
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Nonlinear Hall effect in Weyl semimetals induced by chiral
anomaly

Rui-Hao Li, Olle G. Heinonen, Anton A. Burkov, and Steven S.-L. Zhang
Phys. Rev. B 103, 045105 — Published  5 January 2021

DOI: 10.1103/PhysRevB.103.045105

https://dx.doi.org/10.1103/PhysRevB.103.045105


Chiral-Anomaly-Induced Nonlinear Hall Effect in Tilted Weyl Semimetals

Rui-Hao Li1,∗ Olle G. Heinonen2,3, Anton A. Burkov4, and Steven S.-L. Zhang1†
1Department of Physics, Case Western Reserve University, Cleveland, Ohio 44106, USA
2Materials Science Division, Argonne National Laboratory, Lemont, Illinois 60439, USA

3Northwestern-Argonne Institute of Science and Engineering, Evanston, Illinois 60208, USA
4Department of Physics and Astronomy, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada

(Dated: November 27, 2020)

We predict a nonlinear Hall effect in certain Weyl semimetals with broken inversion symmetry.
When the energy dispersions about pairs of Weyl nodes are skewed – the Weyl cones are “tilted” –
the concerted actions of the anomalous velocity and the chiral anomaly gives rise to the nonlinear
Hall effect. This Hall conductivity is linear in both electric and magnetic fields, and depends
critically on the tilting of the Weyl cones. We also show that this effect does not rely on a finite
Berry curvature dipole, in contrast to the intrinsic quantum nonlinear Hall effect that was recently
observed in type-II Weyl semimetals.

I. INTRODUCTION

Weyl semimetals (WSMs) [1–10] are a newly dis-
covered class of quantum materials which can host a
number of exotic massless quasiparticles called Weyl
fermions with a well-defined chirality near the band-
crossing points (Weyl nodes). One of the most unique
features of Weyl fermions is the chiral anomaly [11, 12]
– breaking of the chiral symmetry at the quantum
level leading to the nonconservation of chiral charges.
The manifestation in WSMs is that a pair of Weyl
nodes of opposite chiralities act as source and drain of
electrons in the presence of non-perpendicular electric
and magnetic fields, resulting in a density difference
between the two nodes, while preserving the total elec-
tron density [13, 14].

To date, the most remarkable phenomenon induced
by the chiral anomaly is the negative longitudinal
magnetoresistance [14–16], which was observed ex-
perimentally in WSMs such as TaAs [17, 18]. Intu-
itively, this phenomenon can be understood via the
chiral magnetic effect [19, 20] in WSMs: In the ab-
sence of an electric field, there are equal numbers of
Weyl fermions with opposite chiralities moving in op-
posite directions (collinear with the external magnetic
field), which results in zero net charge current; when
an electric field is applied along the magnetic field di-
rection, an effective chemical potential difference be-
tween Weyl fermions with opposite chiralities is cre-
ated due to the chiral anomaly [14], giving rise to an
imbalance between the two fluxes of Weyl fermions
and consequently a net charge current j ∝ (E ·B)B.

More recently, another related transport phe-
nomenon induced by the chiral anomaly in WSMs
called the planar Hall effect was proposed [21–23] and
experimentally detected [24–27] , wherein the Hall
current, the electric and magnetic fields are all copla-
nar. It is worth noting that both the negative magne-
toresistance and the planar Hall effect in WSMs are
linear responses to the external electric field.
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In this work, we predict another transport signa-
ture of the chiral anomaly in WSMs – a nonlinear
Hall effect with the Hall conductivity proportional to
E ·B. The physical mechanism of the chiral-anomaly-
induced nonlinear Hall (CNH) effect is illustrated in
Fig. 1, which shows a combined effect of the anoma-
lous velocity and the chiral anomaly. It is well es-
tablished that in the presence of non-perpendicular
electric and magnetic fields, the chiral anomaly re-
sults in a chiral-dependent modification of the charge-
carrier density in the vicinity of each Weyl node [14],
i.e. δnsk ∼ sE · B with s = ±1 denoting the chiral-
ity. Moreover, due to the finite Berry curvature Ωs

k

of the Bloch states, the charge carriers acquire an ad-
ditional anomalous velocity vsa = e

~E× Ωs
k [28, 29],

which is perpendicular to the applied electric field.
The direction of the anomalous velocity depends also
on the chirality of the Weyl nodes. These two effects
conspire to produce a nonlinear Hall current density
jCNH = −e

∑
k,s δn

s
kvsa.

As will be shown explicitly in Sec. III, a nonvanish-
ing jCNH requires WSMs with broken inversion sym-
metry. In addition, asymmetric Fermi surfaces are
also necessary. One way to achieve this is via tilting of
the Weyl cones, as demonstrated in Fig. 1. It suffices
to consider the simplest Weyl node configuration, that
is, a pair of Weyl nodes with linear dispersions situ-
ated at the same energy level, to highlight the essen-
tial physics behind the CNH effect. In Fig. 1(a)–(c) we
consider three special cases for the pair of Weyl cones,
which are untilted, tilted in opposite directions, and
tilted in the same direction, respectively. As shown
in the lower panels of Fig. 1, which feature the pro-
jection of the Fermi surfaces onto the kx–ky plane,
in the first two cases, the whole Fermi surface for a
pair of Weyl nodes is symmetric about k = 0, result-
ing in a vanishing jCNH, whereas in the third case,
the asymmetric Fermi surface leads to a finite jCNH

contribution according to our calculation.

The paper is organized as follows. In Sec. II, we
set up the general formalism for evaluating the CNH
current density in tilted WSMs, which involves a low-
energy two-band Hamiltonian and the semiclassical
Boltzmann equations. In Sec. III A, we present the
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FIG. 1. Schematics illustrating the physical mechanism of the chiral-anomaly-induced nonlinear Hall (CNH) effect for a
pair of Weyl nodes of opposite chiralities, denoted by the blue (s = 1) and red (s = −1) dots. In the linear model used
in our analysis, for a fixed value of kx, each Weyl node has a linear dispersion along the ky and kz axes, forming a Weyl
cone, as shown in the upper panel in each subfigure. For simplicity, the two Weyl nodes are separated along the z-axis
and the external electric and magnetic fields are assumed to be in the x-direction. We show the scenarios where the pair
of Weyl cones are (a) untilted, (b) tilted in opposite directions, and (c) tilted in the same direction. The gray horizontal
planes cut through the energy dispersions at the equilibrium chemical potential µ with the corresponding Fermi surface
cross-sections shown in the lower panels. The nonlinear Hall current arises as a consequence of the chiral anomaly and
the anomalous velocity. On one hand, the chiral anomaly effectively leads to unequal electron densities between the two
Weyl cones, as shown by the orange-filled parts of the cones. On the other hand, the anomalous velocity, whose direction
and magnitude depend on the chirality of the Weyl cone as well as the location on the Fermi surface, is indicated by the
blue arrows in the lower panels. In scenarios (a) and (b), the whole Fermi surface is symmetric about k = 0, leading to
a vanishing CNH current, whereas in scenario (c), an asymmetric Fermi surface leads to a finite CNH current.

general form of the CNH current density and its corre-
sponding nonlinear response functions for both type-I
and type-II WSMs. We explore multiple aspects of
the CNH effect based on the features of the nonlinear
response function and symmetry considerations. In
Sec. III B and III C, we discuss in detail the depen-
dence of the CNH response on tilting and the relative
energy shift of a pair of Weyl nodes, respectively. In
Sec. III D, we discuss the difference of the CNH effect
from other nonlinear Hall effects that exist in the liter-
ature. In particular, we highlight the difference from
the nonlinear Hall effect that arises from the Berry
curvature dipole, which exists in time-reversal invari-
ant systems. Materials and experimental considera-
tions for detecting the CNH effect will be discussed in
Sec. III E. Lastly, we draw conclusions in Sec. IV.

II. FORMULATION

The Nielsen-Ninomiya fermion doubling theorem
[30, 31] asserts that Weyl nodes must appear in pairs
of opposite chiralities to ensure zero total chirality;
thus, a WSM with broken inversion symmetry must
have multiples of four Weyl nodes. As long as pairs
of Weyl nodes are well separated in momentum space,
we may examine the CNH effect by considering each
pair independently. Without loss of generality, we as-
sume that the Weyl cones are tilted along the z-axis.

The simplest low-energy Hamiltonian for each Weyl
node – a building block for realistic WSMs – is

Hs
k = ~vF (sk · σ +Rskzσ0) + µs, (1)

where σ0 is the 2× 2 identity matrix, σ = (σx, σy, σz)
are the three Pauli matrices, vF is the Fermi veloc-
ity, s = ±1 specifies the chirality of the Weyl node,
the parameter Rs characterizes the tilting of the Weyl
cone, and µs denotes the energy shift of the Weyl node
with chirality s. The Hamiltonian above can be ob-
tained by linearizing a four-band model Hamiltonian
for WSMs with broken inversion symmetry, as shown
explicitly in Appendix A.

For small tilting |Rs| < 1, the Fermi surface encloses
only an electron pocket (assuming that the chemical
potential lies in the conduction band). In this case,
the Hamiltonian describes a type-I Weyl node. When
|Rs| > 1, which corresponds to a type-II Weyl node,
unbounded electron and hole pockets are present at
the Fermi energy [32]. It is also worth pointing out
that alternatively, one may start with a low-energy
Hamiltonian similar to (1) but takes into account the
separation of the two Weyl nodes in momentum space
2Q on the kz-axis. As presented in Appendix B, this
will lead to a Q-dependent nonlinear response. How-
ever, calculations show that the Q-dependence of the
response function for type-II WSMs is generally very
weak, and hence we may adopt the simpler Hamilto-
nian given by Eq. (1).
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As mentioned previously, the presence of a finite
Berry curvature gives a Weyl fermion an additional
anomalous velocity. The Berry curvature is given by

Ωs
k = i 〈∇ku

s
k|× |∇ku

s
k〉 , (2)

where Hs
k |usk〉 = εsk |usk〉. Furthermore, in the pres-

ence of a magnetic field, another physical quantity
that can affect the electron wave-packet dynamics is
the orbital magnetic moment given by [29]

ms
k = −i e

2~
〈∇ku

s
k|× [Hs

k − εsk] |∇ku
s
k〉 , (3)

which arises from a self-rotation of the wave-packet
around its center of mass and modifies the energy dis-
persion as ε̃sk = εsk −ms

k ·B.

With Hamiltonian (1), the energy dispersion of the
Weyl node of chirality s can be written as

εsk = ~vF (Rskz ± k) + µs , (4)

where + (−) sign corresponds to the conduction (va-
lence) band and k = |k|. The Berry curvature and the
orbital magnetic moment are then given by

Ωs
k = −s±k

2k3
, (5a)

ms
k = −sevF

±k

2k2
. (5b)

The semiclassical equations of motion for a Weyl
fermion wavepacket can be written as [29]:

Dsṙs = ṽsk +
e

~
E×Ωs

k +
e

~
(ṽsk ·Ωs

k)B , (6a)

Dsk̇s = − e
~

E− e

~
ṽsk ×B− e2

~2
(E ·B)Ωs

k , (6b)

where ṽsk ≡ vsk − (1/~)∇k(ms
k · B), with vsk =

(1/~)∇kε
s
k the group velocity of the Weyl fermion

with chirality s and Ds ≡ 1 + e
~ (B ·Ωs

k) is the corre-
sponding modified density of states.

To compute the current density, we substitute
Eq. (6b) into the homogeneous steady-state Boltz-
mann equation with the relaxation-time approxima-
tion

k̇s · ∇kf
s = −f

s − fs0
τ

, (7)

and solve for fs ' fs0 + fs1 + fs2 , where fs0 is the equi-
librium Fermi-Dirac distribution [at zero temperature
fs0 = Θ (µ− εsk + ms

k ·B) with µ the chemical poten-
tial], fs1 and fs2 are the corrections to the equilibrium
distribution at the first- and second-order in electric
field, respectively, and τ is the intranode relaxation
time. We have also assumed that the internode scat-
tering rate is much smaller than the intranode scatter-
ing rate 1/τ and it can be neglected (see Appendix C
for proof). The current density can then be calculated

via

j = (−e)
∑
s

∫
k

Ds ṙs fs, (8)

where
∫
k

is the shorthand notation for
∫
dk/(2π)3,

the physical velocity ṙs is given by Eq. (6a), and
∑
s

represents summing the contributions from both Weyl
nodes of opposite chiralities.

Note that for a type-I WSM, we only need to cal-
culate the contribution from the conduction (valence)
band when the chemical potential lies above (below)
the Weyl nodes, whereas for a type-II WSM, we need
to sum the contributions from both the conduction
and valence bands due to the emergence of the elec-
tron and hole pockets at the Fermi level. Moreover,
due to the unbounded nature of the Fermi surface in
a linear model, one needs to introduce an ultravio-
let momentum cutoff (Λ) [33, 34], beyond which the
linear model (1) can no longer be taken as a valid
description of the WSM. Details of the calculation of
nonlinear responses can be found in Appendix D.

III. RESULT AND DISCUSSION

We find, up to O(E2B1), that the chiral-anomaly-
induced nonlinear Hall (CNH) current stems from
terms involving the Berry curvature Ωs

k and is given
by the following integral,

jCNH =
e4τ

~2

∑
s

∫
k

∂fs0
∂εsk

E×Ωs
k(E×Ωs

k) · (vsk ×B).

(9)
Note that the orbital magnetic moment ms

k is not re-
sponsible for the chiral-charge imbalance between a
pair of Weyl nodes and hence does not contribute to
jCNH.

By inspecting the structure of the integral above, it
is evident that if the energy dispersion of the WSM
is invariant under k→ −k, corresponding to a Fermi
surface symmetric about k = 0, the group velocity
vsk = (1/~)∇kε

s
k is an odd function of k and hence the

integral over the reciprocal space vanishes. Thus, to
obtain a nonzero jCNH, an asymmetric Fermi surface
is necessary and in the current setup, it is provided by
tilting of the Weyl cones as well as an unequal shift
in energy between the two Weyl nodes, as included in
Eq. (4). In the following subsections, we will discuss
the CNH effect for tilted WSMs in details.

A. CNH response function

Placing Eqs. (4) and (5a) in Eq. (9) and evaluating
the integral therein, the CNH current density for a
tilted WSM can be expressed in the following form,

jCNH =
∑
s

κs(E ·B)(E× t̂), (10)
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where t̂ is the unit vector in an arbitrary tilt direction
(̂t = êz in the present setup) and κs is the nonlinear
current response function for a Weyl node of chirality
s. We find, for type-I WSMs

κsI =
3e4v2

F τ(µ− µs)
40π2~|µ− µs|3

Rs, (11)

and for type-II WSMs,

κsII =
5κsI

12|Rs|5

(
R6
s +

3

2
R4
s −

1

10
+

1−R2
s

Λ̃2
+

3− 2R2
s

2Λ̃4

)
,

(12)
where we have introduced a dimensionless ultraviolet
cutoff Λ̃ ≡ ~vFΛ/(µ−µs) to deal with the open Fermi
surface in the two-band model of type-II WSMs de-
scribed by Eq. (1) [33, 34]. In real materials, the cutoff
may be considered as an upper-bound of |k| beyond
which the bands cease to be linearly dispersing. It
is worthy to point out that in type-II WSMs, when
the energy corresponding to the momentum cutoff Λ
is much larger than the energy of the Weyl nodes rel-
ative to the Fermi energy, that is, Λ̃ � 1, the cutoff-
dependent terms in the response function κsII become
negligible. This regime is desirable as we are mostly
interested in the physics near the Weyl nodes, that is,
when the Fermi energy is close to the Weyl-node en-
ergy. It further removes the dependence on the seem-
ingly artificial cutoff Λ, making the result more uni-
versal.

A few general remarks on the CNH effect are in
order. First, the nonlinear Hall effect vanishes if the
system is inversion-symmetric. This can be seen from
the general form of the nonlinear Hall current jCNH as
given by Eq. (10); the whole set of the external fields,
i.e. (E ·B) E, is even under space inversion whereas
jCNH is parity-odd, so the response function must be
zero if the system is invariant under space inversion.

Secondly, an untilted Weyl cone does not contribute
to the CNH effect in the low energy limit, which is in-
dicated by Eqs. (11) and (12). Physically, this can be
understood as follows. For an untilted Weyl cone, at
any two k points on the pocket of the Fermi surface
symmetric about the Weyl node, the anomalous ve-
locity vectors have the same magnitude but point in
opposite directions. This pairwise cancellation leads
to a vanishing CNH contribution from the Weyl cone
after summing over all states on the corresponding
electron pocket, as shown schematically in Fig. 1(a).
More generally, a nonvanishing total jCNH requires the
whole Fermi surface to be asymmetric about the Γ
point, as we addressed earlier based on Eq. (9). This
point is exemplified in Appendix A where we explic-
itly calculate the total CNH response κ for a four-band
Weyl Hamiltonian with two pairs of Weyl nodes.

Thirdly, as seen in Eqs. (11) and (12), the nonlinear
Hall response κs and hence the corresponding non-
linear Hall conductivity are proportional to µ−2 for
both types of WSMs (assuming µs = 0), at variance
with the Drude conductivity which is proportional to

µ2. This implies that the nonlinear Hall effect be-
comes sizable when the Fermi energy approaches the
energy of the Weyl nodes; such enhancement origi-
nates from the singularity of the Berry curvature at a
Weyl node. The divergence of κs as the Fermi energy
falls on the Weyl nodes, however, can be evaded by the
disorder-induced energy broadening, which imposes a
lower bound of the Fermi energy µ & ~/τ [35]. Also,
in our semiclassical treatment, we have neglected the
interband transitions by restricting the external elec-
tric field to satisfy eEτ/~ < µ/~vF , leading to another
constraint µ & eEτvF .

Furthermore, from a practical point of view, the
strong dependence of the CHN effect on the Fermi
energy suggests that when estimating the size of this
effect in a real WSM material, one can just take into
account those Weyl nodes in the Brillouin zone whose
energies are very close to the Fermi energy for conve-
nience. In this case, under a further assumption that
these Weyl nodes are reasonably well separated, the
Fermi surface is a set of disconnected regions about
each Weyl node and hence the contributions to the
CNH effect from each Weyl node just add up. There-
fore, our formulation becomes more applicable under
such consideration.

B. Tilt dependence of CNH

To understand the tilt-dependence of the nonlinear
Hall response function, in Fig. 2(a) we show κs for
each Weyl node in a pair and its derivative with re-
spect to the tilt parameter, ∂κs/∂Rs , as a function of
Rs, assuming µ − µs = 10 meV (with µ+ = µ−) and
Λ̃ = 10. The phase transition from type-I (blue re-
gion) to type-II (red region) WSM can be clearly seen
from the derivative of κs with respect to Rs (dashed
curve) due to the discontinuity at Rs = ±1. For both
type-I and type-II WSMs, the individual contribution
to the nonlinear Hall effect becomes more prominent
as tilting of the Weyl cone gets larger due to the mono-
tonic nature of the nonlinear current response function
κs (solid curve). Moreover, it is clear that κs overall is
an odd function of Rs, suggesting that a pair of Weyl
nodes with opposite tilting and same energy would
not contribute to the CNH current, which is the case
depicted in Fig. 1(b).

In Fig. 2(b), we consider a pair of Weyl nodes of
opposite chiralities (s = ±1) and the total nonlinear
current response κ = κ+ + κ− as a function of R+

and R− is shown in the contour plot. Region I (II)
in the parameter space corresponds to the case where
both Weyl nodes are type-I (type-II). Region III cor-
responds to the case where one of the Weyl nodes is
type-I and the other is type-II. When R+ and R− have
the same sign, the magnitude of κ increases as the
magnitude of either of the tilt parameters increases.
On the other hand, when they have opposite signs,
the magnitude of κ first decreases as the magnitude
of one of the tilt parameters increases while the other
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FIG. 2. (a) The nonlinear current response function κs

(solid curve) and its first derivative with respect to the
tilt parameter Rs (dashed curve) as a function of Rs, with
τ = 10−13 s, vF = 3 × 105 m/s, µ − µs = 10 meV, and

Λ̃ = 10. |Rs| < 1 (shown in blue) corresponds to type-
I WSMs, whereas |Rs| > 1 (shown in red) corresponds
to type-II WSMs. (b) Contour plot of the total response
function for a pair of Weyl nodes, κ = κ+ + κ−, as a
function of R+ and R−. Region I (II) in the parameter
space corresponds to the case where both Weyl nodes are
type-I (type-II). Region III represents the case where one
of the Weyl nodes is type-I and the other is type-II. The
dashed line corresponds to the case R+ = −R−.

fixed. It then increases after the tilt parameter crosses
the line R+ = −R−. In particular, on the dashed line
corresponding to R+ = −R−, κ = 0 for type-I and -II
Weyl nodes due to a symmetric overall Fermi surface
as shown in Fig. 1(b), reaffirming that κs is an odd
function of Rs.

C. Relative energy shift of Weyl nodes

For a WSM with broken inversion symmetry, in-
dividual pairs of Weyl nodes with opposite chiralities
may be shifted to different energies [36]. As long as the

���
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FIG. 3. The ratio κ/κ0 as a function of the energies µ+

and µ− (normalized to the Fermi energy µ > 0) of a pair
of Weyl nodes of opposite chiralities tilted along (a) op-
posite directions with R+ = −R− = 0.5 and (b) the same
direction with R+ = R− = 0.5, where κ = κ+ + κ− is the
total contribution to the CNH from the pair of Weyl nodes

and κ0 ≡ 3e4v2F τ

40π2~µ2 which has the same dimension as κ.

Weyl cones are tilted, such relative energy shift would
modulate the CNH current due to the (µ− µs)−2 de-
pendence of the nonlinear response function κs, as
shown in Eqs. (11) and (12).

For instance, in Fig. 3(a) we show the total non-
linear current response κ ≡ κ+ + κ− as a function of
the energy shifts µ+ and µ− (normalized to a positive
Fermi energy) of a pair of type-I Weyl nodes with op-
posite tilting. While κ vanishes (as indicated by the
diagonal line) when the Weyl nodes lie at the same en-
ergy whereby the two electron pockets are symmetric
about the midpoint of the two nodes, a nonvanishing
κ arises when a relative energy shift between the pair
of Weyl nodes is induced, which changes sign as the
sign of µ+ − µ− is reversed.

For a pair of Weyl nodes tilted along the same di-
rection, as shown in Fig. 3(b), the magnitude of κ also
varies with the relative energy shift between the Weyl
nodes but the sign of κ remains unchanged regardless
of the sign of µ+ − µ−, as opposed to the opposite
tilting case.
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D. Comparison with other nonlinear Hall effects

We are now in position to compare the CNH ef-
fect with other nonlinear Hall effects that were dis-
covered previously. A nonlinear Hall conductivity lin-
early proportional to both electric and magnetic fields
was derived by Morimoto and coworkers [35] for Weyl
fermions with linear and isotropic dispersion, which is
finite when the electric and magnetic fields are per-
pendicular and hence does not emanate from the chi-
ral anomaly.

Another nonlinear Hall effect may be induced by
the intrinsic Berry curvature dipoles [37–42] or dis-
order [43, 44] in time-reversal invariant systems. The
corresponding Berry-curvature-dipole-induced nonlin-
ear Hall (BNH) current density can be expressed as
jBNH
a =

∑
s χ

s
abcEbEc with the nonlinear response

function [37, 38]

χsabc = εacd
e3τ

2

∫
k

fs0
∂

∂kb
Ωsd , (13)

where the index s represents the chirality of the Weyl
nodes and the rest of the indices represent spatial com-
ponents, and the Berry curvature dipole is defined by
the integral. Note that a magnetic field is not nec-
essary for a nonvanishing Berry curvature dipole; in
other words, the corresponding nonlinear Hall effect
in WSMs does not rely on the chiral anomaly. For
comparison, it is also instructive to rewrite the CNH
current given by Eq. (9) in the the component form
as jCNH

a =
∑
s κsabcdEbEcBd, with

κsabcd = εablεgcmεgdn
e4τ

~3

∫
k

fs0
∂

∂kn
(ΩslΩ

s
m) . (14)

Comparing Eq. (13) with (14), it is evident that the
CNH response function κsabcd is intrinsically different
from the response function due to the Berry curvature
dipole.

In the presence of an external magnetic field, how-
ever, the orbital magnetic moment leads to a correc-
tion to the equilibrium distribution function, that is,

fs0 (ε̃sk) ' fs0 (εsk)− ∂fs
0

∂εsk
(ms

k ·B) in the small-field limit.

When the second term enters Eq. (13), it gives rise to
a contribution to the nonlinear Hall current density
that has the same form as Eq. (10). The difference is
that the nonlinear response function due to the cor-
rection to the Berry curvature dipole comes with an
opposite sign compared to the CNH response function
and its magnitude is about 1/3 of the CNH counter-
part. Consequently, the BNH contribution will not
interfere with the detection of the CNH effect as the
net effect is still CNH-dominant, despite the coexis-
tence of the two when a magnetic field is applied.

E. Materials and experimental considerations

To discuss the experimental prospects of the CNH
effect, we first give an order-of-magnitude estimate of
the contribution from a pair of Weyl cones, which are
assumed to tilt in the same direction for simplicity.
For reference, we compare the size of the nonlinear
Hall conductivity, σI(II) = κI(II)E · B, to the size of
the Drude conductivity σD due to this pair of Weyl
nodes, which is given in [45]. For a type-I WSM such
as TaAs [46, 47], using typical parameters vF = 3×105

m/s, µ = 20 meV, and assuming a tilt parameter
Rs = 0.1 leads to a ratio of the nonlinear Hall conduc-
tivity to the Drude conductivity, σI/σD ' 1%, for an
electric field E = 100 V/cm applied in the x-direction
and a parallel magnetic field B = 9 T. Similarly, a
type-II WSM such as MoTe2 [48, 49] with Rs = 1.5
would lead to a ratio of the same order of magnitude.
Note that tilting of Weyl cones in principle can be
varied by applying strains [50–52] – an experimentally
accessible knob to control the size of the CNH effect
and to differentiate it from other linear/nonlinear Hall
effects.

To make a more accurate quantitative prediction
of the CNH effect for a candidate WSM with broken
inversion symmetry, one needs to take into account
all the relevant pairs of Weyl nodes in the Brillouin
zone, that is, those whose energies are close to the
Fermi energy. For example, in the type-II WSM ma-
terial LaAlGe [53], there are totally 40 Weyl nodes in
the bulk Brillouin zone, but only the 16 type-II Weyl
nodes labeled as W2 are relevant as the other type-I
Weyl nodes are located further above the Fermi level
and their tiltings are much smaller. The dispersion of
each of the Weyl cones can in principle be obtained
from ab-initio calculations and/or ARPES measure-
ments in experiment, which can be used to fit the
linear two-band model (4). One can then apply the
main results in this paper, Eqs. (10-12), to evaluate
the total CNH conductivity of a candidate material.

Experimentally, the CNH effect can be separated
from linear Hall effects [21, 22, 34, 54] in WSMs: In
a.c. measurements, this can be easily achieved by mea-
suring the second harmonic Hall resistance [45, 55]
wherein linear Hall contributions are automatically
excluded. In d.c. measurements, they can also be dis-
tinguished by proper alignment of the external electric
and magnetic fields.

IV. CONCLUSION AND OUTLOOK

In this work, we proposed a nonlinear Hall effect
in WSMs that arises from the combined actions of
the chiral anomaly and the anomalous velocity, which
we denoted by the CNH effect. We showed that this
effect requires inversion symmetry breaking as well
as asymmetric Fermi surfaces, which can be achieved
via tilting of the Weyl cones. It is worth mentioning
that even though for simplicity, much of our analysis
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revolves around the simplest configuration – a pair
of Weyl nodes of opposite chiralities tilted along the
same axis, our results for the CNH current density
can be generalized to any Weyl configuration with an
arbitrary number of pairs of Weyl nodes that are tilted
in arbitrary directions, provided that the Weyl nodes
are well-separated.

In addition, an asymmetric Fermi surface may
be achieved in WSMs by breaking certain symme-
try (such as time reversal) in addition to inversion.
We thus anticipate that the CNH effect may be ob-
served in a family of noncentrosymmetric magnetic
WSMs [56, 57]. The search for candidate WSM mate-
rials that may host sizable CNH effect would be desir-
able to be pursued in future investigations with inputs
from ab-initio calculations.
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Appendix A: Four-band Weyl Hamiltonian and
Asymmetric Fermi Surfaces

As illustrated in Fig. 1 in the main text, a finte
CNH effect can be hosted in WSMs with broken in-
version symmetry when tilting of Weyl cones leads to
a Fermi surface that is asymmetric about the Γ point.
The desired configuration of tilting may be achieved
by breaking additional symmetries such as the time
reversal, as we will demonstrate below.

Let us commence with a more general low-energy
model Hamiltonian for a Dirac semimetal (e.g.,
Cd3As2) with two Dirac points at (0, 0,±QD):

H0(k) = Rk2
z+vF

[
σxszkx − σyky − λ

(
k2
z −Q2

D

)
σz
]
,

(A1)
where the term Rk2

z breaks the particle-hole symme-
try, leading to tilted energy dispersion around the
Dirac points and shifting their energy [58], σi and si
(i = x, y, z) are the Pauli matrices for the orbital and
spin degrees of freedom, respectively, the material pa-
rameters vF , λ and R are all independent of k, and
we have adopted the natural units ~ = c = 1 for the
ease of notation.

One can break the inversion symmetry P by adding
a term

HIB = vIσzszkz (A2)

to the Dirac Hamiltonian (A1) (P−1HIB(k)P 6=
HIB(−k) with P = σz). By doing so, each of the
two Dirac points split into two Weyl points with op-
posite chiralities that also lie on the z-axis, as shown
in Fig. A.1(a) [59]. Note that as the overall Fermi
surface turns out to be symmetric about the Γ point,
we would expect the CNH effect to vanish according
to our analysis in the main text.

One simple way to obtain an asymmetric Fermi sur-
face is by adding another term

HTRB = Jexsz (A3)

to further break the time-reversal symmetry
(T −1HTRB(k)T 6= HTRB(−k) with T = isyK,
where K is the complex conjugation operator). The
full Weyl Hamiltonian then becomes

H = H0 +HIB +HTRB . (A4)

The term HTRB may arise from the exchange interac-
tion between the Weyl-fermion spin and the (uniform)
magnetization in a magnetic WSM with Jex the ex-
change coupling coefficient. It leads to a relative en-
ergy shift between Weyl nodes of the same chirality,
resulting in an asymmetric Fermi surface, as shown in
Fig. A.1(b). We thus anticipate the emergence of a
nonvanishing CNH effect. In what follows, we explic-
itly calculate the total CNH response function κ by
linearizing the four-band Hamiltonian (A4) and ap-
plying Eqs. (11) and (12) in the main text.

The band dispersion corresponding to the full
Hamiltonian H = H0 +HIB +HTRB is

εµ,ν(k) = µvF

√
k2
x + k2

y + [ṽkz + νλ (k2
z −Q2

D)]
2

+Rk2
z − νJex, (A5)

where ṽ ≡ vI/vF and µ, ν = ±1. It describes two pairs

of Weyl nodes – one situated at (0, 0,
√
Q2
D + q2

I ± qI)
and the other at (0, 0,−

√
Q2
D + q2

I ± qI), where qI ≡
ṽ/2λ = vI/2λvF . To make a connection with the
linearized one-node Hamiltonian (1) in the main text,
we may do an expansion around a pair of Weyl nodes
located at, say, (0, 0, sqI +

√
Q2
D + q2

I ), where s = ±1
denotes the chirality. Upon closer inspection, we find
that the Weyl node with s = 1 is the touching point
between the bands ε−1,−1 and ε1,−1 (ν = −1), while
the one with s = −1 is the touching point between
ε−1,1 and ε1,1 (ν = 1). So we establish that ν = −s for
this pair of Weyl nodes. By expanding the momenta
around the Weyl nodes, (kx, ky, kz) ' (k̃x, k̃y, sqI +√
q2
I +Q2

D + k̃z), and substituting it into Eq. (A5),
we arrive at the energy dispersion in the vicinity of
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FIG. A.1. (a) & (b) Schematics of the energy dispersion corresponding to the four-band Hamiltonian (A4) with kx =
ky = 0. For illustrative purposes, we take vF = 1, λ = 0.5 eV−1, and QD = 2 eV. (a) When the inversion-breaking
parameter vI = 0.6 but Jex = 0, each of the Dirac points splits into two Weyl points, generating two pairs of Weyl
nodes on the kz-axis. Along with R = 0.3 eV−1, the energies of the Weyl nodes are lifted and the surrounding dispersion
becomes tilted. (b). When the time-reversal-breaking exchange coupling Jex = 0.3 eV along with vI = 0.6, the energies
of Weyl nodes of the same chirality are displaced by opposite amounts, leading to an asymmetric overall Fermi surface.
The blue and red dots denote the chirality (±1) of the Weyl nodes. (c) The ratio κ/κ0 as a function of the exchange
coupling Jex, where κ is the total nonlinear Hall response function for the four Weyl nodes calculated based on Eq. (11)

in the main text and κ0 ≡ 3e4v2F τ

40π2~µ2 with µ = 2 eV.

the Weyl node of chirality s,

εs
k̃,1
' ±vF

√
k̃2
x + k̃2

y + λ2

(
2
√
q2
I +Q2

Dk̃z + k̃2
z

)2

+R

(
2q2
I +Q2

D + 2sqI

√
q2
I +Q2

D

)
+ sJex

+2R

(
sqI +

√
q2
I +Q2

D

)
k̃z +Rk̃2

z . (A6)

If one keeps only terms up to the first order in
k̃i, the dispersion above matches the dispersion (4)
given by Hamiltonian (1) describing the low-energy
physics around the Weyl point situated at (0, 0, sqI +√
q2
I +Q2

D), provided that ṽ2 + 4λ2Q2
D = 1, Rs =

R
λvF

(sṽ + 1), and µs = R
4λ2 (ṽ + s)2 − sJex, where

ṽ ≡ vI/vF and ~ = 1 is assumed.
Similarly, for the other pair of Weyl nodes located at

(0, 0,−sqI −
√
q2
I +Q2

D), we identify ν = s in the dis-
persion. Doing the same expansion around the Weyl
nodes leads to the following low-energy dispersion,

εs
k̃,2
' ±vF

√
k̃2
x + k̃2

y + λ2

(
k̃2
z − 2

√
q2
I +Q2

Dk̃z

)2

+R

(
2q2
I +Q2

D + 2sqI

√
q2
I +Q2

D

)
− sJex

−2R

(
sqI +

√
q2
I +Q2

D

)
k̃z +Rk̃2

z . (A7)

Matching the linearized dispersion (4), we find ṽ2 +
4λ2Q2

D = 1, Rs = − R
λvF

(sṽ + 1), and µs = R
4λ2 (ṽ +

s)2 + sJex for this pair of Weyl nodes.
Placing the parameters Rs and µs derived above

for each of the four Weyl nodes into Eqs. (11) and

(12) in the main text, we calculate the contributions
from individual Weyl nodes to the CNH conductivity
and then sum them up to obtain the total CNH con-
ductivity. In Fig. A.1(c), we show the dependence of
the total CNH response function κ on the exchange
coupling strength Jex, which confirms that a finite κ
appears when Jex 6= 0 whereby the Fermi surface is
asymmetric about k = 0.

Appendix B: Dependence of the Nonlinear
Response Functions on the Separation between

Weyl Nodes

Here we consider two Weyl nodes of opposite chi-
ralities lying on the z-axis, separated by 2Q in mo-
mentum space. Again, the Weyl cones are assumed
to be tilted along the z-axis. The low-energy Hamil-
tonian for a single Weyl node that takes into account
the separation is given by

Hs(k) = ~vF [s(k− sQêz) · σ +Rs(kz − sQ)σ0] + µs.
(B1)

The Berry curvature corresponding to this Hamilto-
nian is

Ωs(k) = −s±(k− sQez)

2|k− sQez|3
. (B2)

With Eq. (8) in the main text and the fact that a
nonlinear response to an external electric field can
only arise from terms in that involve fs1 and fs2 in
the expansion of the distribution function, the nonlin-
ear current density components can be written in the
cylindrical coordinates as
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ji =
∑
s

∫ ∞
0

k⊥dk⊥

∫ 2π

0

dφ

∫ Λz−sQ

−Λz−sQ
dk̃szMs

i (k⊥, φ, k̃
s
z) δ

[
µ− ~vF

(
Rsk̃

s
z ±

√(
k⊥
)2

+
(
k̃sz
)2)− µs], (B3)

where k⊥ ≡
√
k2
x + k2

y, k̃sz ≡ kz − sQ, and

Ms
i (k⊥, φ, k̃

s
z) is a function proportional to the

squares of the electric field strength that comes from
expanding the integrand in Eq. (8).

As mentioned in the main text, a momentum cutoff
must be introduced for calculations of type-II WSM
contributions within the linear model. With the cylin-
drical geometry, the momentum cutoff Λz for a type-II
WSM is imposed on kz. Similar to what is discussed in
Ref. [34], analyzing the roots of the Dirac delta func-
tion helps determine the integration limits for type-I
and type-II WSMs. In this case, the root for the con-
duction band can be written as

k⊥ =

√[
(Rs − 1)k̃sz −

µ− µs
~vF

][
(Rs + 1)k̃sz −

µ− µs
~vF

]
,

(B4)
and for the valence band,

k⊥ =

√[
µ− µs
~vF

+ (1−Rs)k̃sz
][
µ− µs
~vF

− (1 +Rs)k̃sz

]
.

(B5)
Therefore, assuming µ > µs, for type-I WSMs (|Rs| <
1), the requirement that k⊥ is real gives the following
limits for k̃sz:

− µ− µs
~vF (1−Rs)

6 k̃sz 6
µ− µs

~vF (1 +Rs)
. (B6)

For type-II WSMs with Rs > 1, with the cutoff
imposed, the limits for the conduction band are

− (Λz + sQ) 6 k̃sz 6
µ− µs

~vF (Rs + 1)
, (B7)

whereas those for the valence band are

µ− µs
~vF (Rs − 1)

6 k̃sz 6 Λz − sQ. (B8)

Similarly, for type-II WSMs with Rs < −1, we obtain

µ− µs
~vF (Rs − 1)

6 k̃sz 6 Λz − sQ (B9)

for the conduction band and

− (Λz + sQ) 6 k̃sz 6
µ− µs

~vF (Rs + 1)
(B10)

for the valence band. The case of µ < µs can be
worked out similarly.

Using the integration limits above in Eq. (B3), we
find that the nonlinear response function for type-I

WSMs is given by

κsI =
3e4v2

F τ(µ− µs)
40π2~|µ− µs|3

Rs, (B11)

the same as Eq. (9) in the main text. For type-II
WSMs, it is given by

κsII =
5κsI

12|Rs|5

[(
R6
s +

3

2
R4
s −

1

10

)
−R

2
s − 1

2

(
δ2
+ + δ2

−
)

+ (R2
s − 1)

(
δ3
+ + δ3

−
)

−2R2
s − 3

4

(
δ4
+ + δ4

−
)
− 1

5

(
δ5
+ + δ5

−
)]
, (B12)

where

δ± =
[
1 +Rs(sQ̃± Λ̃z)

]−1

, (B13)

with Q̃ ≡ ~vFQ/(µ− µs) and Λ̃z ≡ ~vFΛz/(µ− µs).
It is worth noting that the cutoff-independent terms

in Eq. (B12) agree with the ones in Eq. (10) in the
main text, and they dominate when Λ̃z � 1. In this
case, the result is independent of both Q and Λz. The
Q-dependence of the nonlinear response function is
fairly weak except for values of Q close to the mo-
mentum cutoff Λ̃z. For brevity, we adopt a simpler
Hamiltonian without Q-dependence for our calcula-
tions presented in the main text.

Appendix C: Contributions of Intra- and
Inter-node Scatterings to the CNH Effect

With the relaxation-time approximation, the scat-
tering term on the right-hand side of the Boltzmann
equation (5) in the main text is characterized by the
intranode scattering time τ . To include the effect of
internode scattering between two Weyl nodes of op-
posite chiralities (s = ±1), we can write down the
following set of coupled Boltzmann equations,

k̇s · ∂f
s

∂k
= −f

s − 〈fs〉
τ

− 〈f
s〉 − 〈f−s〉
τinter

, (C1)

where τ, τinter denote intranode and internode scatter-
ing times, respectively, and 〈f〉 ≡

∫
dΩk f/4π denotes

the angular average of the distribution f over k space.

To obtain nonequilibrium distribution at the first
order in E, fs1 , we start with the Boltzmann equation

for Weyl fermions with positive chirality. With
∂f+

0

∂k =
∂ε+

∂k
∂f+

0

∂ε+ = −~v+δ(µ − ε+) and Eq. (4b) in the main
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text, we find

f+
1 '

〈
f+

1

〉
− τδ(ε− εF )v+ ·

[
eE +

e2

~
(E ·B)Ω+

−e
2

~
(B ·Ω+)E

]
− τ

τinter

(〈
f+

1

〉
−
〈
f−1
〉)
. (C2)

Substituting Eqs. (2) and (3) in the main text into
Eq. (C2) and taking the angular average on both sides
gives

〈
f+

1

〉
−
〈
f−1
〉

=
τintere

2vF
3~k2

(E ·B)δ(ε− εF ). (C3)

The above result suggests the fact that the imbal-
ance of the electron distribution between the two Weyl
nodes is a consequence of the interplay between the
chiral anomaly represented by E ·B and the internode
scattering characterized by τinter. Similarly, perform-
ing the same procedure on the Boltzmann equation
for f− leads to the same result. To solve for

〈
f+

1

〉
and

〈
f−1
〉

individually, one will need another condi-
tion, that is, conservation of the total electron den-
sity. However, as will be seen below, to determine
the effect of the internode scattering on the chiral-
anomaly-induced nonlinear Hall (CNH) effect, the ex-

plicit expressions of them are not necessary.

With Eq. (4a) in the main text, the CNH current
density for the positive node can be written as

j+ = −e
∫

d3k

(2π)3

( e
~

E×Ω+
)
f+

1 . (C4)

Since Ω+ is odd and all 〈f〉’s are even under k→ −k,
it is obvious that only the second and the third terms
on the right-hand side of Eq. (C2) will contribute to a
finite current density in tilted Weyl semimetals, and
they are both proportional to the intranode scattering
time. On the other hand, the terms related to intern-
ode scattering do not contribute. The same argument
applies to j−. Hence, the above analysis justifies the
neglect of internode scattering in our formalism.

Appendix D: Calculation of the Nonlinear
Current Density with Spherical Geometry

Similar to Eq. (B3), exploiting the spherical sym-
metry of the system described by Hamiltonian (1) in
the main text, the nonlinear current density compo-
nents can be written as

ji =
∑
s

∫ ∞
0

k2dk

∫ 2π

0

dφ

∫ 1

−1

d(cos θ)Ms
i (k, φ, cos θ) δ[µ− ~vF k(Rs cos θ ± 1)− µs], (D1)

where k = |k|. In this case, the root for the conduction
band in the Dirac delta function is given by

k =
µ− µs

~vF (Rs cos θ + 1)
, (D2)

whereas for the valence band,

k =
µ− µs

~vF (Rs cos θ − 1)
. (D3)

Since k ≥ 0 and µ > µs is assumed, we must have
Rs cos θ+1 > 0 for the conduction band and Rs cos θ−
1 > 0 for the valence band. Then for type-I WSMs
with |Rs| < 1, the integration range of cos θ is from −1
to 1 (only the conduction band is taken into account
for µ > µs). Similarly, the same integration range
holds for the valence band when µ < µs.

The situation is different for type-II WSMs (|Rs| >
1). As mentioned in the main text, to do sensible
calculations for type-II WSMs one needs to impose
a radial momentum cutoff Λ such that k 6 Λ. This
cutoff then translates into a change in the integration
limits of cos θ. For Rs > 1, requiring k 6 Λ leads
to the following integration limits for the conduction

band: (
µ− µs
~vFΛ

− 1

)
1

Rs
6 cos θ 6 1, (D4)

while for the valence band the limits are(
µ− µs
~vFΛ

+ 1

)
1

Rs
6 cos θ 6 1. (D5)

On the other hand, for Rs < −1, we get the following
limits for the conduction band:

− 1 6 cos θ 6

(
µ− µs
~vFΛ

− 1

)
1

Rs
, (D6)

and for the valence band:

− 1 6 cos θ 6

(
µ− µs
~vFΛ

+ 1

)
1

Rs
. (D7)

Using these limits along with Eq. (D1), we calcu-
lated the chiral-anomaly-induced nonlinear Hall cur-
rent density and hence the response functions reported
in the main text.
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