, with-
out the need for the computationally expensive evalua-
tion of Σ̃(k)ij on an equally fine mesh. Nonetheless, the
k-mesh on which the GW self-energy is determined is
important for convergence. One finds that a coarse mesh
tends to give larger band gaps.[24, 35, 36] Also impor-
tant are a large basis set including typically spdf − spd
angular momentum channels for two sets of smoothed
Hankel function envelopes of the LMTOs as well as addi-
tional local orbitals to represent either semi-core states or
higher lying conduction band contributions to the partial
waves of the same angular momentum character within

the muffin-tin sphere partial.
We here used 3×3×3 and 4×4×4 k-meshes on which

the Σ̃ is calculated for the Pna21 structure to check con-
vergence and a 6×6×6 mesh for the R3̄m and P4/mmm
structures.

The QSGW method has been found to be significantly
more reliable than the more prevalent G0W 0 method be-
cause it does not depend on the starting H0 but has been
found to systematically overestimate the gaps. This has
been largely found to be attributable to the underesti-
mate of screening of the W . In fact, the electronic con-
tribution to the macroscopic static dielectric constant has
been found to be typically underestimated by 20 %.[37]
Thus, the earlier introduced approach[38, 39] of using
a fixed independent of material correction factor using
only 80 % of Σ − vLDAxc known as the 0.8Σ approach
has been justified for not only typical semiconductors
but even various transition metal oxides. The underlying
physical reason is the neglect of electron-hole interaction
effects in the random phase approximation calculation
of W . When ladder-diagrams are included via a Bethe-
Salpeter-Equation (BSE) approach[40] in the calculation
of W , this 80% correction factor is no longer needed and
it further helps justify the 0.8Σ correction. While the
BSE approach is of course preferable being more fully
first-principles, it is significantly more demanding com-
putationally and for the materials considered here with
16 atoms per cell, it is still prohibitive. Guided by the
success of the 0.8Σ approach in various related semicon-
ductors, we also adopt it here.

III. RESULTS

A. Structural properties and stability of LiGaO2

We start by examining the calculated and experimen-
tal structural parameters of LiGaO2 in the Pna21 struc-
ture in Table I. This table also shows which symmetry
operations link the different equivalent atoms of the 4a
Wyckoff position. Here, 21z is the twofold screw axis
along z located at the origin. The nx is a double glide
plane perpendicular to x and with glides by b/2 and c/2
which occurs at x = 1

4 and therefore also involves a shift
by a/2. The ay is a single-glide plane perpendicular to y
with shift by a/2 but it occurs at y = 1/4 and hence also
involves a shift by b/2. Here the Cartesian axes x, y, z
are chosen along a, b, c respectively.

We here compare the experimental structural parame-
ters with the calculated ones within the PBE-GGA den-
sity functional from Materials Project.[26] The reduced
coordinates within that model were verified using the FP-
LMTO method and agree to ±0.001. We can see that
PBE overestimates each of the lattice constants by about
1 % and hence the volume by 3 %. Interestingly, it overes-
timates Ga-O bond lenths slightly more than Li-O bond
lengths. Also it overestimates c by about 1.4 % and a and
b by about 0.8 %. Each cation has four different bond
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TABLE I: Wyckoff positions and symmetry operation linking equivalent sites, lattice constants, volume per formula
unit, reduced coordinates and bond lengths for LiGaO2 in Pna21 structure, comparing expt. data from Ref. 6 with

PBE-GGA relaxed structure.

4a positions x, y, z −x,−y, z + 1
2

1
2
− x, y + 1

2
, z + 1

2
x+ 1

2
, 1
2
− y, z

operation 1 21z nx ay
Expt. [6]

a (Å) b (Å) c (Å) V/fu (Å3)
5.407 6.405 5.021 43.471
2a/b 2c/b b/2
1.6884 1.5678 3.2025
atom Wyckoff x y z
Li 4a 0.0793 0.6267 −0.0064
Ga 4a 0.0821 0.1263 0.0000
OLi 4a 0.0934 0.6388 0.3927
OGa 4a 0.0697 0.1121 0.3708

bond lengths (Å)

Ga-Oc
Ga Ga-Oa

Ga Ga-Oa
Li Ga-Ob

Li

1.865 1.851 1.837 1.858
Li-Oc

Li Li-Oa
Li Li-Oa

Ga Li-Ob
Ga

2.007 2.005 1.998 1.957

GGA-PBE[26] and present calc.

a (Å) b (Å) c (Å) V/fu (Å3)
5.4665 6.4570 5.094 44.952
2a/b 2c/b b/2
1.6932 1.5778 3.228
atom Wyckoff x y z
Li 4a 0.0823 0.6244 0.0001
Ga 4a 0.0811 0.1261 0.0046
OLi 4a 0.0928 0.6382 0.3959
OGa 4a 0.0688 0.1125 0.3726

bond lengths (Å)

Ga-Oc
Ga Ga-Oa

Ga Ga-Oa
Li Ga-Ob

Li

1.878 1.877 1.868 1.870
Li-Oc

Li Li-Oa
Li Li-Oa

Ga Li-Ob
Ga

2.019 2.018 2.016 1.998

lengths to oxygen, for example Ga-Oa
Li means the bond

length between Ga and the OLi type O in the a-direction.
We can see that the Li-O bond lengths are significantly
larger than the Ga-O bond lengths. The 2a/b ratio in the
undistorted wurtzite structure derived Pna21 structure
would be

√
3 ≈ 1.732, but here is reduced to 1.69. This

implies that the 120◦ angle between two wurtzite lattice
vectors in the plane has here increased to 122◦.

Next, we discuss the structural stability relative to the
R3̄m structure. Note that in the R3̄m structure, the
cations have octahedral coordination and form a layered
structure with alternating Li and Ga containing layers.
We start again from the structural parameters of the Ma-
terials Project,[26] which are optimized within the GGA-
PBE density functional. The structural parameters of
R3̄m are given in Table II. Clearly, the volume per for-
mula unit in this structure is significantly (18 %) lower
than in the Pna21 structure, meaning that this phase
can be stabilized under pressure. Interestingly, both Ga-
O and Li-O bond lengths are larger in the octahedral
environment. This structure is known as α-LiGaO2 and

its structure was determined by Marezio and Remeika
[41].

Yet, another form of LiGaO2 is known as γ-LiGaO2

and has a rocksalt-like structure with tetragonal distor-
tion. In this phase, LiGaO2 is also octahedrally coor-
dinated and the Li and Ga occur in a disordered way
in the Wyckoff 2b positions of space group I4/m with
equal probability. Instead, a closely related structure,
P4/mmm is considered in MP[26]. This is an ordered
distorted rocksalt modification as shown in Fig. 3 and
already discussed in Sec. I. The lattice constants and
atomic positions of this phase from MP[26] are given
in Table III. Note that in this structure the Li-O and
Ga-O bond lengths are fixed to be a

√
2/2 perpendicu-

lar to c and c/2 parallel to c. This is unfavorable from
the point of view that the bond lengths cannot be in-
dividually optimized for each species. The experimen-
tal I4/m disordered rocksalt-like structure according to
Lei et al [42] has lattice constants of a = 2.8763 Å and
c = 4.1929 Å and hence c/a = 1.4577, close to the ideal√

2 = 1.4142. In contrast, the c/a ratio in P4/mmm is
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TABLE II: Structural parameters of LiGaO2 in R3̄m structure.

Li Ga O
Wyckoff 1a 1b 2c

reduc. coord. (0, 0, 0) ( 1
2
, 1
2
, 1
2
) (±u,±u,±u)

Calculated

a = b = c (Å) α = β = γ V/fu (Å3) u
5.173 33.138◦ 36.824 0.2415

bond lengths (Å) Li-O Ga-O
2.171 2.026

Experiment[41]

a = b = c (Å) α = β = γ V/fu (Å3) u
5.1066±0.0005 33.12◦ 35.394 0.2417

bond lengths (Å) Li-O Ga-O
2.14 2.00

TABLE III: Lattice constants and atomic positions of
LiGaO2 in P4/mmm structure.

atom Wyckoff x y z
Li 1c 0.5 0.5 0.0
Ga 1b 0.0 0.5 0.0
O 1a 0.0 0.0 0.0
O 1d 0.5 0.5 0.5

lattice constants (Å) a = b c V/fu
3.002 3.861 34.807

bond lengths (Å) ‖ c ⊥ c
1.930 2.123

TABLE IV: Cohesive energy (E0/f.u.), equilibrium
volume (V0), bulk modulus (B0) and its pressure

derivative (B′0) and transition pressure, pt from Pna21
to other phase for LiGaO2.

property R3̄m Pna21 P4/mmm

V0 (Å3) 36.297 44.424 34.712
E0 (eV/f.u.) 21.91 22.30 21.62
B0 (GPa) 166 130 1615
B′0 4.6 4.2 5.0
pt (GPa) 8.3 13.9

reduced to 1.286. Following Lei et al [42] a disordered
cubic rocksalt phase with space group Fm3̄m also exists
and is designated as δ-LiGaO2. It has a lattice constant
of 4.1134 Å. All these phases have close volumes per for-
mula unit of about 34.8±0.1 Å3.

We calculated the total energies of the Pna21, R3̄m
and P4/mmm phases as function of volume, keeping the
ratios of the lattice constants (shape of the cell) and in-
ternal parameters fixed within the GGA-PBE functional
with the FP-LMTO method. In order to compare the
energies accurately, we used the same muffin-tin radii for
the three structures, chosen to be touching in the Pna21
structure at 0.94 compression of the lattice constants.
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FIG. 4: Energy volume curves of LiGaO2 in R3̄m,
P4/mmm and Pna21 phases and the common tangent
constructions. The data points are directly calculated,

the lines are Murnaghan equation of state fits.

This avoids overlap of the spheres in the other struc-
tures. We included augmented plane waves in the basis
set up to 3 Ry and used a large basis set spdf − spd on
Li and Ga and also included the Ga-3d semi-core states
as bands. We found the energy difference between the
R3̄m and Pna21 phases at their equilibrium volume to
be converged to 0.1 eV by increasing the cut-off of the
augmented plane waves to 4 Ry.

The energy-volume curves and common tangent con-
structions are shown in Fig.4. The energy volume curves
were fitted to the Murnaghan equation of state and the
latter was used to determine the transition pressure from
the common-tangent rule or equivalently, setting the en-
thalpy, Hi(p) = Ei[Vi(p)] + pVi(p) equal for two differ-
ent phases i. The equation of state fitted parameters
are given in Table IV. The energy difference between
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the Pna21 and R3̄m phases amounts to 97.5 meV/atom
which is somewhat larger than the value given in MP[26]
of 61 meV. The P4/mmm phase is found to have higher
energy than theR3̄m, namely 170 meV/atom higher than
the Pna21 phase but occurs at minimum energy volume
of 34.7 Å3 close to that of the R3̄m phase. The bulk
moduli might be somewhat overestimated because we did
not allow the structure to relax at each volume. Prior
work found a bulk modulus of ∼95 GPa for the Pna21
structure[3, 43] and 142.29 GPa in R3̄m.[43]

Phase transitions of the β-LiGaO2 Pna21 to the α
form R3̄m and other disordered rocksalt type forms have
been studied by Raman spectroscopy.[42, 43] At 14 GPa a
transition is found to the I4/m structure, which is closely
related to the rocksalt structure. This is very close to
our value of the transition to the P4/mmm phase. Ac-
cording to Lei et al [43], the α-phase can be prepared
from the β-phase at 7 GPa and 1000◦C. This is compat-
ible with the transition pressure found here between the
Pna21 and R3̄m phase of 8.3 GPa. From our conver-
gence studies we estimate our value to have an uncer-
tainty of a few GPa, in particular because we calculated
our energy-volume curves without relaxing the internal
parameters or shape of the cell. Our calculations pre-
dict that the transition to R3̄m should occur first. This
agrees qualitatively with the phase diagram as function
of temperature and pressure presented by Lei et al [42]
in which the R3̄m phase occurs at lower pressure than
the cubic rocksalt phase or the lower temperature I4/m
phase. Their explanation for the transition to the I4/m
phase is that kinetic reasons could prevent the transition
from Pna21 to R3̄m at low temperature (in other words
there is insufficient driving force and thermal activation)
and as the pressure is then further increased, the phase
transition when finally triggered, may then proceed al-
ready to the tetragonally distorted rocksalt type phase,
which only is stable at higher pressures.[43]

B. Band structure of LiGaO2 in Pna21 structure

For our band structure investigations of LiGaO2 in the
Pna21 structure, we used the experimental lattice pa-
rameters and atomic positions from Marezio et al [6].
For completeness they are given in Table I.

The band structure of LiGaO2 in QSGW 0.8Σ is shown
on a large energy scale in Fig. 5. The density of states
resolved in various partial densities of state (PDOS) are
shown in Fig. 6 both in the conduction band and the va-
lence band region. This shows that the lowest set of nar-
row bands at about −19 eV are the O-2s derived bands
and the ones at about −12 eV below the VBM are the
Ga-3d derived bands. The next set of bands between
−6 eV and 0 eV are the O-2p dominated band. In the
conduction bands we see also significant oxygen contri-
butions because these are antibonding bands. It shows
that the conduction band minimum has more Ga-4s con-
tribution and the main Li-2s only occurs at significantly

-20

-15

-10

-5

 0

 5

 10

 15

 X  Γ  Y  T  Z  Γ 

E
n
er

g
y
 (

eV
)

LiGaO2 Pna21

FIG. 5: Band structure LiGaO2 in Pna21 structure in
0.8Σ QSGW approximation.

TABLE V: Character table of point group C2v

indicating both the chemistry and Koster notation of
the irreducible representations.

chem Koster 1 21z nx ay functions
a1 Γ1 1 1 1 1 z, x2,y2,z2

a2 Γ3 1 1 −1 −1 xy
b1 Γ4 1 −1 −1 1 x, xz
b2 Γ2 1 −1 1 −1 y, yz

higher energy, above 18 eV. This is consistent with the
high electropositivity of Li. This can also be seen in the
colored band plot in Fig. 7.

Next we show a zoom in on the region near the conduc-
tion band minimum and valence band maximum in Fig.
8. The bands are symmetry labeled according to the
character table given in Table V, following the Koster et
al [44] notation. The band gap is direct at Γ and is 5.81
eV. The conduction band minimum (CBM) is found at Γ
and shows a strongly dispersive band with low effective
mass as is typical for cation-s-like CBMs. The valence
band maximum (VBM) is also at Γ but shows crystal
field splitting compared to the three-fold degenerate p-
like state seen in cubic zincblende materials. Compared
to wurtzite which has only z split from x, y states, there
is here a full splitting in three levels even without spin-
orbit coupling.

We can see that the CBM has Γ1 symmetry, consistent
with its dominant s-like character. The VBM also has Γ1

symmetry, separated by 124 meV from the Γ4 band and
the latter separated by 48 meV from the next Γ2. Since
Γ1,Γ4,Γ2 correspond to z, x, y respectively, this implies
that optical transitions from the Γ1 VBM to the CBM
are dipole allowed for E ‖ c, from the Γ4 band for E ‖ a
and for the Γ2 band for E ‖ b. These lead to different
onsets of absorption as confirmed by our calculations of
the optical response discussed below.

Along the Γ−X direction, only the ay mirror symme-
try leaves the k-point invariant and the states can thus
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be labeled as even, +, or odd, −, with respect to that
mirror plane. From the character table, one can easily
see that Γ1 and Γ4 are compatible with + and Γ2, Γ3 are
compatible with − along this direction. Therefore the
second and third valence band (counting down from the
top) are allowed to cross along Γ − X. Likewise along
Γ − Y , only the nx mirror survives. The compatibility
relations are now {Γ1,Γ2} → +, {Γ3,Γ4} → −. On the
other hand, along Γ − Z the group of k stays C2v and
hence the symmetry labeling at Γ also applies along the
Γ−Z axis. Since the top three bands have different sym-
metry label they are allowed cross along this line.

In the conduction band we have only labeled the bands
at Γ since the labels along the three orthogonal directions
from Γ is already clear from the previous paragraph. We
can see that there is a large gap of 3.90 between the CBM
and next conduction band (CBM2), which is of Γ4 sym-
metry. This is favorable for transparent conductor appli-
cations since only light with photon energy larger than
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FIG. 7: Conduction band structure of LiGaO2 in Pna21
structure in 0.8Σ approximation showing the Ga-4s in

red and Li-2s in blue contributions to the bands.

TABLE VI: Effective masses (in units of the free
electron mass) in Pna21 LiGaO2 and energy levels at Γ

relative to the VBM.

band irrep E (eV) mx my mz

CBM Γ1 5.81 0.39 0.39 0.41
VBM1 Γ1 0 3.85 3.50 0.42
VBM2 Γ4 −0.124 0.45 3.50 3.80
VBM3 Γ2 −0.172 3.15 0.58 3.80

3.9 eV (wavelength λ < 318 nm) and with polarization
E ‖ a would be absorbed by electrons near the conduc-
tion band minimum introduced by n-type doping. The
next CBM3 has Γ3 symmetry which is dipole forbidden
for any light polarization. The first allowed transitions
from the CBM for E ‖ b would only occur to the CBM4
band of Γ2 symmetry at 4.98 eV. The lowest conduction
band at Γ of Γ1 symmetry is CBM7 at 5.85 eV.

Because of the orthorhombic symmetry the mass ten-
sors at each band at Γ are diagonal with a different mass
in each of the x, y, z directions. These are given in Table
VI. One can see that the conduction band mass is small
and close to isotropic. The valence bands each have one
light mass and and two heavy mass directions. The light
mass is in the direction corresponding to the symmetry
of the band, for example it is in the x direction for the
Γ4 band, in the y direction for the Γ2 band and in the z
direction for the Γ1 band.

We also performed calculations including spin-orbit
coupling. The valence band maximum is then still split in
three levels and the difference from the calculation with-
out spin-orbit coupling was found to be negligible. In
the parent compound ZnO, spin-orbit splitting plays an
important role because of the antibonding contribution
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from the Zn-3d orbitals in the VBM. In fact, it leads to
an effectively negative spin-orbit splitting parameter of
the VBM in that case.[45] In LiGaO2, however the Ga-3d
orbitals lie significantly lower, reducing this negative con-
tribution and hence apparently almost completely can-
celling the positive but already small contribution of the
O-2p orbitals.

The optical response functions were calculated within
the long-wavelength limit and independent particle ap-
proximation. In other words, they include vertical band-
to-band transitions including the dipole matrix elements
but no local field or excitonic effects. In this case the
imaginary part of the dielectric function ε2(ω) is given
by

ε2(ω) =
8π2e2

V ω2

∑
n

∑
n′

∑
k∈BZ

fnk(1− fn′k)

|〈ψnk|[H, r]|ψn′k〉|2δ(ω − εn′k + εnk), (1)

TABLE VII: Dielectric constants ε∞ of LiGaO2 in
various approximations.

method ε∞x ε∞x ε∞x (ε∞x ε
∞
y ε
∞
z )1/3

LDA[3] Berry 3.492 3.342 3.490 3.441
GGA 2.803 2.750 2.824 2.792
0.8Σ dΣ/dk 4.987 5.421 7.256 5.810
0.8Σ dΣ/dk = 0 1.818 1.796 1.828 1.810
0.8Σ rescaling 2.445 2.399 2.462 2.435
Expt. [46] 2.99 2.90 2.99 2.960
Expt. [1] 3.05 2.99 3.05 3.030

with εnk the band eigenvalues, ψnk the Bloch eigen-
states, fnk the Fermi function occupation factors of these
states. It uses matrix elements of the velocity operator
ṙ = (i/~)[H, r], which differ from the momentum matrix
elements p/m because of the non-local contribution of
the self-energy operator to the Hamiltonian. The real
part ε1(ω) is obtained from a Kramers-Kronig transfor-
mation and the optical absorption coefficient is given by
α(ω) = 2ε2(ω)/n(ω) with n(ω) the index of refraction

given by ñ(ω) =
√
ε1(ω) + iε2(ω) = n(ω) + iκ(ω).

The imaginary and real parts of the dielectric func-
tion are shown in Fig. 9 and the absorption coefficient is
shown on a log scale near the onset of absorption in Fig.
10. It shows the different absorption onsets for differ-
ent polarization consistent with the symmetry analysis
present above.

The values of ε1(ω = 0)αα correspond to the ε∞ and
can be compared with the results obtained from a Berry-
phase calculation in LDA in Boonchun and Lambrecht.[3]
This comparison is given in Table VII along with our val-
ues both based on the GGA and the QSGW 0.8Σ band
structure. The Berry phase calculations in principle in-
cludes local field corrections which tend to reduce the
value by about 5 %. In spite of this our GGA values
are smaller than the ones in Ref. 3. The increase in
gap due to QSGW is expected to reduce the dielectric
constant (because energy denominators in the expression
for ε are increased) when applied in a naive way without
taking into account the matrix element rescaling, from
the non-local contribution to the velocity operator from
the self-energy. This is indicated in the table by the
dΣ/dk = 0. However when including the dΣ/dk contri-
bution the dielectric constant is in fact increased com-
pared with GGA. Instead of using the explicitly calcu-
lated dΣ/dk one can also use the rescaling rule proposed
by Levine and Allan [47] in the context of a scissor correc-
tion. One then rescales the matrix elements by a factor
(εnk − εn′k)/(εGGAnk − εGGAn′k ). This apparently restores
values close to the GGA. Finally, we compare to experi-
mental values. Interestingly, the GGA results seem to be
in better agreement with the experiment but we should
caution that this could be due to a compensation of er-
rors because we did not include local field or excitonic
effects here.

Let us now focus on the band gap in TableVIII. First,
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in terms of k-convergence of the Σ̃(k), the 0.8Σ gap ob-
tained with a 3×3×3 mesh is 5.804 eV while that with a
4×4×4 mesh it is 5.812 eV, showing that we have reached
convergence to 0.01 eV in terms of k-convergence. The
full QSGW gaps are 6.35 and 6.36 eV with 3× 3× 3 and
4× 4× 4 respectively. One can see that the GW correc-
tions to the GGA band structure are significant. Also, we
find a gap of 5.8 eV in fair agreement with experiments

TABLE VIII: Band gap of LiGaO2 in Pna21 structure
in different approximations.

GGA QSGW 0.8Σ +ZPM Expt.
At expt. a, b, c 3.363 6.363 5.81 5.6 5.26-5.5
at PBE a, b, c 3.201 6.245 5.69 5.5

when adding a 0.8 correction factor to the Σ̃ − vDFTxc .
This is known as the 0.8Σ approximation as discussed in
Sec. II.

While a full calculation of the zero point motion cor-
rection to the gap by electron phonon coupling is time
consuming, we can make at least some estimate of this
effect following the approach of Ref. 48. In a highly ionic
material, the main effect comes from the lattice polariza-
tion correction (LPC), which is essentially the polaronic
shift of the band edges. Its origin can be viewed as the
contribution to the screening from the lattice polariza-
tion in the long-wavelength limit. For a material with a
single LO phonon, this shift is given by[48]

∆EP = −αP~ωLO/2 =
e2

4aP

[
1

ε∞
− 1

ε0

]
(2)

where aP =
√
~/(2ωLOm∗) is a polaron length defined

in terms of the effective mass of the electrons for the
conduction band shift and holes for the valence band
shift and ωLO is the longitudinal optical phonon. The
dimensionless polaronic coupling factor is αP and the di-
electric constants at frequencies high above the phonons
but well below the gap is ε∞ and the static dielectric
constant below the phonon modes is ε0. The factor 1/2
in this equation was obtained by applying a cut-off to
the wave vector integration over the electron-phonon cou-
pling interaction of order 1/aP while the classic Fröhlich
estimate of the polaronic shift extends the integral to
infinity.[48, 49] Whether this cut-off procedure should be
used or not is still a matter of debate.[50] Hence our esti-
mate may be underestimated by a factor two but we are
only after an order of magnitude estimate. We obtain
an upper limit to this correction by calculating the con-
tribution from the highest energy optical phonon. The
phonons in LiGaO2 were calculated in Boonchun et al
[3] and this paper also provides values for the dielec-
tric constants needed here. Averaging over the b1L, b2L
and a1L phonons, we take an estimate of ωLO ≈ 750
cm−1. Averaging the dielectric constants over directions,
we obtain ε∞ ≈ 3.44, ε0 ≈ 6.93. The factor [ε−1∞ − ε−10 ]
then amounts to 0.146. Now using a hole mass of about
m∗ = 3 we obtain ahP ≈ 7a0 with a0 the Bohr radius.
The expected shift is then about 0.14 eV. The conduc-
tion band shift should be significantly smaller because the
electron effective mass is only 0.33 giving an aeP ≈ 21a0,
giving a shift of 0.05 eV at most. This gives an estimated
gap correction of −0.2 eV form the highest frequency
LO phonons. When multiple infrared active phonons are
present, each phonon has a separate contribution to the
ε0/ε∞ factor according to the Lyddane-Sachs-Teller re-
lation but also each long-range Fröhlich type electron-
phonon coupling parameter depends on the eigenvector
of the phonon.[51] It does becomes much more difficult to
make an estimate. The above should be viewed only as
an order of magnitude estimate of the effect. Including
this estimate of a negative shift of a few 0.1 eV of the
electron phonon coupling zero-point motion correction,
our gap is in excellent agreement with the experimen-
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tal value. The remaining discrepancy of our value with
the most recent experimental determination of 5.26 eV
is probably due to this measurement being done at room
temperature.

It is also of interest to check how the QSGW correction
of the gap is split over the valence and conduction band
edges. We find in the 0.8Σ approximation that the VBM
shifts down from the GGA value by 1.321 eV while the
CBM shifts up by 1.128 eV, thus giving a gap correction
of 2.449 eV. This is related to the Ga-3d contribution to
the VBM. The Ga-3d bands are found to shift down by
about 2 eV in the 0.8Σ approximation compared to GGA.
This reduces the antibonding contribution of the Ga-3d
to the VBM and hence shifts down the VBM significantly.
The O-2s bands also shift down by about 1.7 eV.

We note that at the PBE calculated lattice constants,
the GGA gap is ∼0.12 eV smaller. This is because the
larger lattice constant typically leads to lower covalent
interactions and hence a lower band gap. Since volume
in GGA is about 3 % overestimated, this allows us to esti-
mate the band gap deformation potential dEg/d lnV ≈ 4
eV.

C. LiGaO2 in R3̄m and P4/mmm structures.

The band structure of the R3̄m structure of LiGaO2

was calculated in the 0.8Σ QSGW approximation and is
shown in Fig. 11. We use the symmetry line notation
of Ref. 52 or the Bilbao Crystallography Server.https:
//www.cryst.ehu.es/. We can see that the band gap
in this structure is slightly indirect, because the VBM
occurs between Γ and S while the CBM remains at Γ.
The direct gap at Γ is 5.65 eV while the indirect gap is
5.47 eV. The O-2s and Ga-3d bands occur at about the
same energies as in the Pna21 structure.

The band structure in the P4/mmm structure is shown
in Fig 12 in the 0.8Σ approximation. It is seen to have
a direct gap but with significantly smaller value of 3.129
eV.

D. Structure and stability of NaGaO2

The structural parameters of Pna21 NaGaO2 were
initially taken from Materials Project and subsequently
relaxed within the GGA-PBE approximation using the
questaal and Quantum Espresso codes. They are given
in Table IX. After we finished the calculations, we found
that NaGaO2 in the Pna21 structure has been synthe-
sized and its lattice constants were reported by Weise and
Neumann,[53] who quote even some earlier results. The
experimental values are included here and show that the
PBE-GGA as usual somewhat overestimates the lattice
constants.

We see that the 2a/b is significantly smaller than the

ideal value of
√

3, indicating that the γ angle between a
and b has increased from 120◦ to 129◦. The Na-O bond
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FIG. 11: Band structure of LiGaO2 in the R3̄m
structure in 0.8Σ QSGW approximation. Bottom shows

zoom in on the VBM.

lengths are larger than the Li-O bond lengths while the
Ga-O bond length is about the same as in LiGaO2. As
expected, the volume per formula unit is somewhat larger
than in LiGaO2.

The optimized structural parameters of the R3̄m struc-
ture are given in Table X. We find this structure to have
a volume per formula unit that is 22% smaller than the
Pna21 structure and to be 165 meV/atom higher in en-
ergy. It is is thus again a high-pressure phase. Using the
energy-volume curves shown in Fig. 13 we find a transi-
tion pressure of 13 GPa. This is comparable but slightly
higher than in LiGaO2. Both are close to the transi-
tion from wurtzite ZnO to rocksalt ZnO, which occurs
at about 9 GPa. The P4/mmm structure was optimized
first as function of c/a and then the equation of state
was determined keeping the c/a fixed. The Murnaghan
fit parameters and transition pressure from the Pna21
phase are given in Table XII.
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TABLE IX: Lattice constants, volume per formula unit, reduced coordinates, and bond lengths of NaGaO2 in
Pna21 structure optimized within GGA-PBE.

a (Å) b (Å) c (Å) V/fu (Å3)
Present calculation 5.6138 7.2377 5.3895 54.746
Experiment [53] 5.495 7.221 5.297 52.545

2a/b 2c/b b/2 = aw
1.5513 1.4893 3.6189

atom Wyckoff x y z
Na 4a 0.0717 0.6223 0.0128
Ga 4a 0.0630 0.1262 −0.0005
ONa 4a 0.1149 0.6632 0.5822
OGa 4a 0.0400 0.08923 0.6559

bond lenths (Å)

Ga-Oc
Ga Ga-Oa

Ga Ga-Oa
Na Ga-Ob

Na

1.875 1.864 1.880 1.875
Na-Oc

Na Na-Oa
Na Na-Oa

Ga Na-Ob
Ga

2.357 2.346 2.312 2.325

TABLE X: Structural parameters of NaGaO2 in R3̄m
structure.

Na Ga O
Wyckoff 1a 1b 2c

reduc. coord. (0, 0, 0) ( 1
2
, 1
2
, 1
2
) (±u,±u,±u)

a = b = c (Å) α = β = γ V/fu (Å3) u
5.675 30.892◦ 42.742 0.2326

bond lengths (Å) Li-O Ga-O
2.389 2.047

TABLE XI: Lattice constants and atomic positions of
NaGaO2 in P4/mmm structure.

atom Wyckoff x y z
Na 1c 0.5 0.5 0.0
Ga 1b 0.0 0.5 0.0
O 1a 0.0 0.0 0.0
O 1d 0.5 0.5 0.5

lattice constants (Å) a = b c V/fu
3.189 4.177 42.498

bond lengths (Å) ‖ c ⊥ c
2.088 2.255

TABLE XII: Cohesive energy (E0/f.u.), equilibrium
volume (V0), bulk modulus (B0) and its pressure

derivative (B′0) and transition pressure, pt of NaGaO2

property R3̄m Pna21 P4/mmm

V0 (Å3) 41.19 53.35 42.50
E0 (eV/f.u.) 19.96 20.62 19.08
B0 (GPa) 161 116 1047
B′0 4.5 4.3 5.0
pt (GPa) 13.0 40.0
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FIG. 12: Band structure of LiGaO2 in the P4/mmmm
structure in 0.8Σ QSGW approximation.

E. Band structure of NaGaO2 in Pna21 structure

The large energy scale band structure of PNa21
NaGaO2 is shown in Fig. 14. The partial densities of
states in the valence and conduction band region are
given in Fig. 15. They show similar to LiGaO2 that
the Ga-3d bands lie above the O-2s ones and that the
Na contribution to the conduction band PDOS occurs
mainly well above the conduction band minimum, while
the latter is dominated by Ga-4s. This is also shown in
Fig. 16 which shows the Ga-4s and Na-3s contributions
to the conduction bands. In addition, the Na-2p semicore
levels are seen to lie at about −25 eV.

A zoom in on the valence band maximum and conduc-
tion band minimum range are shown in Fig. 17. The
band splittings of the VBM and corresponding effective
mass tensor components are given in Table XIII. The
band gap is only slightly lower than for LiGaO2 with
a value of 5.49 eV in the 0.8Σ approximation and 2.88
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eV in the GGA approximation. The shift of the indi-
vidual band edges between GGA and 0.8Σ GW is −1.49
eV in the valence band and 1.12 eV in the conduction
band. The band gap is probably still slightly overesti-
mated because of the GGA overestimate of the lattice
constant. Including a zero-point motion correction simi-
lar to LiGaO2 and a lowering of gap by the deformation
potential correction, we estimate that the gap is 5.1±0.1
eV, which is only slightly lower than in LiGaO2 and still
significantly higher than in β-Ga2O3.

The dielectric functions and optical absorption are
given in Figs. 18,19. They confirm the analysis of the
optical anisotropy of the absorption onset based on the
symmetry labeled valence bands. An interesting differ-
ence from LiGaO2 is that in NaGaO2, the x and z polar-
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TABLE XIII: Effective masses (in units of the free
electron mass) and energy levels in NaGaO2 in Pna21

structure.

band irrep E (eV) mx my mz

CBM Γ1 5.486 0.33 0.35 0.35
VBM1 Γ1 0 6.8 2.7 0.5
VBM2 Γ4 −0.026 0.5 2.7 9.5
VBM3 Γ2 −0.185 3.4 0.6 3.1

ization onsets of absorption are close to each other while
the y onset is larger. In contrast in LiGaO2 the x and y
onsets are close but both larger than the z onset. Thus
for light incident on the basal plane (the c-plane) there
will be a larger anisotropy in the plane between the two
polarizations x and y for NaGaO2 than for LiGaO2. On
the other hand, in terms of transparent conductor appli-
cations, we again see a large splitting between the lowest
and next higher conduction band of 4.07 eV, even larger
than in LiGaO2.

The dielectric constant ε∞ (diagonal) tensor compo-
nents and directional average are given in Table XIV in
different approximations. The trends are similar to the
LiGaO2 case. This suggests that the QSGW calculation
including the dΣ/dk contribution to the matrix elements
is an overestimate, perhaps because of neglecting local
field effects. The renormalization of the matrix elements
gives values close to the GGA and is likely a more real-
istic estimate.
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FIG. 17: Symmetry labeled bands for NaGaO2 in
Pna21 structure. Please note different scales in (top)

near valence band maximum) and (bottom) conduction
band region.

TABLE XIV: Dielectric constants ε∞ of NaGaO2 in
various approximations.

method ε∞x ε∞x ε∞x (ε∞x ε
∞
y ε
∞
z )1/3

GGA 2.616 2.606 2.587 2.603
0.8Σ dΣ/dk 4.268 4.130 4.286 4.227
0.8Σ dΣ/dk = 0 1.655 1.644 1.648 1.649
0.8Σ rescaling 2.156 2.138 2.137 2.144

F. Band structure of NaGaO2 in R3̄m and P4/mmm
structures.

The band structure of NaGaO2 in the R3̄m structure
is shown in Fig. 20. The band gap is again indirect but
with the VBM now between Γ and L and equal to 5.51 eV
while the direct gap at Γ is 5.39 eV. On the other hand, in
the P4/mmm structure the gap is much smaller. In fact,
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structure.

in GGA, there is a band overlap and in the 0.8Σ QSGW
approximation, the gap is only 0.965 eV. Interestingly, in
this case the Ga-3d and O-2s band hybridize.

IV. CONCLUSIONS

In this paper we studied the band structures of LiGaO2

and NaGaO2 in three different crystal structures, the am-
bient pressure equilibrium tetrahedrally bonded Pna21
and the high-pressure octahedral R3̄m and hypotheti-
cal P4/mmm rocksalt type phase, all using the QSGW
method. The Pna21 tetrahedrally bonded structure,
which is a cation ordered supercell of the parent wurtzite
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FIG. 20: Band structure of NaGaO2 in the R3̄m phase
in 0.8Σ approximation. The bottom panel shows a

zoom in on the VBM region.
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structure is found in both cases to have lower energy
than the octahedrally coordinated R3̄m structure, which
is found to be a high-pressure phase with about 20 %
smaller volume per formula unit. The materials are
ultra-wide band gap semiconductors with gaps of 5.8
eV (LiGaO2) and 5.5 eV (NaGaO2) in the Pna21 struc-
ture, not including zero-point motion corrections, which
are estimated to be of order −0.2 eV. The gap in the
high-pressure phase are of similar magnitude but slightly
indirect. The valence band is split in three levels due
to the orthorhombic crystal field splitting and lead to
anisotropy of the optical absorption onset. Effective mass
tensors of the top three valence bands and the conduc-
tion band were calculated. In view of previous work, in-
dicating that LiGaO2 can be n-type doped by Si or Ge,
we consider both materials to be promising as ultrawide
gap semiconductors for transparent conductor and high-
power transistors. In particular, the conduction band
symmetry labeling indicates that no optical transitions
can occur between the bottom of the conduction band
(when n-type doped) to higher conduction bands for en-
ergies less than ∼4.0 eV. As part of this study, we also de-
termined the transition pressures from the tetrahedrally
coordinated Pna21 to the octahedrally coordinated R3̄m
phase and a rocksalt type P4/mmm phase and found
these to agree well with experiments for LiGaO2.
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