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We investigate charge pumping in the vicinity of order-obstructed topological phases, i.e. symmetry

protected topological phases masked by spontaneous symmetry breaking in the presence of strong correlations.
To explore this, we study a prototypical Su-Schrieffer-Heeger model with finite-range interaction that gives
rise to orbital charge density wave order, and characterize the impact of this order on the model’s topological
properties. In the ordered phase, where the many-body topological invariant loses quantization, we find that
not only is quantized charge pumping still possible, but it is even assisted by the collective nature of the orbital
charge density wave order. Remarkably, we show that the Thouless pump scenario may be used to uncover the
underlying topology of order-obstructed phases.

The robust quantization of transport properties observed in
topological states of quantum matter is among the most fasci-
nating phenomena in physics [1, 2], both from a fundamen-
tal perspective and due to its far-ranging potential for tech-
nological applications [3–5]. A primary example along these
lines is provided by the integer quantum Hall effect [6, 7] in
two-dimensional systems with a finite Chern number [8], as
induced by a strong perpendicular magnetic field. Seminal
work by Laughlin [9] and Thouless [10] has revealed that this
topologically quantized charge transport may be understood
as a cyclic adiabatic pumping process in time-dependent one-
dimensional systems. While these intriguing phenomena can
be understood within the independent particle approximation
in the framework of topological Bloch bands [2], their stability
against imperfections such as disorder and weak to moderate
correlations is well established [1, 11, 12]. In strongly corre-
lated systems however, qualitative changes to this picture oc-
cur, including the breakdown of topological band theory due to
spontaneous symmetry breaking [13, 14] and dynamical quan-
tum fluctuations [15–17], respectively, but also the formation
of genuinely correlated topologically ordered phases [18].

In this work, we demonstrate how spontaneous symmetry
breaking can facilitate and even drive quantized charge pump-
ing (see sketch in Fig. 1). Remarkably, by means of unbiased
numerical simulations, we show that this mechanism survives
even in a strongly correlated regime, where an effective single-
particle picture is found to break down, and would not cor-
rectly predict the adiabatic pumping properties. In particular,
we observe that the Resta polarization [19] provides an unam-
biguous many-body topological characterization that agrees
with direct calculation of the relevant transport properties.
Furthermore, we reveal how the Thouless charge pumping ap-
proach [10, 20] can be used to characterize the buried topologi-
cal phase diagram of order-obstructed phases, i.e. convention-
ally ordered phases that arise from symmetry protected topo-
logical (SPT) phases [21] by spontaneous symmetry breaking.
We also note related recent works on the interplay between
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FIG. 1. Schematic of correlation-assisted charge pumping. (a):
Sketch of correlation-assisted pump cycle in parameter space (solid
line) and the effective parameter cycle in the absence of correlations
(dashed line). Blue and red background in phase diagram denote
orbital character of sublattice ordering (sublattice A and B respec-
tively). (b): Sketch of order parameter over two correlation-assisted
pump cycles which do not (upper) and do (lower) pump non-zero
charge. Both cycles enter and exit the ordered phase, but only in the
bottom cycle, corresponding to the cycle in (a), does the ordering
change orbital character, leading to non-zero pumped charge.

topology and symmetry breaking [22–24], as well as other
work on fractional quantized charge pumping [25, 26], and on
topology in strongly correlated systems [27].
To this end, we study in the framework of density ma-

trix renormalization group (DMRG) methods [28, 29] a vari-
ant of the Su-Schrieffer-Heeger (SSH) model [30, 31] with
finite-range interaction as a conceptually simple system ex-
hibiting rich interplay between SPT phases and long-range or-
der. For strong interactions, our model system exhibits an or-
bital charge-density wave (CDW) which spontaneously breaks
the protecting chiral symmetry, exemplifying the aforemen-
tioned class of order-obstructed phases. Our findings closely
connect to current experimental activity on realizing topologi-
cal band structures with ultracold atoms in optical lattices [32–
36], and may be verified in a strongly interacting version of
recent experiments on quantized charge pumping in such set-
tings [37, 38].
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Model and Methods. — Initially conceived as a micro-
scopic description of solitons in polyacetylene [31], the SSH
model has become a prototype for topological physics in one-
dimensional systems. Several interacting variants of the SSH
model have been studied in previous literature [39–41], where
extended interactions have been seen to give rise to exotic col-
lective phases of matter [42]. Here, considering a extended
interaction V̂ that retains both chiral and particle hole symme-
try [43, 44], we demonstrate how the interplay of SPT order
and spontaneous symmetry breaking conspire to exhibit inter-
esting, previously undocumented behavior.

The particular model we study is described by the micro-
scopic Hamiltonian:
Ĥ = −

∑

j

(

J b̂†j âj +
d + �
2

b̂†j âj+1 +
d − �
2

â†j b̂j+1
)

+ h. c.

+ V
∑

j

(

n̂aj n̂
b
j+1 + n̂

b
j n̂
a
j+1

)

, (1)

on a bipartite chain of spinless fermions with two orbitals per
site (a and b). â†j (âj) and b̂†j (b̂j) represent creation (annihila-
tion) operators on orbitals in sublattice a and b respectively, on
site j. J is an intra-cell hopping [45], and (d ± �)∕2 are alter-
nating inter-cell inter-orbital hopping strengths. In the second
summation, V̂ , n̂a = â†â, and likewise for n̂b. To investi-
gate this model, we use the DMRG technique [29]. Below,
we show results for periodic boundary conditions (PBC). In
the Supplementary Material [46] (see also references [47–49]
therein), we present analogous results for systems with open
boundary conditions (OBC) and extensively compare the two.
For DMRG and system details, see [46].

To probe topological properties of our model (1), we fo-
cus on two many-body topological invariants. First, the Resta
(many-body) polarization for periodic systems [19],

P =
qa0
2�
Im ln Tr

[

�̂ e
i2�
La0

X̂
]

(mod qa0) , (2)

where a0 is the lattice spacing, L is the number of unit cells,
and X̂ =

∑

i xin̂i is the many-body center of mass opera-
tor; �̂ denotes the many-body density matrix [50]. Second,
we study the entanglement spectrum [51–53], which is inti-
mately connected to the Resta polarization [54], and to charge
pumping [55]. It has also been studied specifically in the con-
text of the SSH model [56]. To define this, we consider the
reduced density matrix resulting from tracing out half of our
system across a spatial bipartition: �L = TrR[�LR]. The en-tanglement spectrum is the set of ordered eigenvalues �i of theentanglement Hamiltonian E = −log�L. The degeneraciesof the spectrum are determined by fundamental characteristics
of the state, including topological properties and symmetries
such as inversion symmetry. We define the entanglement gap
as Δ� = �1 − �0.

Phase Diagram. — For concreteness, we focus on the
phase diagram slice for d = 0.4, � = 1.0 (cf. Fig. 2 (a)). How-
ever, we investigated many parameter combinations and found
that the qualitative behavior is generally preserved across the

Γ π Γ

BI

TI

OOBI

OOTI

(a) (b)

FIG. 2. (a): Phase diagram for interacting SSH model with d = 0.4,
� = 1.0. TI: Topological Insulator, BI: Band Insulator, OOBI:
Order-obstructed Band Insulator, OOTI: Order-obstructed Topolog-
ical Insulator. Red triangles denote mean field theory (MFT) results
for BI → TI phase boundary. Black squares denote finite size scal-
ing calculations from fitting the orbital CDW phase transition to Ising
universality class. The blue line delineates regions of single (right)
and double (left) ground state degeneracy for OBC systems. Green
’+’ and solid green line indicates polarization phase boundary. Sim-
ulations were performed on systems with up to L = 100 unit cells.
Gray shading in center represents region of uncertainty given the ac-
cessible system sizes. (b): Typical band structures in each phase.
Color signifies orbital character with respect to the BI basis, and level
of transparency represents strength of band mixing.

parameter regimes considered. Roughly, increasing d shifts
the trivial-topological phase boundary to the right, and � does
not have much impact on the topological properties (as long
as � ≠ 0 ). Our designations of trivial and topological regions
in the phase diagram are determined by the value of the polar-
ization (2) in the normal phase (defined by explicitly suppress-
ing CDW order). This is consistent with our complementary
classification approach by entanglement. CDW order can be
identified by the change in ground state degeneracy [57].
In the resulting phase diagram of the SSH model with in-

teraction (1), we identify four different phases, distinguished
by the presence or absence of SPT order and CDW order (see
Fig. 2 (a)). The first two phases, band insulator (BI) and topo-
logical insulator (TI) are present without interaction and per-
sist for weak to moderate interaction. For sufficiently strong
interaction (indicated by the black squares in Fig. 2 (a)), spon-
taneous orbital CDW order emerges (see [46]), which ob-
structs the underlying topology. The two resulting phases,
OOBI and OOTI, are characterized by sublattice symmetry
breaking. Their topological properties are discussed below.
We checked that the phase diagram is not qualitatively changed
by the addition of other small terms obeying chiral symmetry,
or by the presence of a small intra-cell interaction Û . Sub-
sequently, we elaborate on all four phases, going through the
phase diagram in Fig. 2 (a) from weak to strong interactions.
For V = 0, the Hamiltonian can be expressed in the single-

particle basis, and all topological information can also be ex-
tracted from the single particle density matrix (SPDM) by de-
composing �k(t) = 1

2

[

1−rk(t)⋅�
] in momentum-space, where
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rk is the pseudospin vector. In equilibrium, the quantity �, de-
fined by (−1)� = sgn(rxΓ r

x
�), coincides with the pseudospin

winding number [58]:  = 1
2� ∫

�∕a
−�∕a dk(n

x
k)kn

y
k − n

y
k)kn

x
k),

where nk = rk∕|rk|. A nontrivial value of either invariant is
equivalent to the condition |d| > |J |, and a topological phase
transition occurs when |rΓ| = 0, at which point rxΓ changes
sign. One can also view the SPDM as the density matrix
corresponding to the (in the presence of interactions, mixed)
state of some auxiliary Hamiltonian, �k = e−k [59], and can
use k to compute the Zak phase [60] from its eigenstates:
 = i

� ∫
�∕a
−�∕a dk⟨�k|)k�k⟩. The Zak phase is quantized to

 = � and can be used as a topological invariant in the non-
interacting SSH model; it is also equivalent to the quantized
polarization, P = �qa0∕2.

When weak interaction (preserving chiral symmetry) is
added to themodel, the Zak phase and the topological invariant
extracted from the SPDM both agree with the Resta polariza-
tion. This reflects the fact that the SPDM still contains most of
the information about the many-body topology [46]. The pos-
itive slope of the BI → TI phase boundary can be attributed
to (even at mean-field level) the interaction pushing valence
and conduction bands closer together, facilitating hybridiza-
tion. As illustrated in the band-structure sketches in Fig. 2 (b),
the TI phase is characterized by band inversion at the Γ-point.
Strong interaction favors the emergence of orbital CDW or-

der with ground states that spontaneously break chiral symme-
try. When explicitly suppressing CDW order (thus enforcing
chiral symmetry), the solid green line in Fig. 2 (a) still sepa-
rates the topological insulator from the trivial insulator phase.
In this scenario, we can distinguish these two phases by their
polarization (P = 0 for trivial, P = ±qa0∕2 for topological)even within the unstable region where in principle charge or-
der would obstruct the SPT phases. Furthermore, the strongly
interacting topological region still features edge modes. When
allowing for CDWorder, the topologically trivial phase defines
the OOBI region in Fig. 2 (a) within which no charge can be
pumped, and the topological phase defines the OOTI region in
Fig. 2 (a), within which quantized charge pumping is possible
as shown below.

(a) (b)

FIG. 3. Fractionalization in the symmetry broken phase, with J =
0.1, d = 0.4, � = 1.0. (a) Resta polarization P computed using
DMRG, and the Zak phase, computed from DMRG and MFT for
L = 256 unit cells. In infinite V limit in the symmetry broken phase,
 → 0 and P → ±qa0∕4. (b) System-size dependence of the polar-
ization. Polarization curve converges with system-size, but does not
obey finite-size scaling. P is in units of qa0∕2.

Nevertheless, even in the order obstructed regime, impor-
tant signatures of the inherited topological properties persist,
as illustrated in Fig. 2 (b). The trivial OOBI has a band struc-
ture similar to BI, but with strong band mixing close to the
Γ-point. The band structure of OOTI combines features of TI
and OOBI: band inversion and band mixing. The onset of or-
bital order for transitions TI → OOTI and BI → OOBI can
be identified by entanglement signatures in the symmetry bro-
ken state [46]. In the band insulating phase, the transition is
accompanied by an abrupt change in the slope of the entangle-
ment entropy. In the TI phase, the entanglement gap isΔ� = 0,
and becomes non-zero upon emergence of orbital order. In the
OOTI phase, the edge states are gapped out. Remarkably, even
in the presence of CDW order, we will demonstrate that adi-
abatic charge pumping still allows us to distinguish the OOTI
from the OOBI region, as separated by the solid green line in
Fig. 2 (a).
To compare the single-particle and the many-body charac-

terization of the topology, we compute the natural orbitals
|�k⟩ from the SPDM as the best choice of a single-particle
basis and the corresponding Zak phase . The breakdown of
such single-particle topological invariants was previously doc-
umented [61]. Remarkably, the Resta polarization P and 
agree well for large parts of the phase diagram. In the normal
phase, both  and P remain quantized, and the two quanti-
ties align for all V [62]. In the ordered phase, both P and
 fractionalize (Fig. 3 (a)). In the large V limit, hallmarking
the breakdown of the single-particle picture, the polarization
of the degenerate ground states approaches the fractionalized
values P = ±qa0∕4 [63], and the Zak phase converges towards
 = 0. Fig. 3 (b) illustrates the system-size dependence of the
P . While P (as a function of V ) converges with system-size, it
inherits only indirectly from the CDW order, and as such does
not obey the same scaling collapse.

Charge Pumping. —Despite the fact that polarization (2)
is not quantized in the ordered phase, we find that the underly-
ing topological character of the phase without broken symme-
try is present in the adiabatic transport properties of the sys-
tem. One can imagine adding a (infintesimally small) stag-
gered on-site potential term Δ̂ = Δ

∑

j(n̂aj − n̂
b
j ) to the model,

which acts as a pinning field. The point Δ = � = 0 is the
degeneracy point, at which the system has no preference for
either sub-orbitals a or b. Adiabatically looping around this
degeneracy point through cyclic variation of Δ and �, quan-
tized charge

ΔQ = 1
a ∫

T

0
dt )tP (t), (3)

is transported. In practice, we compute P (t) along the cycle
from the instantaneous Hamiltonian Ĥ(�) with the loop vari-
able � ∈ [0, 2�] [64].
Inspecting ΔQ across the phase diagram Fig. 2 (a), we find

that the topological character of the underlying state without
broken symmetry is recovered. While this behavior is ex-
pected for the weakly-interacting TI phase, it is remarkable
that the obstructed OOTI phase (with P ≠ 0 without broken
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FIG. 4. Correlation-assisted Thouless pump cycles. Left panel:
sketch of cycle in phase diagram. Center panel: order parameter
along cycle. Right panel: polarization along cycle. (a) and (b): Pump
cycles within (a) OOBI and (b) OOTI phases. In (c) and (d), the sys-
tem enters and exits the ordered phase. (d) successfully transports
charge, but (c) does not. Shaded blue (orange) regions denote orbital
ordering with occupation localized on sublattice a (b), across which
the order parameter attains peak magnitude in the thermodynamic
limit. In numerics, (d) transports charge ΔQ = −2.010(4), which
is asymptotically quantized to ΔQ → 2 in the thermodynamic limit.
Each cycle performed by adiabatically connecting 100 independent
ground state calculations, for systems of L = 100 unit cells. Specific
parameter values used to generate these results are detailed in Table I
in the Supplementary material [46].

symmetry) is characterized by quantized ΔQ ≠ 0. This is
demonstrated in Fig. 4 (a)–(d).

The unit of quantization in OOTI is 1∕2 that of the TI phase,
reflecting the fractionalization of excitations in the presence
of orbital order. Additionally, while charge is pumped con-
tinuously in TI, in OOTI charge is mostly pumped in discrete
jumps, driven by the collective order.

These jumps are easily understood in the context of sublat-
tice filling: The cycle begins with the system in the insulating
phase. Very abruptly the onset of order leads to orbital oc-
cupation supported primarily on sublattice a. This ‘jump’ is
accomplished by shifting half of the electron occupation (the
occupation of sublattice b orbitals) to the a orbital on the same
site. When � = �, Δ changes sign, quickly altering the energy
landscape to favor occupation on b rather than a. In this mo-
ment, the second jump occurs as all of the electrons shift to
the neighboring sublattice b. Finally, the system re-enters the
topological insulating phase and half of the occupation moves
from b to the a orbital on the same site. Altogether, one unit
of charge is pumped during this cycle. Also note that the jump

at � = � is twice as large as the other jumps, as all rather than
half of the occupation shifts one orbital.
Moreover, the single-particle picture of charge pumping

breaks down in the presence of strong interactions. An ef-
fective single-particle description is obtained from integrat-
ing the Berry curvature of the natural orbitals Ω(k, t) =
2 Im⟨)k�k(t)|)t�k(t)⟩: ΔQ = (q∕2�) ∫ dk ∫ dtΩ(k, t)n(k, t),
where n(k, t) is the larger occupation eigenvalue. Similar to
Ref. [55], we find that the non-uniform n(k, t) along the cycle
leads to non-quantized ΔQ in this single-particle picture.
Whereas the pump cycles in Fig. 4 (a) and (b) demonstrate

that charge pumping remains quantized in the order-obstructed
phase, Fig. 4 (c) and (d) illustrate how charge pumping is fa-
cilitated by the collective nature of the obstructing order. For
these two cycles, there is a critical � that controls whether
or not there is orbital ordering when an infinitesimal seed is
added. As such, these cycles utilize the spontaneous symme-
try breaking of the ground state to minimize reliance on on-site
staggered potential Δ. In the ordered phase, orbital character
of the state is completely determined by the sign ofΔ, indepen-
dent of magnitude. Thus, one can exert control over the orbital
character (for � in the right region) via infinitesimal staggered
onsite potential (or any other mechanism which acts as a seed
for the order). In (c), both times � becomes small enough to in-
duce ordering it settles on the same orbital character, resulting
in net zero charge pumped. In (d) however, Δ changes sign,
leading to four jumps in sublattice occupation (or two pairs of
jumps).
As |�| → 0, the system spontaneously orders before reach-

ing the degeneracy point, avoiding the band-gap closing [65].
Since this spontaneous ordering randomly picks a direction,
not all pump cycles will transport net charge, as demonstrated
in Fig. 4 (c). If the sign of the order coincides with that of � as
in Fig. 4 (d), then charge is indeed transported. This illustrates
the possibility of quantized charge transport with neither bias
nor staggered potential.
In this example, the correlation-assistance to charge pump-

ing comes in the form of eliminating the staggered poten-
tial, enabling quantized pumping by only varying the hopping
anisotropy. In general, it operationally means one can non-
trivially control charge pumping via a single tunable parame-
ter, greatly increasing feasibility of experimental efforts [66].
Concluding discussion. — In summary, we have de-

scribed and characterized the effect of spontaneous symme-
try breaking on many-body topology, and have shown that the
Thouless pump can be used to identify underlying topology
in order-obstructed phases. Moreover, we illustrate that col-
lective order can be conducive to quantized charge transport,
with spontaneous ordering working to prevent band gap clos-
ing even when the model is tuned to the degeneracy point. En
route to demonstrating this effect, we have presented a com-
plete phase diagram for an SSH model with extended interac-
tion, including a phase in which orbital charge density wave
order obstructs topology. Our model may be realized in state
of the art experiments on cold-atoms in optical lattices [37].
The correlation-assisted charge pumping we demonstrate in
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the interacting SSH model should be typical of the interplay
between topology and collective order. In our present case
of a spontaneously broken ℤ2 symmetry, random fluctuations
alone suffice to produce quantized charge transport. For other
symmetries, what survives is that only an infinitesimally small
external potential is needed to control transport processes. The
collective phase can be exploited to circumvent the many-body
topological constraint in real-time evolution, where the topo-
logical invariant is pinned to its initial value under unitary evo-
lution. Hence, a dynamical topological phase transition can be
induced by passing through the symmetry breaking collective
phase, giving rise to dynamically induced symmetry break-
ing [67]. This principle can be generalized to ordered phases
obstructing other SPT states.
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man, and G. Juzeliūnas, Phys. Rev. A 94, 063632 (2016).
[43] A. Kruckenhauser and J. C. Budich, Phys. Rev. B 98, 195124

(2018).
[44] Unlike the intracell interaction Û = U
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