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We consider the dynamical properties of a gapped quantum spin system coupled to the electric
field of a laser, which drives the resonant excitation of specific phonon modes that modulate the
magnetic interactions. We deduce the quantum master equations governing the time-evolution of
both the lattice and spin sectors, by developing a Lindblad formalism with bath operators providing
an explicit description of their respective phonon-mediated damping terms. We investigate the non-
equilibrium steady states (NESS) of the spin system established by a continuous driving, delineating
parameter regimes in driving frequency, damping, and spin-phonon coupling for the establishment
of physically meaningful NESS and their related non-trivial properties. Focusing on the regime of
generic weak spin-phonon coupling, we characterize the NESS by their frequency and wave-vector
content, explore their transient and relaxation behavior, and discuss the energy flow, the system
temperature, and the critical role of the type of bath adopted. Our study lays a foundation for the
quantitative modelling of experiments currently being designed to control coherent many-body spin
states in quantum magnetic materials.

I. INTRODUCTION

Both the advent of powerful new laser sources and the
increasing demand for next-generation magnetic devices,
required to power the information revolution, are focus-
ing intensive research efforts on time-dependent phenom-
ena in condensed matter. On the laser side, x-ray free-
electron laser sources in the US and Europe now allow
the “ultrafast” probing of materials on the femtosecond
timescales of their fundamental electronic and magnetic
processes. On the device side, the immediate target is
designer materials for antiferromagnetic (AF) spintronics
[1, 2], to enable the writing, storage, and reading of large-
scale classical magnetic information with factor-1000 im-
provements over the current levels of speed and power
consumption. Already on the horizon, however, is the
development of magnetic materials as a route to encod-
ing and manipulating quantum information, and indeed
quantum information processing in systems with strong
interaction energies would ensure very high-frequency op-
eration at the lowest possible dissipation.

The concept of laser driving generalizes the pump-
probe paradigm from simple pulse-delay schemes to the
imprinting of arbitrary dynamics (within the limits of
field control). The laser excitation of quantum systems
has generated theoretical proposals for uniquely out-of-
equilibrium states of matter, including non-equilibrium
steady states (NESS) [3, 4], non-equilibrium topological
states [5], and many-body localization (MBL) [6, 7]. To
date these ideas have been tested largely on systems of ul-
tracold atoms [8–11], where the laser controls the “optical
lattice” on which the atoms reside [12]. The undeniable
beauty of both the physical concepts and the technolog-
ical achievements aside, these systems are neither very

large nor very readily miniaturized.

Laser facilities operating on the energy and ultrafast
time scales of condensed-matter systems have been de-
ployed recently to observe a wide array of novel phe-
nomena in graphene [13], superconductors [14], charge-
density-wave materials [15, 16], and correlated insulators
near their metallic transition [17, 18]. Beyond inducing,
enhancing, or destroying a symmetry-broken state, a key
focus of these experiments has been the high-frequency
Floquet regime, where steady laser driving can induce
new topological states [19, 20], the “time crystal” [21],
or more generally allow the “Floquet engineering” of the
electronic bands [22, 23].

While any material can be laser-driven, the key ques-
tion is whether this driving creates a coherent quantum
state [4]. Some of these new phenomena, notably photo-
enhanced superconductivity [14], occur because the laser
drives particular phonon excitations of the lattice hosting
the electrons. Because strong laser driving can lead to
very high populations of any targeted mode, exploiting
the anharmonic part of the lattice restoring force leads to
the concept of nonlinear phononics [24–26]. However, the
phonon ensemble determines the temperature, and hence
heating of the system is a fundamental issue in determin-
ing whether any of these novel laser-driven phenomena,
and particularly their quantum nature, can survive be-
yond the initial ultrafast laser pulses.

Among the extensive body of theoretical studies of
non-equilibrium quantum systems are analyses of short-
time transient behavior caused by quenches [27–29], in-
cluding those due to laser pulses [30, 31], and of long-
time thermalization behavior [28, 32]. Ideas from (near-
)integrable systems include MBL, which is known at
least in one dimension (1D) [7], and pre-thermalization
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[33], while numerous studies have explored the Floquet
regime [34]. Of the many numerical approaches to
quenched or driven models, one of the most successful
is non-equilibrium dynamical mean-field theory (DMFT)
[35, 36], which has been applied to many problems in
cold atoms [37] and condensed matter [38–40]. However,
these studies are largely restricted to fermionic systems
and focus mostly on leading qualitative effects due to in-
trinsic system dynamics, rather than on the dynamics in
the presence of dissipation.

By contrast, a realistic NESS requires a path for out-
flow of the injected energy [4]. The most general ap-
proach to describe a dissipative (open) quantum system
is the Lindblad formalism [41], in which damping is pro-
vided by bath operators whose Hamiltonian dynamics
are not required to formulate the equations of motion
governing the time-evolution of physical observables in
the Heisenberg representation [42, 43]. Recent studies of
driven condensed-matter systems have included dissipa-
tive effects by using a phenomenological Gilbert damping
[44], a phenomenological phonon damping [45], or numer-
ical methods where a thermal bath of phonons [46–48], a
temperature-independent fermionic bath [39, 49], or both
[50], form(s) part of the system on which calculations are
performed. While these studies therefore consider NESS
implicitly or explicitly, in fact none correspond to the
problem of an open, driven quantum system subject to
Lindblad dissipation processes, whose quantitative treat-
ment is the aim of the current work.

For this purpose we will focus on quantum magnetic
systems, which historically have provided a clean, read-
ily realized, low-dissipation test bed for many concepts
in condensed-matter and statistical physics. The small
number and unique behavior of the spin degrees of free-
dom lead to exact solutions including the Heisenberg spin
chain, the transverse-field Ising model, and the Kitaev
model. In non-equilibrium physics, idealized (and often
integrable) spin-chain models as the Hamiltonian part of
a Lindblad system have provided the framework for il-
lustrating NESS [51], MBL [52, 53], Floquet prethermal-
ization [54], and dynamical quantum phase transitions
[55], as well as lending themselves very well to numerical
investigation. With a view to future device application,
single spins have long been considered as excellent candi-
date qubits and the application of suitable laser control
schemes [4] has been attempted in ensembles of quan-
tum dots [56, 57]. The entangled quantum many-body
states available in magnetic materials present not only a
rich variety of options for encoding (protected) quantum
information, keywords including (topological) magnonics
[2, 58–61], quantum spin liquids (QSLs) [62], and mag-
netic textures such as vortices [63] and skyrmions [64],
but also many routes for exploiting intrinsic interactions
[65–67] or extrinsic materials-design flexibility [68] to ob-
tain “handles” for manipulating magnetism using laser
light [69–71].

The reason why insulating quantum magnets are a
relative late-comer to the game of laser excitation and

pump-probe physics is the weak direct coupling of light
to spin. In general one may consider four routes for the
creation of magnetic excitations by incident light. (1)
The response of metallic magnetic systems is usually de-
scribed in terms of the inverse Faraday effect; this mech-
anism remains present (in the form of virtual electronic
processes) in insulators and is quadratic in the electric-
field strength of the light. It was exploited recently [72]
to study the coherent transport of GHz precession modes
of the magnetization over 100 µm distances in ferromag-
netic iron garnet films. (2) At the intrinsic frequencies
of magnetic modes in condensed matter, which are of or-
der 1 THz, processes by which one photon creates one
magnon depend on anisotropies in the spin Hamiltonian.
While many forms of spin anisotropy exist, they are in
general a consequence of spin-orbit coupling and thus
they are rather weak in the most familiar quantum mag-
netic materials, whose magnetic ions are 3d transition
metals. However, they are present in type-II multiferroics
and other systems with finite magnetoelectric [73] and
thermomagnetic coupling [74], and one such anisotropy
was exploited in a recent discussion of a laser-pumped
spin chain as a test case for a Generalized Gibbs Ensem-
ble approach to near-integrable dissipative systems [46].

(3) The mechanism invoked most commonly in con-
densed matter emerges from the coupling of the electrons
to an electromagnetic vector potential described by the
Peierls substitution. In insulating magnets, the leading-
order processes are of Raman type, where the scattering
of one photon excites two magnon modes [75, 76] and
thus spin is conserved. For this type of process, the light
frequency should be a significant fraction of the on-site
Coulomb repulsion, U , of the electrons being excited vir-
tually; because U is of order 5 eV, the incident light
should be around the visible range. At lowest order, in-
cident photons with frequency ω modify U to U − ω or
U + ω, thereby affecting the magnetic (super)exchange
interaction. If one considers the effect of the electromag-
netic field not on the (virtual) electronic hopping but on
localized electronic energy levels, the interaction between
two spins localized on sites i and j that have the same
energy is not changed at linear order by the electric field.
By contrast, if the energies on i and j are different, the
electric field of the light can have a linear (albeit weak)
influence on the exchange interactions. However, in the
common situation where the atomic structure ensures a
mirror symmetry between ions, this interaction vanishes.

(4) The lattice geometry is fundamental to the mag-
netic interactions, because exchange and superexchange
processes are very sensitive to the distances and an-
gles of the bonds between the ions along the exchange
path. Thus the selective excitation of specific phonon
modes would provide direct control of magnetic interac-
tions through a mechanism resonant both between laser
and phonon and between the selected phonon and the
spin sector. By symmetry, the phonons must be infrared
(IR)-active if they are to be driven directly by the light.
Once the excitation of a phonon ensures that the atoms
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in a magnetic material are displaced, the modulation of
the interactions is in general linear in the displacement
coordinate; the structural complexity of most materials
ensures both IR- and Raman-active phonons over a range
of frequencies, and only for bond paths and displacement
directions of especially high symmetry do the linear terms
vanish.

We comment for completeness that recent experi-
ments have used nonlinear mixing of two driven IR-
active phonons to produce excitations at the sum and
difference frequencies, whose symmetry compositions in-
clude Raman-active phonons [77] and magnetic modes
[78]. While this mechanism should allow Raman-active
phononic modulation of the magnetic interactions at
quadratic order in the electric-field strength, it is impor-
tant to distinguish such “nonlinear driving with harmonic
phonons” [77, 78] from “nonlinear phononics” [24]. The
latter depends on anharmonic phonons, and has been
exploited to influence the electronic properties of corre-
lated many-body states in superconductors [50, 79–81]
and Mott insulators [82]. Although nonlinear phononic
effects on magnetism have to date been considered only
in the form of creating effective static magnetic fields
[83], more sophisticated protocols could be devised that
provide a further channel for dynamical driving. Here
we restrict our focus to the simple case of direct and
coherent driving of the spin system by single, IR-active
phonon modes in the harmonic regime. This situation
was given the name “magnetophononics” by the authors
of Ref. [84], who performed a theoretical study of clas-
sical magnets with phenomenological damping, and here
we apply the magnetophononic protocol to a quantum
spin system with quantum dissipation.

To discuss the dynamics of a driven dissipative quan-
tum magnet we use the example of the alternating spin
chain shown in Fig. 1. The driving is effected by laser
excitation of an Einstein phonon that couples to one of
the magnetic interactions in the spin chain and the dis-
sipation is modelled in the Lindblad formalism by bath
operators that damp both the lattice and spin sectors
directly. We establish the equations of motion govern-
ing the basic physics of quantum NESS in this system,
in terms of the driving frequency, the system parame-
ters, and the response of the separate lattice and spin
sectors. These equations enable us to discuss the dif-
ferent regimes of weak and strong spin-phonon coupling,
of weak and strong damping, and all the timescales as-
sociated with driving, NESS formation, and relaxation.
Thus our study establishes a foundation for many types
of extension, specifically to different types of spin system,
to different types of bath (characterized by whether they
conserve spin and momentum), to finite system tempera-
tures and thus to driving protocols for the management of
heat and of coherence, and to quantitative studies of ma-
terials and device geometries for practical experiments.

The structure of this article is as follows. In Sec. II
we present our model for the quantum spin chain, for
the laser-coupled phonon mode that drives it, and for

FIG. 1. Schematic representation of a lattice spin system, here
a structurally dimerized chain with antiferromagnetic inter-
action parameters J > J ′, driven by the selective excitation
of one specific phonon mode of the lattice. Both the driven
phonon and the spin system are damped by the ensemble of
lattice phonons. We envisage an experimental geometry with
the sample attached to an efficient heat sink for thermal reg-
ulation.

the Lindblad bath operators that damp it. We derive
the equations of motion for the coupled lattice and mag-
netic sectors and comment on their structure. Section
III contains a preliminary analysis of the content of these
master equations, with specific attention paid to NESS.
We demonstrate numerically that NESS can indeed be
established, and illustrate how their basic properties are
governed by the primary system parameters, namely the
driving power, the driving frequency, the lattice and spin
damping coefficients, and the spin-lattice coupling. With
this basis, in Sec. IV we concentrate on the regime of low
spin-phonon coupling to perform a complete investiga-
tion of the dynamical properties of the NESS in the spin
sector, characterizing their response by frequency, wave-
vector components, and spin damping.

In Sec. V we turn to a different but essential aspect of
NESS, namely the transient processes occurring as they
are established, from the moment the laser driving is
switched on, and the relaxation processes by which equi-
librium is restored when the drive is removed. At higher
net occupancies of lattice and spin excitations we find
anomalously slow convergence to NESS, and in Sec. VA
we apply analytical arguments to discuss the underlying
physics. Section VB extends this analysis to the question
of limits in parameter space for the existence of NESS
within our model framework and Sec. VC provides a brief
discussion of relaxation and temperature. In Sec. VI we
analyze the energy flow in the NESS, considering both its
uptake by the spin system as a function of laser power
and frequency and its dissipation by the Lindblad terms.
This allows us to provide experimentally oriented esti-
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mates for the rate of temperature increase in the driven
system, for its control by the heat sink shown in Fig. 1,
and the resulting timescales for read-out and control pro-
cesses. In Sec. VII we discuss the context of our results
from a number of angles, including methodology, the in-
fluence of the bath model, timescales and heating effects,
and laser experiments on real materials. Section VIII
consists of a brief summary and perspectives for future
extensions of the framework established in this study.

II. MODEL AND METHODS

We begin by representing the Hamiltonian of the cou-
pled system shown in Fig. 1 as

H = Hs +Hsp +Hp +Hl, (1)

where the four terms describe respectively the spin sys-
tem, the spin-phonon coupling, the Einstein phonon, and
the effect of the laser electric field on this phonon. The
bath operators damping the spin and lattice systems do
not enter Eq. (1) explicitly, but are introduced at the level
of the Lindblad formalism. While some authors have in-
vestigated the strong and controllable effects obtained by
considering the quantum nature of the light field, gener-
ally referred to as “cavity QED” [85, 86], for the purpose
of driving phonon modes we treat the laser light field as
classical.

A. Spin system

We express the Hamiltonian for the structurally dimer-
ized, antiferromagnetic spin chain as

Hs =
∑
i

J ~S1,i ·~S2,i + J ′~S2,i ·~S1,i+1, (2)

with J > J ′ > 0. For simplicity we consider only
Heisenberg interactions between the spins and neglect
any anisotropy terms; in real materials these could be of
exchange, Dzyaloshinskii-Moriya, single-ion, g-tensor, or
other origin, and as noted in Sec. I are generally weak in
3d transition-metal compounds. A representation par-
ticularly useful for dimerized spin systems is the bond-
operator description [87, 88], in which the Hamiltonian
is transformed by expressing the two spin operators on
each dimer using the identity

Sα1,2 = ± 1
2 (s†tα + t†αs)− 1

2 i
∑
βζ

εαβζt
†
βtζ , (3)

where s and tα (α = x, y, z) are operators for the sin-
glet and triplet states of each dimer (J) bond. These
operators have bosonic statistics, required to reproduce
the spin algebra of Sα1,2; however, because each dimer
may only be in a singlet state or one of the three triplets

(equivalent to the four possible states of two spin-1/2 en-
tities), the bond operators must also obey a local hard-
core constraint,

s†isi +
∑
α

t†i,αti,α = 1, (4)

on each dimer i, and hence are hard-core bosons.
For a system whose magnetic interactions are

inversion-symmetric, the minimal Hamiltonian of Eq. (2)
takes the form Hs = H0 +H2 +H4, where [88, 89]

H0 =
∑
i

−J( 3
4s
†
isi − 1

4 t
†
i,αti,α) (5)

−µi(s†isi + t†i,αti,α − 1),

with summation over the repeated index α,

H2 = − 1
4J
′
∑
i,α

(
t†i,αti+1,αs

†
i+1si (6)

+t†i,αt
†
i+1,αsisi+1 + H.c.

)
,

and

H4 = 1
8J
′
∑
i,α6=β

(
t†i,αt

†
i+1,βti+1,αti,β (7)

−t†i,αt
†
i+1,αti+1,βti,β + H.c.

)
.

The second term in H0 enforces the constraint [Eq. (4)]
using the Lagrange multipliers µi. At zero applied mag-
netic field, the term quadratic in the singlet operators is
negative, which ensures a singlet condensation and jus-
tifies their replacement by a constant, si = 〈si〉, on each
dimer. The ground state of the system is then a conden-
sate of singlets with a spin gap to all triplet excitations,
whose dispersion is specified by the quadratic terms in
H2. Here we will not consider any spatial gradients (for
example in temperature, magnetic field, or laser flux) and
hence 〈si〉 = s and µi = µ; the latter condition enforces
the hard-core constraint at a global level, but not locally.
For the purposes of the present analysis we will not con-
sider triplet-triplet interactions, and thus we neglect H4.

We transform the quadratic triplet Hamiltonian H0 +
H2 to reciprocal space using

ti,α =
1√
N

∑
k

tk,αe
−ikri , (8)

where N is the number of dimers, and express the result
in the form

Hmf = E0 +
∑
k,α

[(
1
4J−µ

)
t†k,αtk,α −

1
4J
′s2 cos k

(
t†k,αtk,α

+ t−k,αt
†
−k,α + t†k,αt

†
−k,α + t−k,αtk,α

)]
, (9)

where

E0 = N
[
(− 3

4J − µ)s2 + 5
2µ−

3
8J
]
. (10)
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We note that the only terms generated are those coupling
operators at wave vectors k and −k, and there is no mix-
ing of the triplet indices, α. The conventional approach
[88, 89] is to symmetrize the Hamiltonian matrix, diago-
nalize it to obtain a new bosonic quasiparticle, known as
the triplon [90], form two mean-field equations, and solve
these for µ and s. By the use of effective quasiparticle
statistics, this procedure may also be followed at finite
temperatures [91, 92].

Here we adopt one further simplification with a view to
applying equation-of-motion methods. In the “Holstein-
Primakoff” approximation [89], the singlet occupation
is replaced directly by invoking the local constraint
[Eq. (4)], giving

s2 = 1− 1

N

∑
k,α

t†k,αtk,α. (11)

At quadratic order, this substitution reduces to the ap-
proximation s = 1, µ = − 3

4J , which is clearly valid in
the limit of a strongly dimerized chain. From extensive
studies of the spin ladder [92], it is generally recognized
that the bond-operator description retains semiquanti-
tative validity for interaction ratios J ′/J . 1/2 at low
temperatures. For the present qualitative purposes, this
approximation has the major advantage of not requiring
a solution of the self-consistent equations at each time
step.

From the spin Hamiltonian in the “mean-field” form

Hs =
∑
k,α

[
Jt†k,αtk,α −

1
4J
′ cos k

(
2t†k,αtk,α

+ t†k,αt
†
−k,α + tk,αt−k,α

)]
, (12)

we diagonalize it by applying the Bogoliubov transfor-
mation

tk,α = t̃k,α cosh θk + t̃ †−k,α sinh θk, (13a)

t †k,α = t̃ †k,α cosh θk + t−k,α sinh θk, (13b)

where

tanh 2θk =
λ cos k

2− λ cos k
(14)

with λ = J ′/J , to obtain

Hs =
∑
k,α

ωk t̃
†
k,αt̃k,α. (15)

The operators t̃ †k,α and t̃k,α create and destroy the triplon
modes of the dimerized chain and have dispersion relation

ωk = J
√

1− λ cos k. (16)

B. Phonon system and spin coupling

As shown in Fig. 1, we consider a situation in which
the interaction J is modulated by the oscillations of one

specific phonon mode on every bond. We take this to be
an Einstein phonon with wavevector q = 0 and a finite
energy, ω0. As noted in Sec. I, we focus on the situa-
tion where this optical phonon is IR-active and hence is
driven directly by the electric field of the incident light,
and do not consider the further possibilities offered by
high-order phonon excitation processes. We assume that
the laser illuminates the entire sample, meaning that we
treat the driving as a bulk effect. In a real material,
many different phonon modes are present in addition to
the driven phonon, and all of them, in particular the
acoustic phonons, are responsible for the dissipation of
energy from both the lattice and spin sectors.

The Hamiltonian terms involving the driven phonon
are

Hp +Hsp +Hl =
∑
j

[
ω0b
†
jbj + g(bj + b†j)

~S1,j ·~S2,j

+E(t)(bj + b†j)
]
, (17)

where g is the spin-phonon coupling constant and E(t) =
a cos(ωt) is the oscillating electric field of the laser, which
we assume to contain a single driving frequency, ω; as
noted above, for the amplitudes a we consider, E(t) may
safely be treated as classical field. For our purposes, E(t)
is an internal field, meaning it is the fraction of the in-
cident laser light transmitted into the sample, and we
do not concern ourselves with the reflected component.
The dissipative terms do not enter Eq. (17), but will be
included using the Lindblad formalism in Sec. IIC.

The transformation of Eq. (17) includes single- and
triple-operator terms. For pedagogical accuracy we take
a conventional definition of the Fourier transform,

bj =
1√
N

∑
q

bqe
−iqrj , (18)

under which the electric-field term becomes

E(t)√
N

∑
j,q

(bqe
−iqrj + b†qe

iqrj ) =
E(t)√
N

∑
q

(b0 + b†0), (19a)

= NE(t)d, (19b)

where only the q = 0 mode is selected, but we express
it as an intensive quantity summed over q, with effec-

tive displacement operator d = 1√
N

(b0 + b†0). Even more

simply, the phonon term becomes
∑
q ω0b

†
q bq.

Finally, the spin-phonon coupling term becomes

1

N
√
N

∑
j,q,k,k′,α

(
bqt
†
k,αtk′,αe

i(k−k′−q)rj + H.c.
)

=
1√
N

∑
q,k,α

(
bqt
†
k,αtk−q,α + b†qt

†
k,αtk+q,α

)
, (20)

with q = 0 as the only relevant phonon mode. At the
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mean-field level one obtains the decoupled terms

Hsp = Hsp,s +Hsp,p, (21a)

Hsp,s = 〈d〉
[∑
k,α

t†k,αtk,α − 〈t
†
k,αtk,α〉eq

]
, (21b)

Hsp,p =
〈∑
k,α

t†k,αtk,α − 〈t
†
k,αtk,α〉eq

〉
d, (21c)

where we have omitted the product of the two expecta-
tion values in Eq. (21a) because it has no influence at
all on the dynamics of the system. Here Hsp,s contains
the operator part acting on the spin degrees of freedom,
expressed in triplon operators, while Hsp,p contains the
operator part acting on the driven phonon. In both terms
the spin-phonon interaction is expressed by deducting the
equilibrium value of the triplon occupation, such that it
has no effect when the system is not driven. While this
mean-field decoupling is an approximation, we will show
in Sec. VI that its quantitative limitations are minor.

To transform Hsp into the diagonal (triplon) basis of
the spin sector, we use the identity

t †k,αtk,α = yk
(
t̃ †k,αt̃k,α + 1

2

)
− 1

2

+ 1
2y
′
k

(
t̃ †k,αt̃

†
−k,α + t̃k,αt̃−k,α

)
, (22)

in which

yk =
1− 1

2λ cos k
√

1− λ cos k
=
J

2

1 + ω2
k/J

2

ωk
and (23a)

y′k =
1
2λ cos k

√
1− λ cos k

=
J

2

1− ω2
k/J

2

ωk
, (23b)

to obtain the expression

Hsp,s = g 〈d〉
∑
k,α

[
yk[t̃ †k,αt̃k,α − n(ωk)]

+ 1
2y
′
k

(
t̃ †k,αt̃

†
−k,α + t̃k,αt̃−k,α

)]
. (24)

Here the bosonic occupation function, n(ωk) =
[exp(~ωk/kBT ) − 1]−1, provides an accurate value for
the equilibrium occupancy of the triplon mode with fre-
quency ωk [Eq. (16)] at the low temperatures we consider,
despite the hard-core nature of these modes [93].

We define the operators

uk =
∑
α

t̃†k,αt̃k,α and (25a)

ṽk =
∑
α

t̃†k,αt̃
†
−k,α (25b)

in the triplon sector and denote their expectation values
at any given time, t, by

uk(t) = 〈uk〉(t), (26a)

ṽk(t) = 〈ṽ〉(t); (26b)

the expectation value of the product of two annihilation
operators is manifestly the complex conjugate of ṽk,

ṽ∗k(t) =
∑
α

〈t̃k,αt̃−k,α〉(t). (27)

We comment that the triplon branch, α, is summed over
here and, because we do not consider an applied magnetic
field or any anisotropy in the spin Hamiltonian, will not
enter our considerations again.
uk(t) is clearly a real variable due to the hermiticity of

the operator on the right-hand side of Eq. (25a), while
the complex variable ṽk(t) is conveniently separated into
its real and imaginary parts,

vk(t) = Re ṽk(t) (28a)

wk(t) = Im ṽk(t). (28b)

In the equations of motion to be derived in Sec. IIC,
the spin-phonon coupling introduces two quantities com-
posed of the above expectation values, which we include
by defining

U(t) =
1

N

∑
k

yk[uk(t)− 3n(ωk)], (29a)

V(t) =
1

N

∑
k

y′kvk(t), (29b)

both of which are real by construction. For the descrip-
tion of the spin sector in the driven system, we define the
number, nx, of elementary (Bogoliubov, or “dressed”)
triplons per site,

nx(t) =
1

N

∑
k

uk(t), (30)

and it will be helpful to compare this with the number of
original (or “bare”) triplons per site in the starting basis
of Eq. (1),

nb(t) =
1

N

∑
k,α

〈t†k,αtk,α〉(t). (31)

Using Eq. (22), this last definition is equivalent to

nb(t) = U(t) + V(t) +
1

N

∑
k,α

〈t†k,αtk,α〉eq, (32)

in which the last term is given by

1

N

∑
k,α

〈t†k,αtk,α〉eq =
3

2N

∑
k

[(2n(ωk) + 1)yk − 1]. (33)

At zero temperature and for λ = 1/2, which will be
our test case in what follows, the equilibrium expecta-
tion value is nb0 = 0.028. This number quantifies the
quantum fluctuations in equilibrium and will serve as a
reference for the extent of modifications to the phonon-
driven spin state relative to the undriven ground state.

C. Equations of motion

The time evolution of an open quantum system is spec-
ified by adjoint quantum master equations [42] of the



7

form

d

dt
AH(t) = i[H,AH(t)] + (34a)∑
l

γ̃l
[
A†lAH(t)Al − 1

2AH(t)A†lAl −
1
2A
†
lAlAH(t)

]
(34b)

for any operator AH(t) describing a physical observable.
In these Heisenberg equations of motion, H is the Hamil-
tonian of the “reduced” system under consideration, by
which is meant the quantum system with no environ-
ment. The “Lindblad” operators, {Al}, are formed from
the Liouville space of the reduced system to describe its
interaction with the environment (the “bath”), which is
excluded from explicit consideration. It was proven by
Lindblad [41] that Eq. (34) is the most general form of the
dissipation term for a separable (system-bath) Hilbert
space when l describes a bounded set of operators. The
coefficients γ̃l play the role of damping parameters.

The driven phonon exemplifies the textbook case
[42, 43] of the Lindblad equations, namely those of the
damped harmonic oscillator. The Lindblad operators in

this case are A1 = b†0 and A2 = b0, with damping rates
γ1 and γ2. For the system to relax back to its equilib-
rium state in the absence of driving, it is known [42] that
the ratio of the two rates must be given by the ratio
n(ω0)/(1 + n(ω0)), and hence the conventional parame-
terization is

γ̃1 = γ n(ω0) (35a)

γ̃2 = γ (1 + n(ω0)), (35b)

leaving only one damping parameter, γ. For physical
transparency we separate the Lindblad operators into
those that excite the system by an energy ωl, which we
denote by Bl, and those that de-excite, which are given

by the Hermitian conjugates, B†l . The dissipative part of
Eq. (34), which is the second line, may then be separated
into the two contributions

T1 = 1
2

∑
l

γln(ωl)
{[
Bl, [AH(t), B†l ]

]
+
[
B†l , [AH(t), Bl]

]}
,

(36a)

T2 = 1
2

∑
l

γl
{

[Bl, AH(t)]B†l +Bl[AH(t), B†l ]
}
. (36b)

The commutators in these expressions facilitate their
rapid evaluation in comparison with the expression in
Eq. (34); if the observable and the Lindblad operators
are linear bosonic operators, as for the damped phonon,
it can be seen without explicit calculation that the term
T1 vanishes and hence no dependence on the bosonic oc-
cupation, n(ωl), arises.

To describe the driven phonon we consider the real
variables

q(t) =
〈

1√
N

(b0 + b†0)
〉
(t), (37a)

p(t) =
〈

i√
N

(b†0 − b0)
〉
(t), (37b)

nph(t) =
〈

1
N b
†
0b0
〉
(t), (37c)

describing respectively the displacement of the Einstein
phonon (d in Sec. IIB), the conjugate phonon momen-
tum, and the number operator. We recall that, despite
the presence of all phonon modes, b†q, in Hp, only the

operators b0 and b†0 appear elsewhere in the Hamilto-
nian of the reduced system, and hence are candidates for
the formation of Lindblad operators. The other phonons
form the environment and their presence gives rise to the
damping, which is contained in the single parameter γ.

By evaluating Eqs. (34) or (36) with the expectation
values from the spin sector [Eqs. (29)] in the spin-phonon
coupling term, one obtains the closed set of equations of
motion [42]

d

dt
q(t) = ω0p(t)− 1

2γq(t), (38a)

d

dt
p(t) = −ω0q(t)− 1

2γp(t)

−2[E(t) + g(U(t) + V(t))], (38b)

d

dt
nph(t) = −[E(t) + g(U(t) + V(t))]p(t)

−γ[nph(t)− n(ω0)]. (38c)

One observes the characteristic structure in Eqs. (38a)
and (38b) of the displacement and momentum serving
as conjugate time derivatives, but damping themselves
through the γ/2 term. The electric-field driving and the
spin-system coupling appear only in the equation for the
phonon momentum [Eq. (38b)]. The number operator re-
flects the driving of the momentum [Eq. (38c)] and also
features as its own damping term, where n(ω0) is the
occupation of phonon mode ω0 at thermal equilibrium.
Here we do not extend these considerations to bilinear
Lindblad operators in either the phonon or the spin sec-
tor.

Turning to the spin degrees of freedom, we consider
the real expectation values uk(t), vk(t), and wk(t) intro-
duced in Eqs. (26a) and (28) to describe the dynamical
spin processes diagonal and off-diagonal in the triplon
number basis. To determine the equations of motion, it
is expected that the spin sector will be subject to a di-
rect damping due both to weak spin-anisotropic terms
and to phononic processes arising from the many acous-
tic and optical phonon modes in the Hamiltonian of any
real material. The specific nature of these damping pro-
cesses will be the subject of more extended discussion
in Secs. IV and VII, but the available Lindblad opera-
tors will in general be linear and bilinear combinations

of t̃k and t̃†k. In the present analysis we focus on lin-
ear operators, in order to present the primary phenom-
ena associated with the driven dissipative quantum spin
chain. The equations of motion we will deduce have the
analytical advantage of maintaining a simple form with
transparent physical consequences. However, it is true
that such one-triplon Lindblad operators are spin non-
conserving, meaning that this type of bath is appropri-
ate for materials with the non-negligible spin anisotropies
more commonly associated with systems of 4d and 5d
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magnetic ions. Usually such anisotropic terms are nev-
ertheless corrections to the spin Hamiltonian of Eq. (2),
whereas they may be the leading dissipative terms; we
discuss this situation in more detail, and comment on
the case of spin-conserving bath operators, in Sec. VII.

Thus the Lindblad operators, Bk, that we consider are

simply t̃†k,α, and have damping coefficient

γ̃k = γsn(ωk), (39)

while B†k has damping γs(1 + n(ωk)). We neglect a pos-
sible dependence of γs on the wave vector, k, along the
chains. While one may ask whether this approximation
constitutes a severe omission, given that energy and mo-
mentum conservation allow dissipation only for partic-
ular combinations of both, we observe that energy con-
servation as contained in Fermi’s Golden Rule does not
impose a strong constraint when one recalls that the 1D
chains are embedded in a three-dimensional (3D) crys-
tal. Thus k-dependent damping coefficients, γs(k), are

averaged over the transverse momentum, ~k⊥, and the as-
sumption that energy conservation is satisfied at some

value of ~k⊥ is fully justified. While some dependence of
γs on the longitudinal momentum, k, may indeed remain,
we proceed for the purposes of our present pedagogical
exposition with a single value of γs for clarity.

To deduce the equations of motion when AH(t) in
Eq. (34) is one of the bilinear operator combinations in
Eq. (25), we first consider the Hamiltonian parts of the
respective expressions,

[Hs, uk] = 0, (40a)

[Hs, ṽk] = 2ωkṽk, (40b)

[Hsp,s, uk] = gq(t)y′k
(
ṽ†k − ṽk

)
, (40c)

[Hsp,s, ṽk] = 2gq(t)
[
ykṽk + y′k

(
uk + 3

2

)]
. (40d)

Combining the unitary parts of Eqs. (40) with the dis-
sipative part, T2, from Eq. (36b), and taking the appro-
priate expectation values, leads to the final expressions

d

dt
uk(t) = 2gq(t)y′kwk(t)− γs[uk(t)−3n(ωk)] (41a)

d

dt
vk(t) = −2[ωk + gykq(t)]wk(t)− γsvk(t) (41b)

d

dt
wk(t) = 2[ωk + gykq(t)]vk(t)

+2gq(t)y′k
[
uk(t) + 3

2

]
− γswk(t). (41c)

In combination with Eqs. (38a)-(38c), these form the
equations of motion for the coupled spin-lattice system.
Regarding the structure of these equations, we comment
only that nph(t) [Eq. (38c)] does not have any direct ef-
fect on the evolution of the other coupled equations and
hence it appears that this variable can be neglected for
dynamical purposes, but we will continue to show nph(t)
as a valuable diagnostic of the state of the driven phonon
sector.

Regarding the solution of these equations, in order to
study the steady-state and dynamical properties of the
driven and dissipative ensemble of Fig. 1, this will be our
task in Secs. III and IV. In the majority of our calcula-
tions, we will use a periodic chain of N = 400 dimers and
hence by inversion symmetry will have 201 independent
values of k, which we will consider both separately and
in summed quantities such as Eqs. (29) and (30). The
equations of motion [Eqs. (38a)-(38c) and Eqs. (41a)-
(41c)] have no lower or upper validity cutoff in time, and
thus can be applied to discuss the formation, switching,
and relaxation of quantum spin NESS from t = 0 to ∞.

III. NESS IN THE PHONON-DRIVEN SPIN
SYSTEM

We begin by choosing input parameters that establish
quantum spin NESS, deferring a detailed analysis of the
limits to NESS formation until Sec. V. Our first aim is a
preliminary characterization of the response of NESS to
the different factors influencing their driving. To reduce
the space of possible driving parameters, in the present
analysis we restrict our considerations to resonant exci-
tation of the Einstein phonon mode, meaning that we
select the laser frequency such that ω = ω0 and hence
E(t) = a cos(ω0t). From a driving standpoint, for the
electric-field intensities we wish to study and for a gener-
ically weak spin-phonon coupling, off-resonant driving is
largely just a less efficient means, by a factor propor-
tional to [(ω − ω0)2 + (γ/2)2]−1, of exciting a response
at frequency ω. However, in systems with stronger spin-
phonon coupling, nontrivial phenomena are indeed found
by pumping and probing at frequencies ω 6= ω0. We re-
mind the reader that the minimal model of Sec. IIA was
not designed to describe driving by any of the other phys-
ical mechanisms summarized in Sec. I, all of which are
less frequency-selective than phonon driving. It is easy to
anticipate that the strongest effects of the driven phonon
on the spin system will be found when ω0 matches the
spectrum of triplon excitations.

We consider first the driven phonon system without
coupling to the spin chain, meaning with g = 0. To
represent the phonons of a typical inorganic material
we choose a damping coefficient γ = 0.02ω0. From
Eqs. (38a)–(38c) one observes that, up to a coupling
to the spin system (g) that is typically below 10%, the
phonon has the behavior of a classical damped harmonic
oscillator with a driving term. This is borne out by the
time-dependence of the variables q, p, and nph, shown in
Fig. 2. Figure 2(a) illustrates that the phonon number is
driven up to a finite average value, and the inset that it
oscillates steadily around this constant value for all later
times; this is the NESS of the driven phonon system.
Figures 2(b) and 2(c) show the corresponding behavior
of the displacement and momentum, which have a rela-
tive π/2 phase difference.

Several straightforward comments are in order. First,
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FIG. 2. Response of the Einstein phonon to a resonant driving
field. Here ω0/J = 1, a = 0.004J , γ = 0.02ω0, and g =
0. (a) Phonon number, nph(t), produced by switching on a
constant laser electric field at t = 0. The inset shows the
steady state of the driven phonon system at long times. (b)
Phonon displacement, q(t), and momentum, p(t), shown from
t = 0. (c) q(t) and p(t) at long times.

the phonon number operator in this laser-pumped steady
state has been driven to a non-equilibrium average value
of approximately 0.04. Although this value appears
small, it does constitute a macroscopic occupation of a
single mode. This driven ω0 phonon is the primary source
of lattice excitations in the system, and all other phonon
modes will have very low occupations at low tempera-
tures. In all of the considerations to follow, we maintain
the value of nph in this range, both for meaningful com-
parisons as other parameters are varied and for a realistic
account of the temperature of the steadily driven system,
as we discuss in Sec. VI.

Second, the frequency of the oscillations in the driven
phonon occupation, nph(t), is twice that of q(t) and p(t),
as expected from the number of nodes in the displace-
ment cycle; the latter pair can be taken as the base fre-
quency of the system, while the former is characteristic of

FIG. 3. Average value of the driven phonon occupation
number, nph0, in a NESS of the phonon system, displayed
as a function of a2 for various driving frequencies at fixed
γ = 0.02ω0 and γs = 0.01J . (a) No coupling to the spin
system (g = 0). (b) g = 0.1J .

2ω0, reflecting the fact that nph is essentially the sum of
the squares of q and p. Third, the characteristic timescale
for convergence of the average of nph to the phonon NESS
is 2/γ for all three quantities [Figs. 2(a) and (b)]. For
q(t) and p(t), this is to be expected from the correspond-
ing equations of motion [Eqs. (38)], which contain ex-
plicit terms with prefactor −γ/2, while for nph(t) it is
the behavior of p(t) on the right-hand side of Eq. (38c)
that induces the same convergence rate. Because the
convergence is exponential, the actual establishment of a
phonon NESS depends on the chosen accuracy criterion.

To a good approximation, the phonon number in the
NESS [inset, Fig. 2(a)] is given by nph(t) = nph0 +
nph2 cos(2ω0t); we will investigate the corrections to this
situation, which arise due to coupling to the spin system,
in Sec. IV. To study the quasi-stationary behavior of the
NESS, we focus on the mean phonon occupation, nph0.
Figure 3(a) shows that, for all driving frequencies, the
average energy in the driven phonon mode rises with the
driving power, which is proportional to the square of the
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electric-field amplitude. In a fully classical treatment of
the driven oscillator, nph0 ∝ (a/γ)2, and this result may
equally be understood from Fermi’s Golden Rule, where
the flow of energy into the system is proportional to the
square of the matrix element, and hence to a2. We dis-
cuss the topic of energy flow in detail in Sec. VI. Because
we have chosen for realism to scale γ to the phonon fre-
quency, a will also be scaled to ω0 in all of the studies to
follow, thereby maintaining a constant (a/γ)2 when ω0

is varied.

The spin system is driven by the pumped phonon
through the coupling parameter g. Given that the am-
plitude of the phonon oscillation, q(t), is proportional to
a/γ, it follows that the amplitude of the induced driv-
ing of the spin system is proportional to ga/γ. Figure 3
compares the driven phonon system with g = 0 to the
situation with a finite value of g. Here we have chosen
driving parameters suitable for the formation of NESS;
those causing the spin system to inhibit NESS formation
are the explicit focus of Sec. V. We observe in Fig. 3(b)
that a generic spin-phonon coupling, g = 0.1J , results in
only small changes being induced by the spin system rel-
ative to the isolated driven and damped phonons of most
frequencies, but that some more significant alterations
are possible at specific phonon frequencies, for reasons
we investigate next.

Turning now to the response of the driven spin system,
it is necessary first to establish the nature and character-
istic frequencies of the excitations created by the driving
phonon. Throughout the present study, we will consider
the dimerized S = 1/2 chain of Sec. IIA with an illustra-
tive coupling ratio λ = J ′/J = 1/2. Equation (16) states
that the triplon modes of this chain form one triply de-
generate branch dispersing from a value of ωmin = J/

√
2

at k = 0 to ωmax =
√

3/2J at k = π. However, by spin
conservation it is not possible for a phonon to create a sin-
gle spin excitation, and from the form of Hsp in Eq. (17)

it is evident that one phonon (b†0) couples to two spin
excitations. One therefore anticipates that the strongest
effects of the driving phonon on the spin system will be
found when ω0 is chosen to lie within the band of two-
triplon excitations, namely when 2ωmin ≤ ω0 ≤ 2ωmax

(1.414J ≤ ω0 ≤ 2.449J). Thus an origin for the special
behavior of the ω0/J = 1.5 phonon in Fig. 3(b) is appar-
ent immediately, although the detailed mechanism will
not become clear until Sec. V.

In Fig. 4(a) we choose six driving phonon frequen-
cies below, in, and above the two-triplon band, and con-
sider the amplitude of the perturbation transferred to the
triplon system by the phonon for a spin-phonon coupling
parameter g = 0.1J . We include a direct spin damping,
γs = 0.01J , which we scale to the energy of the spin sys-
tem; to reflect the observed fact that the spin degrees
of freedom are in general very weakly damped, we also
adopt a value that is significantly lower than the phonon
damping over most of the range of ω0. Figure 4(a) shows
that laser driving at any frequency does create a response
in the spin system that is qualitatively similar to that in

FIG. 4. (a) Response of the spin system, measured by nx(t)
[Eq. (30)], to driving phonon frequencies ω0/J = 0.5, 1.0, 1.5,
2.0, 2.5, and 3.0. The driving field ensures that a/γ = 0.2 and
we set g = 0.1J , γs = 0.01J . nx(t) in the spin NESS is shown
at (b) ω0/J = 0.5, (c) ω0/J = 1.5, and (d) ω0/J = 2.5, where
we compare results in the time window 1160 ≤ t ≤ 1200,
meaning after a small number of spin-system time constants,
with those at 9960 ≤ t ≤ 10000, meaning at truly long times.

the phonon system, namely that the spin occupation is
“pumped” to a new average value, about which it oscil-
lates. At constant (a/γ), the average triplon occupation,
nx0, displays a hierarchy of values as the NESS is ap-
proached. While at frequencies far from the two-triplon
band (ω0/J = 0.5, 1.0, and 3.0) this degree of driving
produces only a very weak occupation, nx0 < 0.001 [in-
set, Fig. 4(a)], for frequencies in or near the band we find
a state with nx0 ' 0.05 at ω0/J = 1.5, but also one with
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an occupation of only nx0 ' 0.0006 at the band center,
ω0/J = 2.0.

Before discussing these occupation amplitudes, we
demonstrate that each of the driven states is a true NESS.
The detailed time structure, nx(t), is shown for three se-
lected frequencies in Figs. 4(b) to 4(d). In each case we
compare the triplon occupation in a time window near
the center of Fig. 4(a) with the long-time limit, for which
we take the window 9960 ≤ t ≤ 10000; we have shifted all
the long-time traces by a phase 0 ≤ φ < 2π to start each
cycle at the same point. The most important result of
Figs. 4(b) to 4(d) is to prove that the driven model system
damped by γ and γs does indeed host spin NESS, in that
identical periodic traces are obtained for arbitrarily long
times. The subsidiary result is that, for most ω0 values,
a good approximation to the NESS is reached already
at rather short times. Because convergence is exponen-
tial, any meaningful accuracy criterion will be reached
after a single-digit number of time constants, and thus
for quantitative purposes (Sec. VI), bearing experimental
uncertainties in mind, we define a NESS to exist using a
relative criterion of 2% (corresponding to approximately
4/γs). According to this criterion, the driven state in
Fig. 4(c) is not yet a NESS, for reasons we will revisit
below, but those shown in Figs. 4(b) and 4(d) are.

As a benchmark for the meaning of the nx0 values in
Fig. 4, one may compare with the value nb0 = 0.028
deduced below Eq. (33) (Sec. IIB), which expressed the
mixing of dimer singlet and triplet states due to the quan-
tum spin fluctuations in the pure spin chain. Thus by
inspection of the average non-equilibrium triplon popu-
lations characterized by nx0, one may state that the spin
NESS established at low and high frequencies constitute
only a weak perturbation of the equilibrium state. This
result also implies that in the “Floquet” regime of fre-
quencies above the two-triplon band, the spin state is
not altered qualitatively, although it may obtain a non-
trivial phase structure. By contrast, for some frequen-
cies in and around the two-triplon band, the quantum
spin NESS can be altered significantly from the equilib-
rium state, and our results for ω0/J = 1.5 suggest that
rather modest phonon driving at certain frequencies can
create an essentially different type of triplon system. We
will characterize these qualitatively new states in detail
in Sec. IV.

Here we note that the hard-core nature of the dimer
spin states sets an absolute upper limit of nx = 1 on the
triplon occupation, and in fact such a situation would
represent the most extreme out-of-equilibrium state pos-
sible, at which many of the approximations in Sec. IIA
would no longer be valid. Anticipating the discussion of
Secs. IV and VA, we introduce an operational threshold
value of nx(t) in the driven spin state, such that our de-
scription of the spin sector will remain appropriate, and
we set this to nmax

x = 0.2.

In addition to the order-of-magnitude differences ob-
served in nx0 as a consequence of the driving frequency,
Fig. 4 invites two further remarks. First, we observe that

the time structure, nx(t), of the NESS in Figs. 4(b) to
4(d) shows a rather complex form, with a definite su-
perposition of different frequency harmonics in evidence.
We will investigate this harmonic mixing, which appears
to be strongest at the below-band frequency of Fig. 4(b),
in detail in Sec. IV. Second, the timescale over which
the spin system reaches its NESS appears to be simi-
lar at all frequencies, other than ω0/J = 0.5 and 1.5, at
t ≈ 400J−1. This value corresponds to 4-5 time constants
of the spin system (1/γs). Of the exceptional cases, at
ω0/J = 0.5, where γs = γ, the process is somewhat de-
layed by the phonon “switch-on” timescale (Fig. 2). At
ω0/J = 1.5, the process appears to be longer still, with
the NESS not yet fully established after t = 1200J−1

[Fig. 4(c)]. We will investigate the transient behavior of
the spin system at switch-on, and explain this curiously
slow convergence, in Sec. VA.

We conclude our initial survey of spin NESS in re-
sponse to a driving phonon by showing the spin-system
analog of Fig. 3. In the analysis of experiments, a key
quantity in characterizing any phenomenon is its depen-
dence on the power, or fluence, of the laser, which is
quite straightforward to measure. From elementary elec-
trodynamics, the fluence is proportional to the squared
amplitude of the laser field, and hence in Fig. 5(a) we
show the dependence on a2 of the average triplon occu-
pation, nx0, in the NESS for the six representative driv-
ing frequencies. As for the driven phonon, the depen-
dence is clearly linear over the full range of γ-normalized
a2 values for all driving frequencies, again except for
ω0/J = 0.5 and ω0/J = 1.5. The latter shows a satura-
tion as nx0 is driven towards unphysical values at very
large a, while the former shows a crossover to a depen-
dence that it as least quadratic in (a/γ)2 at strong driv-
ing. Next (Sec. IV) we discuss the dynamical properties
of the driven NESS, which will allow us to understand
the origin of this form, after which (Sec. V) we will ad-
dress the issue of limits on (a/γ)2 for spin NESS to exist
at long driving times.

In Fig. 5(b) we show the dependence of the driven
triplon occupation on the spin-phonon coupling, g, for
the same six driving frequencies. At low values of g, nx0

shows a g2 form that is directly analogous to its depen-
dence on a2. However, at high g we observe a suppression
of nx0 below its expected value, the onset of which oc-
curs at lower g for the phonons closest to resonance with
the two-triplon band, and find that the spin response can
even decrease as the coupling is increased. This onset of
more complex behavior, which is also evident in the re-
sponse of the ω0/J = 1.5 phonon in Fig. 3(b), allows us
to define a regime of “weak” (or “linear”) spin-phonon
coupling, which terminates around g = 0.08J , and a
“strong-coupling” regime. Most magnetic quantum ma-
terials do not show strong spin-phonon coupling at equi-
librium, and thus for the purposes of the present analy-
sis, which is to discuss the properties of a generic driven
quantum magnet, we will focus on the weak-coupling
regime. Hence we adopt the value g = 0.05J to be rep-



12

FIG. 5. (a) Dependence of the average triplon number, nx0, in
the NESS on the fluence, shown as (a/γ)2, at driving phonon
frequencies ω0/J = 0.5, 1.0, 1.5, 2.0, 2.5, and 3.0. The fixed
system parameters are g = 0.1J , γ = 0.02ω0, and γs = 0.01J .
Only the ω0/J = 0.5 and 1.5 phonons at very high fluences
show deviations from a linear form. (b) Dependence of nx0 on
the spin-phonon coupling constant, g, for driving phonons of
the same six frequencies at fixed a/γ = 0.2. A well-defined g2

dependence at all small couplings gives way to a suppression
of nx0 at larger g values whose onset depends on ω0.

resentative of the class of magnetic materials in which to
seek linear quantum spin NESS phenomena.

In this weak-coupling regime, one may exploit the
equivalence of a and g to define a dimensionless effec-
tive driving parameter for the spin system,

D = ga/(γJ), (42)

which can be used to simplify the analysis, and we will
employ this parameterization in Sec. V. However, when
working beyond this regime it is not possible to avoid
studying the full space of a/γ and g. Although we defer
the analysis of strong coupling to a later study, we stress
that all of the treatment in Sec. II remains fully valid
for all the g values shown in Fig. 5(b). Nevertheless, as

we will mention in Sec. VII, values of g up to 0.5J are
known in some dimerized-chain compounds, and for such
extreme spin-phonon coupling one may not exclude the
possibility of a different type of physics at equilibrium,
such as the formation of combined phonon-triplon enti-
ties; we comment only that the formalism of Sec. II would
not be appropriate for such a situation.

IV. DYNAMICAL PROPERTIES OF THE
QUANTUM SPIN NESS

We turn now to a quantitative analysis of the dynam-
ics of the spin NESS. It is already clear from Sec. III, and
particularly Fig. 4, that the superposition of frequencies
present in the steady state can be complex. For full in-
sight into the harmonic content of the spin NESS, we in-
troduce the Fourier transform (FT) of the NESS signal,
which we apply to nph(t), to the individual spin com-
ponents, uk(t) and vk(t), and to the summed quantities
nx(t) [Eq. (30)] and

V (t) =
1

N

∑
k

vk(t), (43)

which characterize respectively the average triplon oc-
cupation and the average behavior in the off-diagonal
two-triplon sector. The definition of the FT is simplied
by making use of the results in shown in Fig. 4, where
we demonstrated that NESS had been achieved at long
times. We use one cycle of the signal taken from the
time window 9960 ≤ t/J−1 ≤ 10000 to determine the
coefficients of the Fourier series

X(t) =
∑
m

Xm exp(imωt) (44)

for any quantity X appearing in a NESS driven by any
frequency ω; with this notation, any quantity with an in-
teger subscript (Xm) denotes a Fourier component, and
those with m = 0 are all real numbers. Without per-
forming a detailed analysis beyond the level of Fig. 4,
we comment that the system described by the model of
Sec. II does not generate any significant dynamics at fre-
quencies other than mω, where m is an integer. We also
comment that there are no discernible extrinsic features
arising in the FT as a consequence of the finite length of
the chain on which we perform our calculations.

Returning to the case of resonant driving (ω = ω0),
we illustrate the FT in Fig. 6 by showing in the left
panels the time structure of nph(t), nx(t), V (t), and the
single-k components uk=0(t) and uk=π(t) in the NESS of
Fig. 4 at ω0/J = 1.5; juxtaposed in the right panels are
the corresponding harmonic decompositions determined
from Eq. (44). We have chosen a relatively conventional
NESS trace [Fig. 6(c), similar to Fig. 4(c)], in which nx(t)
and uk(t) are dominated by the even Fourier components
m = 0 and 2, while V (t) [and by extension vk(t)] is dom-
inated by m = 1. This result is quite natural if one
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FIG. 6. Illustration of the quantities (a) nph(t), (c) nx(t), (e)
V (t), (g) uk=0(t), and (i) uk=π(t) in the NESS obtained with
driving parameters a/γ = 0.2 and g = 0.05J at frequency
ω0/J = 1.5 in the presence of spin damping γs = 0.01J . Pan-
els (b), (d), (f), (h), and (j) show the corresponding Fourier
decompositions.

considers the equations of motion [Eqs. (41)], taking q(t)
to be a sinusoidal driving with small amplitude and a
frequency ω0. At leading order in q(t), all components
vk(t) and wk(t) will also oscillate at this same frequency,
giving a dominant m = 1 component, while the leading-
order response in uk(t) oscillates at 2ω0 and possesses a
constant offset (a zeroth harmonic). Because nx(t) is the
sum over all uk(t), it therefore shows harmonic compo-
nents primarily at m = 0 and 2. All of these features
are evident in Figs. 6(c)-6(j). In addition, we observe
that the different k-components of uk(t) display different
harmonic contributions, and because ω0/J = 1.5 excites
triplons closer to the band minimum, the m = 0 and 2
coefficients are larger at k = 0 than at k = π; one may
verify (data not shown) that the converse is true at a
driving frequency of ω0/J = 2.5, and we consider the
k-dependence of the response in more detail below.

Given this conventional behavior of the spin NESS,
it is somewhat surprising to observe the presence of a
significant m = 1 harmonic in the phonon NESS, nph(t),
of Fig. 6(a). In fact nph0 is suppressed by 14% compared
to its g = 0 value (Fig. 2), which is a weaker version of the
effect visible for the ω0/J = 1.5 phonon in Fig. 3(b). The
presence of them = 1 harmonic is another consequence of
strong feedback from the spin system at this “resonant”
(in-band) frequency, and arises from the term g U(t)p(t)
in Eq. (38c), where U(t) oscillates primarily at 2ω0 and
p(t) at ω0. It is also clear that additional harmonics are
present in the spin NESS analyzed in Fig. 6, including

FIG. 7. Coefficients of the Fourier transforms of (a) nx(t)
and (b) V (t) in the NESS obtained with driving a/γ = 0.2
and g = 0.05J , shown as a function of the driving phonon
frequency, ω0, for damping parameters γ = 0.02ω0 and γs =
0.01J .

at higher multiples of ω0, and one may anticipate [not
least from Fig. 4(b)] that for certain frequencies they are
significant.

To investigate the effect of the frequency of the driv-
ing phonon, in Fig. 7 we show the coefficients of nx(t)
and V (t) from m = 0 to 4 as a function of ω0. Across
the full range of frequencies, nx(t) is indeed dominated
by the m = 0 and 2 coefficients [Fig. 7(a)] and V (t) by
m = 1 [Fig. 7(b)], meaning that the case study of Fig. 6,
performed for ω0/J = 1.5, is in fact well representative
of the hierarchy of coefficient values, with only one sig-
nificant exception. This is the frequency range around
ω0 = ωmin, where a clear peak appears in a number of
the harmonic components. Although frequencies around
ω0/J = 0.7 are far from a direct resonance, their sec-
ond harmonic (2ω0/J = 1.4J) coincides with the peak
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density of states at the two-triplon band minimum. In-
spection of Eqs. (41b) and (41c) reveals that oscillations
are indeed induced at 2ω0 because q(t) is multiplied by
vk(t) or wk(t). While this process appears at next-to-
leading order in q(t), it is strongly enhanced when the
second harmonic satisfies the resonance condition.

The resonantly enhanced second harmonic of wk(t) in
turn induces stronger first and third harmonic compo-
nents in uk(t), as may be read from Eq. (41b), in which
wk(t) is multiplied by q(t) where it acts as a driving term
for uk(t) at frequencies (2± 1)ω0. This type of harmonic
mixing results, for the driving we consider in Fig. 7, in the
coefficient |nx1| even exceeding |nx2| around ω0 = ωmin,
where |nx3| is also strongly enhanced. Similarly, |V2|
and |V3| are also enhanced over a wide frequency range
around ω0 = ωmin, where at its peak |V2| approaches |V1|.
Thus the resonant enhancement of the second harmonic
explains why the temporal behavior of the spin NESS
displays more and different features at below-band fre-
quencies around ω0/J = 0.5 [Fig. 4(b)] than it does for
the cases ω0/J = 1.5 [Figs. 4(c) and 6] and ω0/J = 2.5
[Fig. 4(d)].

We comment briefly on the physical meaning of the
“frequency-doubling” effects that cause the enhancement
of so many Fourier components around ω0 = ωmin. First,
it is important to stress that the response observed at
2ω0 in nx(t) is not a doubling phenomenon; it is merely
a consequence of the fact that the triplon number is an
operator square of the triplon degree of freedom, and
in this sense the behavior of uk(t), vk(t), and wk(t) is
directly analogous to that of the driven phonon vari-
ables discussed in Sec. III. By contrast, the frequency-
doubling observed between phonon driving at ω0 = ωmin

and the strong response of the spin system at 2ωmin is
a real effect, which at a “classical” level can be read di-
rectly from the equations of motion. At a quantum level,
this frequency-doubling requires the involvement of two
phonons at frequency ω0, taking part in off-shell phonon-
triplon processes that are allowed in the strongly out-of-
equilibrium system.

We stress again that all physical processes of this type
[meaning those contained in Eqs. (41)] do involve multi-
ple driving phonons, as is standard in Floquet physics.
Our treatment of the lattice system does not allow for
the creation of phonons with frequencies of 2ω0, 3ω0, or
higher due to anharmonicities in the lattice potential,
as was discussed in Refs. [24, 25]. Because the factors
enhancing multi-phonon response and harmonic mixing
(Figs. 6 and 7) are the same, it is no surprise to find that
both phenomena are strongest in the same range of fre-
quencies. Quantitatively, the strength of these subdom-
inant signals at constant a/γ is a product of powers of
g with the height of the density-of-states peak at 2ωmin,
and the enhancement can exceed an order of magnitude
at ω0 = ωmin.

Turning to the physical quantities characterizing the
NESS, we have seen in Sec. III, and see again in Fig. 7,
that the response of the spin system is very sensitively

FIG. 8. (a) Average triplon occupation, nx0, in the NESS
obtained with driving a/γ = 0.2 and g = 0.05, shown on
logarithmic axes as a function of ω0 for different values of
γs. The band-edge features become increasingly prominent
as γs decreases, as does the peak at ω0 = ωmin, but for most
other phonon frequencies nx0 is quite insensitive to the spin
damping. (b) Corresponding off-diagonal response, shown by
the quantity |V1|.

dependent on the driving frequency, with clearly differ-
ent adiabatic, antiadiabatic, and “resonant” (by which
is meant in-band) forms. However, some in-band fre-
quencies are not particularly remarkable, due to small
matrix elements or low densities of two-triplon states,
and some adiabatic frequencies clearly have rather strong
anomalous (multiphonon) enhancement. For a quantita-
tive visualization of this response, in Fig. 8(a) we show
the mean amplitude, nx0, of the driven triplon occupa-
tion and in Fig. 8(b) the amplitude of the off-diagonal
response, which we gauge using |V1|. The rising lines
indicate decreasing values of γs, which we terminate at
γs = 0.005J to avoid having nx0 exceed nmax

x = 0.2,
thereby allowing NESS formation at all frequencies for
the chosen driving parameters. At frequencies far from a
resonance with the edges of the band, nx0 is surprisingly
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FIG. 9. Wave-vector-resolved average triplon occupation, uk0,
in the NESS obtained with driving a/γ = 0.2 and g = 0.05J ,
shown as a function of the driving frequency, ω0, for k = 0,
π/4, π/2 + ε, 3π/4, and π. Black squares show the maxima,
umax
k0 , of the uk0 functions peaking at different energies across

the Brillouin zone, which defines the wave vectors kres. At all
frequencies ω0 < 2ωmin the strongest peak is found in uk=0

and at ω0 > 2ωmax in uk=π. ε = π/N is an offset from the
band center, where uk=π/2 = 0.

insensitive to γs [Fig. 8(a)]. However, as ω0 approaches
2ωmin and 2ωmax, the driven nx0 varies strongly with γs,
and the same is true around ω0 = ωmin.

As Fig. 8(b) makes clear, analogous effects are present
at ω0 = 2ωmin and 2ωmax in |V1|, which also rises to
values of order 0.1 at the lower band edge for γs = 0.005J
but is essentially independent of γs for driving frequencies
more than 0.1J outside the two-triplon band. Because we
have chosen |V1| as the off-diagonal diagnostic, and this is
a primary driving term in Eqs. (41) rather than a driven
term, there is no γs-dependence around ω0 = ωmin; this
response of the off-diagonal sector is found rather in the
coefficients |V2| and |V3| in Fig. 7. The other differences
in the frequencies of characteristic features in |V1|, most
notably the in-band minimum occurring at ω0/J = 1.7
rather than 2.0, may be traced to the leading dependence
in Eq. (41b) on the coefficient yk in Eq. (23a) as opposed
to y′k in Eq. (23b).

To understand the degree to which individual k-
components of the spin system are selected by the phonon
driving, in Fig. 9 we show uk0 over the full range of driv-
ing frequencies for selected values of k across the Brillouin
zone. For k = 0 and π, it is no surprise that the re-
spective uk0 functions peak strongly at ω0 = 2ωmin and
2ωmax, because these are the dominant available wave-
vector components; we note that there is no problem
with the fact that uk=0(t) exceeds the threshold when
the system is driven at ω0 = 2ωmin, because the triplon
occupation is determined by the average over all compo-
nents [Eq. (30)]. For driving frequencies within the two-
triplon band, one might expect a broad spin response on

the grounds that triplon pairs from a wide range of wave
vectors may contribute. However, the response at each
frequency remains dominated by the resonance condition
ω0 = 2ωk, and thus the components uk0 for k = π/4 and
3π/4 continue to show sharp peaks (which fall by one
order of magnitude over an energy range of 10% of the
band width). Thus k-selection on the basis of the driving
energy is rather accurate and it is well justified to intro-
duce a “resonant” wave vector, kres, selected by each ω0.
The black squares in Fig. 9 show the maxima, umax

k0 , of a
sequence of ukres(t) functions selected in this way.

In addition to this characteristic frequency, each uk0

shows a pronounced below-band two-phonon process, vis-
ible at one half of the peak frequency, and it is only the
act of averaging over all the k-components that disguises
these features in our figures showing nx0. For the driving
and damping parameters used in Fig. 9, no three-phonon
processes are discernible in the individual k-components.
Nevertheless, a wealth of structure is revealed by consid-
ering the FT of the different k-components on logarith-
mic axes for a range of frequencies (analogies of Fig. 6,
data not shown). The differential response of different
k-components is also clearly visible when the drive is
switched on, leading to complex envelope oscillations at
initial times, and we will touch on these phenomena in
Sec. VA. We remind the reader that the structure of our
model ensures no interactions between triplons at differ-
ent k, and so all uk(t) components evolve independently
in time.

We close our discussion of dynamical phenomena in the
NESS by commenting on the possibility of new dynamical
modes emerging in the driven system, for example where
the pumped phonon is strongly dressed by triplons. Ex-
citations with combined phononic and spin character are
known in a number of materials, including manganites
and “spin-Peierls” chains. In general these are a prop-
erty of the equilibrium system arising for strong g and, as
noted at the end of Sec. III, their inclusion would require
an extension of the present treatment. While this treat-
ment does reveal unconventional dynamical processes in
the driven system, specifically those involving multiple
phonons, it is not designed to capture the formation of
bound states of these excitations at equilibrium.

V. TRANSIENT AND RELAXATION
PROCESSES

Although the primary aim of our present study is to
discuss NESS themselves, clearly their short-time (tran-
sient) behavior on “start-up” is a key to measurement
windows, as well as to analyzing switching processes of
the type one may wish to use in logic operations. Despite
the clear presence of the timescales set by the lattice and
spin dampings, respectively 1/γ and 1/γs, we have al-
ready observed in Figs. 4(a) and 4(c) that curiously slow
convergence to a NESS can take place. To shed light
on this result, we first analyze the convergence process
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and identify a further effective timescale arising from the
driving. This allows us to illustrate the nature of con-
vergence within the spin system, given the narrow reso-
nance regimes of all the different k-components shown in
Sec. IV. We then discuss the consequences of this rela-
tionship between driving and convergence for the possi-
bilities, both theoretical and practical, that NESS may
not be reached at all because the system is driven too
strongly. Finally, the long-time behavior of the NESS in
the absence of driving has both important benchmark-
ing properties for theoretical purposes and a key role in
thermal control for experimental implementations. As
noted in Sec. IIC, the formalism we derived there has no
lower or upper cutoff in time, and thus can be applied to
address every aspect of switching on and off a quantum
spin NESS.

A. Transients at switch-on

In the introduction to NESS in our model (Sec. III), we
showed in Figs. 2(a) and 2(b) how the phonon variables
are “pumped up” on application of the electric field, with
nph(t) approaching its steady state, and thus becoming a
steady drive for the spin system, after a time of approxi-
mately 4/γ. In Fig. 4(a) we showed how the spin system
reacts to this oscillatory driving, with nx(t) approach-
ing its steady state after a time of approximately 4/γs

at most of the driving frequencies in Fig. 4(a). However,
it was clear from the nx(t) curve at ω0/J = 1.5, which
took significantly longer to reach its NESS [Fig. 4(c)],
that this reasoning alone does not explain every aspect
of the spin response at the onset of driving.

For a quantitative analysis of the convergence
timescale, we focus first on in-band driving (2ωmin ≤
ω0 ≤ 2ωmax) and consider the process by which nx(t)
is “pumped up” by the driving phonon [Fig. 4(a)]. We
simplify the analysis by using the fact that, in this range
of ω0, the driven phonon approaches its plateau of con-
stant nph0 more quickly than the spin system, because
1/γ < 1/γs. Thus we take the phonon oscillations as
sinusoidal with a fixed amplitude [Fig. 2(c)], which to
match the unit slope of Fig. 3 is given by

q(t) = 2
a

γ
sin(ω0t) = 2

DJ

g
sin(ω0t), (45)

where we reintroduce the driving parameter, D
[Eq. (42)], of the weak-coupling regime. For any selected
k-value we define the function

fk(t) = 4DJ sin(ω0t)y
′
k[uk(t) + 3/2], (46)

which appears as an inhomogeneous term in the linear
differential equation of Eq. (41c). We combine Eq. (41c)
with Eq. (41b) by defining the variable zk(t) = vk(t) +
iwk(t), which then obeys the inhomogeneous differential
equation

dzk
dt

= 2i[ωk + 2DJ sin(ω0t)yk]zk − γszk + ifk(t). (47)

A suitable primitive of the prefactor of the first term on
the right-hand side is

hk(t) = 2

∫
[ωk + 2DJyk sin(ω0t)]dt (48a)

= 2ωkt−
4DJyk
ω0

cos(ω0t), (48b)

allowing the solution of Eq. (47) to be expressed in the
form

zk(t) = ieihk(t)−γst
∫ t

0

fk(t′)e−ihk(t′)+γst
′
dt′. (49)

This is not yet an explicit expression, because the right-
hand side depends on uk(t), which remains unknown,
but can be related to zk(t) by an expression based on
Eq. (41a),

ũk(t) = uk(t)eγst (50a)

= −2iDJy′k

∫ t

0

sin(ω0t
′)[zk(t′)− z∗k(t′)]eγst

′
dt′, (50b)

where z∗(t′) denotes the complex conjugate. While this
general expression still does not represent an explicit
function, it can be used to identify the primary trends
in the response of the spin NESS.

We focus on the slowly varying component of nx(t),
and not on the rapidly oscillating ones. For this it is
sufficient to consider the slowly varying parts of each
mode occupation, uk(t), as may be verified by numer-
ical integration of Eqs. (41). Figure 9 indicates that
the dominant term will be the one at the resonant mo-
mentum, kres, which is determined from the driving fre-
quency by 2ωkres = ω0. The behavior of k-components
away from kres is discussed in App. A and the results are
summarized below. Henceforth we omit the subscript
kres. The slowly varying component of the right-hand
side of Eq. (49) is obtained by averaging over one period,
T0 = 2π/ω0, giving

1

T0

∫ T0

0

sin(ω0t)e
−ih(t)dt = J1(β)/β, (51)

in which β = 4DJy/ω0 and J1(β) is the Bessel function
of the first kind. Replacing sin(ω0t

′) exp[−ih(t′)] in the
integrand of Eq. (49) by its average taken from Eq. (51)
leads to

z(t) = i
y′

y
ω0J1(β)eih(t)−γstF (t) (52a)

with

F (t) =

∫ t

0

(
ũ(t′) + 3

2e
γst

′)
dt′, (52b)

which is a real quantity. We stress that the approxima-
tions leading to this result are well justified because the
driving oscillations are much faster than the build-up in
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the triplon expectation values [Fig. 4(a)]. By inserting
Eq. (52a) into Eq. (50b) we obtain

ũ(t) =
(2y′)2DJω0J1(β)

y
Re
[∫ t

0

sin(ω0t
′)eih(t′)F (t′)dt′

]
(53a)

=

(
y′ω0J1(β)

y

)2 ∫ t

0

F (t′)dt′, (53b)

where again we have used Eq. (51) to obtain the last
expression. Taking the second derivative yields

d2ũ

dt2
= Γ2

(
ũ(t) + 3

2e
γst
)
, (54)

in which we have defined

Γ =

∣∣∣∣y′ω0

y
J1

(
4DJy

ω0

)∣∣∣∣ . (55)

The differential equation is readily solved with the rel-
evant initial conditions, ũ(0) = 0 and dũ/dt(0) = 0, to
give the final expression for u(t) as

u(t) =
3Γ

4

(
1− e−(γs−Γ)t

γs − Γ
− 1− e−(γs+Γ)t

γs + Γ

)
. (56)

This result makes the essential feature clear immedi-
ately. At the level of the present analysis, the true con-
vergence rate is given by the quantity

γ̃s = γs − Γ, (57)

which can become arbitrarily small when Γ approaches
γs. The qualitative situation is quite intuitive: γs de-
cribes the rate of relaxation of the system back to a state
with zero triplons at zero temperature, which is the case
considered here (and discussed in Sec. VC); the phonon
driving acts in the opposite direction by creating pairs
of triplons, and thus strong driving changes the effec-
tive relaxation (damping) timescale. In fact it is clear
that Eq. (57) also specifies a regime where Γ exceeds γs,
so that triplon creation outweighs the relaxation term
and Eq. (56) specifies that the resonant triplon occupa-
tion, u(t), will undergo an exponential divergence. This
situation will be the focus of our attention in Sec. VB.
Quantitatively, in most circumstances the argument of
J1 will be non-negative and smaller than 1.84, which is
where the function has its first maximum. In this in-
terval, J1 is a monotonically increasing function of the
driving strength, D, and thus one expects that Γ can
indeed be raised to values on the order of γs.

Before computing Γ as a function of ω0, we make two
further general remarks. First, in the qualitative view
of Γ as a driving rate, or excitation rate, that com-
petes with the relaxation rate, γs, one is tempted to in-
terpret Γ in terms of Fermi’s Golden Rule. However,
a conventional application of the Golden Rule gives a
rate proportional to the square of the matrix element,

whereas in the present analysis Γ = 2DJy′ at small driv-
ing (D → 0), meaning that Γ is linearly proportional to
the driving amplitude. In more detail, the value of u(t)
in the NESS is given from the long-time limit of Eq. (56)
by 3Γ2/[2(γ2

s −Γ2)] and thus is indeed proportional to Γ2,
and hence to D2, in accordance with the Golden Rule.
However, the timescale of the transient behavior as the
system approaches the NESS is governed by a different
coherent mechanism that yields Γ ∝ D.

Second, for quantitative purposes it is necessary to con-
sider the effect of driving at frequency ω0 on the modes
at k 6= kres, meaning the action of the driving phonon
as a “detuned” pump of all other triplon modes. The
algebra of the detuned case is presented in App. A and
we summarize the results as follows. As a function of a
detuning parameter we define as

δ = 2ω − ω0, (58)

there are two possible regimes. If |δ| < Γ, it is convenient
to define the quantity

Γ̃ =
√

Γ2 − δ2, (59)

in terms of which

u(t) =
3Γ2

2(γ2
s −Γ̃2)

[
1−e−γst

(
cosh(Γ̃t) +

γs

Γ̃
sinh(Γ̃t)

)]
.

(60)

Thus from the behavior of the hyperbolic function, Γ̃
adopts the role of Γ in Eq. (57) and the relevant con-

vergence rate becomes γ̃s = γs − Γ̃. By contrast, when
|δ| > Γ, so that the detuning of the driving frequency
exceeds the driving threshold, it is convenient to define
the quantity

δ̃ =
√
δ2 − Γ2, (61)

in terms of which

u(t) =
3Γ2

2(γ2
s + δ̃2)

[
1−e−γst

(
cos(δ̃t)+

γs

δ̃
sin(δ̃t)

)]
. (62)

Because all the hyperbolic functions become trigonomet-
ric, the sole remaining exponential convergence is gov-
erned by γs, leading to the result that the convergence is
conventional. We note in this case that slow oscillations
arise at frequency δ̃, which may cause the triplon num-
ber to overshoot before it converges to its NESS limit
(example data not shown).

Although one might assume that the resonant case,
2ωk = ω0, described by Eq. (56) will provide the high-

est threshold value, making Γ̃max = Γ, the complicated
dependence of Γ on k [Eq. (55)] makes it possible that,
for a given ω0, a slightly detuned mode at k 6= kres yields

a higher Γ̃. In particular, for frequencies close to but
outside the two-triplon band, detuned driving will be of
primary importance. To capture these possible effects,

we compute Γ̃max by variation of k at each fixed ω0, and
the results are shown in Fig. 10.
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FIG. 10. Dependence of the inverse driving timescale, Γ̃max,
on the frequency, ω0, of the driving phonon, shown for four
values of the driving strength, D.

Clearly Γ̃max is finite throughout the in-band regime,
although it drops to zero at the band center (ω0 = 2J)
due to a matrix-element effect (y′k|k=π/2 = 0). Although

the dependence of Γ̃max on ω0 is both direct and indi-
rect, occurring both through proximity to the resonance
condition (2ωkres = ω0) and through the momentum-
dependence of yk and y′k, it shows an almost linear rise
with frequency towards the two band edges. Because we
consider the linear driving regime of Sec. III, it is also a

linear function of D. Importantly, Γ̃max is also finite out-
side the two-triplon band as a consequence of detuned
driving, although for the parameters in Fig. 10 it falls
rapidly (in fact over a frequency window of order DJ)
beyond the band edges. For any given D, the function

Γ̃max(ω0) indicates the values of the triplon damping, γs,
for which unconventional convergence can occur, and it
is no surprise to find that in-band frequencies near the
two band edges are the most likely candidates [Fig. 4(a)].

From Fig. 10, and specifically from the value of Γ̃max at
ω0 = 2ωmin, one may read that, at the level of our anal-
ysis, the value of γs ensuring conventional or slow con-
vergence at all frequencies for driving D = 0.01 (Sec. IV)
is approximately 0.007. We comment on the minor dis-
crepancy with our numerical findings in Fig. 8, where
NESS formation was verified at all ω0 with γs = 0.005,
in Sec. VB.

Here we make three quantitative side remarks to this

analysis. First, the effective driving timescale, Γ̃max, is
not easily read from the external driving parameters,
because it depends crucially on the phonon amplitude.
Even in the weak-coupling regime, meaning small g as de-
fined in Sec. III, we have seen that the oscillations of the
driven phonon are not entirely independent of the spin
system for in-band driving frequencies. Second, we do
not consider the additional complexity of a k-dependent
γs, although the framework developed here could be used
without alteration. Third, the effect of non-linear pro-
cesses occurring at multiples of ω0, is not included in our

FIG. 11. Creation of the NESS established with a/γ = 0.2
and g = 0.1J (driving parameter D = 0.02) for driving fre-
quency ω0/J = 1.5 and spin damping γs = 0.01J ; these are
the parameters of the green line in Fig. 4(a). (a) nph(t). (b)
nx(t). (c) uk=0. (d) uk=π. (e) ukres . Also shown is the relax-
ation of each variable when the driving is removed after 3000
time steps.

discussion of Γ and Γ̃, although it could be incorporated
by considering a very weak effective D.

To illustrate the phenomenon of slow convergence at
switch-on, we consider driving field a/γ = 0.2 and
g = 0.1J , which is the situation in Fig. 4(a). For the
in-band driving frequency ω0 = 1.5J and spin damping
γs = 0.01J , we show in Figs. 11(a) and 11(b) the driven
phonon and triplon numbers. The driving strength is the
same as that in Fig. 2(a), and thus nph(t) first rises to-
wards the plateau value of 0.04 in a time dictated by 1/γ,
but is pulled down again to an average value nph0 ' 0.02
[Fig. 3(b)] in a time dictated by 1/γ̃s. This is a direct
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reflection of the “inertia” of the spin system as it begins
to absorb some of the input phonon energy, a topic we
analyze in more detail in Sec. VIA. The values of γs and

Γ̃ (Fig. 10) place the system very close to the threshold
specified by Eq. (57), with the result that the spin NESS
[Fig. 11(b)] is reached only after approximately 1200 time
steps [Fig. 4(c)], indicating that 1/γ̃s ≈ 3/γs. For a more
quantitative understanding of the transient phenomena
in this regime, in Figs. 11(c) to 11(e) we show the k = 0-,
π-, and kres-components of uk(t). It is not a surprise to
confirm that the majority of the slow-convergence behav-
ior is indeed concentrated in ukres(t) [Fig. 11(e)], which
is both the largest and the most slowly converging com-
ponent, apparently requiring 50% longer than nx0(t) to
converge within 2% of its final value. However, it is
somewhat surprising to find that the non-resonant uk(t)
components actually rise above their NESS values (on a
timescale dictated by γs) before falling again as the driv-
ing phonon amplitude reaches its final NESS value [on
the timescale dictated by ukres(t)].

B. Existence of NESS

In Secs. III, IV, and VA, we have used parameters al-
lowing the formation of NESS in order to analyze their
response to the driving parameters and their internal dy-
namical properties. Having established this foundation,
we now discuss the crucial issue of whether a NESS can
exist at all for strong driving over long driving times.
Clearly, unlimited driving would lead to heating of the
system on a finite timescale, and we defer a discussion of
this topic until Sec. VI; here we continue to assume that
the heat sink represented in Fig. 1 maintains a steady,
low system temperature despite the injection of energy
from the laser. The focus of our present discussion is the
possibility that the lattice or spin system could be driven
so strongly that it breaks down rather than converge to
a NESS.

The integrity of the driven lattice is easy to establish.
A straightforward application of the Lindemann crite-
rion, whose details we present in App. B, leads to the
result that lattice melting due to phonon driving would
become an issue for average phonon mode occupancies
on the order of nph0 = 3. Thus the driving parameters
we consider here, and the resultant nph0 values, pose no
threat to the periodic lattice. By contrast, based on the
discussion of Sec. VA, one might expect that Eq. (57)
represents a threshold of driving strength (D) beyond
which triplon creation exceeds their relaxation and nx

should diverge exponentially, meaning that NESS forma-
tion is impossible. Here we discuss two criteria for the
loss of NESS. The first is breaching of the condition on
the triplon occupation, nx(t) < nmax

x = 0.2 (Sec. III),
beyond which the formalism of Sec. II can no longer be
applied to the spin system. The second is breaching of
the positivity of γ̃s as defined in Eq. (57).

Considering first the maximum triplon occupation,

FIG. 12. Threshold value, (a/γ)t, of the normalized laser elec-
tric field strength required to achieve the maximum steady-
state triplon occupation of nx = 0.2, shown as a function of γs
and ω0 for fixed g = 0.05J and γ = 0.02ω0. We draw atten-
tion to the 3 regimes of behavior demarcated by ω′

1 = 2ωmin

and ω1 = 2ωmax. Also marked are the frequencies ω′
2 = ωmin

and ω2 = ωmax, where unlike Fig. 8(a) no additional structure
is visible in (a/γ)t.

in Fig. 12 we show the threshold value of the driving
strength, (a/γ)t, required to drive the triplon occupa-
tion of the spin NESS above nmax

x . Red colors are chosen
to represent regions of small (a/γ)t, because this indi-
cates efficient triplon occupation, and these are found at
driving frequencies corresponding to the lower and upper
edges of the two-triplon band, intensifying as γs becomes
smaller (Sec. IV). As in Fig. 8(a), it is evident that
the system does not respond as efficiently for in-band
frequencies near the band center, and that very strong
driving is required when ω0 lies above the two-triplon
band. In contrast to Fig. 8(a), (a/γ)t does not reflect
the presence of the two-phonon response feature at and
above ω0 = ωmin, underlining that the nx0 values arising
due to these processes are indeed small.

Nevertheless, one may worry that nmax
x = 0.2 is an ar-

bitrary criterion, which would have no relevance if a more
sophisticated treatment of the spin sector were imple-
mented, and thus that the driving criterion should give a
more rigorous statement on the existence of NESS. How-
ever, here we encounter departures from the idealized an-
alytical discussion of Sec. VA. There we also remarked on
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the observation in our numerical results that the driven
phonon does not reach the average occupation, nph0, ex-
pected from Fig. 3(a) because of the effects of the spin
system that it drives. While this result was visible at
g = 0.1J for the ω0/J = 1.5 phonon in Fig. 3(b), it is not
absent in what we have called the weak-g regime, as one
may observe from the value of nph0 in Fig. 6(a). This is
one example of a feedback effect between the lattice and
spin systems, which we will encounter again in Sec. VIA.
Its consequence for the analysis in Sec. VA is that one
may no longer assume a fixed driving strength, D, but
because of this downwards renormalization one should
work with an effective driving, Deff . The deviation be-
tween D and Deff becomes larger as D is increased. We
have also encountered strong feedback effects as γs be-
comes very small and as nph0 becomes large enough to
alter the dimerization, λ, of the spin system. What all
of these feedback effects have in common is that they
are significant only when the triplon occupation is large,
meaning nx > nmax

x , and thus the constraint nmax
x = 0.2

adopts additional significance. Feedback is a complex
topic that will be important in discussing driven systems
with strong g, but lies beyond the scope of our current
exposition.

Even without a driving criterion, it is nonetheless in-
structive to ask how the breakdown of NESS occurs. We
perform only a brief and numerical examination of how
the model of Sec. II behaves when NESS formation is
precluded, for which we set γs = 0. In Fig. 13 we depict
the time-evolution of the lattice and spin systems for dif-
ferent driving frequencies with a fixed driving strength,
D = 0.01. For in-band driving at ω0/J = 1.5 and a
spin damping γs = 0.01J , Fig. 13(a) shows the NESS of
Fig. 6. However, when γs = 0, Fig. 13(b) shows how the
triplon number is driven rapidly to a regime well beyond
nmax

x , which in turn causes the phonon occupation to be-
come unstable and creates complex, aperiodic feedback
phenomena.

When ω0 lies above the two-triplon band, one may
read from the detuning discussion, and also directly from
Fig. 12, that two possibilities exist. If ω0 is sufficiently
far beyond 2ωmax, as shown in Fig. 13(c) for the case
ω0/J = 3.0, a NESS can be formed even with γs = 0.
In this case, the phonon driving cannot cause the direct
occupation of triplons and the steadily driven state of
the spin sector remains only very weakly excited. Any
feedback from the spin to the lattice sector under these
circumstances is negligible, and thus the latter is also
unaffected by the value of g. The beating envelope in
nx(t) in Fig. 13(c) is a consequence of transient signals
in individual components of uk(t) that are never damped
with γs = 0. The second possibility arises when ω0 lies
above but very close to 2ωmax, in which case the driving
phonon acts as a detuned pump of the spin response at
the upper band edge and the physics is that of Figs. 13(a)
and 13(b).

Finally, the situation for driving frequencies below the
lower two-triplon band edge is somewhat more compli-

FIG. 13. Time-dependence of the phonon number, nph(t), and
triplon number, nx(t), shown with a/γ = 0.2 and g = 0.05J
(D = 0.01). (a) When ω0/J = 1.5 and γs = 0.01J (the
parameters of Fig. 6), the system converges to a NESS on
a conventional timescale. (b) When ω0/J = 1.5 and γs = 0,
nx(t) increases rapidly beyond nmax

x , destabilizing the phonon
occupation. (c) When ω0/J = 3.0, the driving frequency lies
sufficiently far above the two-triplon band that NESS exist
even when γs = 0. (d) When ω0/J = 0.75, the driving
frequency lies well below the two-triplon band but the sec-
ond harmonic, 2ω0, lies within it. In this case, when γs = 0
the lattice approximates a NESS, but with this near-constant
driving of the spin system a NESS cannot be formed.



21

cated. Once again there is a regime of potentially diver-
gent behavior due to detuned driving when ω0 lies slightly
below 2ωmin (Fig. 12). [This phenomenon also allows
one to understand why the lower and upper two-triplon
band edges do not create extremely sharp features, or
even discontinuities, as a function of ω0 in the response
observed in Figs. 7 and 8.] At frequencies below the de-
tuned regime, the generic situation is that illustrated in
Fig. 13(d) for a frequency ω0 = 0.75J . The phonondoes
indeed approach a NESS, but this essentially steady driv-
ing does not create a spin NESS because high-order pro-
cesses always exist that pump the undamped spin system
on some potentially very long timescale. In Fig. 13(d) the
higher-order process involves the second harmonic and it
is necessary both to follow the spin dynamics to multiples
of 104 time steps and to use long chains (here N = 3000)
to verify the situation. In general, driving of the system
by a multi-phonon process can be captured by the same
analytical arguments applied for in-band frequencies, al-
though the effective value of D should be replaced by the
amplitude of the relevant higher harmonic. As a result,
the qualitative situation at arbitrary below-band frequen-
cies is that of Fig. 13(d), but quantitatively the required
timescale may extend to millions of steps. We conclude
this analysis by stressing again that NESS formation is
the most natural behavior in the model of Fig. 1 at all
frequencies for realistic values of a and γs, as shown in
Fig. 13(a), as well as throughout Sec. III.

C. Relaxation at switch-off

The process of relaxation of a system with Lindblad
damping is the recovery of thermal equilibrium in the
absence of the drive. In our analysis, the system started
at temperature T = 0 before the drive was switched
on, and thus it relaxes back to this state. The present
analysis is readily extended to finite T by including (i)
a thermal phonon occupation, (ii) a more sophisticated
treatment of the spin system [92], and (iii) the thermal
factors in the definition of the bath properties that are
already contained in the Lindblad formalism (Sec. IIC).
However, this extension would not account for the fact
that the driving introduces energy to the system, and
hence causes heating; for this we appeal to the heat sink
represented in Fig. 1, which corresponds to the cooling
apparatus in any condensed-matter experiment. We will
discuss the issues associated with the system tempera-
ture, particularly in the presence of the laser drive, more
deeply in Secs. VI and VII.

For the purposes of this subsection, in Fig. 11 we have
switched off the phonon drive after 3000 time steps. It is
clearly visible in all cases that the phonon sector [charac-
terized by nph(t)] relaxes to its equilibrium, nph = 0, over
a timescale governed by 1/γ and the spin sector [char-
acterized by nx(t)] over a timescale governed by 1/γs.
This behavior is independent of the value of ω0 at which
the system was being driven and of the amplitude of

FIG. 14. Schematic representation of energy flow into and
out of the NESS of the combined lattice and spin system.

the driving (data not shown). In this sense, relaxation
can be considered as similar to the process of “pump-
ing up” the NESS with a very low drive, so that the
system remains far from the driving-induced timescale
obtained in Sec. VA. Thus one may conclude that un-
conventional transient processes appear only when the
system is driven, and indeed driven near its band edges,
whereas relaxation dynamics are straightforward.

VI. ENERGY FLOW AND SYSTEM HEATING

A. Energy flow

Particularly valuable for both conceptual and practi-
cal purposes is to consider the energy flow through the
spin-lattice system. For a true NESS, the rate of energy
throughput should be constant from the driving to the
final stage of dissipation. Figure 14 provides a schematic
representation of the situation, which we characterize us-
ing seven separate stages of the flow process. The energy
flow (energy per unit time) is a power and is defined
to be positive in the direction of the arrows in Fig. 14.
Clearly the input power is the uptake of laser energy by
the driven phonon, part of which also drives the spin
sector through the effect of the spin-phonon coupling.
Energy absorption by the lattice, which is also the bath,
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will determine the temperature of the system; while this
is limited by possible melting of the crystal, the loss of
coherence in the quantum spin states is a much more
stringent criterion. To avoid a monotonic rise in the lat-
tice, or bath, temperature, we model the system as being
connected to a large and efficiently conducting heat sink.

To compute the different energy flows in Fig. 14, the
following two relations may be read directly from the
differential equation of Eq. (38c), which describes the
time evolution of the number of energy quanta in the
driven phonon. The energy flow from the laser into this
phonon, normalized to the number of dimers, is given by

PL,P(t) = −E(t)ω0p(t), (63)

while the energy flowing from it and directly to the bath
is given by

PP,B(t) = γω0[nph(t)− n(ω0)]. (64)

The energy flowing out of the driven phonon due to the
presence of the spin-phonon coupling is given by using
the same equation to obtain

PP,SP(t) = gω0[U(t) + V(t)]p(t). (65)

By considering energy conservation for the phonon we
obtain the sum rule

PL,P
0 = PP,SP

0 + PP,B
0 (66)

for the temporal averages of each power. We remark that
all of the powers in Fig. 14 have a temporal oscillation
in the NESS at multiples of the driving frequency, in the
same way as all the other quantites discussed in Secs. III
and IV. However, these oscillations are not very relevant
to the overall energy flow or system temperature and
we focus on their average values, which are the m = 0

harmonics of Sec. IV, so we denote them by PX,Y
0 .

Turning to the spin sector, Eq. (41a) gives the energy
flow into the spin system as

P SP,S(t) = 2gq(t)
1

N

∑
k

y′kωkwk(t). (67)

The same equation also states that the energy flow from
the spin system into the bath is given by the decay rate
of all the triplons, which yields

P S,B(t) =
γs

N

∑
k

ωk[uk(t)− 3n(ωk)]. (68)

Once again, energy conservation within the spin system
enforces the sum rule

P SP,S
0 = P S,B

0 (69)

on the time-averaged values. However, if one considers
Eq. (65) as the work done by the phonon on the spin
system and Eq. (67) as the work received by the spin
system due to the phonon, it is evident that there is

no mathematical reason for these two quantities to be
equal. To obtain the physical sum rule, it is necessary to
consider in detail the spin-phonon coupling term, Hsp in
Eqs. (1) and (21a). In the mean-field approximation, we
have by construction

1
N 〈Hsp〉(t) = gq(t)(U + V)(t), (70)

and hence the time derivative

1
N ∂t〈Hsp〉 = g[(∂tq)(U + V) + q∂t(U + V)]. (71)

Using Eqs. (38a), (41a), and (41b) to evaluate the partial
derivatives on the right-hand side yields

1
N ∂t〈Hsp〉 = gω0(U + V)p− 1

2gγq(U + V) (72a)

+ gq
1

N

∑
k

yk
[
2gqy′kwk − γs

(
uk − 3n(ωk)

)]
(72b)

− gq 1

N

∑
k

y′k[2(gqyk + ωk)wk + γsvk]. (72c)

By inspection, the first term in Eq. (72a) is PP,SP(t) and
the second term in Eq. (72c) is P SP,S(t), while the first
terms in Eqs. (72b) and (72c) cancel, as a result of which
the expression takes the form

1
N ∂t〈Hsp〉 = PP,SP(t)− P SP,S(t) (73a)

− gq(t)( 1
2γ + γs)(U + V)(t). (73b)

The second line suggests rather strongly the definition

P SP,B(t) = gq(t)( 1
2γ + γs)(U + V)(t) (74a)

= ( 1
2γ + γs)〈Hsp〉(t), (74b)

where −P SP,B(t) describes a relaxation of 〈Hsp〉(t) to-
wards zero. This quantity corresponds to a flow of energy
from the spin-phonon coupling towards the bath and its
temporal average completes the balance

PP,SP
0 = P SP,S

0 + P SP,B
0 , (75)

which results from the fact that the time-average of the
derivative ∂t〈Hsp〉 must vanish in a NESS. Thus the defi-
nition of Eq. (74a) and the additional sum rule of Eq. (75)
provide the appropriate linkage to describe energy con-
servation in the coupled spin-phonon system.

In Fig. 15 we show how the energy flows of Eqs. (63),
(64), (65), (67), (68), and (74a) depend on the driving
frequency. All of the powers we compute obey the steady-
state sum rules of Eqs. (66), (69), and (75), which de-
scribe every stage of the process. This is clearest when
considering the spin system, shown in Fig. 15(b), where

the forms of P SP,S
0 and P S,B

0 reflect the exponential in-
crease in its sensitivity to driving at frequencies near the
edges of the two-triplon band, which we have seen al-
ready in Secs. IV and VB. This is particularly true in
Fig. 12, which can in fact be understood as a graph of
energy absorption by the spin system (red colors being
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FIG. 15. Average energy flows, PX,Y
0 , through the combined

lattice and spin system depicted in Fig. 14, normalized to the
number of dimers and shown as a function of ω0 for γ = 0.02J ,
a/γ = 0.2, g = 0.05J , and γs = 0.01J . (a) Power delivered

to the driving phonon (PL,P
0 ) and power dissipated directly

to the bath from this phonon (PP,B
0 ), whose difference is the

power transferred towards the spin system from this phonon
(PP,SP

0 ). For clarity we show PX,Y
0 normalized by ω2

0 . (b)
Work done by the phonon system due to the spin system
(PP,SP

0 ) and power delivered to the spin system (P SP,S
0 ), with

their difference (PP,SP
0 ) represented on the logarithmic scale

as a modulus with a solid (dashed) line for a positive (nega-

tive) power. P SP,S
0 is identically equal to the power dissipated

by the effect of the bath on the spin system (P S,B
0 ).

high values). Although both energy flows bear a close
resemblance to Fig. 8(a), we note from the latter that
the quantity summed to obtain the net power contains
an additional weighting factor of ωk; among other effects,
this acts to make the heights of the peaks at 2ωmin and
2ωmax more symmetrical in Fig. 15(b) than in Sec. IV.

Turning to the phonon system, in Fig. 15(a) we show

the input energy flow from the laser, PL,P
0 , the energy

flowing out of the driven phonon due to the spin system,

PP,SP
0 , and the output flow directly from this phonon

to the bath, PP,B
0 . Our first observation is that, in the

regime of weak spin-phonon coupling considered here, the
majority of the laser energy flows directly to the bath,

while the quantity central to our analysis, PP,SP
0 , is al-

ways relatively small. Next we observe that it peaks
around ω0 = 2ωmin and 2ωmax, as anticipated from
Sec. IV. To illustrate the relative importance of the en-
ergy in the spin-phonon coupling term, Hsp, we show

PP,SP
0 once more as the green line in Fig. 15(b) for com-

parison with P SP,S
0 . Their difference, P SP,B, remains at

the percent level for all driving frequencies within the
two-triplon band, indicating that Hsp does not act to
store significant energy, but in essence transmits it from
the phonon to the spin system as expected physically.
At very high and very low frequencies, |P SP,B| becomes
a more significant fraction of the energy in the spin sys-
tem, but this energy is in turn a very small fraction of the
total (laser) energy flowing through the system. We take
these results as evidence that treating the spin-phonon
term as a perturbation in the mean-field approach is well
justified, and by extension that the neglect of higher spin-
phonon correlations is appropriate for the relevant driv-
ing frequencies.

We comment in passing that P SP,B can in fact have a
negative sign, implying a small energy flow from the bath
due to the spin-phonon coupling term. While this may at
first appear counterintuitive, we stress that the splitting
of the system Hamiltonian into the three parts Hp, Hs,
and Hsp [Eq. (1)] is somewhat arbitrary, and combining
Hs and Hsp would remove this feature. In total, there
is no violation of the fact that energy flows from the
combined spin-phonon system into the bath, and indeed

one may compute this net power, PP,B
0 + P SP,B

0 + P S,B
0 ,

which by the sum rules at each step of Fig. 14 matches

PL,P
0 . We do not calculate PB,H

0 , assuming simply that
it matches the power flowing into the bath.

Because PL,P
0 is the average power, or fluence, taken up

by the combined spin-lattice system, it is closely related
to quantities that might be measured in an absorption ex-
periment. To make contact with experimental methods
it is necessary to generalize our treatment. In compari-
son with a conventional pump-probe procedure, we have
considered only the pumping step, because in a NESS
there is no concept of a delay time before probing. Fur-
ther, we have considered pumping only at the frequency
of one hypothetical phonon, lying at any value of ω0,
which we have varied to probe the behavior of the spin
system. By contrast, in a real material there is only one,
or a small number of, phonon(s) coupled strongly to the
primary magnetic bonds, but it is relatively straightfor-
ward to pump the system at all frequencies ω 6= ω0. Thus
in Fig. 16 we depart from the conventions used so far in
our study and adjust the frequency of the driving laser
in order to illustrate the fluence as a function of ω for
systems with one strongly-coupled phonon, which lies at
a frequency below, in, or above the two-triplon band.

In this type of experiment it is clear that the reso-
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FIG. 16. PL,P
0 shown as a function of ω for γ = 0.02ω0,

a/γ = 0.2, g = 0.1J , and γs = 0.01J , for systems with one
phonon (coupled to the J bond as in Sec. II) at a frequency
(a) ω0/J = 1.0, (b) ω0/J = 2.0, and (c) ω0/J = 3.0.

nant phonon at ω0 dominates the absorption. However,
the fingerprints of the two-triplon band are visible as, for
the parameters chosen, 0.1%-level effects across the full
frequency range of the band. This non-resonant absorp-
tion is naturally stronger in a material where the relevant
phonon lies close to the frequencies 2ωmin and 2ωmax. We
recall that the net fluence at the phonon peak increases
with ω2

0 , and thus that pumping higher-lying phonons
may result in a stronger signal if these are suitably cou-
pled to the spin system.

However, for driving a phonon that lies very close to
a resonant frequency of the spin system, we draw at-
tention to an additional phenomenon. The blue line in
Fig. 15(a) shows that the absorption peak at ω = ω0

is actually suppressed when ω0 lies in the spin band,
most strongly so for phonons resonant with 2ωmin and
2ωmax. This “self-blocking” effect appears initially to be
counterintuitive, as one might expect stronger absorption
when more system degrees of freedom are at resonance
with the incoming laser. However, the spin system is
not coupled directly to the light, being excited only by
the driven phonon, and this situation suggests a heuristic
image of the spin system as an extra “inertia” that the
driven phonon must move. While we also used this word
Sec. VA, a rather more specific description of the physics
can be read from the prefactor of p(t) in Eq. (38c), where
one observes that the spin system acts against E(t), mak-
ing it more difficult for the phonon to draw energy from
the laser electric field by oscillating maximally. Once
this self-blocking effect is taken into account, the differ-
ence between the blue and red dashed lines in Fig. 15(a)
shows the additional absorption of the incoming fluence
actually taken up by the spin system [shown again in
more familiar form in Fig. 15(b)].

B. Heating

Both conceptually and experimentally, extended con-
tinuous driving must inevitably lead to heating, which
without remediation would destroy the coherence of the
system, and later the system itself. Throughout this work
we have assumed that the heat sink represented in Figs. 1
and 14 will be able to maintain a constant, low system
temperature despite the steady drive, and our brief anal-
ysis of relaxation to equilibrium in Sec. VC was predi-
cated on this assumption. We now turn to a quantita-
tive investigation of the reality of the situation in driven
condensed-matter systems.

We comment first on the physical meaning of the Lind-
blad bath model. Because the energy flowing directly
from the driven phonon to the bath, PP,B in Eq. (64), is
directly proportional to the phonon damping and phonon
occupation, γnph0/ω0 of the phonon energy is transferred
to the bath in every period. Thus for the parameters
we use, an energy of ω0 per dimer is dissipated after
approximately 1500 cycles; we recall that in our model
the Einstein phonon modes are present on every bond
in the system, meaning that the laser driving is a bulk
effect. To introduce some typical numbers for quantum
magnetic materials, we consider the inorganic compound
CuGeO3, which forms a quasi-1D spin-1/2 system and
has been well characterized in the context of quantum
magnetism at equilibrium. In fact CuGeO3 was studied
in detail [103, 104] due to its spin-Peierls behavior, by
which is meant that it shows a lattice transition from a
uniform to an alternating chain that is driven by reduc-
ing the energy in the magnetic sector. This type of tran-
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sition is a ground-state phenomenon not related to the
phonon driving we consider here, and our present analy-
sis would in principle be applicable to the distorted state;
however, CuGeO3 also possesses second-neighbor and in-
terchain interactions, and thus the nature of the transi-
tion has remained the subject of some debate. Although
CuGeO3 is known for its strong spin-phonon coupling,
meaning that its g value lies outside the weak-coupling
regime we consider here (for analyzing driven, out-of-
equilibrium physical properties), we borrow its thermal
parameters to analyze energy transfer and heating.

CuGeO3 has leading magnetic exchange constants of
approximately 10 meV [105], and so we use this value for
illustrative energy estimates. Taking the triplon band
width into account, we will assume that a phonon driv-
ing the system near 2ωmin also has ~ω0 = 10 meV ≈ 2.4
THz ≈ 80 cm−1. The phonon spectrum of CuGeO3 con-
tains Raman and IR-active modes over a wide range of
frequencies [106], with the lowest-lying IR-active modes
at 6.0, 11.9, and 16.4 meV. Because all of these nor-
mal modes involve some motion of all the atoms in the
unit cell, a quantitative model of the type we consider
would have J and J ′ modulated simultaneously by the
driven phonon. Proceeding with the illustrative phonon
frequency of 10 meV, from Eq. (64) we obtain for the pa-
rameters of Secs. III and IV (nph0 = 0.04 and γ = 0.02ω0)
that the energy deposited in the bath by the driving
phonon is

PP,B
0 = 1.95×10−11 Js−1 per dimer

= 5.89×1012 W per mole of spins. (76)

As noted in App. B, this value of nph0 poses no risk of
melting the lattice. However, to understand the effect of
the energy in Eq. (76) on the lattice temperature, we use
the result [107] that the low-temperature specific heat of
CuGeO3 is given approximately by the standard pure-
phonon form, C = βT 3, with prefactor β ≈ 0.3 mJ/(mol
K4). Thus the time required for the driven system to
reach a temperature Tmax in the absence of any cooling
apparatus would be

th =
β

4PP,B
0

[T 4
max − T 4

init] ≈ 1.2×10−17 [T 4
max − T 4

init]
s

K4 .

(77)
Starting at Tinit = 0 or 2 K, the time required to reach
a temperature Tmax = 20 K is th = 2.04×10−12 s. We
assume that this Tmax is a realistic estimate of the tem-
perature where one could no longer argue for quantum
coherence of spin processes taking place in a triplon band
whose minimum lies at 5 meV. The resulting th corre-
sponds to only 5 cycles of the driving phonon and is
clearly too short by a factor of several hundred when
compared with the results of Secs. III to V.

Even allowing for considerable latitude with system pa-
rameters and materials choices, it is clear that the study
of spin NESS in a quantum magnet is not realistic with-
out an efficient heat sink attached to the sample (Figs. 1

and 14). To address the effect of the heat sink, it is nec-
essary to introduce further materials parameters, specif-
ically for sample dimensions and the thermal conductiv-
ities removing heat from the sample. As will shortly be-
come clear, there are two reasons why an experiment of
the type we analyze is relevant for a very thin sample,
and thus we illustrate the heat flow for a thickness of 20
nm. Using that the mass of one mole of spins in CuGeO3

is 184 g and the density is 5.11 g cm−3 [108], a sample of
area A = 1 mm2 would be 5.54×10−10 moles of CuGeO3,
meaning from Eq. (76) that a laser power

Plaser = 3.26 kW, (78)

should be transported through this area to the heat sink.
First for the sample itself, the thermal conductivity of
CuGeO3 at low temperatures is neither constant nor
isotropic, but an approximate value for the cross-chain
(b-axis) direction is κ = 0.1 W/(K cm) [109]. For the
rate at which heat leaves the sample, we compute

Pκ = κA∆T/∆l = 9.0 kW, (79)

where we have set ∆T = Tmax−2 = 18 K as the temper-
ature difference across the sample (∆l = 20 nm). Thus
the qualitative conclusion from this crude estimate is that
the thermal conductivity of the sample can match the
power to be dissipated if a sufficiently thin film can be
prepared. In slightly more detail, an energy-flow balance
would dictate that ∆T should stabilize around 8.5 K.

This worked example illustrates that Plaser is directly
proportional to ∆l and Pκ inversely proportional, making
the film thickness a crucial parameter. Nevertheless, the
penetration depth of light into insulating matter is not
well characterized for frequencies where the light is reso-
nant with phonon excitations, and further with the spin
sector. As a consequence, a thin film is indeed the most
reliable geometry for ensuring that the bulk is uniformly
irradiated by the incident laser beam. Materials that
are difficult to prepare as thin films therefore suffer the
twin disadvantages that their thermal conductivity be-
comes a bottleneck in the energy-flow process and that
attenuation of the laser electric field inside the sample
becomes a concern. While a significantly more detailed
and materials-specific analysis is required for planning an
experiment, our considerations indicate that it it always
possible to study spin NESS in thin-film systems.

Certainly an optimized cooling system is a prerequi-
site for such studies, even at the nominally weak driving
strengths (nph0 = 0.04) we have considered in Secs. III
to V. The heat sink should be a highly conducting metal
able to remove the input power efficiently, and thus no
bottleneck should arise due to its thermal contact or the
thermal conductivity. However, metals are not known
to have a high heat capacity, and thus we estimate the
thermal energy that could be taken up by a metal block.
We consider high-quality Al (residual resistivity ratio
RRR = 30) and note first that κAl = 1 W/(K cm) [110],
which is well in excess of the value in CuGeO3. The spe-
cific heat has the form C = γAlT with γAl ≈ 0.05 J/(kg
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K2) at low temperatures [110], and hence for a block with
area 1 cm2 and thickness 5 mm (giving a mass m = 1.35
g [110]), the energy absorbed by increasing the tempera-
ture from Tinit = 2 K to Ths is

∆E = 1
2γAlm[T 2

hs − T 2
init] = 7.1×10−4 J (80)

if the temperature of the heat sink is limited to 5 K. With
an input power of 3.26 kW, the time to overheating of
the block is

tsink = 2.2×10−7 s, (81)

which corresponds to over half a million cycles of the 2.4
THz driving phonon. Thus an Al heat sink has plenty of
reserve capacity for the purposes of a NESS experiment.

Returning to the beginning of the experimental process
depicted in Figs. 1 and 14, we have assumed that the
parameter a is freely variable. The maximum electric
field in a modern THz laser source is approximately E =
3×108 Vm−1 [78]. If one assumes that the field acts on
an oxygen ion, one obtains

a = 1√
2
2eEqosc = 4.8 meV (82)

where qosc = 1.1×10−11 m when computed using MO. For
comparison, the value we have used to ensure nph = 0.04
in Secs. III to V corresponds with ~ω0 = 10 meV to
a = 0.16 meV. Thus even for predominantly reflective
surfaces, values of a suitable for probing the energy range
of J and ω0 typical in inorganic quantum magnets are
readily achievable.

In summary, experiments of the type we discuss to
establish and to control bulk quantum spin NESS are
possible in real magnetic materials. The sole caveat is
that it should be possible to prepare the system with a
thickness in the range of tens of nanometres. Even at
the rather modest phonon occupations required to ob-
serve nontrivial nonequilibrium spin states, maintaining
the spin system at a low temperature over a long period
of steady driving does pose a significant challenge to the
cooling capacity of a conventional cold finger, which nor-
mally is designed to control the system temperature with
high precision using liquid 4He coolant, rather than func-
tioning as an optimized heat sink. We assume that both
of the issues we have identified can be solved for a wide
range of quantum magnets. However, in the event of a
materials system that does not allow the driving energy
to be removed quickly enough to avoid heating, one solu-
tion may lie in altering the experimental geometry away
from laser irradiation of the entire sample, as we discuss
in more detail in Sec. VIIB.

VII. DISCUSSION

A. Approximations: Time, Coupling, and Intensity
Scales

In constructing our description of the phonon-driven
and dissipative quantum magnetic system we have ap-

pealed to a number of approximations. In fact establish-
ing the validity of the framework presents an interlinked
problem involving (i) the treatments we have adopted
for the laser, for the spin and phonon sectors, and in the
master-equation method, (ii) the fast and slow timescales
of the spin-lattice system, (iii) the coupling constants,
and (iv) the intensities or mode occupations. As exam-
ples, the magnetic interactions determine our treatment
of the dimerized chain, a relatively weak spin-lattice cou-
pling is intrinsic to our treatment of both sectors, the
timescales of the dynamics in these sectors should al-
low the Born-Markov and rotating-wave approximations
within the quantum master equation, and if mode occu-
pations are too high anharmonic or non-linear effects can
set in.

1. Triplons as Bosons

A first approximation is that we treat the triplons as
non-interacting bosons, diagonalizing them by a standard
Bogoliubov transformation. The triplons in a system of
coupled dimers are in fact hard-core bosons, because at
most one may be present at each site, and finite inter-
triplon interactions are well known when the quasipar-
ticles are adjacent to each other in real space. How-
ever, for relatively low densities (below our threshold of
nmax

x = 0.2) and weak inter-dimer coupling, λ = J ′/J ≤
0.5, approximating the triplons as interaction-free bosons
is well justified [92], as discussed in Sec. IIA. To study
the regime of larger inter-dimer coupling, the standard
Bogoliubov transformation can be replaced by a unitary
transformation controlled to high orders in λ [99–101].

2. Laser and mean-field decoupling

As noted in Sec. II, we have described the laser field
driving the optical phonon as a classical oscillating field.
In view of the fluences commonly used in experiment,
which make the quantum fluctuations of the laser field
negligible relative to its expectation value, this approxi-
mation is perfectly justified. The time-dependent mean-
field decoupling of the driven phonon and the spin system
[Eq. (21a)] is a further approximation, although we have
demonstrated in Sec. VI that it is well justified at all rele-
vant driving frequencies. From the definition of Eq. (37),
O(10−2) values nph on every bond mean that the optical
phonon is macroscopically occupied (the phonon number,
being proportional to the system size, is extensive). Thus
the relative size of the quantum fluctations is again neg-
ligible, justifying a mean-field treatment of the phononic
field. While we cannot exclude completely that more
complex physics occurs for particularly large spin-phonon
coupling, such as triplon-phonon bound-state formation,
this would need to be built first into the ground states
and then into the driven dynamics.
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3. Lindblad damping of driven phonon

The damping rate, γ, of the driven phonon should be
significantly smaller than its energy, and we have set it
to a value of order 2% of the phonon energy. The way
that γ enters, which leads to the description of the driven
phonon as a classical damped harmonic oscillator, is well
justified for the reasons stated in the preceding para-
graph. The Lindblad framework treats the relaxation
of a degree of freedom by using its established damping
term. More generally, fundamental theorems about the
Lindblad formalism [42] state that the dynamics of an
open quantum system can always be captured by decay
rates for certain Lindblad operators, which we labelled Al
in Eq. (34); at this level, the only open issue is which op-
erators in system Hamiltonian are the relevant Lindblad
operators, but this is manifestly obvious for the driven
Einsein phonon considered here.

A more physical question concerns the microscopic
mechanism of this damping. Clearly, the only bath in
an insulator at the energies we consider consists of the
optical and acoustic phonons. Due to anharmonic ef-
fects, the driven phonon can decay into two (or more)
other phonons. Compared to the single driven phonon,
the large number of other phonons in a 3D material con-
stitute a large bath, which is not strongly influenced by
the driven phonon, except in cases where the driving ex-
ceeds the heat-sink capacities in the sense of Sec. VI and
heating effects enter. The fact that the phonon lines ob-
served in inelastic scattering studies are usually rather
sharp demonstrates that the coupling of a given phonon
to the bath represented by the other phonons is weak, as
a result of which the Born approximation is fully justi-
fied.

A further required property of the bath is to obey the
Markov approximation, that its correlations should de-
cay significantly faster than the decay dynamics of the
quantum system (specified by the Hamiltonian). This
property is difficult to verify without a detailed knowl-
edge of all the phonons and their anharmonicities, but an
estimate is possible. In general the spectrum of phonons
covers the energy range from zero to the Debye energy,
~ωD, and hence 1/ωD sets the timescale for the decay of
bath correlations. The Debye energy is typically 50-100
meV (12-24 THz). For driving frequencies in the 1-10
THz regime and a decay rate, γ, which is 1/50 of these,
it is clear that the correlation time scale, 1/ωD, is indeed
shorter than the time scale 1/γ of the phonon damping
(with the possible exception of very soft materials). Fi-
nally, the rotating-wave approximation is the statement
that one may neglect fast oscillations to focus only on
the slow variables (as we did in Sec. VA) [42], and again
this is clearly justified because the oscillatory terms for
a phonon driven at ω0 are fast on the timescale of the
damping.

4. Lindblad damping of triplons

The previous arguments can be repeated to justify the
use of tk as the Lindblad operators in the spin sector.
We observed in Sec. IIC that these operators break spin
conservation, so that our treatment is relevant for sys-
tems with finite spin-orbit coupling. If this coupling is
low, spin conservation requires that one consider terms

of the type Ckq = t†ktq, which we discuss in the next
subsection (Sec. VIIB). However, weak spin-orbit cou-
pling also implies that the damping of spin excitations
due to a phononic bath is weak, and thus it is not un-
reasonable to treat any magnetic excitations, which here
are the triplons, as weakly damped oscillators. Because
the strongest effects of driving the magnetic system occur
when the driving frequency, ω0, matches the magnetic en-
ergies, 2ωk, estimates for the validity of the Born-Markov
and rotating-wave approximations [42] are the same as
for the driven phonon. We defer comments on momen-
tum conservation in Ckq to Sec. VIIB.

In summary, while the validity issue is a complex one,
all of the approximations we have made are appropriate,
and in fact for a typical condensed-matter system there
is a reasonable amount of parameter space (Sec. VI). A
broader discussion of materials and experiment may be
found in Sec. VIIC below. From a theory standpoint,
our current approach is by design the simplest avail-
able, whose explicit intent is to establish the basic phe-
nomenology, and a more detailed discussion of any given
issue may require more sophisticated methodology. One
example of this would be the use of flow-equation meth-
ods [102] to extend the regimes of validity, in the hier-
archy of timescale approximations, of the equations of
motion.

We close this part of the discussion by recalling that
the intrinsic properties of the phonon-driven spin system
lead to a number of phenomena occurring over a range
of different frequencies and times. By frequency, the key
regimes of driving are (i) in the spin band, where the re-
sponse is resonant, (ii) below the spin band, where it is
controlled by multiphonon processes, and (iii) above the
spin band, which is the Floquet regime, featuring weak
energy absorption and coherently superposed phase- and
frequency-shifted states. By time, transient phenom-
ena at switch-on occur (mostly) on the scale of the in-
verse damping (Sec. VA), drive-induced heating occurs
on a strongly ω0-dependent timescale, and relaxation
phenomena at switch-off follow the Lindblad form to re-
store the starting state (Sec. VC).

B. Bath Models and System Heating

The equations of motion whose solutions we have stud-
ied in Secs. III to V are intrinsic to one type of bath. As
stated in Sec. IIC, the physical content of the Lindblad
formalism is that the spin operators are damped by bath
operators that also appear in the spin Hamiltonian. How-
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ever, the nature of these terms must reflect the physics of
the entire system, by which is meant the manner in which
energy can be dissipated by spin and phononic processes.
Here we comment briefly, and with one specific example,
on how our analysis would be extended in the case of
more complex bath terms.

It is clear in Sec. IIC that our use of tk as the sole
type of spin-bath operator delivers the most straight-
forward equations of motion, and we have exploited the
complete independence of all k states to explore a wide
range of phenomena. However, it is also clear that damp-
ing processes involving a single tk operator are spin-non-
conserving, allowing a triplon to decay into a phonon. In
a truly 1D system, meaning a spin chain in a 1D lattice,
momentum conservation would restrict the phase space
available for such processes, raising problems with the ap-
plicability of the Lindblad formalism (which requires that
the bath contain a continuum of energy states [42]) that
would at minimum mandate a significant k-dependence of
the decay rate, γs(k). However, as explained in Sec. IIC,
such concerns are not relevant to the present analysis
because the 1D triplons are embedded in a real lattice,
meaning with 3D phonons. In this case, for each mo-
mentum, ~k, along the spin chains, there is a contin-

uum of perpendicular momenta, ~~k⊥, and hence the an-
nihilation of the triplon can occur for a wide range of
~k⊥ values, with the bath phonons that are created cov-
ering a broad energy range. This energetic continuum
will depend on k, but only weakly, which both justifies
using the Lindblad formalism and indicates a constant,
momentum-independent damping rate, γs.

Nevertheless, the conventional spin-phonon coupling in
any 3d transition-metal compound, and hence the spin-
damping effect of its phononic modes, takes the form of
Hsp in Eq. (17), and the spin-isotropic nature of this
interaction means that phonon modes cannot alter the
spin state (the number of excited triplons) directly. The
most straightforward spin-conserving bath operators ap-
propriate to this situation, based on the operators tk
in the spin-system Hamiltonian, would be of the form

Ckq = t†ktq, and for the reason given above need not be
momentum-conserving. Bath operators with the form of
Ckq manifestly act to mix wave-vector states of the sys-
tem and thus lead to a significantly more involved set of
equations of motion, with in general N2 coupled equa-
tions rather than only N . We defer a detailed analysis of
this case to a follow-up study.

As already noted, the type of bath studied in
the present work provides a meaningful description of
systems with spin-dependent phonon scattering pro-
cesses. These can arise in systems with apprecia-
ble spin-orbit coupling, meaning 4d and especially 5d
magnetic ions, where the resulting anisotropic interac-
tions include may Dzyaloshinskii-Moriya (DM), exchange
anisotropies (XXZ and XYZ), or even bond-selective in-
teractions. However, only in rather exceptional circum-
stances would these dissipative channels be stronger than
spin-conserving damping terms, and thus the considera-

tion of more advanced bath operators is required to dis-
cuss real experiments. In addition to the question of
spin conservation, it is also necessary to address the is-
sue of spin-system dimensionality, which as in the present
study may be lower than the phonon-system dimension-
ality (which is 3D), and hence to establish the level at
which to enforce conservation of momentum.

The nature of the bath reflects directly on the heating
of the system, which was discussed for the simple, spin-
non-conserving case in Sec. VI. In a more complex bath,
one may expect the redistribution of energy through the
modes of the spin system to be more efficient, although
this is in general a small contribution to the (phonon-
dominated) system temperature. Of more practical rele-
vance to the issue of quantum coherence is the fact that
a momentum-mixing bath operator would also impact
the coherence of individual k-components of the spin sys-
tem. From this standpoint one may consider “reservoir
engineering” [94], meaning influencing the form of Ckq
(for example by promoting forward-, backward-, or skew-
scattering in the bath), as an alternative to controlling
the system temperature only through the balance be-
tween the laser driving strength and the cooling appa-
ratus (Sec. VI).

With a view to maintaining quantum coherence in the
spin sector, we turn to some more general considerations
for controlling the temperature of the system. We re-
mark that in some classes of system it is possible to de-
couple the degrees of freedom in such a way as to obtain
effective electronic or spin temperatures different from
the lattice temperature. However, this is not an option
in a system of spins localized on the sites of a lattice,
where the temperature controlling the response of the
spin system is that of the lattice. Similarly, our model
is also far from the paradigm of a spatially separate sys-
tem and bath, where different effective temperatures for
the two components are related by controllable coupling
constants. Within the confines of the situation we con-
sider, we mention two approaches to temperature control,
namely system geometry and the laser driving protocol.

In the present work we have considered only bulk driv-
ing by the electric field of the laser, meaning that the Ein-
stein phonon of every bond is stimulated. In Sec. VIB we
showed that this “bulk” system should in fact be rather
thin (tens of nanometres). However, it is certainly pos-
sible that a device of µ or mm length is illuminated only
at one end, causing the phonon and spin excitations to
propagate through the equilibrium material over a dis-
tance far larger than the nonequilibrium irradiated por-
tion, and possibly larger than the penetration depth of
the light. Such a situation would require a model for spa-
tial gradients of heat, magnetization, and temperature,
which would certainly be of direct interest for switching
and transport in spintronic devices. To date some experi-
ments already present this type of situation [72], and cer-
tain theoretical discussions have also invoked the frame-
work of driving only at the ends of the system [51, 52, 95].

Finally, another means of controlling the system tem-
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perature lies in driving by repeated short pulses. In its
simplest form, this allows the system to relax back to
its cold state by the action of the heat sink (Sec. VC),
although the required pulse separation would be a very
slow timescale (Sec. VIB). At a more sophisticated level,
pulsed driving processes allow new degrees of control over
the system, including the imposition of dynamics on new
timescales quite separate from the driving frequency, as
in the case of Floquet engineering of the electronic band
structure [34]. While certain types of driving protocol
have already been proposed for controlling small num-
bers of quantum spins [4] and ensembles of effectively
S = 1/2 quantum dots [56, 57], for now we leave open
the application of these ideas to the many-body spin sys-
tems considered here.

C. Experiment

As stated in Sec. I, the last decade has seen an enor-
mous expansion in the technological capabilities of laser
sources, both in ultrafast timescales and in high intensi-
ties, with applications both for pump-probe experiments
and for steady driving. Where in Sec. I the focus of our
remarks was the new physics made possible by these new
sources, it is also worth commenting on the new tech-
nologies that have led to such growth in the application
of lasers to condensed matter. For decades this was lim-
ited by the “Terahertz gap,” the problem that light at
the energies of most interest to the intrinsic processes in
condensed matter was neither easily generated nor eas-
ily guided or focused, but was easily absorbed and scat-
tered. Starting with the initial compilation of methods
making it possible to engineer transient states of con-
densed matter [96], further technological solutions have
been developed and applied to frontier science challenges
[97]. The best review of terahertz enabling technologies,
both for generation and for beam control, may be found
in Ref. [98]. On the generation side, one has not only
new free-electron laser sources but also a range of new
“table-top” techniques, including plasma-based sources
and high-harmonic generation, many made possible by
exploiting new materials. On the control side, beam
guiding, transport, focusing, and diagnostics have also
benefited strongly from the optical properties of certain
materials. Together this progress has led to a qualitative
expansion in the type of physics that can be probed, or
indeed created, in condensed matter, and the aim of the
present study is to extend these capabilities to quantum
magnetic materials.

For the purposes of this preliminary analysis, we have
focused on well-dimerized (and thus robustly gapped)
quantum spin chains, meaning that the system we con-
sider does not, either at equilibrium or in its driven state,
approach a phase transition to a magnetically ordered,
to a gapless quantum disordered, or to any other differ-
ent magnetic state. In a 1D system with only Heisen-
berg spin interactions, the primary requirement is sim-

ply that the spin gap (the one-triplon band minimum,
ωmin = ωk=0) does not close, including on laser driving of
a selected phonon. An excellent example of an inorganic
compound realizing quasi-1D alternating S = 1/2 spin
chains is Cu(NO3)2 [111], which is thought to have no
anisotropy, negligible second-neighbor interactions, and
a gap of approximately 0.38 meV (compared to a band
width of 0.12 meV, yielding λ = 0.14). This material
also shows no evidence of strong phonon coupling to the
spin excitations [111], which indicates that it belongs in
the weak-coupling regime we study. However, the mag-
netic energy scales in Cu(NO3)2 are lower by a factor of
20 than the test-case numbers presented in Sec. VI, pre-
senting a different balance of slower heating rates, slower
convergence to NESS, and altered damping ratios.

A recently discovered class of alternating spin-chain
materials includes AgVOAsO4 [112] and NaVOAsO4

[113], which have magnetic coupling constants in the
5 meV range. Although here λ is at the upper valid-
ity limit of our present simple treatment of the spin
chain (Sec. IIA), as noted earlier, more sophisticated ap-
proaches are available for this purpose and no part of
the equations of motion (Sec. IIC) is invalidated. An-
other class of candidate systems is the set of metal-
organic TTF compounds [114, 115], and even purely or-
ganic TCNQ compounds [116], in which the spin-Peierls
transition has been observed and the distorted (low-
temperature) state is an alternating spin chain. A further
category of interest in quantum magnetism has been al-
ternating antiferromagnetic-ferromagnetic (AF-FM) S =
1/2 chains, primarily because of a tendency to Haldane
physics in the strong FM regime, but in the remain-
der of the parameter space, which includes the materials
Na3Cu2SbO6 (λ = −0.79) [117] and (CH3)2NH2CuCl3
(λ = −0.92) [118], our analysis remains fully applicable
regardless of the signs of the interactions.

In addition to CuGeO3, which we introduced in Sec. VI
to consider its thermal properties, (VO)2P2O7 [119, 120]
constitutes a further system that in fact realizes al-
ternating S = 1/2 spin chains with significant inter-
chain interactions. However, the anomalously large g
values that made both of these compounds attractive
for equilibrium experiments in quantum magnetism do
place them outside the weak-coupling regime we ana-
lyze here. In a later study we will extend our considera-
tions to the regime of strong spin-phonon coupling, which
is also described by the equations of motion derived in
Sec. II. Here one may anticipate nonlinear driving effects
(Figs. 3 and 5), which could allow experiments at lower
laser intensities, stronger mixing of frequency harmonics
(Figs. 6 and 7), stronger below-band multi-phonon pro-
cesses (Fig. 12), more delicate driving-induced anomalous
convergence (Sec. VA), and stronger transfer of spectral
weight between different frequencies (Fig. 16).

Returning to the spin sector alone, our present formal-
ism is readily extended to alternating chains with differ-
ent gap-to-bandwidth ratios, although an accurate treat-
ment of systems with small gaps would require a more
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numerical approach for the systematic summation of per-
turbative terms to high orders, as in the method of con-
tinuous unitary transformations (CUTs) [99–101]. Other
1D gapped spin systems to which our considerations are
immediately applicable include even-leg S = 1/2 spin
ladders and Haldane (S = 1) chains. A parallel class
of systems that could be treated by very similar con-
siderations would be that of magnetically ordered quan-
tum spin systems, which includes many 2D and 3D ma-
terials of all spin quantum numbers; this would involve
the straightforward adoption of a (constrained) spin-wave
framework to describe the spin sector. Ordered mag-
netic systems also provide the simplest cases in which
to analyze the effects of anisotropic magnetic interac-
tions, such as single-ion, DM, XXZ, and other terms,
which have recently attracted intensive interest with a
view to creating topological magnons [58–61], vortices
[63], skyrmions [64], and other means of encoding pro-
tected quantum information [2]. More complex spin sec-
tors include anisotropic systems such as Ising and XY
models without magnetic order, gapless spin chains, and
gapped or gapless non-ordered states in higher dimen-
sions, meaning in the former category Z2 quantum spin
liquids and in the latter algebraic spin liquids and quan-
tum critical systems. Here the challenge is not only to
find a suitable framework in which to describe the com-
plex correlated spin sector, especially if this is changed
by using laser driving to push it across a magnetic quan-
tum phase transition, but also to deal with the situation
where the excitations of the spin system extend to arbi-
trarily low energies, thus interacting strongly with even
the acoustic phonons.

In addition to an adequate treatment of the spin sec-
tor, the quantitative analysis of real materials will require
accurate lattice dynamics calculations to give the phonon
modes and frequencies, and the corresponding oscillator
strengths. The normal modes can be used to estimate
spin-phonon coupling strengths and the frequencies to
choose the laser excitation parameters. Typically, the
phonon spectrum in inorganic materials extends up to the
Debye energy, which rarely exceeds 100 meV (24 THz),
while a lower limit for optical phonons is perhaps 5-10
meV. Spin energy scales can extend up to a one-magnon
band maximum of 300 meV (70 THz) in cuprates, and
have no lower limit. There is no established relationship
between the two, as materials with predominantly high-
energy phonon modes can have a very low-energy spin
sector, and those with high spin energies need have no
special phonon properties. However, metal-organic sys-
tems do tend to have a softer phonon sector, due to the
nature of the interactions between weakly polar organic
groups, and very low magnetic energies due to the long
paths between magnetic ions. Thus it is safe to say that
a very wide range of frequency scales and phononic mod-
ulation possibilities is available for planning experiments
of the type we discuss.

Finally, it is also necessary to consider how to measure
all of the physical quantities characterizing the spin sys-

tem using a terahertz laser. In Sec. VIA we presented
the example of absorption of the incident laser fluence
(Fig. 16), while further quantities that are also functions
of frequency and temperature include reflection, polariza-
tion rotation (due to birefringence changes or the Faraday
effect), and the two-magnon response. It is not generally
possible to probe the wave-vector response of the spin
sector, except in special cases possessing a strong cou-
pling to one well-characterized “probe phonon” mode.
In most such measurements, the signal arising due to the
spin system will be weak in comparison with the many
other contributions to the total response of a sample, and
here we point to the strong frequency-selectivity allowed
by the phonon-coupled model, and visible in Figs. 15 and
16, as the primary means of ensuring that the spin signal
is detectable.

VIII. SUMMARY

We have investigated the nonequilibrium steady quan-
tum mechanical states of a lattice spin system under the
continuous, coherent laser excitation of phonons at a sin-
gle frequency and in the presence of a realistic dissipa-
tion. In real materials, this dissipation is dominated by
the many phonons of the lattice system, and its inclusion
at the operator level, which we effect within the Lind-
blad formalism, goes beyond much of the work on driven
many-body systems presently in the literature. We have
focused for pedagogical purposes on a simple example of a
gapped quantum mechanical spin system, the dimerized
spin chain, and a simple example of a driving phonon,
a bulk Einstein mode, but stress that the framework we
have established can be extended, with additional nu-
merics, to fully realistic examples of both systems. By
establishing and solving the quantum master equations
governing the time-evolution of this model system, we
have demonstrated the establishment of quantum spin
NESS and investigated their dependence on all of the pa-
rameters describing the lattice and spin sectors, including
their driving, dissipation, and coupling.

We have performed a detailed analysis of the inter-
nal dynamics of the driven quantum spin NESS, and of
the accompanying behavior of the driven lattice system.
We find that the NESS amplitude shows a dramatic sen-
sitivity to the frequency of the driving phonon, peaking
strongly at the upper and lower edges of the band of two-
triplon excitations. Beyond the frequency, we character-
ize this response as a function of the driving electric field,
the lattice and spin damping coefficients, and the spin-
phonon coupling, which causes a rapid onset of strong
mutual feedback between sectors. We use the Fourier
transform to analyze the components of the spin NESS
appearing at different harmonics of the driving frequency
even in the weak-coupling regime. By investigating the
k-resolved response of the spin system we demonstrate
that resonance in frequency is also strongly k-selective.

Our equations of motion are valid at all times and we
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use them to study both the transient behavior of the
system when driving is switched on and the relaxation
to equilibrium when the driving is removed. At switch-
on we find a complex phenomenology where even the
weakly-coupled system can be driven close to thresholds,
in triplon occupation and rate of excitation, at which its
characteristic timescales are renormalized strongly. We
have computed the energy flow through the composite
spin-lattice system, from its arrival as the driving laser
light to its dissipative loss. The energy offers a new win-
dow on frequency-sensitivity, allows us to gauge the self-
consistency of our analysis by applying sum rules, and
shows an unexpected “self-blocking” effect, whereby the
spin system suppresses the uptake of laser power near
resonance. Because the Lindblad formalism gives direct
access to the energy flow into the bath, we have used
our framework to estimate heating timescales and hence
the practical requirements, in the form of driving lim-
its, sample geometry, and cooling capacity, of a NESS
experiment in a real material.

The framework we establish makes it possible to per-
form quantitative investigations of many different types
of spin system, including those with magnetic order, with
small or vanishing gaps, with topological properties, or
with nontrivial quantum entanglement. It also enables
the analysis of more complex types of bath, most notably
ones describing spin-conserving dissipative processes, and
hence the modelling of real materials with laser-driven
phonons. With appropriate treatment of spatial gradi-
ents (in driving, magnetization, and temperature), one
may also model real device geometries, leading to spin-
tronic applications where the challenge is to preserve
quantum coherence over the timescale required for read-
ing and processing the quantum information encoded in
the spin sector.
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Appendix A: Detuned Triplon Pair Creation

In Sec. VA we analyzed the gradual change of the diag-
onal triplon components, uk(t), in the resonant case, by
which is meant for ω0 = 2ωkres . Henceforth we omit the
subscript k. If this resonance condition is not met, we
state that there is a finite detuning, δ = 2ω−ω0. In this
appendix we present the differences between the deriva-

tions for the detuned and resonant cases (Sec. VA). In
the detuned case, Eq. (52a) still holds, but the definition
of Eq. (52b) changes to

F (t) =

∫ t

0

(
ũ(t′) + 3

2e
γst

′)
e−iδt

′
dt′, (A1)

which implies that F (t) is no longer real, but complex.
Equation (53a) still holds, but Eq. (53b) is modified to

ũ(t) = eγstu(t) = Γ2 Re

[∫ t

0

eiδt
′
F (t′)dt′

]
, (A2)

with Γ as defined in Eq. (55). We stress that the validity
of replacing the rapidly oscillating terms by their average,
as performed in Eq. (51), is justified if |δ| � ω0. If the
detuning becomes too large, the deviations from the full
result may become large, but comparing our analytical
approximation to the results of a numerical integration
revealed very good agreement over a broad range of pa-
rameter space.

Equation (A2) does not lead to a closed differential
equation by double differentiation because of the re-
striction caused by taking the real part. It is neces-
sary instead to take three derivatives of ũ(t) and define
x(t) = dũ/dt(t), for which we obtain

d2x

dt2
(t) = (Γ2 − δ2)x(t) + 3

2Γ2γse
γst. (A3)

Clearly, the nature of the solutions to this differential
equation depends crucially on the sign of the prefactor,
Γ2−δ2. As in the resonant case (Sec. VA), if it is positive
then exponentially increasing and decreasing functions
appear, whereas if it is negative then oscillating trigono-
metric functions appear. Solving Eq. (A3) for the initial
conditions x(0) = 0 and dx/dt(0) = 3Γ2/2 and then in-
tegrating the resulting expression yields ũ(t), from which
the expressions given for u(t) in Eqs. (60) and (62) follow.

Appendix B: Lindemann Criterion

Breakdown of the lattice is governed by the Linde-
mann criterion [121], which dates to Lindemann’s intro-
duction of the concept that a solid will begin to melt
when 〈q2〉 ≈ ρ2a2

0, meaning when the fluctuations, q,
of its atoms around their equilibrium positions exceed a
fraction, ρ, of the interatomic distance, a0. While Lin-
demann used the concept to relate 〈q2〉 to the melting
temperature, Tm, for our purposes it is sufficient to re-
late 〈q2〉 to nph.

It has been established for a broad range of condensed-
matter systems that Lindemann’s proposed relation
holds, with the value of ρ being in the range 0.1-0.15 [122–
124]. To relate this result with nph, for a local phononic
oscillation the potential energy is half of the total energy,

1
2Mω2

0〈q2〉 = 1
2~ω0(nph + 1

2 ), (B1)
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which implies

〈q2〉
q2
osc

= nph + 1
2 , (B2)

where qosc is the oscillator length,
√
~/(Mω0). The Born-

Oppenheimer approximation [125] implies that the char-
acteristic lengthscale of the atomic motion, qosc, is a frac-
tion (me/M)1/4 of the electronic lengthscale, which we
identify crudely with a0; here me is the mass of an elec-
tron and M the mass of the oscillating atom. Thus one
obtains from Eq. (B2) that

〈q2〉
a2

0

√
M

me
= nph + 1

2 , (B3)

and hence

nph + 1
2 ≈ ρ

2

√
M

me
. (B4)

Using the mass of the oxygen atom as a generic value for
M , and ρ2 ≈ 0.02 for the Lindemann ratio, we conclude
that the phonon number should not exceed

nph ≈ 3 (B5)

if the sample is to remain solid. Here nph is the to-
tal number per atom of phonons polarized in one direc-
tion and the conventional Lindemann criterion applies
because we assume the chains to be embedded in a 3D
crystal (no low-dimensional instability need be consid-
ered). From the estimates made above, it is clear that
the Lindemann threshold is in no way threatened by the
driven phonon occupations we consider, and thus that
the integrity of the periodic lattice is not an issue.
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