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The thermoelectric figure of merit ZT comprises electronic and vibrational contributions that
change across phase transitions, and the most common theoretical ab initio approach to thermo-
electricity fails to describe the evolution of ZT across finite-temperature structural transitions in its
entirety. Furthermore, while the thermoelectric behavior of bulk SnSe has been extensively studied,
SnSe monolayers have only been experimentally realized within this year, and the existent prediction
of thermoelectricity on this two-dimensional material is unreliable because it misses its structural
transition altogether. SnSe monolayers (and similar GeS, GeSe, SnS, and SnTe monolayers) experi-
ence a temperature induced two-dimensional Pnm21 → P4/nmm structural transition precipitated
by the softening of vibrational modes, and we describe its thermoelectric properties across the phase
transition using molecular dynamics data to inform the thermoelectric coefficients directly. Similar
to recent experimental observations pointing to an overestimated ZT past the transition tempera-
ture in bulk SnSe, we find a smaller ZT on SnSe monolayers when compared to its value predicted
by the standard paradigm, due to the dramatic changes in the electrical conductivity and lattice
thermal conductivity as the structural transition ensues. The process described here lends a strong
focus to both the vibrational and electronic evolution throughout the structural transition, and
it applies to thermoelectric materials undergoing thermally-driven solid-to-solid structural phase
transitions in one, two, and three dimensions.

I. INTRODUCTION

The theory of thermoelectricity has clear mandates for
improvement when the community observes that “finding
ways to move beyond our current reliance on the ground
state electronic and phonon band structures will be key
to future progress in this area”[1]. Bulk SnSe has been
argued to display an extremely large thermoelectric fig-
ure of merit ZT at its thermally-driven Pnma → Cmcm
structural transition [2–7]. Nevertheless, the existence of
such a high ZT has been put in doubt recently [8–10]: the
lattice thermal conductivity (κl) appears to be seriously
underestimated throughout the structural transition.

SnSe monolayers are structurally-stable binary semi-
conductors with an intrinsic in-plane electric dipole mo-
ment in their ground-state Pnm21 structural configura-
tion [11, 12]. While bulk SnSe undergoes a phase transi-
tion at temperatures as high as 900 K [13], SnSe mono-
layers on graphite display a critical temperature closer to
400 K [11]. A previous study of the thermoelectric prop-
erties of freestanding SnSe monolayers did not address
the effect of the structural transition on thermoelectric
properties [14]. Here, we discuss a process to capture the
effects of phase transitions on thermoelectric properties.

The thermoelectric figure of merit is given by [1, 15]:

ZT =
σS2T

κe + κl
, (1)

where σ is the electrical conductivity, S is the Seebeck
coefficient, T is the temperature, and κe is the elec-
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tronic contribution to the thermal conductivity. We de-
termine the thermoelectric figure of merit ZT across a
thermally-driven structural phase transition relying di-
rectly on structural data obtained at finite-T . As a result,
we predict a sudden increase in σ, κe, and κl across the
structural transition [16, 17]. ZT decreases substantially
near the onset of the structural transition. Our findings
put to question record high values of ZT (in excess of
3 [14]) on materials undergoing structural phase transi-
tions [9, 10]. Though exemplified in a two-dimensional
(2D) ferroelectric, the process applies to any material un-
dergoing solid-to-solid structural transitions.

II. METHODS

To this end, ab initio molecular dynamics (MD) calcu-
lations on (2D) SnSe monolayers employing the SIESTA
code [18] were carried out on a 16× 16× 1 supercell con-
taining 1024 atoms within the isothermal-isobaric (NPT)
ensemble. We captured dynamics over 28,000 fs for more
than ten temperatures between 0 and 400 K with a 1.5
fs time resolution. The out-of-plane lattice vector had a
length of 22 Å to ensure no interaction between periodic
copies (see [12, 16, 17, 19–21] for additional details). For
comparison purposes, the ShengBTE code [22] was used
to calculate κl; the interatomic forces were calculated us-
ing the same settings employed in SIESTA on a 5×5×1
supercell with up to third neighbors for the third-order
force constants. We used a 36× 36× 1 k-point mesh and
a scalebroad parameter of 1.0. We took the average
structure from each temperature in the MD calculation
and used SIESTA to calculate Hamiltonian and overlap
matrices. The electronic transport coefficients were ob-
tained using Boltzmann transport theory [15, 22].
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FIG. 1. (a) Thermal evolution of in-plane lattice parameters
a1 and a2 for a freestanding SnSe monolayer, demonstrating
a structural transition from an orthorhombic unit cell onto a
unit cell with tetragonal symmetry at Tc = 212 K [16, 17].
Top and side views of the atomistic arrangements are shown,
too. (b) Evolution of the valence (v) and conduction (c) bands
of the SnSe monolayer as a result of the transition.

III. RESULTS AND DISCUSSION

Figure 1(a) displays the average lattice parameters a1
and a2 of a freestanding SnSe monolayer as a function of
T . A fit of critical exponents yields Tc = 212 K [16]. The
larger experimental value of 400 K [11] is attributed to
the interaction of the SnSe monolayer with its support-
ing substrate. The SnSe monolayer turns paraelectric
at T ≥ Tc, as the unit cell develops a four-fold symme-
try consistent with the P4/nmm space group. Fig. 1(a),
experiment [11], and the fact that the standard ther-
moelectric theory relies on zero-temperature structural
data, all demonstrate that an incorrect atomistic symme-
try (Pnm21) has been previously employed to determine
the thermoelectric properties of a SnSe monolayer within
the reported 300-700 K temperature range [14, 23, 24].

Setting the focus on dimensionality aside for a moment,
and giving context for our approach, two articles resem-
ble the methodology proposed here. One is Ref. [6]. In
that paper, the authors use a supercell with 256 atoms
and the NVT ensemble. Their electronic contributions to
ZT show a sharp discontinuity at 750 K (when pressure is
0 GPa) or at 500 K (when pressure is 4 GPa); this ensues
because of the use of two atomistic structures (with either
Pnma or Cmcm symmetry) to compute these quantities.
While the electronic contributions to ZT are computed
for up to 1,000 K, the lattice thermal conductivity is com-
puted within a smaller (200 to 500 K) temperature range.
No estimate of ZT is provided there. The second work is
Ref. [7]. There, three structures are used to inform the
Seebeck coefficient over a 900 K temperature range, and
read directly from experimental data [13] at 298 K, 790
K, and 825 K.

The fact that only two references (out of so many
devoted to bulk SnSe) discuss the effect of a chang-
ing atomistic structure on thermoelectric properties rein-
forces the observation that common paradigms are fail-
ing to describe the evolution of thermoelectric properties
across phase transitions. The use of finite-T information
straight from ab initio molecular dynamics to determine
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FIG. 2. (a) Electrical conductivity σ, (b) S, and (c) κe along
the a1 (x) and a2 (y) directions versus T , respectively, for
µ set at the conduction and valence band edges. Note the
upticks at Tc due to a temperature-induced band alignment
and the enhanced symmetry past Tc, both absent features in
the standard approach (dashed and dash-dotted curves).

all thermoelectric properties is delineated next.
Structural changes modify the electronic bands: the

electronic structure shown in black in Fig. 1(b) corre-
sponds to the Pnm21 atomistic structure at T = 0;
that is, to the electronic structure employed at all tem-
peratures (300 to 700 K) in works that rely on the
standard ab initio formalism for thermoelectricity (e.g.,
Refs. [14, 23, 24] for the SnSe monolayer at hand). The
electronic bands shown in red in Figure 1(b) correspond
to the average atomistic structure of the freestanding
SnSe monolayer above 212 K. The two hole valleys turn
degenerate due to the enhanced tetragonal symmetry of
the P4/nmm space symmetry group. In what follows,
the electronic band structure is labeled Eα(k, T ), where
α is the band index, to emphasize its dependency on the
average unit cell at finite-T .

The temperature dependence of σ in the standard ab
initio approach to thermoelectricity only enters through
a scattering time τ and through the Fermi-Dirac distri-
bution f(E − µ, T ). Here however, σij incorporates the
finite-T dependency of the electron group velocities and
of the unit cell area as well [1]:

σij(T ) =
e2

Ω(T )

∑
k,α

vα,i(k, T )vα,j(k, T )τe(T )g(E,µ, T ),

(2)

where g(E,µ, T ) = −∂f(E−µ,T )
∂E , i = x, y and j = x, y

represent cartesian coordinates, e is the electron charge,
and ~ is the reduced Planck constant. Ω(T ) is the T -
dependent volume of the unit cell, τe is the electron relax-
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ation time, vα,i(k, T ) = 1
~
∂Eα(k,T )

∂ki
is the band group ve-

locity. Although the electron relaxation time τe may also
be T -dependent, a T -independent magnitude of 10−14 s is
assigned in accordance with previous estimates [4, 14, 24–
26].

Figure 2(a) showcases in dashed (dashed-dotted) lines
the electron (hole) conductivity with µ at the conduc-
tion (valence) band edge using a zero-T relaxed volume
and zero-T electronic structure to compare the predic-
tion of this new method with the standard paradigm.
The T -dependent method deployed here, shown by solid
lines and red squares (black circles) for the valence (con-
duction) band edge, tracks closely with the standard
paradigm for T < Tc. However, there is a marked in-
crease in the σ at Tc as the electron (hole) pockets of the
conduction (valence) band align due to an increased sym-
metry above Tc. For T > Tc, the standard paradigm pre-
dicts greater electron conductivity as compared to hole
conductivity, but our T -dependent formalism indicates
the opposite trend for T ≥ 250 K. (Work on bulk SnSe
displays a similar increase in carrier concentration (elec-
trical conductivity) induced by the transition [2, 7], but
the observed behavior of σ was assigned to the creation
of Sn vacancies [7], as opposed to the band alignment due
to symmetry showcased in Fig. 1(b).)

We next account for the Seebeck coefficient S, obtained
by dividing the expression

[σS(T, µ)]ij =
−e

TΩ(T )
× (3)∑

k,α

vα,i(k, T )vα,j(k, T )τeg(E,µ, T )(Eα(k, T )− µ)

by Eqn. (2). S, as depicted in Figure 2(b), was computed
with µ set at either the valence or conduction band edges.
As it was the case for σ, S is asymmetric in the usual for-
malism. It exhibits a peak at Tc for Sxx, and a subdued
peak for Syy. When contrasted with the temperature
evolution of σ, S is otherwise roughly constant over the
temperature range investigated, showing an increase and
a subsequent decrease as in bulk samples [7, 13].

The denominator in Eqn. (1) contains the electronic
and lattice contributions to the thermal conductivity.
The κe,ij tensor has two terms,

κe,ij(T, µ) = Kij(T, µ)− T [σS(T, µ)]2ijσ(T, µ)−1ij , (4)

with the first contribution being

Kij(T, µ) =
1

TΩ(T )
× (5)∑

k,α

vα,i(k, T )vα,j(k, T )τeg(E,µ, T )(Eα(k, T )− µ)2,

and the second term expressible from Eqns. (2) and (3).
κe [Fig. 2(c)] displays a trend similar to the one observed
for σ in Fig. 2(a). Transport coefficients turn symmetric
past Tc, which could serve as an experimental signature

to verify whether this finite-T approach to thermoelec-
tricity surpasses the state-of-the-art. Calculating κl re-
quires additional methods to collect phonon frequencies
and lifetimes from the MD data, which we present next.

In materials at the onset of structural transitions,[27–
29] “anharmonicity drives the crystal past the zero-
temperature structure onto a new crystalline phase
for which the zero-temperature electronic and zero-
temperature phonon dispersions may no longer carry
meaning” [30]. There have been vigorous efforts to ac-
count for temperature-dependent effects on ZT [31–34],
yet most ab initio thermoelectricity works ignore struc-
tural transitions altogether [1, 15, 22, 35]; and these mod-
ifications have certainly not been employed to discuss 2D
thermoelectrics yet. Here, the challenge is met by us-
ing the power spectrum of the vibrational modes derived
from molecular dynamics by way of the velocity autocor-
relation function.

Fig. 3(a) displays the first Brillouin zone and the
k−point sampling achieved with a 16×16 supercell with-
out interpolation [36]. The high-T phase is fourfold-
symmetric [17], making the X− and Y−points equiva-
lent. A power spectrum at each k−point is obtained by
Fourier transforming the velocities of the atoms into re-
ciprocal space, performing the time autocorrelation, and
then Fourier transforming into frequency space [37]. This
process yields the resonant natural frequencies να(k, T )
demonstrated at two nearby k−points k at T = 100 K
and 230 K in Fig. 3(b).

The finite-T phonon dispersions of the freestanding
SnSe monolayer along the red path in Fig. 3(a) are shown
in Fig. 3(c). The central frequencies να(k, T ) and the full
width at half-max ∆να(k, T ) were fitted to Lorentzian
functions at each k−point and T ; phonon lifetimes are
given by τl,α(k, T ) = (π∆να(k, T ))−1. The average value
of τl,α(k, T ) was 2.6 ps across the 100 to 400 K tem-
perature range studied here, and we observe a softening
of vibrational modes along the Brillouin zone boundary
at frequencies between 2 and 4 THz for T > Tc [17] in
Figs. 3(b) and 3(c).

The power spectra data describe the vibrational fre-
quencies at each temperature and includes information
on phonon-phonon interactions through broadening of
the natural frequencies. This non-perturbative process
fully incorporates anharmonicity in the phonon frequen-
cies and phonon lifetimes, in contrast to the standard
approach [22] whereby phonon scattering rates are de-
termined self-consistently in a perturbation series and
added together. Furthermore, the phonon spectrum in
Fig. 3(c) reflects the structural transition [16, 17, 21, 29]
shown earlier in Fig. 1. These non-perturbative finite-T
vibrational modes profoundly affect ZT .

Obtaining the lattice thermal conductivity κl
[Fig. 3(d)] requires the phonon group velocity vα,i(k, T )
(with i = x, y), calculated by finite-differences for the
α-th mode at each k−point and T . This way, κl is given
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black dashed curve is a guide to the eye showing the sudden increase in κl at and beyond Tc.

by:

κl,ij(T ) =
1

Ω(T )
× (6)∑

k,α

vα,i(k, T )vα,j(k, T )τl,α(k, T )Cph,α(k, T ),

with τl,α(k, T ) the phonon lifetime and Cph,α(k, T ) the
mode-dependent heat capacity,

Cph,α(k, T ) = kB

(
hνα(k, T )

kBT

)2
ehνα(k,T )/kBT

(ehνα(k,T )/kBT − 1)2
.

(7)
Even though Cph is expressed within the harmonic ap-
proximation, the velocities and frequencies are obtained
from MD and are thus “renormalized” in the sense that
they include anharmonic contributions by design.

The peak shown in Fig. 3(d) near the transition tem-
perature is reminiscent of the anomalous lattice thermal
conductivity experimentally observed in SmBaMn2O6

single crystals across their structural transition [38].
Here, in the ferroelectric Pnm21 phase below Tc = 212 K,
κl decreases with a ∝ T−1 behavior. The lattice thermal
conductivity is comparable with κe close to Tc, at which
point κl exhibits a sudden increase across and above

the transition temperature. A study of Cu2Se, Cu2S,
Ag2S, and Ag2Se indicated a substantially reduced lat-
tice thermal conductivity just before the onset of their
T -dependent phase transition [9]. In agreement with
Ref. [10], we find a larger κl past Tc than the usual
method, which ignores the transition altogether.

Optical phonons have been found to contribute to
κl substantially [39–41]; in other monochalcogenide sys-
tems the contribution owing to the optical modes can be
greater than 20% of the total κl [42], and it can be as
high as 30% in bulk SnSe [43]. Even just on the basis
of Eqn. (6), the unmitigated increase in the phonon ve-
locities, lifetimes, and softened frequencies dominates the
lattice thermal conductivity despite a saturating heat ca-
pacity Cph. An enhanced κl has been attributed to higher
velocity softened phonon modes both in silica [44] and in
double-perovskite SmBaMn2O6 single crystals [38], too.

ZT is determined along the x− and y−directions in
Fig. 4 for both fixed electron or hole densities and for
carrier densities such that µ maximizes ZT at each tem-
perature. ZTxx 6= ZTyy for all T within the standard
approach to thermoelectricity, due to the use of the rect-
angular ground state atomistic structure at all temper-
atures. Using the finite-T data, the thermoelectric fig-
ure of merit ZT is similar to predictions based on zero-
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tude of ZT past Tc in contrast to the standard paradigm.

temperature data for T <180 K. ZT displays a significant
and symmetric drop beyond 190 K, a result in conflict
with previous reports on SnSe monolayers in which the
structural transition is ignored and which overestimate
ZT [14, 23, 24]. The apparent spike in ZT near Tc is
similar to the behavior observed in iodine-doped or al-
loyed bulk Cu2Se [45–47].

IV. CONCLUSION

In conclusion, we investigated the thermoelectric be-
havior of a prototypical SnSe monolayer across its two-
dimensional ferroelectric-to-paraelectric phase transition,
incorporating finite-T MD data to inform both the elec-
tronic and the lattice thermal behavior. We demonstrate
that the standard approach to thermoelectricity overesti-
mates ZT for this 2D material, and introduce a method
to predict the dramatic effect of the T -dependent struc-
tural phase transition on ZT that applies to arbitrary
thermoelectric materials undergoing solid-to-solid phase
transitions.
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performed at NERSC, a U.S. DOE User Facility (DE-
AC02-05CH11231).
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