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Optical absorption and emission spectra of doped two-dimensional (2D) materials exhibit sharp
peaks that are often mistakenly identified with pure excitons and pure trions (or charged excitons),
but both peaks have been recently attributed to superpositions of 2-body exciton and 4-body trion
states and correspond to the approximate energy eigenstates in doped 2D materials. In this paper, we
present the radiative lifetimes of these exciton-trion superposition energy eigenstates using a many-
body formalism that is appropriate given the many-body nature of the strongly coupled exciton
and trion states in doped 2D materials. Whereas the exciton component of these superposition
eigenstates are optically coupled to the material ground state, and can emit a photon and decay
into the material ground state provided the momentum of the eigenstate is within the light cone,
the trion component is optically coupled only to the excited states of the material and can emit
a photon even when the momentum of the eigenstate is outside the light cone. In an electron-
doped 2D material, when a 4-body trion state with momentum outside the light cone recombines
radiatively, and a photon is emitted with a momentum inside the light cone, the excess momentum
is taken by an electron-hole pair left behind in the conduction band. The radiative lifetimes of the
exciton-trion superposition states, with momenta inside the light cone, are found to be in the few
hundred femtoseconds to a few picoseconds range and are strong functions of the doping density.
The radiative lifetimes of exciton-trion superposition states, with momenta outside the light cone,
are in the few hundred picoseconds to a few nanoseconds range and are again strongly dependent
on the doping density. The doping density dependence of the radiative lifetimes of the two peaks
in the optical emission spectra follows the doping density dependence of the spectral weights of the
same two peaks observed in the optical absorption spectra as both have their origins in the Coulomb
coupling between the excitons and trions in doped 2D materials.

Optical absorption and emission spectra of doped two-
dimensional (2D) materials in general, and of transi-
tion metal dichalcogenides (TMDs) in particular, exhibit
sharp and distinct peaks that are often attributed to
neutral and charged excitons (or trions)1–11. Although
optical signatures of excitons and trions in doped semi-
conductors have been observed for a long time8, their
nature, especially of trions, in doped materials had re-
mained somewhat of a mystery. For one, it was difficult
to understand how a photon, being a boson, could get
absorbed and create a trion, if a trion is taken to be
fermionic bound state of three particles. Second, it was
not clear what happened to one of the charged particles
left behind when a trion emitted a photon. Pauli’s ex-
clusion required the left behind charged particle to be
deposited outside the Fermi sea, but the energy and mo-
mentum conservation requirements following from Pauli’s
exclusion were never observed in the measured photolu-
minescence spectra. Third, the variation of the energy
separation of the two peaks observed in the optical ab-
sorption spectra, as well as the spectral weight transfer
between these two peaks with doping, did not seem to
follow from the assumption of excitons and trions being
independent excitations.

Several recent works have contributed to resolving this
mystery and clarifying the nature of excitons and trions
in doped semiconductors 12–16. Recently, the authors
have presented a theoretical model based on two cou-
pled Schrödinger equations to describe excitons and tri-

ons in electron-doped 2D materials12. One is a 2-body
Schrödinger equation for a conduction band (CB) elec-
tron interacting with a valence band (VB) hole, and the
other is a 4-body Schrödinger equation of two CB elec-
trons, one VB hole, and one CB hole interacting with
each other. The CB hole is created when a CB electron
is scattered out of the Fermi sea by an exciton. The
eigenstates of the 2-body equation were identified with
excitons and the eigenstates of the 4-body equation were
identified with trions. A bound trion state is therefore a
4-body bosonic state, and not a 3-body fermionic state.
The two Schrödinger equations are coupled as a result
of Coulomb interactions between the excitons and the
trions in doped materials. The model shows that pure
exciton and trion states are not eigenstates of the Hamil-
tonian in the presence of doping. However, good approx-
imate eigenstates can be constructed from superpositions
of exciton and trion states. This superposition includes
both bound trion states as well as unbound trion states.
The latter are exciton-electron scattering states. These
superposition states, first proposed by Suris13, resemble
the exciton-polaron variational states proposed by Sidler
et al.14–16. The optical conductivity obtained from the
model proposed by the authors explains all the promi-
nent features experimentally seen in the optical absorp-
tion spectra of doped 2D materials including the obser-
vation of two prominent absorption peaks and the vari-
ation of their energy splittings and spectral shapes and
strengths with the doping density12. Furthermore, the
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FIG. 1: The nature of couplings involving 2-body exciton and
4-body trion states are depicted for an electron-doped mate-
rial. The 4-body trion states are coupled to the 2-body ex-
citon states via electron-electron and electron-hole Coulomb
interactions. Only the exciton states are coupled to the ma-
terial ground state via optical coupling. The trion states are
optically coupled to excited states of the material consisting of
a CB electron-hole pair. The trion states include both bound
and unbound trion states.

peaks observed in the optical absorption spectra of doped
2D materials do not correspond to pure exciton or pure
trion states. Each peak corresponds to a superposition
of exciton and trion states.

While previous papers, including the one by the au-
thors, have addressed the problem of light absorption by
excitons and trions12,13,15,16, questions related to light
emission and radiative lifetimes of excitons and trions in
doped materials remain unanswered. The model devel-
oped by the authors12, rather interestingly, also showed
that the 4-body trion states have no optical matrix el-
ements with the material ground state. The ground
state of, say an electron-doped material, is defined as the
state consisting of a completely full valence band (no VB
holes), and a completely full Fermi sea in the conduction
band (no CB holes inside and no CB electrons outside the
Fermi sea). Therefore, the contribution to the material
optical conductivity from the 4-body trion states results
almost entirely from their Coulomb coupling to the 2-
body exciton states17. The exciton and trion states and
the related couplings are depicted in Fig.1. However, the
trion states, including both bound and unbound trion
states, are optically coupled to the excited states of the
material consisting of a CB electron-hole pair. In other
words, a trion state can decay by emitting a photon and
leaving behind a CB electron-hole pair. The radiative
rate of this process is significant after one has summed
over all possible CB electron-hole pairs that can result

from the radiative decay of a 4-body trion state.
The experimentally relevant radiative lifetimes are not

those of pure exciton and trion states, but of the approx-
imate energy eigenstates which, as discussed above, are
superpositions of exciton and trion states. The goal of
this paper is to clarify the processes contributing to pho-
ton emission from these energy eigenstates in 2D mate-
rials and calculate the corresponding radiative lifetimes.
Our main results are as follows. The radiative lifetimes
of the exciton-trion energy eigenstates, with momenta in-
side the light cone, are found to be in the few hundred
femtoseconds to a few picoseconds range and are strongly
dependent on the doping density. Within the light cone,
the exciton component of these eigenstates provides the
dominant contribution to the radiative rates. The radia-
tive lifetimes of the exciton-trion superposition states,
with momenta outside the light cone, are in the few hun-
dred picoseconds to a few nanoseconds range and are
again strong functions of the doping density. Outside the
light cone, only the trion component of these eigenstates
contributes to the radiative rates. The doping density
dependence of the radiative lifetimes of the two peaks
in the optical emission spectra follows the doping den-
sity dependence of the spectral weights of the same two
peaks observed in the optical absorption spectra as both
have their origins in the Coulomb coupling between the
excitons and trions in doped 2D materials.

I. THEORETICAL MODEL

In this Section we set up the Hamiltonian and derive
the main equations. Although the focus is on electron-
doped 2D TMD materials, the arguments are kept gen-
eral enough to be applicable to any 2D material.

A. The Hamiltonian

We consider a 2D TMD monolayer located in the z = 0
plane inside a uniform medium of dielectric constant ε.
The TMD layer interacts with both TE (electric field in
the z = 0 plane) and TM (magnetic field in the z = 0
plane) polarized light modes. The Hamiltonian describ-
ing electrons and holes in the TMD layer (near the K and
K ′ points in the Brillouin zone) interacting with each
other and with the optical mode in the rotating wave
approximation is2,18–20,

H =
∑
~k,s

Ec,s(~k)c†s(
~k)cs(~k) +

∑
~k,s

Ev,s(~k)b†s(
~k)bs(~k)

+
1

A

∑
~q,~k,~k′,s,s′

U(q)c†s(
~k + ~q)b†s′(

~k′ − ~q)bs′(~k′)cs(~k)

+
1

2A

∑
~q,~k,~k′,s,s′

V (q)c†s(
~k + ~q)c†s′(

~k′ − ~q)cs′(~k′)cs(~k)
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FIG. 2: A 2D TMD monolayer in the z = 0 plane is shown.
The two light polarizations are also illustrated.

+
∑
~/q,j

h̄ω(/q)a
†
j(~/q)aj(~/q)

+
1√
AL

∑
qz, ~Q,~k,j,s

(
gj,s(~/q)c

†
s(
~k + ~Q)bs(~k)aj(~/q) + h.c

)
(1)

Here, Ec,s(~k) and Ev,s(~k) are the conduction and valence
band energies. s, s′ represent the spin/valley degrees of
freedom in the 2D material, and we assume for simplicity
that the electron and hole effective masses are indepen-
dent of the spin/valley. U(~q) represents Coulomb inter-
action between electrons in the conduction and valence
bands and V (~q) represents Coulomb interaction among
the electrons in the conduction bands. A is the monolayer
area and AL is the volume assumed for field quantization.
h̄ω(~/q) is the energy of a photon with momentum ~/q, and

gj,s(~/q) is the electron-photon coupling constant for light
with photon polarization j = TE,TM (see Fig.2). Most
momentum vectors in the Hamiltonian above are in 2D.
Those associated with light are in 3D, carry a slash in

the notation for clarity, and ~/q = ~Q+ qz ẑ, where ~Q is the
momentum component in the z = 0 plane. Other than
for phase factors that are not relevant to the discussion
in this paper, gj,s(~/q) for electron states near the band

edges in 2D TMDs can be given by19,20,

gj,s(~/q) = ev

√
h̄

2εω(~/q)
×
{
qz//q for TM

1 for TE
(2)

where, v is the interband velocity matrix element2,18–20.

B. Exciton States, Trion States, and Energy
Eigenstates

As shown by Rana et al.12, approximate eigenstates of
the Hamiltonian in (1) can be written as a superposition
of 2-body exciton and 4-body trion states,

|ψn,s( ~Q)〉 =
αn√
A

∑
k

φex∗
n, ~Q

(~k)

Nex

×c†s(~k + λe ~Q)bs(~k − λh ~Q)|GS〉

+
∑
m,s′

βm,s′√
A3

~k1,
~k2 6=~p∑

~k1,~k2,~p

φtr∗
m,~Q

(~k1, s;~k2, s
′; ~p, s′)

Ntr

× c†s(~k1)c†s′(
~k2)bs(~k1 + ~k2 − ( ~Q+ ~p))cs′(~p)|GS〉

(3)

Here, |GS〉 is the ground state of the electron doped ma-
terial. The normalization factors are,

Nex =

√
1− fc,s(~k + λe ~Q)

Ntr =

√
(1 + δs,s′)fc,s′(~p)

[
1− fc,s(~k1)

] [
1− fc,s′(~k2)

]
(4)

The above energy eigenstate has (in-plane) momentum
~Q. φex

n, ~Q
(~k+λh ~Q) and φtr

m, ~Q
(~k1, s1;~k2, s2; ~p, s2) are eigen-

states of the 2-body exciton and 4-body trion eigenequa-
tions, respectively12. The corresponding eigenenergies

are, Eex
n ( ~Q, s) and Etr

m( ~Q, s1, s2), respectively. λh =
1 − λe = mh/mex (mex = me + mh), where me (mh)
is the electron (hole) effective mass. mtr = 2me + mh,

ξ = me/mtr, and η = mh/mtr. The underlined vector ~k

stands for ~k + ξ( ~Q + ~p). The summation over the index
m implies summation over all bound and unbound trion
states. Expressions for the coefficients αn and βm,s′ are
given later in this paper. The states given above are good
approximations to the actual eigenstates of the Hamilto-
nian in (1) within the purview of single electron-hole pair
excitations and provided one ignores multiple electron-
hole pair excitations12. In most cases of practical interest
involving 2D TMDs, only the lowest energy exciton state
needs to be considered. However, bound trion states as
well as the continuum of unbound trion states need to be
included since the energy differences involved therein are
small12. This makes the direct calculation of radiative
rates using Fermi’s Golden Rule awkward.

The optical interaction term in the Hamiltonian in
(1) couples the material ground state to only the ex-
citon component, and not to the trion components, in
the exciton-trion supersposition energy eigenstates (see
Fig.1)12. However, excited states of the material contain-
ing an electron-hole pair in the CB are optically coupled
to the trion components. Given this, two different kinds
of radiative transitions are possible and are depicted in
Fig.3. Fig.3(a) shows photon emission resulting in a de-
cay of the energy eigenstate into the material ground
state. The transition rate is determined by |αn|2, the
weight of the exciton component of the energy eigenstate
in (3). This transition is possible only if the momen-

tum ~Q of the energy eigenstate is within the light cone.
Fig.3(b) shows photon emission resulting in a decay of
the energy eigenstate into an excited state of the material
that has a CB electron-hole pair. The CB electron-hole
pair is left behind after photon emission from the trion
components of the energy eigenstate. Unlike the process
in Fig.3(a), the process in Fig.3(b) is possible even if the



4

k


Photon

K K’

Exciton-Trion 
Energy Eigenstate

Hole

 E k


(a)

Electron

Hole

Electron

k


Photon

K K’

Hole

 E k


(b)
Electron

Hole

Electron

Exciton-Trion 
Energy Eigenstate

FIG. 3: Two different kinds of photon emission processes are
depicted. (a) Photon emission resulting in a decay of the
energy eigenstate into the material ground state. The tran-
sition rate is determined by |αn|2, the weight of the exciton
component of the energy eigenstate in (3). This transition

is possible only if the momentum ~Q of the energy eigenstate
is within the light cone. (b) Photon emission resulting in a
decay of the energy eigenstate into an excited state of the
material that has a CB electron-hole pair. The CB electron-
hole pair is left behind after photon emission from the trion
components of the energy eigenstate. The transition rate is
determined by |βm,s′ |2 in (3). This transition is possible even

if the momentum ~Q of the energy eigenstate is outside the
light cone.

momentum ~Q of the energy eigenstate is outside the light
cone. If the emitted photon has an in-plane momentum
~Q′ within the light cone, the difference ~Q− ~Q′ is taken by
the electron-hole pair left behind in the CB. The radiative
rate for this process is determined by the magnitude of
the coefficients βm,s′ of the trion states in the expression
for the energy eigenstate given in (3).

In the Sections that follow, we will calculate separately
the radiative rates for the two processes in Fig.3.

II. RATE FOR RADIATIVE DECAY INTO THE
MATERIAL GROUND STATE

We first calculate the rate for the radiative decay of
the energy eigenstate into the material ground state.
This rate is expected to be proportional to the weight of
the exciton component of the energy eigenstate, and the
weight of the exciton component is conveniently given by
the spectral density function which is proportional to the
imaginary part of the exciton Green’s function. Thus, we
seek an expression for the radiative rate in terms of the
exciton Green’s function.

A. Heisenberg Equations

We start from the Heisenberg equation for the photon
operator,[
h̄ω(~/q) + ih̄

d

dt

]
a†j(~/q, t) = − 1√

AL

∑
~k,s

gj,s(~/q)P~Q(~k, s; t)

(5)

The polarization operator P~Q(~k, s; t) equals c†s(
~k +

~Q, t)bs(~k, t). The Heisenberg equation for the polariza-
tion operator is12,[

Ec,s(~k + ~Q)− Ev,s(~k) + iγex + ih̄
d

dt

]
P~Q(~k, s; t) =

− 1√
AL

∑
qz,j

g∗j,s(~/q)a
†
j(~/q; t)

[
1− fc,s(~k + ~Q)

]
+ F~Q(~k, s; t)

+
1

A

∑
~q

U(~q)P~Q(~k + ~q, s; t)
[
1− fc,s(~k + ~Q)

]
− 1

A

∑
~q,~p,s′

U(~q)

×T c
~Q

(~k + (ξ + η) ~Q− ξ~p, s; (ξ + η)~p− ξ ~Q− ~q, s′; ~p, s′; t)

+
1

A

∑
~q,~p,s′

V (~q)

×T c
~Q

(~k + (ξ + η) ~Q− ξ~p+ ~q, s; (ξ + η)~p− ξ ~Q− ~q, s′; ~p, s′; t)

(6)

Here, fc,s(~k) is the electron occupation probability in
the conduction band (valence band is assumed to be
completely full), γex is a phenomenological decoher-
ence rate for the polarization that includes dephasing
due to all processes other than exciton-electron scatter-

ing. F~Q(~k, s; t) is a zero-mean delta-correlated quantum

Langevin noise source that is introduced by the same pro-
cesses that contribute to the decoherence γex

21. The en-

ergies Ec,s(~k) include renormalizations due to exchange

at the Hartree-Fock level (−(1/A)
∑

~q V (~q)fc,s(~k − ~q)).

Taking the mean value of the operators in (6), ignor-
ing the first term and the last two terms on the right
hand side (RHS), and Fourier transforming the remain-
ing terms results in a 2-body Schrödinger equation for the
excitons12,21,22. The last two terms in (6) on the RHS
contain four-body operators T c

~Q
. We define the operator

T~Q(~k1, s1;~k2, s2; ~p, s2; t) as follows,

c†s1(~k1; t)c†s2(~k2; t)bs1(~k1 + ~k2 − ( ~Q+ ~p); t)cs2(~p; t) (7)

As before, the underlined vector ~k stands for ~k+ξ( ~Q+~p).
The average of the operator T~Q describes correlations

arising from Coulomb interactions among four particles:

two CB electrons, a VB hole, and a CB hole. ~Q is the
total momentum of this 4-body state. We also define the
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connected operator T c
~Q

as follows12,

T~Q(~k1, s1;~k2, s2; ~p, s2; t) = T c
~Q

(~k1, s1;~k2, s2; ~p, s2; t)

−fc,s2(~p)P~Q(~k1 − ~Q, s1; t)δ~k2,~p

+fc,s2(~p)P~Q(~k2 − ~Q, s2; t)δs1,s2δ~k
2
,~p (8)

The Heisenberg equation for the operator

T c
~Q

(~k1, s1;~k2, s2; ~p, s2) is found to be12,[
Ec,s1(~k1) + Ec,s2(~k2)− Ev,s1(~k1 + ~k2 − ( ~Q+ ~p))

−Ec,s2(~p) + iγtr + ih̄
d

dt

]
T c

~Q
(~k1, s1;~k2, s2; ~p, s2; t) =

D~Q(~k1, s1;~k2, s2; ~p, s2; t)

− 1

A

∑
~q

V (~q)T c
~Q

(~k1 + ~q, s1;~k2 − ~q, s2; ~p, s2; t)

×
[
1− fc,s1(~k1)− fc,s2(~k2)

]
+

1

A

∑
~q

U(~q)T c
~Q

(~k1 + ~q, s1;~k2, s2; ~p, s2; t)
[
1− fc,s1(~k1)

]
+

1

A

∑
~q

U(~q)T c
~Q

(~k1, s1;~k2 − ~q, s2; ~p, s2; t)
[
1− fc,s2(~k2)

]
+

1

A

∑
~q

V (~q)T c
~Q

(~k1 + (ξ + η)~q, s1;~k2 − ξ~q, s2; ~p+ ~q, s2; t)

×
[
fc,s2(~p)− fc,s1(~k1)

]
+

1

A

∑
~q

V (~q)T c
~Q

(~k1 − ξ~q, s1;~k2 + (ξ + η)~q, s2; ~p+ ~q, s2; t)

×
[
fc,s2(~p)− fc,s2(~k2)

]
− 1

A

∑
~q

U(~q)T c
~Q

(~k1 − ξ~q, s1;~k2 − ξ~q, s2; ~p+ ~q, s2; t)fc,s2(~p)

+
fc,s2(~p)

A

∑
~q

V (~q)
[
1− fc,s1(~k1)− fc,s2(~k2)

]
×
[
P~Q(~k1 − ~Q+ ~q, s1; t)δ~k

2
−~q,~p

−P~Q(~k2 − ~Q− ~q, s2; t)δ~k
1
+~q,~pδs1,s2

]
−fc,s2(~p)

A

∑
~q

U(~q)
{
P~Q(~k1 − ~Q, s1; t)δ~k

2
−~q,~p

[
1− fc,s2(~k2)

]
− P~Q(~k2 − ~Q, s2; t)δ~k1+~q,~pδs1,s2

[
1− fc,s1(~k1)

]}
(9)

In deriving the above equation, all 6-body operator prod-
ucts were reduced to 4-body operator products using the
random phase approximation21,22. By ignoring higher
order correlations we are ignoring the generation of mul-
tiple particle-hole pairs in the CB. γtr is a phenomeno-
logical decoherence rate and D~Q is the corresponding

zero-mean delta-correlated Langevin noise source. If ~re1,
~re2, ~rh1, are ~rh2 the coordinates of the two electrons,

the VB hole, and the CB hole, respectively, then ~k1, ~k2,
~Q, and ~p are the momenta associated with the coordi-

nates ~re1 − ~rh1, ~re2 − ~rh1, ~R = ξ(~re1 + ~re2) + η~rh1, and
~R−~rh2, respectively. Here, ~R is the center of mass coor-
dinate of the two electrons and the VB hole. Taking the
mean value of the operators in (9), ignoring the last two
terms on the RHS in (9) that involve P~Q, and Fourier

transforming the remaining terms will result in a 4-body
Schrödinger equation for the trions12. Each term on the
RHS in the above equation (except the first and the last
two) describes Coulomb interaction between two of the
four particles. The last two terms involving P~Q describe

the generation of four-body correlation from two-body
correlations, or the creation of an CB electron-hole pair
by an exciton.

We should mention here that a classical equation sim-
ilar to (9) was obtained by Esser et al.24. However, there
are significant differences between (9) and the equation
obtained by Esser et al.. In the work of Esser et al.,
the connected nature of T c

~Q
was overlooked, the terms

containing interactions with the CB hole were ignored,
the phase-space restricting factors were ignored too, and,
most importantly, the terms containing the polarization
P~Q were also missed. Ignoring the coupling to P~Q in

(9) is equivalent to ignoring exciton-trion coupling via
Coulomb interactions. This coupling is responsible for
making exciton-trion superposition states approximate
eigenstates of the interacting system consisting of exci-
tons and electrons in a doped material.

B. Solution of Heisenberg Equations

The polarization operator P~Q(~k, s; t) can be decom-

posed using the complete set of exciton eigenfunctions12

φex
n, ~Q

(~k + λh ~Q) as follows,

P~Q(~k, s; t) =
∑
n

Pn, ~Q(s; t)

√
1− fc,s(~k + ~Q)φex

n, ~Q
(~k+λh ~Q)

(10)
We assume that at time t, Pn, ~Q(s; t) has a non-zero mean

value for some particular values of n and s. 〈Pn, ~Q(s; t)〉
can be non-zero if the quantum state is a superposition of
the material ground state |GS〉 and one of the eigenstates
described in Section I B. Following Milonni23, the strat-
egy going forward will then be as follows. The Heisen-
berg equations will be solved to find how the mean value
〈Pn, ~Q(s; t)〉 decays with time due to radiative transitions,

and the lifetime associated with this decay would give the
radiative rate. Since we are exclusively interested in ra-
diative transitions in this paper, several approximations
will be made in order to keep the focus on the relevant
physics and irrelevant terms will be ignored to keep the
analysis simple.
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(5) can be be solved by direct integration to give,

a†j(~/q, t) = a†j(~/q, t = 0)eiω(~/q)t

+
i√
AL

∑
~k,s

gj,s(~/q)

h̄

∫ t

0

eiω(~/q)(t−t′)P~Q(~k, s; t′)dt′(11)

Next, we find the time dependence of the operator
Pn, ~Q(s; t). Using (10) in (6), ignoring the Langevin noise

sources on the RHS in (6) and (9) (because these noise
sources will not have any effect on the end results sought
in this paper), and using the techniques discussed in a
previous paper by the authors12 for solving the coupled
system of equations in (6) and (9), the operator Pn, ~Q(s; t)

is found to be,

Pn, ~Q(s; t) =

∫
dω

2π

−ih̄eiωtPn, ~Q(s; t = 0)

h̄ω − Eex
n ( ~Q, s)− iγex − Σex∗

n,s ( ~Q, ω)

+
1√
AL

∑
qz,j

g∗j,s(~/q)

∫
d2~k

(2π)2

√
1− fc,s(~k + ~Q)φex∗

n, ~Q
(~k + λh ~Q)

×
∫
dω

2π

∫ t

0

eiω(t−t′)a†j(~/q; t
′)

h̄ω − Eex
n ( ~Q, s)− iγex − Σex∗

n,s ( ~Q, ω)

(12)

Here, Σex
n,s(

~Q, ω) is the self-energy of the excitons arising

from their Coulomb coupling to the trions12,

Σex
n,s( ~Q, ω) =

∑
m,s′

(1 + δs,s′)
∣∣∣Mm,n( ~Q, s, s′)

∣∣∣2
h̄ω − Etr

m( ~Q, s, s′) + iγtr

(13)

The summation over m above implies a summation over
all bound and unbound trion states consistent with the
values of s and s′. The expression for the Coulomb

matrix elements Mm,n( ~Q, s, s′) coupling the exciton and
trion states can be found in a previous paper by Rana
et al.12. The exciton self-energy thus includes contribu-
tion of trion states to the polarization via exciton-trion
Coulomb coupling. (12) gives the natural frequencies as-
sociated with the material polarization response, given
by the poles of the expression in the denominator, and
these frequencies also correspond to the energy eigen-
states of the Hamiltonian12. It follows that on fast time
scales (of the order of the inverse of the relevant optical
frequencies), Pn, ~Q(s; t) can be written as,

Pn, ~Q(s; t′) ≈ Pn, ~Q(s; t)×
∫
dω

2π

−ih̄e−iω(t−t′)

h̄ω − Eex
n ( ~Q, s)− iγex − Σex∗

n,s ( ~Q, ω)
t′ > t∫

dω

2π

ih̄e−iω(t−t′)

h̄ω − Eex
n ( ~Q, s) + iγex − Σex

n,s( ~Q, ω)
t′ < t

(14)

The above approximation, when used together with (10)
in (11), results in an expression for the photon operator
in the standard Markoff approximation23,

a†j(~/q, t) = a†j(~/q, t = 0)eiω(~/q)t

−
√
A

L

∑
n,s

gj,s(~/q)

∫
d2~k

(2π)2

√
1− fc,s(~k + ~Q)φex

n, ~Q
(~k + λh ~Q)

×
Pn, ~Q(s; t)

h̄ω(~/q)− Eex
n ( ~Q, s) + iγex − Σex

n,s( ~Q, ω)

(15)

C. Radiative Rate

Use of (15) in the first term on the RHS of (6) in-
troduces an additional source of damping in the mate-
rial polarization which is due to radiative transitions. To
show this more clearly, we substitute (15) in (6), then use
the decomposition in (10) and project out the equation
for Pn, ~Q(s; t), take the mean value, and retain only those

terms that are relevant to see this radiative damping to
get,

d〈Pn, ~Q(s; t)〉
dt

∼ −Rn,s( ~Q)

2
〈Pn, ~Q(s; t)〉 (16)

where the spontaneous emission rate Rn,s( ~Q) is,

Rn,s( ~Q) =
2

cε

∫ ∞
Qc

dω

2π

(
ω√

ω2 −Q2c2
+

√
ω2 −Q2c2

ω

)
×Re

[
σn,s( ~Q, ω)

]
(17)

Here, c = 1/
√
εµo is the speed of light in the medium

surrounding the 2D monolayer. The above result for the
spontaneous emission is conveniently expressed in terms
of the relevant exciton/trion optical conductivity of the
2D TMD monolayer. (17) is the main result of this paper.
The optical conductivity of a 2D TMD monolayer, for in-
plane light polarization, can be written in terms of the
exciton Green’s function12,

σ( ~Q, ω) =
∑
n,s

σn,s( ~Q, ω)

= i
e2v2

ω

∑
n,s

∣∣∣∣∣
∫

d2~k

(2π)2
φex
n, ~Q

(~k + λh ~Q)

√
1− fc,s(~k + ~Q)

∣∣∣∣∣
2

×Gex
n,s(

~Q, ω)

(18)

Here, Gex
n,s(

~Q, ω) is the exciton Green’s function12,

Gex
n,s( ~Q, ω) =

1

h̄ω − Eex
n ( ~Q, s) + iγex − Σex

n,s( ~Q, ω)
(19)
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The energies of the eigenstates in (3) are given by the
poles of the exciton Green’s function. We label these

energies as Elo
n,s( ~Q) and Ehi

n,s( ~Q). Earlier, in Section I B,
we had remarked that the radiative rate for the energy
eigenstate to decay into the ground state is proportional
to the weight of its exciton component given by αn in
(3). Assuming, γtr = γex = 0 for simplicity, |αn|2 for
an energy eigenstate equals the residue of the exciton
Green’s function at the energy of the eigenstate,

|αn|2 =

[
1− 1

h̄

∂

∂ω
ReΣex

n,s( ~Q, ω)

]−1
=

1

1 +
∑
m,s′

(1 + δs,s′)
∣∣∣Mm,n( ~Q, s, s′)

∣∣∣2(
Elo/hi

n,s ( ~Q)− Etr
m( ~Q, s, s′)

)2
(20)

Before exploring the above results further, it is instruc-
tive look at the optical conductivity of 2D materials. The
exciton/trion optical conductivity of electron-doped 2D
MoSe2 was calculated by the authors in a recent paper
and the results are reproduced in Fig.412. The spec-
tra shows two prominent absorption peaks which cor-

respond to the poles, Elo
n,s( ~Q) and Ehi

n,s( ~Q), of the exci-
ton Green’s function in (19). The spectral weight shifts
from the higher energy peak to the lower energy peak
as the electron density increases. The energy separation
between the two peaks also increases nearly linearly with
the electron density12. In the literature, the lower en-
ergy absorption peak is often identified with the trions
(or charged excitons) and the higher energy peak with the
excitons. This identification is true only in the limit of
very small electron densities. At electron densities large
enough such that the lower energy peak has sufficient
spectral weight to be experimentally visible in the ab-
sorption spectrum, each peak corresponds to an energy
eigenstate that is a superposition of exciton and trion
states, as shown in (3). Furthermore, at large electron
densities, the higher energy peak is broadened due to
exciton-electron scattering and acquires a wide pedestal
(more visible on its higher energy side) that corresponds
to the continuum of unbound trion states (or exciton-
electron scattering states). In Fig.4, linewidth broaden-
ing due to factors other than exciton-electron scattering,
such as phonon scattering, was included by assuming that
γex = γtr = 4 meV.

The rates, Rlo
n,s( ~Q) = 1/τ lon,s( ~Q) and Rhi

n,s( ~Q) =

1/τhin,s( ~Q), corresponding to the lower and higher energy
peaks in the absorption spectra, respectively, can be each
obtained by restricting the frequency integral in (17) to
the respective peak. Interestingly, because the integral of
the optical conductivity in (18) satisfies the sum rule12,∫ ∞
0

ωRe{σ( ~Q, ω)} dω
2π

=
e2v2

2h̄

∑
s

∫
d2~k

(2π)2

(
1− fc,s(~k)

)
(21)

-100 0 100
h  - Eex

0  (meV)
-100 0 100
h  - Eex

0  (meV)

n = 1E12 cm-2

EF = 3.43 meV
T = 5K

n = 4E12 cm-2

EF = 13.7 meV
T = 5 K

n = 2E13 cm-2

EF = 68.6 meV
T = 5K

n = 1E13 cm-2

EF = 34.3 meV
T = 5K

n = 6E12 cm-2

EF = 20.5 meV
T = 5K

(a)n = 1E10 cm-2

EF = .034 meV
T = 5K

(d)

(e)(b)

(c) (f)

 0, 0o
n sE Q    0, 0hi

n sE Q 


FIG. 4: Calculated real part of the optical conductivity,
σ0,s( ~Q = 0, ω), for in-plane light polarization is plotted for
different electron densities for electron-doped monolayer 2D
MoSe2. Only the lowest energy exciton state is considered
in the calculations. The spectra are all normalized to the
peak optical conductivity value at zero electron density. T =
5K. The frequency axis is offset by the exciton eigenenergy
Eex

0 ( ~Q = 0, s) of the two-body Schrödinger equation. Two
prominent peaks are seen in the spectra. Each peak corre-
sponds to an energy eigenstate state that is a superposition
of exciton and trion states, as shown in (3). Figure is repro-
duced from the paper by Rana et al.12.

one can expect from (17) that the radiative rate for the
lower energy absorption peak to increase with the elec-
tron density and the radiative rate for the higher en-
ergy absorption peak to decrease with the electron den-
sity such that the sum rule above is always satisfied. In
addition, since the area under the two peaks in Fig.4 be-
come nearly the same at large electron densities ( 2×1013

cm−2) (despite the fact that the peak optical conductiv-
ity of the lower energy peak is higher), one can expect
the two lifetimes to become comparable at large electron
densities. Numerical simulation results, presented in the
next Section, confirm these findings.

D. Numerical Simulations and Results

For simulations, we consider an electron-doped mono-
layer of 2D MoSe2 suspended in air. In monolayer
MoSe2, spin-splitting of the conduction bands is large
(∼35 meV25) and the lowest conduction band in each of
the K and K ′ valleys is optically coupled to the topmost
valence band26. We use effective mass values of 0.7mo for
both me and mh which agree with the recently measured
value of 0.35mo for the exciton reduced mass27. We use a
wavevector-dependent dielectric constant ε(~q), appropri-
ate for 2D materials2, to screen the Coulomb potentials.
We assume that γex = γtr ∼ 4 meV28. We compute exci-
ton and trion eigenfunctions and eigenenergies for differ-
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Electron Density (1012 cm-2)

 0, 0o
n s Q   

 0, 0hi
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T=5K
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Electron Density (1012 cm-2)
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FIG. 5: The zero-momentum radiative lifetimes,τ lon=0,s( ~Q =

0) and τhin−0,s( ~Q = 0), of the lower and higher energy eigen-
states, respectively, of the coupled exciton-trion system (and
corresponding to the lower and higher energy peaks in the
optical absorption spectra in Fig.4) are plotted as a function
of the electron densities for an electron-doped monolayer 2D
MoSe2 suspended in air. T=5 K. The inset shows the same
data on a linear scale.

Momentum (106 1/m)

 0,
o
n s Q 
 

 0,
hi
n s Q 



T=5K

Solid: 1x1012 cm-2

Dashed: 6x1012 cm-2

FIG. 6: The radiative lifetimes,τ lon=0,s( ~Q) and τhin−0,s( ~Q), of
the lower and higher energy eigenstates, respectively, of the
coupled exciton-trion system (and corresponding to the lower
and higher energy peaks in the optical absorption spectra in
Fig.4) are plotted as a function of the in-plane momentum Q
for different electron densities (1012 cm−2 and 6×1012 cm−2)
for an electron-doped monolayer 2D MoSe2 suspended in air.
T=5 K.

ent momenta and electron densities as described by Rana
et al.12.

Fig.5 shows the zero-momentum radiative lifetimes,

τ lon=0,s(
~Q = 0) and τhin−0,s(

~Q = 0), plotted for differ-
ent electron densities. As expected, at very small elec-

tron densities the radiative lifetime τ lon=0,s(
~Q = 0) of the

lower energy eigenstate is much longer than the lifetime

τhin=0,s(
~Q = 0) of the higher energy eigenstate. At very

large electron densities these two lifetimes become com-
parable. At small electron densities, when the entire
spectral weight lies with the higher energy absorption
peak in Fig.4, and the corresponding eigenstate is essen-
tially a pure exciton state, the calculated lifetimes for
the higher energy eigenstate agree well with the lifetimes
published previously for excitons in 2D materials20,29.
But at larger electron densities (¿1012 1/cm2), the re-
sults in previous work, which treated excitons and trions
as independent excitations, become incorrect.

Fig.6 shows the radiative lifetimes,τ lon=0,s(
~Q) and

τhin−0,s(
~Q), plotted as a function of the in-plane momen-

tum Q (within the light cone) for different electron densi-
ties. The light cone momentum is defined as the momen-

tum Q for which the energy of the eigenstate, Elo
n,s( ~Q) or

Ehi
n,s( ~Q), equals the photon energy h̄Qc. The radiative

lifetimes are more or less constant for momenta within
the light cone, decrease rapidly as the momentum ap-
proaches the light cone (due to an increase in the density
of photon states), and then diverge for momenta outside
the light cone (where the excitonic component of the en-
ergy eigenstates cannot emit a photon and decay into the
material ground state). This behavior is well known for
pure exciton states in 2D materials20,21,29, and it carries
over to the coupled exciton-trion energy eigenstates in
doped 2D materials.

III. RATE FOR RADIATIVE DECAY INTO THE
MATERIAL EXCITED STATES

The radiative rates calculated above correspond to the
process depicted in Fig.3(a) in which the energy eigen-
state decays into the material ground state. In this Sec-
tion, we calculate the radiative rate for the process in
Fig.3(b) in which the energy eigenstate decays into an ex-
cited state of the material that has an electron-hole pair
in the CB. The final state after photon emission consists

of a photon with momentum ~q′ = ẑq′z + ~Q′, a CB hole
with momentum ~p and a CB electron with momentum

~p+ ~Q− ~Q′. The radiative rate expression must include a
summation over all these final states. Furthermore, the
radiative rate for the process in Fig.3(b) is expected to
be determined by the magnitude of the coefficients βm,s′

of the trion states in the expression for the energy eigen-
state given in (3). These coefficients are found to be,

|βm,s′ |2 =

(1 + δs,s′)
∣∣∣Mm,n( ~Q, s, s′)

∣∣∣2(
Elo/hi

n,s ( ~Q)− Etr
m( ~Q, s, s′)

)2
1 +

∑
m′,s′′

(1 + δs,s′′)
∣∣∣Mm′,n( ~Q, s, s′′)

∣∣∣2(
Elo/hi

n,s ( ~Q)− Etr
m′( ~Q, s, s′′)

)2
(22)
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The summation over m′ above implies a summation over
all bound and unbound trion states consistent with the
values of s and s′′. The expression for the Coulomb

matrix elements Mm,n( ~Q, s, s′) coupling the exciton and
trion states (including bound and unbound trion states)
can be found in a previous paper by Rana et al.12.

A. Radiative Rate

In order to calculate the radiative rates for the pro-
cess in Fig.3(b), we avoid truncating the 6-body oper-
ator products to 4-body operator products that appear
during the derivation of (9), and then include a Heisen-
berg equation for 6-body operator products in our model.
The calculations are tedious and not particularly illumi-

nating. The final result for the radiative rate Rn,s( ~Q)
can be written in a simple form,

Rn,s( ~Q) =
∑
m,s′

e2v2

ε
(1 + δs,s′)

∫
dq′z
2π

∫
d2 ~Q′

(2π)2

∫
d2~p

(2π)2

×

[
1 +

q′
2
z

Q′2 + q′2z

] ∣∣∣∣∣
∫

d2~k

(2π)2

×φtr
m, ~Q

(~k − ξ( ~Q+ ~p), s; (ξ + η)( ~Q+ ~p)− ~Q′, s′; ~p′, s′)

×
√

1− fc,s(~k)

∣∣∣∣2 Re

[
i

ω
Sn,s,m,s′( ~Q, ~p, ~Q′, ω)|

]
ω=
√

q′2z+Q′2c

(23)

The spectral function Sn,s,m,s′( ~Q, ~p, ~Q′, ω) is,

Sn,s,m,s′( ~Q, ~p, ~Q′, ω) =

1

h̄ω − Etr
m( ~Q, s, s′) + ∆ + iγtr − Σn,s,m,s′( ~Q, ~p, ~Q′, ω)

(24)

Here, ∆ stands for the energy difference Ec,s′(~p + ~Q −
~Q′)− Ec,s′(~p), and,

Σn,s,m,s′( ~Q, ~p, ~Q′, ω) =

(1 + δs,s′)
∣∣∣Mm,n( ~Q, s, s′)

∣∣∣2
h̄ω − Eex

n ( ~Q, s) + ∆ + iγtr − Fn,s,m,s′( ~Q, ~p, ~Q′, ω)

(25)

where,

Fn,s,m,s′( ~Q, ~p, ~Q′, ω) =

∑
m′ 6=m,s′′ 6=s′

(1 + δs,s′′)
∣∣∣Mm′,n( ~Q, s, s′′)

∣∣∣2
h̄ω − Etr

m( ~Q, s, s′′) + ∆ + iγtr

(26)

The spectral function Sn,s,m,s′( ~Q, ~p, ~Q′, ω) has the fol-
lowing two important properties:

Momentum (107 1/m)

 0,
o
n s Q 
 

 0,
hi
n s Q 



T=5K

Solid: 1x1012 cm-2

Dashed: 6x1012 cm-2

FIG. 7: The radiative lifetimes,τ lon=0,s( ~Q) and τhin−0,s( ~Q), of
the lower and higher energy eigenstates, respectively, of the
coupled exciton-trion system (and corresponding to the lower
and higher energy peaks in the optical absorption spectra in
Fig.4) are plotted as a function of the in-plane momentum Q
for different electron densities (1012 cm−2 and 6×1012 cm−2)
for an electron-doped monolayer 2D MoSe2 suspended in air.
The lifetimes shown correspond to the process depicted in
Fig.3(b) for radiative decay into excited states of the mate-
rial. T=5 K. The lifetimes shown are three to four orders of
magnitude longer than the lifetimes shown earlier in Fig.6 for
the process depicted in Fig.3(a) for radiative decay into the
material ground state.

• Its poles are at the energies of the exciton-trion
superposition eigenstates shifted by ∆, the energy
taken by the electron-hole pair left behind in the
CB after photon emission. Therefore, the spec-

trum of Sn,s,m,s′( ~Q, ~p, ~Q′, ω) will have two promi-
nent peaks just like the spectrum of optical absorp-
tion. Since for Q << kF , the energy shift ∆ will be
negligibly small for all p < kF , and the peaks in the

Sn,s,m,s′( ~Q, ~p, ~Q′, ω) spectrum will be more or less
at the same energies as the peaks in the absorption
spectrum.

• Assuming γex = γtr = 0, the residue of

Sn,s,m,s′( ~Q, ~p, ~Q′, ω) at these two poles is exactly
equal to the values of |βm,s′ |2 given in (22), which
is satisfying in the light of the discussion above.

The radiative rates, Rlo
n,s( ~Q) = 1/τ lon,s( ~Q) and Rhi

n,s( ~Q) =

1/τhin,s( ~Q), corresponding to the lower and higher energy
peaks in the absorption spectra, respectively, and asso-
ciated with the process shown in Fig.3(b), can be each
obtained by restricting the frequency integral in (23) to
the respective spectral peak (the integral over frequency

is implicit in (23) in the q′z and ~Q′ integrations).
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FIG. 8: The radiative lifetimes,τ lon=0,s( ~Q) and τhin−0,s( ~Q), of
the lower and higher energy eigenstates, respectively, of the
coupled exciton-trion system (and corresponding to the lower
and higher energy peaks in the optical absorption spectra in
Fig.4) are plotted as a function of the electron densities for an
electron-doped monolayer 2D MoSe2 suspended in air. T=5
K. The momentum value is chosen to be just outside the light
cone Q ∼ 107 1/m. The lifetimes shown correspond to the
process depicted in Fig.3(b) for radiative decay into the ex-
cited states of the material.

B. Simulation Results

Fig.7 shows the radiative lifetimes,τ lon=0,s(
~Q) and

τhin−0,s(
~Q), for radiative decay into the excited states of

the material, plotted as a function of the in-plane momen-
tum Q of the energy eigenstates for two different electron
densities. The radiative lifetimes are finite even outside
the light cone and have a weak dependence on the mo-
mentum Q. More interestingly, the radiative rates shown
in Fig.7 are three to four orders of magnitude smaller
compared to the radiative rates for decay into the ma-
terial ground state shown in Fig.6. This large difference
can be understood as follows. Consider an energy eigen-

state of momentum ~Q, as given in (3), and consider the
4-body bound trion state component of the energy eigen-
state (the bound trion state has more weight in the eigen-
state than all the unbound trion states). The small radius
of the bound trion state (∼ 1− 2 nm12) means that the
phase space occupied by each one of the two CB elec-
trons in the bound trion state is fairly large, and is of the
order of a−2, where a is the trion radius. When one of
the two CB electrons in the bound trion state radiatively
recombines with the VB hole, a CB electron and a CB
hole are left behind. Suppose the in-plane momentum of

the emitted photon is ~Q′, the momentum of the CB elec-

tron left behind is ~p+ ~Q− ~Q′, and the momentum of the

CB hole is ~p. Since ~Q′ is restricted to be within the light
cone (the phase space area of which is ∼ ω2/c2), only a
very small portion of the phase space of the CB electron

FIG. 9: Certain processes that have been proposed in the
literature for photon emission involving excitons and trions
in electron-doped materials are depicted. (a) Photon emis-
sion process involving a 3-body trion state in which the CB
electron recombines with the VB hole leaving behind another
CB electron which is deposited outside the Fermi sea1,20,30.
(b) Photon emission process involving an exciton in which
an uncorrelated CB electron from the Fermi sea recombines
with the VB hole, leaving behind an electron-hole pair in the
CB31. (c) Photon emission process involving a trion in which
an uncorrelated CB electron from the Fermi sea recombines
with the VB hole, leaving behind two electron-hole pairs in
the CB31.

state prior to the photon emission contributes to pho-
ton emission. This phase space fraction is of the order
of ω2a2/c2, which is between 10−3 to 10−4. Note that

τhin−0,s(
~Q) > τ lon−0,s(

~Q) in Fig.7, which is the opposite
of the case in Fig.6. This is because the radiative rates
in Fig.7 are proportional to |βm,s′ |2 (weight of the trion
component in the energy eigenstate), whereas the radia-
tive rates in Fig.6 are proportional to |αn|2 (weight of
the exciton component in the energy eigenstate). Fig. 8

shows the radiative lifetimes, τ lon=0,s(
~Q) and τhin−0,s(

~Q),
for momentum Q value just outside the light cone, plot-
ted for different electron densities. At very small electron

densities the radiative lifetime τhin=0,s(
~Q) of the higher en-

ergy eigenstate is much longer than the lifetime τ lon=0,s(
~Q)

of the lower energy eigenstate, and at very large electron
densities these two lifetimes become comparable. The

fact that τ lon−0,s(
~Q) << τhin−0,s(

~Q) at very small electron
densities can be understood as follows. At very small
electron densities, |αn=0|2 ∼ 1 and |βm=0,s′ |2 << 1, and
the higher and lower energy eigenstates are thus nearly
pure exciton and pure trion states, respectively, and exci-
ton states do not radiatively decay into the excited states
of the material.

IV. CERTAIN OTHER MISCONCEPTIONS
REGARDING RADIATIVE RATES

Certain other concepts and processes for radiative
transitions have appeared in the literature in the con-
text of excitons and trions in doped 2D materials that
are incorrect in the opinion of the authors. We discuss
them briefly here. Fig.9(a) shows a photon emission pro-
cess involving a 3-body trion state in which the CB elec-
tron recombines with the VB hole leaving behind a CB
electron which is deposited outside the Fermi sea1,20,30.
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This model showed that the energy of the photon emit-
ted by a trion state would be red-shifted (with respect to
the photon emitted by an exciton in the same material)
by roughly the Fermi energy EF (in addition to the trion
binding energy) which is consumed in promoting the left-
behind CB electron to the unoccupied states above the
Fermi level. The red shift of the photon energy with the
Fermi energy is in agreement with experiments1,30. How-
ever, there are several problems with this photon emis-
sion model and with the concept of a 3-body trion state
itself12. Recent papers have unambiguously shown that
the red-shifting of the lower energy eigenstate, linearly
with the Fermi energy, with respect to the higher en-
ergy eigenstate is the result of Coulomb interactions12–16.
Second, this model incorrectly assumes that the electrons
forming the trion state are somehow not a part of the CB
electronic states (as Fig.9(a) depicts) and then concludes
that the electron left-behind after photon emission needs
to be deposited back into the CB with enough energy to
avoid Pauli blocking. The closest correct model, depicted
in Fig.3(b), shows that when a 4-body trion state emits
a photon, the CB electron and the CB hole left-behind
(that were a part of the 4-body trion state) remain in
the states they occupied just before the emission of the
photon.

Fig.9(b) shows a photon emission process involving an
exciton in which an uncorrelated CB electron from the
Fermi sea recombines with the VB hole, leaving behind
an electron-hole pair31. A simple calculation using an
exciton state as the initial state and a final state consist-
ing of a Fermi sea with an electron-hole pair in the CB,
and using Fermi’s Golden Rule, will show that the rate
of this process, although very small, is roughly propor-
tional to the electron density (for small electron densities)
which in turn is proportional to the probability of find-
ing an uncorrelated electron near the exciton. The catch
here is that the probability of finding an electron of the
same spin/valley near the exciton as that of the electron
forming the exciton is not proportional to the electron
density but is in fact near zero due to Pauli’s principle.
Each electron in the conduction band, including the one
forming an exciton, is surrounded by its exchange hole
and the size of this exchange hole is much larger than
the size of the exciton in 2D materials for electron den-
sities smaller than ∼ 1013 cm−3. In our model, when we
switched from the 4-body operator T~Q to the connected

4-body operator T c
~Q

in (6), we removed terms that con-

tributed to the process shown in Fig.9(b), and one of the
difference terms, given in (8), gave the exchange energy

contribution, which renormalized the CB energy Ec,s(~k)
on the LHS in (6). The similar process for trions, shown
in Fig.9(c)31, would have a negligibly small rate for the
same reason.

V. DISCUSSION AND CONCLUSION

The results presented in this paper show that photons
can be emitted by exciton-trion energy egenstates when

their momenta ~Q are inside or outside the light cone. In-
side the light cone, radiative rates for transitioning into
the material ground state are nearly four orders of mag-
nitude faster than the radiative rates in which the final
state is an excited state of the material. Outside the light
cone, only radiative decay into an excited state of the
material is possible. Our results are expected to clarify
many concepts associated with light emission from exci-
tons and trions and their superposition states in doped
2D materials.

It needs to be mentioned here that the radiative
lifetimes measured in experiments depend on the type
of measurement performed and therefore some care is
needed in comparing experiments with theory. Radia-
tive lifetime measurements are usually performed over
exciton/trion ensembles and these ensembles can be pre-
pared in experiments in various ways. Ultrafast resonant
optical generation of excitons within the light cone and
their subsequent probing via 1s → 2s excitonic transi-
tions using a mid-IR probe pulse have yielded exciton
lifetimes in 2D TMDs that match well with theory32.
Time resolved photoluminescence (PL) measurements on
the other hand rely on the exciton-trion energy eigen-
states to relax down to the light cone before they can
recombine radiatively with high efficiency33. This relax-
ation process is generally bottlenecked by phonon scat-
tering times which are usually much slower (around a
few picoseconds) than the radiative lifetimes inside the
light cone34–37. In addition, as discussed in this paper,
PL collected from both peaks in the emission/absorption
spectra of doped 2D materials are from states that are
superpositions of exciton and trion states and contribute
to PL from both inside and outside the light cone. Al-
though the radiative rates outside the light cone are much
smaller than the rates inside the light cone, the phase
space available outside the light cone for hosting a non-
equilibrium exciton-trion population is also much larger
and a lot more exciton-trions could be present outside
the light cone than inside it depending on the nature and
details of the experiment. An accurate modeling of ra-
diative emission from non-equilibrium ensembles requires
computational approaches well beyond the scope of this
work37.
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