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We investigate the effect of a metal plate on the variable range hopping (VRH) conductivity of a
two dimensional electron-glass (EG) system. The VRH conductivity is known to have a stretched
exponential dependence on temperature, with an exponent p that depends on the shape of the EG’s
single particle density of states (DOS). For constant DOS p = 1/3 and for linear DOS p = 1/2,
also known as Mott’s and Efros-Shklovskii’s VRH respectively. The presence of the plate causes
two effects on the EG system, static and dynamic. The well known static effect accounts for the
additional screening of the Coulomb repulsion in the EG and for the partial filling of the Coulomb
gap in the DOS. This in turn causes an increase of the conductivity at very low temperatures. Here
we investigate the complementary dynamical effect, which is related to the polaronic phenomena.
Our main result is the dynamical suppression of the standard phonon assisted hopping and, thus,
suppression of the conductivity in a much wider range of temperatures as compared to the low
temperature static effect. The relation to experiments is discussed.

I. INTRODUCTION

Disordered systems have attracted much attention
since Anderson’s seminal work on localization transi-
tion [1]. Deep in the localized phase transport is dom-
inated by phonon assisted hopping. The characteristic
behavior is the well known variable rang hopping (VRH)
with the conductivity showing the stretched exponential
dependence on temperature:

σ ∝ e−(T0/T )p . (1)

Neglecting electron-electron interaction Mott [2] ob-
tained the above expression for the conductivity with
T0 = (g0ξ

D)−1, where ξ is the localization length, g0

is the constant single particle density of states (DOS)
in vicinity of the Fermi energy, D is the dimension of
the system, and p = 1/(D+ 1). Further, considering the
Coulomb interactions Efros and Shklovskii [3] (ES) found
that the DOS has a soft gap (Coulomb gap) around the
Fermi energy in the form of g(E) ∝ |E|D−1 and obtained
p = 1/2 for all dimensions, with T0 = e2/κξ, where κ is
the dielectric constant in natural units. Furthermore, a
crossover as a function of decreasing temperature from
Mott’s to ES VRH conductivity was found theoretically
and experimentally [4–7]. The crossover is caused mostly
by the formation of the Coulomb gap.

The effect of long-range interactions on the VRH con-
ductivity has been further investigated by placing a metal
layer in proximity to the disordered sample [8–13], and
similarly in quantum dot arrays [14, 15]. The metal-
lic plate is separated from the disordered sample by an
insulating layer, whose thickness, d, is usually of the or-
der of the typical nearest hopping distance in the dis-
ordered sample. The main effect of the metallic plate
is considered to be enhanced screening in the disordered
sample. For large distances (r � d) the screened in-
teractions acquire a dipole form (∼ 1/r3), giving rise
to an approximately constant DOS at the center of the

Coulomb gap [13, 16]. Under these circumstances one
should expect a reentrance of the Mott regime and an
enhanced conductivity at low temperatures, which was
indeed predicted theoretically [16] and measured exper-
imentally [12, 14, 15]. We denote this effect as static
effect.

Yet, other experiments [8, 11] in different materials
show an opposite effect, where in the temperature range
available for the experiment the metal plate induces: (1)
an overall reduction in the conductivity and (2) activa-
tion (p = 1) functional dependence of the conductivity
at lowest available temperatures. An explanation for the
activation behaviour in certain temperature regimes was
provided by Larkin and Khmelnitskii [17] by an accurate
account for the length-dependent screening.

In this paper we investigate the complementary dy-
namical effect of the electrons in the metallic layer on
the VRH conductivity in the EG layer. This is a po-
laronic effect related to the dynamical rearrangement of
electrons in the metallic layer resulted from the hopping
of an electron in EG.

The essence of this effect can easily be understood in
a hypothetical situation of a metallic plate being kept at
zero temperature whereas the EG and the phonons have
a finite temperature. To each charge configuration of the
EG there corresponds a ground state of the electrons in
the metallic plate. These states are mostly orthogonal to
each other. Their energies are fully accounted in the ef-
fect of static screening. Directly after a hopping event of
an electron in the EG, the electrons in the metallic plate
are no longer in their ground state (the new ground state
is orthogonal to the old one). Thus extra energy has to be
supplied by the thermal phonons to the electrons in the
metallic plate on top of the activation energy provided
to the hopping electron in the EG. This reduces the con-
ductivity in the EG. We show that this effect dominates
even if the metallic plate has the same temperature as
the EG and the phonons.
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We describe the system as an electron-glass coupled to
two uncorrelated environments: phonons, and electrons
in the metallic layer. The phonons are responsible for
the original VRH mechanism (within the single-phonon
approximation), and the electrons in the metallic plate
both statically screen the Coulomb interaction and dy-
namically dress the tunneling amplitude. In principle
the electronic environment could also provide the activa-
tion energy for VRH, yet this mechanism turns out to be
subdominant.

We use a field theoretical approach in order to obtain
an effective action for the EG. We extract the part of
the effective action responsible for the static screening
and combine it with the original unscreened action of
the EG. We then derive the conductivity to leading or-
der in the dynamically dressed tunneling amplitude. We
find that the polaronic effect has an approximated loga-
rithmic dependence on hopping distance (for r > d where
r is the hopping distance) and, therefore, it practically
does not change the exponent p. This is in contrast to
the static effect as discussed above. Yet, the polaronic
dressing suppresses the tunneling amplitude and thus the
conductivity. We find a wide temperature regime where
the polaronic effect is dominant compared to the static
effect, resulting in an overall reduction of the conductiv-
ity.

The paper is organized as follows. In Sec II we present
the main ideas and the results of the paper. In Sec. III we
derive the effective action that consists of the EG model
coupled to bosonic field that represents both the phonon
displacement field in the EG system and the potential
field of the metal. By solving the saddle-point equations
we show how the EG-metal interaction is screened. This
is crucial for setting the right scale of the effective inter-
action between the EG system and the electronic bath.
In Sec. IV we obtain a general expression for the conduc-
tance between two localized states in the EG system. In
Sec. IV A we further consider a more realistic scenario of
a diffusive metallic plate. Finally, in Sec. IV B we present
a regime where the polaronic effect is dominant as com-
pared to the static effect and demonstrate the reduction
in conductivity as a function of temperature. We then
discuss our results in view of experimental data. Finally,
we conclude in Sec. V.

II. MAIN RESULTS

We first review here our main results. The technical
details are given in the following chapters. The physical
picture described in Sec. I is fully contained is the conduc-
tance σij between two localized EG sites i and j, which
is needed to evaluate the conductivity of the EG within
the resistor network model. The conductance takes the
form

σij = 2πβ|tij |2ni(1− nj)P (Eij , rij) . (2)

Here β is the inverse temperature, tij is the tunneling am-
plitude between sites i and j, ni is the Fermi occupation
on site i with energy Ei, Eij = Ei − Ej , rij = ri − rj is
the distance between sites i and j and P (Eij , rij) is the
probability per energy for the EG system to emit (ab-
sorb) energy Eij to (from) the phononic and electronic
environments for Eij > 0 (Eij < 0). The static screen-
ing by the metallic plate is already taken into account
in the energies Ei and, most importantly, in their den-
sity of states. The rij dependence originates from the
interaction of the extended phononic and electronic en-
vironments with the localized EG. The rij dependence is
crucial for the polaronic influence on the VRH hopping
as further explained in Sec. IV. The function P (Eij , rij)
is given by a convolution of the contributions of the two
environments:

P (E, r) =

∫ ∞
−∞

dE′P el(E′, r)P ph(E − E′, r) , (3)

where P el and P ph represent the electronic and phononic
environments respectively, the energies and distances are
represented in a continuous form, rij → r and Eij →
E = EI −EF . Eq. (3) emphasizes the distribution of the
energy emitted (absorbed) by the EG between the two
environments. The main effect discussed in this paper
relates to the regime in which the activated tunneling
takes place, i.e., E < 0, |E| > T . Due to its Ohmic spec-
trum the distribution P el is concentrated at low positive
values (with respect to the cutoff frequency of the elec-
tronic environment) of E′ [see Eq. (55)]. This ”forces”
the phonons to provide extra activation energy to the
electron-hole (e-h) excitations in the metal (see discus-
sion in Appendix IV C). This requires phonons of higher
frequency, whose thermal occupation is smaller, which
results in a lower conductivity.

The polaronic effect results in a total reduction of the
conductivity obtained in Eq. (45) and Eq. (55) and plot-
ted in Fig. 3. The apparent weaker temperature depen-
dence than found experimentally is mainly a consequence
of the strong screening in the metal. In Fig. 4 we show
that by assuming smaller screening and thus larger ef-
fective interaction between the EG electrons the metal
electrons, a good fit to experiment is obtained.

III. THE MODEL AND DERIVATION OF THE
EFFECTIVE ACTION

A. The model

We consider a 2D EG layer coupled to phonons and
to electrons in a metal layer separated by an insulator of
width d, as illustrated in Fig. 1. The Hamiltonian of the
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FIG. 1. Illustration of the system.

system reads

H =
∑
i

εini +
1

2

∑
i6=j

uijninj +
1

2

∑
i 6=j

c†i tijcj

+
∑
q

ωqa
†
qaq +

∑
i,q

giq
(
a†q + a−q

)
ni

+
∑
k

Ekf
†
kfk +

1

2

∑
q

V (2)
q ρqρ−q +

∑
i,q,Ω

V
(1)
qi ρqni.

(4)

Here ci (c†i ) are the operators annihilating (creating) an

electron in the EG at the localized site i, ni ≡ c†i ci. The
on-site energies εi are randomly distributed within the
interval [−W,W ], and tij ∝ e−rij/ξ, typically small com-
pared to W , represents the tunneling of electrons be-
tween the localized sites i and j. Here ξ is the localiza-
tion length [18]. The Coulomb interaction between sites

i and j is given by uij = e2

κrij
, where κ is the dielectric

constant. The operators fk and f†k stand for the con-
duction electrons in the metallic plate and Ek is the free
electron energy with wave number k. The electron den-

sity in the metallic plate is given by ρq =
∑
k f
†
kfk−q.

The bare Coulomb interaction in the metal is given by

V
(2)
q = 2πe2

L2q . The Coulomb coupling between the EG

and the metallic plate is described by:

V
(1)
qi =

2πe2

κL2q
e−iqri−qd = V (1)

q e−iqri , (5)

where ri is the location of site i in the two dimensional
EG, and d is the distance between the metal layer and the
EG system which we denote also as the layer separation.
Finally, aq and a†q describe phonons and gqi = gqe

−iqri is
the electron-phonon (el-ph) interaction in the deforma-

tion potential approximation, |gq| ∝
√
|q|.

Starting from the microscopic model we wish to derive
an effective action for the EG degrees of freedom. We
consider the partition function Z =

∫
DΨ̄DΨ exp[−S],

where Ψ represents symbolically all the fermionic and
bosonic fields in the problem. The action S can be ob-
tained by performing the Legendre transform,[19, 20],

S[Ψ̄,Ψ] =

∫ 1

0

dτ
[
Ψ̄∂τΨ +H(Ψ̄,Ψ)

]
. (6)

Here and throughout the paper ~ = 1, kB = 1, the en-
ergy (frequency) is measured in units of temperature and
the imaginary time in units of inverse temperature. The
proper units are reinstalled in the final results.

The microscopic action is composed of four parts:

S = SEG + St + Sph + Sel. (7)

Here SEG describes the on-site energies and the Coulomb
interaction in the EG, whereas St describes tunneling in
the EG:

SEG =
∑
i,ω

c̄i,ω(−iω + εi)ci,ω +
1

2

∑
i 6=j,Ω

uij n̄i,Ωnj,Ω ,

St =
1

2

∑
i 6=j,ω

c̄i,ωtijcj,ω .

(8)

The Matsubara Fourier transforms are defined as
ci,ω =

∫ 1

0
dτ eiωτ ci(τ) and ni,Ω =

∫ 1

0
dτ eiΩτni(τ) =∑

ω c̄i,ωci,ω−Ω, where ω denotes the fermionic Matsub-
ara frequencies (2π + 1)n and Ω are the bosonic ones
Ω = 2πm.

The phonons and their coupling to the EG are de-
scribed by:

Sph =
∑
q,Ω

āq,Ω(−iΩ + ωq)aq,Ω

+
∑
i,q,Ω

giq (āq,−Ω + a−q,Ω)ni,Ω .
(9)

Since phonons can propagate also through the insula-
tor and the substrate we consider a three dimensional
phonon DOS. The two dimensional metal layer is repre-
sented by the Jellium model:

Sel =
∑
k,ω

f̄k,ω(−iω + Ek)fk,ω +
1

2

∑
q,Ω

V (2)
q ρ̄q,Ωρq,Ω

+
∑
i,q,Ω

V
(1)
qi ρ̄q,Ωni,Ω .

(10)

The presence of the density-density interaction in the
metal allows us to systematically derive the screening of
the EG-Metal interaction (V (1)) which results from the
response of the metal electrons to the localized electrons
in the EG system.

In what follows we derive the effective action and con-
ductivity for a ballistic metal layer. In Sec. IV A we show
how disorder in the metal is an important addition that
can cause a substantial effect on the conductivity.

B. Microscopic description of the electromagnetic
and phononic fluctuations

The first step in calculating the effective action is to
eliminate the Coulomb interactions in the metal via the
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Hubbard-Stratonovich transformation and then integrate
over the metal’s electron fields [19, 21]:

S = SEG + St + Sph +
1

2

∑
q,Ω

Φ̄q,Ω

(
V (2)
q

)−1

Φq,Ω

− Tr ln
(
−G−1

V (1),Φ

)
,

(11)

where:

G−1
V (1),Φ

≡ G−1
0 − V̄ (1)n̄− iΦ̄. (12)

Here G−1
0 is the inverse propagator of the free electron

in the metal with matrix elements G−1
0kω = iω − Ek,

Φ̄k−k′,ω−ω′ = Φ̄q,Ω = Φ−q,−Ω is the potential field in the
metal (introduced by the Hubbard-Stratonovich trans-
formation) and the coupling to the EG system is rep-
resented by the matrix V̄ (1)n with the matrix elements

V̄
(1)
k−k′ini,ω−ω′ = V̄

(1)∗
qi n̄i,Ω = V̄

(1)
−qini,−Ω.

Eq. (11) is exact but not solvable. Here we consider
the mean-field (MF) approximation for the field Φ. In
Appendix B we validate the MF approximation by con-
sidering fluctuations around the MF solution. The MF
solution Φ0 solves the MF equation:

0 =
δS
δΦ̄0

q,Ω

=
(
V (2)
q

)−1

Φ0
q,Ω+2i

∑
k,ω

(
GV,Φ0

)
(k,ω),(k+q,ω+Ω)

.

(13)
Due to the presence of the EG contributions in (12) this
is still a complicated equation to solve. We assume the
metal to be an almost perfect screener within itself. This
means the total potential in (12) must be small. We
denote this total potential ∆Φ0, i.e.,

i∆Φ0
q,Ω = iΦ0

q,Ω +
∑
i

V
(1)
qi ni,Ω , (14)

and expand the propagator (12) in ∆Φ0. Expanding
Eq. (12) to the linear order in ∆Φ0 and substituting this
to the MF equation (13) we obtain the following MF so-
lution (for details see Appendix A):

iΦ0
q,Ω = −

∑
i

(1− fqΩ)V
(1)
qi ni,Ω . (15)

The function fqΩ is found to be the inverse RPA dielectric
function:

fqΩ = 1/εRPAqΩ =
1

1− V (2)
qΩ ΠqΩ

, (16)

with the polarization function,

ΠqΩ = 2
∑
k,ω

G0kωG0k+q,ω+Ω = 2
∑
k

Nk,k+q

Ek,k+q + iΩ
. (17)

Here Nk,k+q ≡ Nk − Nk+q, where Nk is the Fermi oc-
cupation of state with energy Ek in the metal, and
Ek,k+q = Ek − Ek+q. Note that the MF potential Φ0

is a dynamical one due to the dynamics of the localized
charges ni(τ).

We can now check how justified was the expansion to
the linear order in ∆Φ0. From Eq. (15) we obtain

∆Φ0
q,Ω =

∑
i

fqΩV
(1)
qi ni,Ω. (18)

In the static long wavelength limit we have

fqΩ ≈
q

q + qTF
≈ q

qTF
<

1

qTF d
� 1 , (19)

with qTF = 2/aB , aB is the Bohr radius and the long
wavelength expansion is defined as:

Ek,k+q ≈ k · q/m; Nk,k+q ≈ −δ
(
k2 − k2

F

)
2k · q , (20)

where kF is the Fermi wavenumber. Evidently from
Eq. (5), the EG-Metal separation serves as a cutoff for
the e-h wavelengths qd < 1 which justifies the long
wavelength approximation. Thus the expansion is jus-
tified provided that the layer separation is large enough
such that maximum relevant wavenumber (1/d) is much
smaller than Thomas-Fermi wave number, qTF d� 1 (an
inequality which we consider throughout).

Substituting now Φ0 into Eq. (11) and expanding Tr ln
up to the second order in ∆Φ0 we obtain the following
MF action

SMF = SEG + St − Tr ln
(
−G−1

0

)
− 1

2

∑
i,j,Ω,q

(1− fqΩ)2
(
V (2)
q

)−1

V
(1)∗
qi V

(1)
qj n̄i,Ωnj,Ω

+
1

2

∑
i,j,Ω,q

ΠqΩf
2
qΩV

(1)∗
qi V

(1)
qj n̄i,Ωnj,Ω ,

(21)

which gives [using (16)]

SMF = SEG + St +
1

2

∑
ijΩ

Kel
ijΩn̄i,Ωnj,Ω , (22)

with

Kel
ijΩ =

∑
q

fqΩΠqΩV
(1)∗
qi V

(1)
qj . (23)

The constant Tr ln
(
−G−1

0

)
has been dropped.

For a non-interacting metal one would obtain instead

of (23) a kernel of the form,
∑
q ΠqΩV

(1)∗
qi V

(1)
qj . There-

fore we denote K in Eq. (23) as the screened kernel. As
expected, for d = 0 the screened kernel together with the
EG interaction give the known RPA interaction between

impurities in the metal, uij +Kel
ijΩ =

∑
q fqΩV

(2)
q e−iqrij

which further validates our MF approximation. Given
the typical distance between sites in the EG system be-
ing much larger than the Thomas-Fermi wavelength, the
RPA is a good approximation.
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The screened kernel (23) can be alternatively derived
by expanding Eq. (11) to 2nd order in V (1) + iΦ and per-
forming a Gaussian integration over Φ; this means that
fluctuations of the field Φ are taken into consideration
already at the MF level. Nevertheless, the MF analy-
sis has a faster convergence than the perturbative loop
expansion, at least for the given model, thus the MF ap-
proach should be useful for the calculation of higher order
corrections.

Reinstalling back the phonon action, Sph, and integrat-
ing over the phonons degrees of freedom the total action
reads:

SMF = SEG + St +
1

2

∑
ijΩ

KijΩn̄i,Ωnj,Ω , (24)

with KijΩ = Kel
ijΩ + Kph

ijΩ, where Kph
ijΩ is the phonon

kernel:

Kph
ijΩ = −

∑
q

|gq|2
2ωq

ω2
q + Ω2

eiqrij , (25)

and we use the identities gq = g∗−q and ωq = ω−q. To
see how the effective interaction renormalizes the EG pa-
rameters we split the kernel [Eq. (23) and Eq. (25)] to a
static and a dynamic part KijΩ = Kij0 +K ′ijΩ:

Kij0 =
∑
q

(
V (1)
q

)2

fq0Πq0e
iqrij − 2

∑
q

|gq|2

ωq
eiqrij

K ′ijΩ =
∑
q

(
V (1)
q

)2

(fqΩΠq,Ω − fq0Πq,0) eiqrij

+ 2
∑
q

|gq|2
Ω2

ωq(ω2
q + Ω2)

eiqrij

=
∑
q

(
V (1)
q

)2

fq0fqΩ (Πq,Ω −Πq,0) eiqrij

+ 2
∑
q

|gq|2
Ω2

ωq(ω2
q + Ω2)

eiqrij .

(26)

Consequently the renormalized EG interaction (recast-
ing back to units of energy) takes the known form:

ũij = uij +Kij0 ≈ uij +Kel
ij0 ≈

e2

κrij
− e2

κ
√
r2
ij + 4d2

,

(27)

where Kph
ij0 is neglected since we are interested in the

case of weak el-ph interaction. Also, in the last step
we used the long wavelength expansion Eq. (20) and the
inequality qTF d � 1. Eq. (27) is the EG interaction
screened by the presence of the metal [16, 22]. As can be
seen, the interaction ũij behaves as 1/rij for rij � d and
1/r3

ij for rij � d. The homogeneous shift of the on-site
energies, due to Kii0, is ignored.

C. The dressed tunneling amplitude

In this section we obtain the generic model of the
dressed tunneling amplitude coupled to environmental
modes (along the lines of Ref.[23]). Performing the
Hubbard-Stratonovich transformation to decouple the
dynamical part of the interaction [last term in Eq. (24)]
and a gauge transformation of the form,

ci(τ)→ eiΘi(τ)ci(τ) , (28)

we obtain our final effective action:

Seff = S̃EG + S̃t + Sφ

= S̃EG +

∫ 1

0

dτ
∑
i 6=j

c̄i(τ)t̃ijcj(τ)

+
1

2

∫ 1

0

∫ 1

0

dτdτ ′
∑
i6=j

φi(τ) (K ′)
−1
ij (τ − τ ′)φj(τ ′) ,

(29)

where S̃EG is the EG action with the renormalized inter-
action [Eq. (27)], φi is the local potential on site i intro-
duced by the Hubbard-Stratonovich transformation, and
the dressed tunneling amplitude is:

t̃ij = tije
iΘij(τ) , (30)

where Θij(τ) = Θi(τ)−Θj(τ) and Θi(τ) =
∫ τ

0
dτ ′ φi(τ

′).
The kernel K ′ is given in Eq. (26). Note that the po-
tential field does not have a static part i.e. φi,Ω=0 = 0,
since the kernel K ′ij,Ω=0 = 0 by definition. Thus Θi(τ) is
periodic.

IV. CONDUCTIVITY

In this section we use our effective action [Eq. (29)]
to derive the DC conductance between sites i and j to
leading order in the weak dressed tunnelling amplitude,
t̃ij . In Subsec. IV A we show how to generalize our re-
sults to the case of diffusive metallic plate. Finally, in
Subsec. IV B we apply Mott’s prescription to evaluate
the dependence of macroscopic conductivity of the EG
on temperature and use it to compare the conductivities
with and without the metal layer.

We present here the main steps of the derivation of
the conductance between sites i and j, for further details
see Appendix C. For the response function we obtain [see
Eq. (C4)]:

CIij(τ − τ ′) = −〈Ii(τ)Ij(τ
′)〉
∣∣∣
χ=0

+ δ(τ − τ ′)
∑
l( 6=i)

(δij − δjl)
〈
c̄i(τ)t̃ilcl(τ) + H.c.

〉 ∣∣∣
χ=0

,

(31)
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where

Ii(τ) =
∑
j(6=i)

(
c̄i(τ)t̃ije

iχijτ cj(τ)− c̄j(τ)t̃∗ije
−iχijτ ci(τ)

)
(32)

is the current entering (leaving) the site i [defined in
Eq. (C2)] and χi(τ) =

∫ τ
0
dτ ′Ui(τ

′) where Ui(τ) is the
classical external potential field at site i in the EG sys-
tem. The first and second terms in Eq. (31) are called
the paramagnetic and diamagnetic contributions, respec-
tively.

To find the conductance to order |t̃|2 we evaluate the
paramagnetic term to zeroth order in the dressed tunnel-
ing action, S̃t (since the current operator is proportional
to t̃) and the diamagnetic term we calculate to first or-
der. Substituting Eq. (30) and calculating the averages
explicitly we obtain:

CIijΩ ≈
∑
l

(δij − δjl) |til|2
∫ 1

0

dτ(1− eiΩτ )eJil(τ)×

×
(
ni(1− nl)eEilτ + nl(1− ni)e−Eilτ

)
.

(33)

Here Eil = Ei − El where Ei are the on-site energies,
which take into account the EG Coulomb interactions
screened by the metallic plate. These are already in-
cluded in S̃EG of Eq. (29). Furthermore, Jij is the corre-
lation function of the gauge field Θij = Θi −Θj :

Jij(τ) = 〈Θij(τ)Θij(0) 〉0φ−〈Θij(0)2 〉0φ , (34)

where the average is done with respect to Sφ defined in
Eq. (29). Performing the analytical continuation to real
time and frequency [24] and then taking the limit ω → 0,
we obtain the DC conductance between sites i and j (in
dimensionfull units) given in Eq. (2) with

P (Eij) =
1

2π

∫ ∞
−∞

dt eJij(t)+iEijt. (35)

From this point on - real times and energies/frequen-
cies are in dimensionfull units. The correlation function
of the Gauge field can be divided into the contributions
of the electron and phonon environments respectively,
Jij(t) = Jelij (t) + Jph(t), which are given by (see deriva-
tion in Appendix D):

Jelij (t) =

∫ ∞
0

dω

ω2
Selij (ω)F (ω, it) ,

Jph(t) =

∫ ∞
0

dω

ω2
Sph(ω)F (ω, it),

(36)

with

F (ω, it) = coth

(
βω

2

)
(cos(ωt)− 1)− sin(ωt) , (37)

where the long wavelength limit is performed. The spec-
tral functions at low energies are given by:

Selij (ω) ≈ αijωe−ω/ωc ,

Sph(ω) ≈ ωs

ω̃s−1
Θ(ωphc − ω) ,

(38)

where s is the dimensionality of the phonon environment,
ωc and ωphc are the cutoff frequencies of the EG-metal and
el-ph interactions respectively and ω̃ is an energy scale
inversely proportional to the deformation potential. The
dimensionless coupling constant to the electronic envi-
ronment (metal layer) is:

αij =
1

4πκ2

1

kF d
ln

[
1

2
+

1

2

√
1 +

(rij
2d

)2
]
. (39)

The general form of Eq. (2) is of course intimately re-
lated to the equilibrium transition rates 2π|tij |2ni(1 −
nj)P (Eij) obtained in [23]. Given that the bare tun-
neling amplitude is typically small compared to the dis-
order energy, the expression for the conductance given
in Eq. (2) is applicable for a wide range of coupling
strengths of the phonon and metal environments. A
Fourier transform of Eq. (35) gives P (Eij) as a convo-
lution of contributions of metallic plate and phonons and
we obtain Eq. (3). The conductance between two sites
with energies EI and EF separated by distance r then
reads

σI→F =

2πβ|t(r)|2nI(1− nF )

∫ ∞
−∞

dE′P el(E′, r)P ph(E − E′) ,

(40)

where nI ≡ nF (EI) and nF ≡ nF (EF ). The electronic
absorption/emission probability density reads:

P el(E) =
1

2π

∫ ∞
−∞

dt eJ
el(t)+iEt , (41)

and similarly for the phononic one, P ph(E − E′), with
Jel replaced by Jph. The phonon correlation functions
can be further divided into two parts [see Eq. (D1)], the

Debye-Waller term and the rest, Jph = −W ph + J̃ph,

where W ph ≡ 〈Θph
ij (0)2 〉. For the electronic Ohmic en-

vironment such a division does not make sense as both
parts would strongly diverge, whereas W ph has a finite
value. We thus choose to separate it from the phonon
correlation function Jph:

P ph(∆E) = e−W
ph 1

2π

∫ ∞
−∞

dt eJ̃
ph(t)+i∆Et, (42)

with ∆E = E −E′ and e−W
ph

is the well known Debye-
Waller factor. The Debye-Waller exponent is given by:

W ph =
1

ω̃s−1

∫ ωphc

0

dω ωs−2 coth

(
βω

2

)
, (43)

where we substitute the phonon spectral function given in
Eq. (38). To obtain the single phonon assisted tunneling
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we expand Eq. (42) to leading order in J̃ph and obtain:

P ph(∆E) ≈ e−W
ph

∫ ∞
−∞

dt

2π
ei∆Et(1 + J̃ϕ(t))

= e−W
ph

{
δ(∆E) +

1

ω̃2
|∆E|[nph(|∆E|) + Θ(∆E)]

}
,

(44)

where nph is the phonon occupation in the EG system.
As explained in the previous section we consider a 3D
phonon spectral function [s = 3 in Eq. (38)]. In that

case we have ω̃2 = 2π~3ρc5

3γ2 where c is speed of sound, ρ

is the mass density and γ is the deformation potential.
Substituting Eq. (44) back in Eq. (40) we obtain our final
form of the single-phonon conductance:

σI→F = 2πβ|t(r)|2nI(1− nF )e−W
ph {

P el(E, r)+

+
1

ω̃2

∫ ∞
−∞

dE′ P el(E′, r)|∆E|[nph(|∆E|) + Θ(∆E)]

}
,

(45)

where the arguments r, EI and EF are suppressed in
Eq. (45) for compactness. As can be seen, negative en-
ergy difference, E < 0, describes assisted tunneling while
E > 0 describes the dissipation to the e-h and phonon
environments. As expected, without the metal layer (set-
ting Jel = 0) the conductance reduces to the typical form
given in usual analysis of resistor network [18, 25]:

σ0,I→F =

2πβ|t(r)|2nI(1− nF )
e−W

ph

ω̃2
|E|[nph(|E|) + Θ(E)] .

(46)

The resonant tunneling term does not contribute in An-
derson insulators and therefore neglected in the calcu-
lation of σ0. The phonon Debye-Waller factor is usu-
ally discarded in the resistor network analysis assuming
it is of order unity. This is based on the assumption
that the el-ph interaction is weak w.r.t disorder energy
and the near neighbour Coulomb ineraction in the EG
system. Additional reason is that the Debye-Waller ex-
ponent usually has an IR cutoff which further decreases
W ph. The IR cutoff can be estimated self consistently
via variational calculation of the free energy [26–28]. Re-
gardless, in what follows we calculate the ratio of the
conductivities given in Eq. (45) and Eq. (46), which is
not dependent on the phonon Debye-Waller factor.

A. Weak disorder in the metal

In most realistic systems the metallic layer is diffusive.
Thus, it would be interesting to estimate the e-h spectral
function [Eq. (38)] and its dependence on the hopping
distance in the presence of disorder. For weak disorder,
kF l� 1, where l is the mean free path in the metal, the

polarization function can be estimated by the diffusion
approximation [29, 30]:

ΠD
qΩ = − νL2Dq2

|Ω|+Dq2
, (47)

where ν = m/π~2 is the DOS of the electrons in the
metal, L is the size of the sample, and D = vF l/2 is the
diffusion constant. Eq. (47) is applicable for large length
and time scales,

ql� 1, Ωτs � 1 , (48)

where the scatting time is τs = l/vF given the Fermi
velocity vF . The diffusive kernel for the disordered metal
is then obtained by replacing Π → ΠD in the screened
kernel given in Eq. (23). The dynamical part of the kernel
takes the form:

K ′
D
ijΩ = β

∑
q

νL2|Ω|q
(|Ω|+DqqTF )qTF

V
(1)∗
qi V

(1)
qj , (49)

and its static part remains unchanged and therefore is
given in Eq. (26). To obtain the conductivity of the EG
system in the presence of disorder in the metal we con-
sider the correlation function Jel of the electronic bath
[see Eq. (36)] in three regimes: (1) l > d, (2) 0 < l <√

d
qTF

, and (3)
√

d
qTF

< l < d. Regime No.1 is dom-

inated by a ballistic motion in the metal and therefore
Jel is given by Eq. (36). Regime No.2 is dominated by the
diffusive motion in the metal. For time and length scales
obeying Eq. (48), the conductivity is obtained by replac-
ing the correlation function Jel in Eq. (41) by the disor-
dered one, JDij (τ) = 〈ΘD

ij(τ)ΘD
ij(0) 〉0φ−〈ΘD

ij(0)2 〉0φ.

To calculate JD we use the diffusive kernel [Eq. (49)]
instead of the screed kernel in the action [Eq. (29)] and
then repeat the steps done in Appendix D. As can be
seen, the diffusive kernel is not analytic, thus to perform
the Matsubara summation we choose a contour of inte-
gration that avoids the real frequency axis. For the up-
per complex plane the integration contour is a semicircle
shifted slightly above the real axis with radius R → ∞.
Similarly for the lower plane the contour is slightly shifted
below the real axis. Following these steps we find that the
correlation function JD has the same form as in Eq. (36),
i.e.:

JDij (t) =

∫ ∞
0

dω

ω2
SDij (ω)F (ω, t) , (50)

with the spectral function,

SDij (ω) =
ω

kF lκ2
GDij(x̃1) , (51)

and a form factor,

GDij(x̃1) =

∫ ∞
0

dx
xe−2x

x2 + x̃2
1

[1− J0(xRij)]. (52)
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Here x = qd, x̃1 = ω/ω1, ω1 = DqTF /d = vF
qTF l
2d

is the cutoff frequency of the EG-metal interaction,
Rij = rij/d, J0 is the Bessel function and the inequality
(qTF d) � 1 is used. The low energy behaviour of the
spectral function is Ohmic with the dimensionless cou-
pling constant:

αDij =
GDij(0)

kF lκ2
=

1

kF lκ2
ln

[
1

2
+

1

2

√
1 +

(rij
2d

)2
]
. (53)

For simplicity, in the next section we model Eq. (52)
with an exponential cutoff [see discussion blow Eq. (55)].
Comparing Eq. (53) and Eq. (39) one can see that the
coupling with and without the disorder has the same de-
pendence on the hopping distance, rij at the low fre-
quency limit.

Finally, in the intermediate regime No.3, the diffusive
and ballistic contributions are comparable. The qualita-
tive behaviour of the conductivity is obtained by using
the diffusive correlation function [Eq. (50)] for time and
length scales obeying Eq. (48) and the ballistic correla-
tion function [Eq. (36)] for short time and length scales:

Jelij (t) =
1

kF lκ2

∫ 2d
l2qTF

0

dx̃1

x̃1
GDij(x̃1)F (x̃1, t)

+
1

4πkF dκ2

∫ ∞
d
l

dx1

x1
Gij(x1)F (x1, t).

(54)

Here 1/l serves as the upper cutoff of the diffusive form

factor, GDij(x̃1) =
∫ d
l

0
dx xe−2x

x2+(x̃1)2 (1 − J0(xRij)), and the

lower cutoff for the ballistic form factor, Gij(x1) =∫∞
d
l
dx e

−2
√
x2+x21√

x2+x2
1

(1−J0(
√
x2 + x2

1Rij)). We assume that

the crossover between the ballistic and diffusive regimes
are captured qualitatively by the itegration limits [31]
(note that x̃1/x1 = qTF l and therefore the integration
limits of the ballistic and diffusive contributions are com-
plementary).

Comparing the dimensionless Ohmic coupling con-
stants given in Eq. (54) one can show that even in regime

No.3 (i.e.
√

d
qTF

< l < d) the diffusive contribution

dominates and the ballistic contribution can be safely ne-
glected. Bearing this in mind we continue to the next sec-
tion considering specifically the diffusive case (l/d . 1)
for the calculation of the macroscopic VRH conductivity.

An accurate description for the ballistic-diffusive
crossover (given in Ref. [32]) coincides with our result
in the diffusive limit, which is the relevant regime in our
work, as stated above.

B. Qualitative estimation of the polaronic
reduction of the conductivity

To estimate the conductivity we consider the diffusive
regime of the metallic plate where the mean free path is

smaller than the EG-Metal separation, l/d . 1. Using
Mott’s method [2] we calculate the ratio σ(T )/σ0(T ) as a
function of temperature, where σ and σ0 are respectively
the conductivities with and without the presence of the
metal layer.

We start from evaluating Eq. (41). Using Eq. (38) and
invoking the scaling limit, βωDc , ω

D
c t� 1, we get [33, 34]:

P el(E) ≈ 1

2πωDc

eE/2T

Γ(αr)

∣∣∣∣Γ(αr2 +
iE

2πT

)∣∣∣∣2( ωDc
2πT

)1−αr
,

(55)
where E is the energy difference between the initial and
final states, αr is the EG-Metal dimensionless coupling
strength given in Eq. (53), rij = r, and Γ is the Gamma
function. Since we are interested in the low energy
behaviour we approximate for simplicity an exponen-
tial cutoff to the diffusive spectral function [Eq. (51)],

e−ω/ω
D
c . The upper frequency cutoff can be roughly es-

timated to be:

ωDc ≈ min (ω1, 2π/τs, 2π/τBL) ∼ 103K. (56)

The three different frequencies are: (1) ω1 is the cut-
off frequency of the EG-Metal interaction [see Eq. (52)],
(2) 2π/τs is the diffusion cutoff. Environmental modes
with higher frequecies have a ballistic motion, and (3)
2π/τBL is the tunneling frequency, where τBL = r/vB is
the Büttiker-Landauer tunneling time [35], r is the hop-
ping length and v is the imaginary velocity determined
in the inverted potential barrier. Environmental modes
with higher frequencies than the tunnelling frequency re-
spond adiabatically to the tunneling electron and should
not be included in the polaronic response. Note that one
can estimate the typical v to be associated with tunnel-
ing barriers of the order of the disorder energy W [38]. It
is argued in Refs. [36–38] that the typical disorder energy
is larger than the Fermi energy in the EG system, thus v
is generally larger than the Fermi velocity.

The energies E in Eq. (55) are distributed according
to the DOS g(E) of the electrons in the EG, described
by the Hamiltonian:

H̃EG =
∑
i

εini +
1

2

∑
i 6=j

e2

κ

 1

rij
− 1√

r2
ij + 4d2

ninj ,

(57)

where the interaction term is given in Eq. (27). H̃EG is

obtained from the Lagendre transform of S̃EG given in
Eq. (29). For the screened Coulomb interaction given in
Eq. (57) the DOS has three distinct regions as can be
seen schematically in Fig. 2.

The crossover enegy between the constant DOS,
g(E) = g0, at high energies to the gapped ES DOS,
g(E) ∝ |E|, is given by the width of the ES gap, i.e.

E2 ≈ g0
(e2/κ)2

2/π [3]. The screening of the metal results

in a second (lower) crossover energy, E1, to constant
DOS g(0) ∝ e2/κd [16], up to logarithmic accuracy.
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E1 ≈ (gd/g0)E2 is obtained similarly to the approach
used in Ref. [3].

To find the VRH exponent (p) in a given regime we use
Mott’s method [2, 17, 25] which goes as follows: Assum-
ing the temperature is sufficiently lower than the charac-
teristic energy difference of two localised sites (E � T )
one can approximate the conductance between two lo-
calized sites as an exponential, σ ∝ e−h(E,r) where r is
the hopping distance and E serves as the effective hop-
ping energy difference. After representing E in terms of
r, one defines the optimal hopping distance r̃(T ) as the
minimum point of h(E(r), r). r̃ is then substituted back
to the exponent which results in the known VRH form
given in Eq. (1). Repeating these steps for the conduc-
tance in the presence of the polaronic effect [Eq. (45)],
we find numerically a small deviation from the r̃ obtained
by ES’s and Mott’s VRH (for localization lengths not too
large, ξ . d). Therefore one can conclude that polaronic
effect has a small effect on the exponent p. This can
be explained by the fact that the coupling αr has loga-
rithmic dependence on r/d (for r > d) which is weaker
than the r dependence of E(r), i.e. E(r) ∝ 1/r for ES
DOS [17] and E(r) ∝ 1/r2 for constant DOS [2]. For
r < d the coupling, α(r), is sufficiently weak which also
results in a small polaronic effect. Our numerical eval-
uation is conducted only for the assisted hopping pro-
cess (E < 0), a process which serves as the bottleneck
of the conductance. Since the dynamical polaronic ef-
fect does not affect appreciably the ES-Mott crossover
we consider its effects in the ES and Mott VRH regimes
separately. In the ES VRH we use the optimal hopping
length given without taking into account the polaronic
effect, rES [3, 17, 25]:

r̃(T ) = rES(T ) =
(π

2

)1/4

ξ

√
Uξ
2T

,

EES(T ) = E(rES(T )) =
(π

2

)1/4√
2UξT ,

(58)

where Uξ = e2/κξ and we used the relation EES(T ) =√
π
2

e2

κrES(T ) .

Mott’s and ES’s VRH arises from constant and gapped
DOS respectively. Thus the structure of the DOS as de-
picted above gives rise to a Mott-ES-Mott crossovers. We
denote these as the low and high temperature crossovers.
The ES VRH is given in the temperature range T1 <
T < T3. The low temperature ES-Mott cross over is
given by [16]:

T1 = (Ud/75)(ξ/d) , (59)

with Ud = e2/κd. The high temperature ES-Mott
crossover is given by [3, 39],

T3 =

√
π3

2
(g0ξ

2)2U3
ξ . (60)

For temperatures lower than T1, the constant DOS near
Fermi energy is larger than without the metal layer. This

g0

∝E

gd

E2E1
E

g

FIG. 2. Schematic description of the DOS in the presence

of a metal layer in units of κ2

e4
. The three regimes are: (1)

Constant DOS at high energies, g0, for E > E2 ≈ g0
(e2/κ)2

2/π

[3], (2) Constant DOS at low energies, gd = 0.1(κ/e2d) [16]
for E < E1 ≈ (gd/g0)E2, and (3) ES DOS at intermediate
values (i.e. linear with the energy). The dashed line indicates
ES DOS without the metal layer.

contributes to the increase in the conductivity[16] and
counteracts the reduction caused by the polaronic effect.
However we consider the intermediate, ES regime where
the increase of the DOS as a result of the screening is
negligible. In this regime the polaronic effect is domi-
nant at temperatures lower than T2 where the hopping
length is comparable to d, i.e., rES(T2) = d which gives

T2 = 1
2

√
π
2Ud

ξ
d . For temperatures higher than T2 we

have rES(T ) < d, in this range the coupling αr is small
and decreases as r2 [see Eq. (53)]. Furthermore, a domi-
nant polaronic effect w.r.t the static effect is obtained for
T2 > T1, which is in agreement with parameters of the
experiment [8, 40]. This range of temperatures is given
by (for T2 < T3):

1

75
<

T

Ud

d

ξ
.
( π

23

)1/2

, (61)

which is compatible with the experiment’s entire temper-
ature range [8, 40] (for ξ . d). This is since the increase
of the DOS is small in dielectrics, unlike in the case of
disordered semiconductors where a total increase in the
conductivity is observed [9] for T < T1. We therefore as-
sume henceforth that within the regime given by Eq. (61)
the static effect is small and therefore neglected.

The polaronic reduction in the macroscopic conductiv-
ity as a function of temperature is then given by substi-
tuting Eq. (58) in the conductivities with and without the
metal layer [Eq. (45), Eq. (46) respectivly). The resulted
ratio between the conductivities with and without the
metal as a function of temperature is presented in Fig. 3,
for parameters compatible with Ref. [8] see caption. As
can be seen the polaron causes a reduction in the con-
ductivity which becomes more appreciable at low tem-
peratures. The blank circles represents the unpublished
data [40]. Our results show an appreciable reduction,
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yet a much weaker temperature dependence compared to
the experimental data.

We note that our results have strong sensitivity to the
magnitude of the screening of the EG-Metal interaction.
Reduction in the screening induces an increase in the ef-
fective interaction, and with it a stronger polaon effect
and stronger reduction of the conductivity at low tem-
peratures. In Fig. 4 we fit the experimental data allow-
ing enlarged effective interaction. This allows very good
fits to experiments with other parameter values being
compatible with experimental values. Investigating the
origin of such an increase in the effective interaction be-
tween the EG and the metallic layer is beyond the scope
of this paper. Yet, possible mechanisms are scattering
sources in the metal which effectively reduce the screen-
ing or plasma modes which serve as an additional source
of dissipation.

As can be seen from Eq. (53) and Eq. (55) the polaronic
effect is sensitive to the sample parameters such as scat-
tering length and dielectric constant. This is consistent
with the large differences in the conductivity observed for
different samples [8, 40] [see also Fig. 4]. Furthermore,
an additional source for the said differences in the sam-
ples can be disorder in the EG layer. One can see that
for larger disorder in the EG layer (lower curve in Fig. 4)
there is a stronger reduction in the conductivity (caused
by the presence of the metal layer). This may originate
from the screening within the EG layer, allowed by its
finite width, which decreases for larger disorder and con-
sequently increases the EG-Metal interaction. Thus a
larger disorder may allow for a stronger EG-Metal inter-
action.

In the case where Mott VRH dominates the low tem-
perature regime (i.e. for T3 ∼ T1), one should replace
Eq. (58) by the optimal hopping distance compatible
with constant DOS (g0). In this regime we find qualita-
tively similar behaviour as shown in Fig. 3 for the same
temperature range.

Throughout the paper we neglected spatial variation
and frequency dependence of the dielectric constant (κ).
Taking such variations into account will have only a quan-
titative effect on our results, which can be negated by
making corresponding changes to other unknown param-
eters in the system. In general, we note that for the
dynamical (polaronic) response [given in Eq. (54)] we ex-
pect dielectric constant values to be smaller than static
dielectric constant values, in accordance with fitting val-
ues chosen in our calculations.

C. Microscopic explanation of the polaronic
reduction

In this paper we discuss the effect of the electrons in
the metallic plate on the phonon assisted tunneling in the
EG. This is not the only effect of the metallic plate. As
Eq. (3) suggests, the electrons of the metallic plate can
also assist hopping in the EG by providing the thermal

4 50 100
T

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.
σ /σ0

ξ/d =1/3

ξ/d =1

ξ/d =4

T[K]

FIG. 3. Polaronic reduction given by the ratio of the con-
ductivity in the presence of the metal plate [Eq. (45)] and
the conductivity in the absence of the metal plate [Eq. (46)],
plotted as function of temperature for kF l = 4, κ = 1 in
Eq. (54) (see discussion in the last paragraph of the section)
and different values of ξ/d (1/3, 1 and 4 for upper, middle, and
lower curves respectively) where ξ is the localization length
and d is the EG-Metal separation. The blank square are taken
from experiment [40]. The ratio is calculated for, ω̃ = 3K,
d = 10nm, ωDc ≈ 1500K (for Au layer) and κ = 3 for optimal
hopping length [Eq. (58)], values which are also compatible
with the estimated parameters in Ref. [8]. As expected, in-
creasing the value of ξ/d leads to a larger value of optimal
hopping length [Eq. (58)] and consequently to a larger pola-
ronic reduction [Eq. (55)]. The exprimental data of Ref. [8]
is two orders of magnitude smaller than the data presented
in squares, therefore it is presented only in logarithmic scale
as indicated by circles in Fig. 4 below. Note that σ includes
only the dynamical effect of the metal plate. The static effect
of the metal plate, within the ES regime given in Eq. (61), is
small and therefore neglected.

4 10 50 100
T

1

0.5

0.1

0.02

0.002

σ/σ0

T[K]

FIG. 4. Log plot of the ratio of the conductivities with and
without the metal layer as a function of temperature. The
experiments are given by squares [40] with Au metal layer and
circles [8] with Ag metal layer. In both cases ωDc = 1500K,
κ = 3, d = 10nm and ω̃ = 3K. The solid lines are the theory
given by the ratio of Eq. (45) and Eq. (46). The fit to squares
is given with ξ/d = 0.22, with a fitting multiplication factor
to Eq. (53) of C

kF lκ
2 = 2.3. The fit to circles with ξ/d = 1.3,

with fit parameter C
kF lκ

2 = 2.
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σ / σ0

T=2
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FIG. 5. Ratio of the EG conductivity in the presence and
in the absence of a metal layer [Eq. (45) and Eq. (46)] is
plotted as function of phonon temperature. The orange curve
(upper solid curve) has the same parameters as the orange
curve plotted in Fig. 3 and describes the situation of metallic
plate having the same temperature as that of phonons. To
demonstrate the contribution of the metal electrons to the
phonon assisted tunneling in the EG we plot the above ratio of
conductivities keeping the temperature of the metal constant
at 2K represented by the solid black curve (lower solid curve)
and at 20K (dashed black line).

energy and can even make hopping possible in absence of
phonons. Our results show that this is a subdominant ef-
fect as long as the temperatures of the metallic plate and
that of phonons are equal. Thus, in total, the metallic
plate causes an overall suppression of the conductivity.
In Fig. 5 we present a detailed analysis attesting to the
competing effect of the metal electrons on the phonon as-
sisted tunneling in the EG. Keeping the metal electrons
at a constant low temperature (lower than the phonon
temperature in the whole relevant domain), one make
the suppression by the metallic plate even stronger. How-
ever, if the temperature of the metal electrons becomes
higher than that of the phonons, we find an enhanced
conductance, in accordance with the above picture.

Furthermore, comparing between the processes in
which the electronic and phononic environments assist
the EG electron at the same temperature [i.e. com-
paring P el(E < 0) and ω̃−2|E|nph(|E|) respectively, see
Eq. (45)], one can show that for a given energy the elec-
tronic assistance is much smaller than the phononic as-
sistance. This can be explained by the small ratio of the
prefactors of each process - ω̃/ωDc � 1 [where ω̃ and ωDc
are defined in and Eq. (D6) and Eq. (56) respectively].
Thus, we expect that for ω̃/ωDc ∼ 1 the electronic en-
vironment would give rise to an overall increase in the
conductance. One should note though that this condi-
tion might not exist in real systems.

V. CONCLUSIONS

In this work we studied the polaronic effect on the con-
ductivity of a two dimensional electron-glass system cou-
pled to phonons and in proximity to a metal layer. The
metal layer effectively screens the Coulomb interactions,
and also dresses the electron’s tunneling amplitude in the
EG system. The latter is also known as the polaronic ef-
fect. Using field theoretical approach we have derived an
effective action for the system and obtained an expression
for the conductivity to leading order in the dressed tun-
neling amplitude. Since the disorder is the largest energy
scale in the EG system the approximated conductivity is
valid for a wide range of coupling strengths to the phonon
and electron environments. We further approximated the
conductivity retaining only the single phonon process and
found that the polaronic effect causes, in a wide temper-
ature regime, a reduction in the VRH conductivity by up
to an order of magnitude. The main mechanism of the
dynamical polaronic effect is that extra activation energy
must be provided by the phonons assisted tunneling pro-
cess in the EG, thus reducing its probability. We also
found that the logarithmic dependence of the polaronic
reduction on distance does not change the exponent p in
both ES’s and Mott’s VRH regimes. Our results are in
agreement with the overall trend in experiment [8, 40].
However, to obtain good quantitative fit with experiment
we must assume an effectively larger coupling constant.
This may originate from an additional contribution of
plasma modes, dynamical response of the insulator, or a
reduced screening caused by additional scattering mecha-
nisms in the metal. Furthermore, the conductivity varies
greatly between different samples [40]. This can be the
result of the polaronic effect being sensitive to a small
changes in the mean free path, dielectric constant, and
the effective screening of both layers.
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Appendix A: Solution of the Mean-field equation

To solve the MF equation we expand the general-
ized propagator [Eq. (12)] in powers of ∆Φ0 [defined in



12

Eq. (14)]:

2i
∑
k,ω

(
GV,Φ0

)
(k ω),(k+q ω+Ω)

= 2i
∑
k,ω

G0k+q,ω+Ω

∑
n

〈 k, ω|
(
G0i∆Φ̄0

)n |k + q, ω + Ω 〉

≈ 2i
∑
k,ω

G0k+q,ω+Ω 〈 k, ω|
∑
k′,ω′

q′,Ω′

G0k′ω′
(
i∆Φ0

q′,Ω′
)
|k′, ω′ 〉×

× 〈 k′ + q′, ω′ + Ω′|k + q, ω + Ω 〉

= −2
∑
k,ω

G0kωG0k+q,ω+Ω ∆Φ0
q,Ω ≡ −ΠqΩ ∆Φ0

q,Ω ,

(A1)

where in the last equality we used Eq. (17). The zeroth
order contribution cancels because of electro-neutrality.
Substituting Eq. (A1) in the MF equation [Eq. (13)] we
get:

0 =
(
V (2)
q

)−1

Φ0
qΩ −ΠqΩ∆Φ0

q,Ω. (A2)

Solving then for Φ0 we obtain Eq. (15).

Appendix B: Gaussian corrections to MF solution

Representing the action in terms of the deviation from
the saddle point solution, δΦ, we get:

S = SEG + St +
1

2

∑
q,Ω

δΦ̄q,Ω

(
V (2)
q

)−1

δΦq,Ω

− 1

2

∑
i,j,Ω,q

(1− fqΩ)2
(
V (2)
q

)−1

V
(1)∗
qi V

(1)
qj n̄i,Ωnj,Ω

+ i
∑
j,Ω,q

(1− fqΩ)
(
V (2)
q

)−1

V
(1)
qj nj,ΩδΦ̄q,Ω

− Tr ln
(
−G−1

0 + i∆Φ0 + iδΦ̄
)
,

(B1)

where ∆Φ0 is given in Eq. (14).
The leading terms coming from the fluctuations around

the MF solution, Φ0, can be found by expanding Eq. (B1)
to second order in δΦ:

SFL = SEG +
1

2

∑
i,j,Ω

K̃ij n̄i,Ωnj,Ω + Tr

∑
n≥3

Fn

n


− 1

2
Tr
[
(1− F )

−1
G0δΦ̄ (1− F )

−1
G0δΦ̄

]
+

1

2

∑
Ω,q

δΦq,Ω

(
V (2)
q

)−1

δΦq,Ω ,

(B2)

where F = iG0∆Φ̄0, and the constant Tr ln
(
−G−1

0

)
is

disregarded [see discussion below Eq. (21)]. Note that

given our MF solution is approximate, a linear term
should be finite, however since we consider (qTF d)−1 � 1
[see Eq. (16)] it is neglected. Furthermore, from now on
we keep track only on corrections to the two-body terms
of the EG degrees of freedom, assuming that the three-
body and higher terms are negligible. This is typical in
localized systems where the disorder is larger than the
average near neighbour interactions. Denoting the first
line in Eq. (B2) as SMF [see Eq. (22)], and integrating
over δΦ fields we obtain:

SFL = SMF + Tr lnA , (B3)

with,

Aqq′ΩΩ′ =
(
V (2)
q

)−1

δq,q′δΩ,Ω′ −Mqq′ωω′ , (B4)

where

Mqq′ΩΩ′ =
∑
n,m
k,ω
k1,ω1

G0k1ω1
G0k+q′,ω+Ω′×

× (Fn)kk1ωω1
(Fm)k1+q,k+q′,ω1+Ω,ω+Ω′

≈M (0)
qq′ΩΩ′ +M

(1)
qq′ΩΩ′ +M

(2)
qq′ΩΩ′ .

(B5)

Here M (i) is the i’th order term:

M
(0)
qq′ΩΩ′ = ΠqΩδqq′δΩΩ′

M
(1)
qq′ΩΩ′ =

∑
i,ω,k

G(1)
qq′ΩΩ′fq−q′,Ω−Ω′V

(1)
q−q′,ini,Ω−Ω′

M
(2)
qq′ΩΩ′ =

∑
i,j,k,ω

G(2)
qq′ΩΩ′fq1,Ω1

fq−q′−q1,Ω−Ω′−Ω1

× V (1)
q1,i

V
(1)
q−q′−q1,jni,Ω1nj,Ω−Ω′−Ω1

+
∑
i,j,k,ω

G(3)
qq′ΩΩ′fq+q1,Ω+Ω1

fq′+q1,Ω′+Ω1

× V (1)
q+q1,i

V
(1)∗
q′+q1,j

ni,Ω+Ω1 n̄j,Ω′+Ω1 ,

(B6)

with

G(1)
qq′ΩΩ′ = (G0k+q′−q,ω+Ω′−Ω +G0k+q,ω+Ω)

×G0kωG0k+q′,ω+Ω′

G(2)
qq′ΩΩ′ =

∑
q1,Ω1

(G0k+q−q1,ω+Ω−Ω1 +G0k+q′−q,ω+Ω′−Ω)

×G0kωG0k+q′,ω+Ω′G0k−q1,ω−Ω1

G(3)
qq′ΩΩ′ =

∑
q1,Ω1

G0kωG0k+q′,ω+Ω′G0k+q,ω+ΩG0k−k1,ω−Ω1
.

(B7)

Substituting Eq. (B4) and Eq. (B5) back into Eq. (B3)
we find:

δS = SFL − SMF ≈ Tr ln

[(
V (2)RPA

)−1

−M (1) −M (2)

]
,

(B8)
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where we denote the corrections to the MF action as δS.
Further expanding Eq. (B8) to order Tr(F 2) we obtain:

δS ≈ −Tr ln
(
V (2)RPA

)
−
∑
Ω,q

V
(2)RPA
qΩ M

(2)
qΩ

− 1

2

∑
Ω,q,Ω′,q′

(
V

(2)RPA
qΩ

)2

M
(1)
qq′ΩΩ′M

(1)
q′qΩ′Ω ,

(B9)

where V
(2)RPA
qΩ = fqΩV

(2)
q is the screened interaction in

the metal layer in the RPA approximation. Comparing
the general form of the correction terms to the kernel
obtained from the MF (0th order) contribution, one can
see that the 1st and 2nd corrections in Eq. (B9) goes
as ∼ G4f3V (2)(V (1))2, ∼ G6f4(V (2))2(V (1))2, respec-

tively, while the MF kernel is K̃ ∼ G2f(V (1))2. Since we
consider the regime where 1/qTF d � 1 we can roughly
approximate fq . 1/qTF d [see Eq. (19)], therefore the
MF term (which has the smallest power in f) is larger
than the fluctuation corrections. Furthermore, as can
be seen from Eq. (B6), the M (1) and M (2) terms involve
high order correlations of the free electron propagatorG0.
Roughly speaking, a larger correlation means integration
over effectively smaller phase space than less correlated
terms, such as the RPA.

Appendix C: The generating functional and the
conductivity

In order to obtain the matrix of conductances σij we
define a generating functional by adding a source term
to the effective action [given in Eq. (29)] as: SU =

i
∫ 1

0
dτ
∑
i Ui(τ)ni(τ) where Ui(τ) is the classical exter-

nal potential field at site i in the EG system. Perform-
ing a gauge transformation to eliminate SU amounts to
a shift of the gauge field given in Eq. (29), Θij(τ) →
Θij(τ) + χij(τ):

Seff[χ] = S̃EG +

∫ 1

0

dτ
∑
i6=j

c̄i(τ)t̃ije
iχij(τ)cj(τ)

+
1

2

∫ 1

0

∫ 1

0

dτdτ ′
∑
i,j

φi(τ) (K ′)
−1
ij (τ − τ ′)φj(τ ′) ,

(C1)
where χij = χi − χj and χi(τ) =

∫ τ
0
dτ ′ Ui(τ

′). Starting
from the current,

〈 Ii(τ)[χ] 〉 = i
δ

δχi(τ)
lnZ[χ]

=
∑
j( 6=i)

〈(
c̄i(τ)t̃ije

iχijτ cj(τ)− c̄j(τ)t̃∗ije
−iχijτ ci(τ)

)〉
,

(C2)

and expanding to linear order in U we get:

〈 IiΩ[χ] 〉 ≈ − 1

Ω

∑
j

CIijΩUj,Ω , (C3)

where CIijΩ =
∫ 1

0
dτeiΩτCIij(τ) is the response function

defined by the generating functional, Z[χ],

CIij(τ − τ ′) =
1

Z
δ2

δχj(τ ′)δχi(τ)
Z[χ]

∣∣∣
χ=0

. (C4)

Here the average is defined as,

〈O 〉 =
1

Z[χ]

∫
D[c̄, c, φ]Oe−Seff[χ] , (C5)

where O is some functional operator and the generating
functional is:

Z[χ] =

∫
D[c̄, c, φ]e−Seff[χ] , (C6)

where Seff[χ] is defined in Eq. (C1). Performing then the
variational derivatives in Eq. (C4) gives Eq. (31).

The DC conductance between sites i and j is obtained
by the following steps: (1) we calculate the response
function CIijΩ according to Eq. (C4), (2) expand CIijΩ
to leading order in the dressed tunnelling amplitude, (3)
perform the analytical continuation to real time and then
to real frequency, (4) take the static limit and, (5) rep-
resent Eq. (C3) in terms of potential drop between sites
i and j, Uij . The DC conductance matrix σij is then
defined as follows:

〈 Ii 〉 ≈ − lim
ω→0

i

βω

∑
j

CIijΩUj,Ω

 ∣∣∣
Ω→−iβω+δ

= − lim
ω→0

i

βω

∑
j

CIijωUj,ω =
∑
j

σijUij .

(C7)

The analytical continuation to real time (frequency ω)
of Eq. (C4) is implemented by the prescription given in
Ref. [24]. The last equality in Eq. (C7) is the definition
of the conductance matrix[7, 25]; this form is obtained
by substituting the expression given in Eq. (33) for the
response function CIijω.

Appendix D: The correlation function of the gauge
field

Using Eq. (26) and Eq. (29) we calculate the correla-
tion function of the gauge field, Θij with respect to the
free action of the potential field φ:

Jij(τ) = 〈Θij(τ)Θij(0) 〉0φ−〈Θij(0)2 〉0φ

=
∑
Ω6=0

e−iΩτ − 1

Ω2

(
K ′iiΩ +K ′jjΩ −K ′ijΩ −K ′jiΩ

)
≡ Jelij (τ) + Jphij (τ) ,

(D1)
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where Jelij (τ), Jphij (τ) are respectively the e-h and phonon
contributions which are given by:

Jelij (τ) = 4
∑
k,q

Ω6=0

(
V

(1)
qij

)2

fq0fqΩ
e−iΩτ − 1

(iΩ)2
(ΠqΩ −Πq0)

Jph(τ) = 4
∑
q,Ω6=0

|gq|2
e−iΩτ − 1

ωq(ω2
q + Ω2)

,

(D2)

with V
(1)
qij = V

(1)
q sin

(qrij
2

)
and ΠqΩ given in Eq. (17).

For the phonon correlation function we take the limit
qrij � 1 which gives sin2

(qrij
2

)
≈ 1/2. This is valid for

rij/ξ � 1 where ξ is the localization length [18, 25]. This
is since the rij dependent term of the phonon mediated
interaction is short ranged and decays sufficiently fast for
the typical near neighbour distance. Since our main in-
terest is the polaron induced by the metal layer we keep
the distance dependence of the e-h correlation function,
Jel. To perform the summation over Ω in Eq. (D2) we
represent it as an integral over the complex frequency
plane with a contour that excludes the poles of the inte-
grand and also the point Ω = 0. The exclusion of Ω = 0
gives an additional residue at the point Ω = 0 in Jel
(and Jph), which turns out to have exactly zero value.
Performing the summation over Ω in Eq. (D2) and in-
troducing the e-h and phonon spectral functions (Sel(ω),
Sph(ω) respectively) we obtain:

Jelij (τ) =

∫ ∞
0

dω

ω2
Selij (ω)F (ω, τ),

Jph(τ) =

∫ ∞
0

dω

ω2
Sph(ω)F (ω, τ) ,

(D3)

where,

F (ω, τ) = coth

(
βω

2

)
(cosh(ωτ)− 1)− sinh(ωτ). (D4)

As usual the phonon spectral function in the deformation
potential approximation is super Ohmic [18]:

Sph(ω) ≡
∑
q

|gq|2δ(ω − ωq) ≈
ωs

ω̃s−1
Θ(ωphc − ω) , (D5)

where s is the spatial dimension. For s = 3,

ω̃2 =
2π~3ρc5

3γ2
, (D6)

c is speed of sound, ρ is the mass density and γ is the de-
formation potential averaged over the transverse and lon-
gitudinal directions. Furthermore, the form factor of the
el-ph interaction has a powerlaw cutoff (1 + (ω/ωphc )2)−3

with the cutoff frequency ωphc = 2c/ξ [18]. Since we are
interested in the low energy behaviour we approximate
the phonon form factor with a step cutoff.

The e-h spectral function is given by the imaginary
part of the retarded electronic Kernel Kel [given in

Eq. (23)]. Using Eq. (D2) and the definition in Eq. (D3)
we obtain:

Selij (ω) ≡

≡ − 1

π
lim
η→0

Im

[
4
∑
q

(
V

(1)
qij

)2

fq0fq,ω+iη(Πq,ω+iη −Πq0)

]

= − 4

π
lim
η→0
|fq,ω+iη|2

(
V

(1)
qij

)2

Im[Πq,ω+iη]

= 4
∑
k,q

(
lim
η→0
|fq,ω+iη|2

)(
V

(1)
qij

)2

Nk+q,kδ(ω − Ek,k+q)

≈ 1

4πκ2

1

kF d
ωGij(ω/ωc) ,

(D7)

where we perform the analytical continuation of the
metal’s kernel Kel

ijΩ → Kel
ij,ω+iη, Nk+q,k is defined below

Eq. (47) and we used the long wavelength limit [Eq. (20)].
The form factor is:

Gij(x1) =

∫ ∞
0

dx
e−2
√
x2+x2

1√
x2 + x2

1

[
1− J0

(√
x2 + x2

1Rij

)]
.

(D8)

where x = qd, Rij = rij/d, J0 is the Bessel function,
x1 = ω/ωc with the cutoff frequency ωc = 2EF /kF d and
the inequality (qTF d) � 1 is used. As can be deduced
from Eq. (16) the factor fqω diverges at the plasma fre-
quency. Thus in the approximation given in Eq. (D7)
we assume that the plasma modes do not overlap with
the e-h modes and therefore we approximate fq,ω+iη as
constant in the relevant regime (0 < q < 1/d), i.e. we set
limη→0 |fq,ω+iη|2 ≈ |fq,ω|2 ≈ f2

q,0.
The low frequency behaviour of the e-h spectral func-

tion is valid for

x1Rij =
ω

ωc

rij
d
� 1 , (D9)

which gives an Ohmic spectral function in the zeroth
order (x1 = 0). Together with an approximated expo-
nential cutoff [see Eq. (D8) for x1 > 1 values] we can
approximate a simple form for the spectral function:

Selij (ω) ≈ αijωe−ω/ωc . (D10)

The resulted dimensionless coupling constant is:

αij ≈
1

4πκ2

1

kF d
Gij(0) (D11)

where,

Gij(0) = ln

[
1

2
+

1

2

√
1 +

(rij
2d

)2
]
. (D12)

The correlation functions of the e-h and phonon baths
do not include the static contribution by definition [see
Eq. (D1)], i.e. Jel/ph(τ = 0) = 0. The static contribution
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is known as the Debye-Waller exponent which takes the
form:

W =

∫ ∞
0

dω

ω2
S(ω) coth

(
βω

2

)
. (D13)

For an Ohmic bath, S(ω) ∝ ω, W has an infrared di-

vergence which is responsible for the overall convergence
of Jel(τ). However, for the super-Ohmic phonon bath
S(ω) ∝ ωs with s > 2, W has a finite value as in the case
of phonons in three dimensions.
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[35] M. Büttiker and R. Landauer, Phys. Rev. Lett. 49, 1739
(1982).

[36] B. Bulka, B. Kramer, and A. MacKinnon, Zeitschrift für
Physik B Condensed Matter 60, 13 (1985).

[37] B. Bulka, M. Schreiber, and B. Kramer, Zeitschrift für
Physik B Condensed Matter 66, 21 (1987).

[38] Z. Ovadyahu, Phys. Rev. B 95, 134203 (2017).
[39] A. Aharony, Y. Zhang, and M. P. Sarachik, Phys. Rev.

Lett. 68, 3900 (1992).
[40] Z. Ovadyahu, private communication.

https://doi.org/10.1103/PhysRev.109.1492
https://doi.org/10.1080/14786436908216338
https://doi.org/10.1080/14786436908216338
https://doi.org/10.1080/14786436908216338
http://arxiv.org/abs/https://doi.org/10.1080/14786436908216338
https://doi.org/10.1088/0022-3719/8/4/003
https://doi.org/10.1103/PhysRevB.40.1216
https://doi.org/10.1103/PhysRevB.44.3599
https://doi.org/10.1209/epl/i2002-00164-y
https://doi.org/10.1209/epl/i2002-00164-y
https://doi.org/ 10.1103/PhysRevB.80.245214
https://doi.org/ 10.1103/PhysRevB.80.245214
https://doi.org/10.1103/PhysRevLett.56.643
https://doi.org/10.1103/PhysRevLett.56.643
https://doi.org/ https://doi.org/10.1016/0038-1098(95)00401-7
https://doi.org/ https://doi.org/10.1016/0039-6028(96)00570-5"
https://doi.org/10.1088/0953-8984/10/30/006
https://doi.org/10.1088/0953-8984/10/30/006
https://doi.org/ 10.1103/PhysRevB.86.085433
https://doi.org/10.1103/PhysRevB.99.184201
https://doi.org/ 10.1002/(SICI)1521-3951(200003)218:1<99::AID-PSSB99>3.0.CO;2-7
https://doi.org/10.1103/PhysRevB.61.10868
https://doi.org/10.1103/PhysRevB.61.10868
https://doi.org/10.1103/PhysRevB.49.13721
https://doi.org/10.1103/PhysRevB.49.13721
http://www.jetp.ac.ru/cgi-bin/e/index/e/56/3/p647?a=list
http://www.jetp.ac.ru/cgi-bin/e/index/e/56/3/p647?a=list
https://doi.org/10.1103/PhysRev.120.745
https://doi.org/10.1017/CBO9780511789984
https://doi.org/10.1017/CBO9780511789984
https://doi.org/10.1017/CBO9780511615832
https://doi.org/10.1017/CBO9780511615832
https://doi.org/10.1017/CBO9781139015509
https://doi.org/10.1103/PhysRevB.51.16871
https://doi.org/10.1103/PhysRevB.51.16871
https://doi.org/10.1007/978-1-4757-2166-9_2
https://doi.org/10.1007/978-1-4757-2166-9_2
https://doi.org/10.1103/PhysRevB.67.174205
https://doi.org/10.1103/PhysRevB.67.174205
https://doi.org/ 10.1007/978-3-662-02403-4_4
https://doi.org/10.1103/PhysRevB.75.054302
https://doi.org/10.1103/PhysRevE.84.011114
https://doi.org/10.1103/PhysRevE.84.011114
https://doi.org/10.1103/PhysRevB.85.224301
https://doi.org/10.1103/PhysRevB.85.224301
https://doi.org/10.1103/RevModPhys.57.287
https://doi.org/10.1103/RevModPhys.57.287
https://doi.org/10.1103/RevModPhys.66.261
https://doi.org/10.1103/RevModPhys.66.261
https://doi.org/10.1017/CBO9781139003667
https://doi.org/10.1103/PhysRevB.64.214204
https://doi.org/10.1103/PhysRevB.64.214204
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/RevModPhys.59.1
https://doi.org/10.1103/PhysRevLett.49.1739
https://doi.org/10.1103/PhysRevLett.49.1739
https://doi.org/10.1103/PhysRevB.95.134203
https://doi.org/10.1103/PhysRevLett.68.3900
https://doi.org/10.1103/PhysRevLett.68.3900

	The polaronic effect of a metal layer on variable range hopping
	Abstract
	Introduction
	Main Results
	The model and derivation of the effective action
	The model
	Microscopic description of the electromagnetic and phononic fluctuations
	The dressed tunneling amplitude

	Conductivity
	Weak disorder in the metal
	Qualitative estimation of the polaronic reduction of the conductivity
	Microscopic explanation of the polaronic reduction

	Conclusions
	Acknowledgments
	Solution of the Mean-field equation
	Gaussian corrections to MF solution
	The generating functional and the conductivity
	The correlation function of the gauge field
	References


