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We study high-harmonic generation (HHG) in the one-dimensional Hubbard model in order to
understand its relation to elementary excitations as well as the similarities and differences to semi-
conductors. The simulations are based on the infinite time-evolving block decimation (iTEBD)
method and exact diagonalization. We clarify that the HHG originates from the doublon-holon
recombination, and the scaling of the cutoff frequency is consistent with a linear dependence on
the external field. We demonstrate that the subcycle features of the HHG can be reasonably de-
scribed by a phenomenological three step model for a doublon-holon pair. We argue that the HHG
in the one-dimensional Mott insulator is closely related to the dispersion of the doublon-holon pair
with respect to its relative momentum, which is not necessarily captured by the single-particle
spectrum due to the many-body nature of the elementary excitations. For the comparison to semi-
conductors, we introduce effective models obtained from the Schrieffer-Wolff transformation, i.e. a
strong-coupling expansion, which allows us to disentangle the different processes involved in the
Hubbard model: intraband dynamics of doublons and holons, interband dipole excitations, and
spin exchanges. These demonstrate the formal similarity of the Mott system to the semiconductor
models in the dipole gauge, and reveal that the spin dynamics, which does not directly affect the
charge dynamics, can reduce the HHG intensity. We also show that the long-range component of the
intraband dipole moment has a substantial effect on the HHG intensity, while the correlated hopping
terms for the doublons and holons essentially determine the shape of the HHG spectrum. A new
numerical method to evaluate single-particle spectra within the iTEBD method is also introduced.

I. INTRODUCTION

High-harmonic generation (HHG) is an intriguing non-
linear phenomenon originating from strong light-matter
coupling. It has been originally observed and studied
in atomic and molecular gases,"? and is used in at-
tosecond laser sources as well as spectroscopies.® Re-
cently, HHG has been observed in semiconductors and
semimetals,* 17 which expands the scope of this field to
condensed matter systems.'® 4! It has been clarified that
the HHG in semiconductors and semimetals can be well
understood from the dynamics of independent electrons
in the periodic lattice potential (single-particle picture),
since the interactions among the charges can be neglected
in the first approximation.'® 33 Hence HHG can be a
powerful tool to detect the dispersion of the conduc-
tion bands*%2 as well as the Berry curvatures** (HHG
spectroscopy of condensed matter systems). Further ex-
ploration of the HHG has been carried out both experi-
mentally and theoretically in various other systems such
as amorphous materials,**%* liquids,*>*6, strongly corre-
lated systems,*” 3 and spin or multiferroic systems.®*°3

In this paper, we focus on strongly correlated elec-
tron systems (SCES), which provide a potentially inter-
esting playground for HHG. For example, it is known
that the third-harmonic generation (THG) signal is rela-
tively large in one-dimensional (1d) Mott insulators.56 58
Furthermore, the HHG spectrum sensitively reflects the
properties of the phase and can be utilized as a de-
tector of phase transitions in SCESs, e.g., the photo-
induced melting of Mott insulators.*” One of the signif-

icant characteristics in SCESs is the existence of many-
body elementary excitations, which are distinct from con-
ventional electron- and hole-excitations in semiconduc-
tors. The dynamics of such elementary excitations un-
der strong fields can result in nontrivial HHG in SCESs.
For HHG in Mott insulators, the signature of doublon
and holon dynamics®?® and string states characteris-
tic of SCESs®® have been discussed. Moreover, in dimer
Mott systems, the dynamics of the kinks and anti-kinks
has been pointed out to be the origin of HHG.?? How-
ever, the understanding of HHG in SCESs is still limited
compared to semiconductors or semimetals, and funda-
mental questions remain to be answered: i) How is HHG
connected to the dynamics of the elementary excitations
in SCESs and what information can be obtained from it,
ii) How is the HHG in SCESs similar to or different from
that of semiconductor systems, and iii) What is the role
of the characteristic degrees of freedom in SCESs such as
spins?

To address these fundamental questions, we study the
1d Mott insulator described by the single-band Hubbard
model at half filling. The calculations are based on the
infinite time-evolving block decimation (iTEBD)®® and
the exact diagonalization (ED) methods. We demon-
strate that the doublon-holon recombination is dominant
for the HHG and that the cutoff frequency scaling is con-
sistent with a linear scaling against the field strength. In
addition, we present the subcycle features of the HHG
spectrum in the Mott insulator. We show that it can be
reasonably described in terms of a semiclassical trajec-
tory analysis for a doublon-holon pair, whose kinetics is
ruled by the dispersion of the doublon-holon pair with



respect to its relative momentum. This dispersion is ob-
tained from the Bethe ansatz results, and can be reason-
abely extracted from the single-particle spectrum in the
case of the Hubbard model. However, we point out that
in general the dispersion of the doublon-holon pair is not
necessarily captured in the single-particle spectrum due
to the many-body nature of the elementary excitations.

The formal similarities and differences compared to
the semiconductor model and the various processes in-
volved in the HHG of the Hubbard model become clear
in the effective models derived from the time-dependent
Schrieffer-Wolff transformation.®® Using these models, we
show that the spin dynamics, which has no analogue
in semiconductor systems, reduces the HHG intensity.
We also reveal the importance of the long-range compo-
nent of the “dipole moment” between doublon and holon
bands for the HHG intensity, as well as the role of the
correlated hopping of doublons and holons for the shape
of the HHG spectrum.

This paper is organized as follows. In Sec. II, we in-
troduce the Hubbard model. Then, we briefly explain a
new method to evaluate the single-particle spectrum in
iTEBD and derive the effective models. The numerical
results are presented in Sec. ITI. We discuss the single-
particle spectrum, which is used for the semiclassical tra-
jectory analysis, and present the HHG spectrum obtained
from iTEBD. The analysis based on the effective model
is also shown. Finally, we conclude the discussions in
Sec. IV.

II. FORMULATION
A. Model and Method
We consider the 1d Hubbard model, with Hamiltonian
H(t) = —v Z[e*m(t)él,oéiﬂﬁ +h.ec]—p Zﬁl
FUY iy +he» (=) 'z, (1)

+

where ¢; , is a creation operator of an electron with
;

spin o at site i, N;, = é;f’aéi,g, Ny = N4 + Ny, and
8. = 2(fy+— My, ). v is the hopping parameter and U is
the onsite Coulomb interaction. p is the chemical poten-
tial, which is set to U/2, i.e., half filling. The last term in
Eq. (1) represents the effect of a staggered magnetic field
h.. In the following simulations with iTEBD, we apply a
small staggered magnetic field h, = 1073w, which helps
to converge the equilibrium solution (the initial state)
with smaller cutoff dimensions y. We have confirmed
that the single-particle and HHG spectra shown below
are hardly affected by this field through the comparison
with the results for h, = 10~*v. The laser excitation is
incorporated via the Peierls phase of the hopping parame-
ter and A(t) represents the vector potential. Note that we

set the lattice constant and the electron charge to unity.
The electric field E(t) is equal to —0;A(t). We choose
A(t) = Eo/Qe~(t=10*/20% sin[Q(t — t,)] with Ey the am-
plitude of the electric field. For the following discussion,
we define Hy, (t) = —v Zi,o[eiiA(t)é;r,aéi-Fl,a + h.c.] and
Hy =UY flighiy.

To discuss the HHG in the system, we introduce the
current operator as

j(t) = v Z [eiA(t)é;[+17géi,a — efiA(t)é;JéiJrl,g} . (2)

We evaluate the HHG spectrum as
Inng (w) = |wi(w)/?, 3)

assuming that the emitted radiation originates from the
acceleration of charges by the external field.3* Since
the numerical simulations are restricted to a finite time

range [0, tymax], it is useful to introduce a Gaussian win-

dow Fyauss(t) = exp(— (tQ_Ut /02)2 ), which is wide enough but

shorter than ¢,,,x. Then we calculate the Fourier trans-
form of Fyauss(t)j(t) to obtain j(w). This allows us to
suppress artificial oscillations from the sudden cut of j()
at t = timax-

The nonequilibrium dynamics of the Hubbard model is
simulated with the iTEBD®%6! and the exact diagonal-
ization (ED) methods. In the implementation of iTEBD,
we make use of the conservation of the number of spin-
up and spin-down electrons, the 4th order Trotter-Suzuki
decomposition and the 4th order commutator-free matrix
exponential approximation.®? In iTEBD, we prepare the
initial state with the cutoff dimension xy = 400, and com-
pute the time evolution with xy = 1000, which is sufficient
for obtaining converged results. In the following, we set
v as the unit of energy.

In this study, we discuss the single-particle spectrum
A(p,w) = —%ImGR(p,w) of the Hubbard model, where
G® is the retarded electron Green’s function and p is
the momentum. We evaluate the single-particle Green’s
function by iTEBD with introducing auxiliary bath sites.
We then apply a weak-enough pulse to excite an electron
from the system (the Hubbard model) to the bath and
measure some nonlocal correlation between the system
and the auxiliary sites. One can show that this quantity
corresponds to the single-particle Green’s function of the
system, as explained in detail in Appendix A.

Similar strategies to measure the single-particle spec-
trum by attaching auxiliary bath sites have been pro-
posed previously and implemented for the density ma-
trix renormalization group (DMRG)% and ED®* meth-
ods. Although these strategies essentially mimic the pho-
toemission experiments, our method is different from the
previous ones. The previous schemes follow the evolution
of the number of particles excited to the auxiliary baths,
which is connected to A(p,w). On the other hand, we di-
rectly measure a nonlocal correlation function equivalent
to G¥(p,t). Secondly, in order to obtain the full A(p,w)




with the previous schemes, one needs to repeat the sim-
ulations, changing the energy levels of the bath sites or
the excitation frequency, while in the method used here,
only a single simulation is needed. We also note that our
approach can be easily extended to study the spectrum
in a nonequilibrium setup.

B. Effective models

In order to clarify the nature of HHG in the Hubbard
model, we disentangle different processes involved. To
this end, we derive effective models in the strong coupling
limit U > v using the time-dependent Schrieffer-Wolff
transformation.®® This transformation is expressed as

() = 5O Fem150) 1 j(8,5®)e=i50) (4)
with
S@t) =SV #)+8D@) + 8B ) .-, 5)

where S is Hermitian and of the order O((%)").
The term S is determined recursively from the terms
S'(l)w..,g(i*l) so that ¢ He=i5(®) has no terms
changing the doublon and holon number up to O(U -

(%)"). In the following, we denote eiS® A (£)e~15®) ag

Hyport(t) and i(ateig(t))e_ig(t) as H(t). The excitation
(doublon-holon creation) is included in Hey(t), and can
be expressed in the form of —E(t)- D(t). Note that D(t)
can be regarded as the dipole moment between the up-
per and lower Hubbard bands, and is analogous to the
dipole moment between the different bands in the semi-
conductor models in the length gauge20’21’2f765 and the
dipole gauge.!?:55:67 Keeping the terms in Hypor(t) and
ﬁox(t) up to given orders in §;, we obtain different ef-
fective models. In the following, we keep terms up to
OU-(£)") [O(Eo - ()] for Hyott(t) [Hex(t)], denoting
the resulting operators by fIMott,i(t) [ﬁex,i(t)]. The ef-
fective model consisting of ﬁMott,Nl (t) and ﬁex}Nz (t) is
expressed as ﬂ‘cﬁ‘ﬁNlJ\[g.

First, to determine kéy(l)(t)7 we separate Hy, into four
terms depending on the dynamics of the doublons and
holons:

Hnus(t) = —v Z e 40 b O'}Al:jit’g-) (6)

(6,4),0

Hin,uns(t) = —v Z eiA(t)deT’JCij (7)
(i,5),0

Hygn 1 (t) = —v Z e““”“@,&@,m (8)
(i,5),0

ffkin},(t) = —v Z eiA(t)”ijLi,Ucij,&, 9)

(i,3),0

; A it o=, el
where we introduced h; , = 056 ; and d; , = n;6¢; 5.

BI’U (CZIU) creates a h?lon (doubAlon) at site ¢ from
ézg\vac) Note that hl_ and df_ are not normal

fermionic operators.  7y; indicates the space vector
from site j to site ¢ and (i,j) indicates that ¢ and

j are nearest neighbors. Here, Hy, (1) = fILnJr(t)
and Hyin(t) = Hian,Lus(t) + Hiin,uns(t) + Hiin 1 (1) +
Hyin,—(t). Hyin,Lup(t) changes the position of a holon,
while ﬁkin,UHB(t) change the position of a doublon.
Hyin,+(t) creates a doublon-holon pair at neighboring

sites, while H’kin’,(t) annihilates a doublon-holon pair
at neighboring sites.

The component of Hyjor(t) of order O(U - (£)') can
be expressed as

ﬁkin,LHB + Hkin,UHB + Hkin,+ + ﬁkin,— +4[SW, iy
(10)

Thus, we require Hkin,—‘,- —l—ﬁkim_ —|—i[S’(1), fIU] = 0, which
is satisfied by

—1

g(1) —
S U

[Hyin,+ — Hicin,~- (11)
As a result, we obtain
Hutoto1 (1) = Hyinpus(t) + Hin vas () + Hy,  (12)

and Hey1(t) = —E(t)DM(t) with

~ v 3 Tij 7 7
D<1>(t)=5 > et ®radl bl 4+ he]. (13)
(i,3),0
The lowest-order effective model I:[eff,Ll =

IA{Moml(t) + ﬁex,l(t) has a direct formal correspon-
dence with the semiconductor models in the dipole
gauge.19:66:67 Namely, Hyi, Lup(t) corresponds to the
kinetic term for the valence band electrons with the
intraband acceleration, Hyin uns(t) to the analogous
term for the conduction band, Hy corresponds to the
difference of the band energy, and DM (t) corresponds
to the interband dipole moment in the semiconductor
models, see Eq. (C1) in Appendix C.

Next, we consider the higher-order corrections. The
higher order terms of S are iteratively determined as
shown in Appendix B, which yields the expressions for
Hyiots, N, (t) and Hex n, (t) with Ny > 1 and Ny > 1.
For example, the O(U-(%)Q) component in Hyjot (t), i.e.
.HMOtLQ (t) — ﬁMott71(t), can be written as

Fr(2) Fr(2) Fr(2)
Hyhvne + Hignuns + Hy snise

+ I:Ispin,ex + ﬁdh,ex + ﬁ((ii),slide' (14)

Here, ﬁlgizrz,LHB (ffﬁfn)7UHB) describes the correction to the

holon (doublon) hopping, which includes the 2nd neigh-
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FIG. 1. Single-particle spectrum A(p,w) in equilibrium cal-
culated by iTEBD for U = 10 and h, = 0.001. The red
dashed lines indicate the peak positions of the spectrum at
each p. The black dot-dashed line indicates e4(pa) (Eq. (16)).
To obtain A(p,w) from G7(p, ), we apply a Gaussian window

exp(— 2;2,2) with ¢’ = 5.0 in the Fourier transformation.

bor hopping. H ((]2 ihift describes the shift of the local inter-
action U, ffdh,cx is the exchange coupling of the doublon
and holon, and H, éi),slide describes the simultaneous hop-
ping of a doublon and a holon to the neighboring sites.
The expressions for these terms are given in Appendix B.
In particular,

-Hspin,ex = Jox Z éz . éiJrl (15)

describes the spin exchange, where Jox = %, § =
%Eaﬁ éj,ao'aﬁéiﬁ) and o denotes the Pauli matrices.
It is noteworthy that the spin exchange term does not
have any direct correspondence in the semiconductor sys-
tems. Also note that Hyort,2(f) becomes the well-known
t-J model after subtracting several terms irrelevant for
a small number of holes. In general, with increasing Vi,

ﬁMom N, (t) starts to develop Np-th neighbor (correlated)
hoppings of doublons and holons. As for Hey x,(t), the
higher order corrections to D(t) include the creation of
doublon-holon pairs on Na-th nearest sites although the
coefficient becomes smaller. In the following discussion,
we find that this long-ranged dipole moment is important
for the HHG process.

In the evaluation of the current in the effective model,
we compute the expectation value of j(t). Strictly speak-
ing, under the unitary transformation, the current opera-
tors changes as e**()j(t)e =) = j(t)+ O(). However,
it turns out that the O(f%) correction has minor effects
on the HHG spectrum in the parameter region consid-
ered here (U = 10), where its shape, cutoff energy and
intensity are hardly affected.

III. RESULTS

In the following, we mainly consider systems deep in
the Mott insulating phase (U = 10). We use pump fre-
quencies 2 = 0.5, 0.75 much smaller than the Mott gap
to observe many high-harmonic peaks. Small pump fre-
quencies are usually used in the experiments in semi-
conductors to avoid damaging the sample material. The
center and width of the applied pulse are set to tg = 60
and o = 15, respectively. The convergence with respect
to the cutoff dimension x becomes generally worse for
smaller U due to the smaller gap.

A. Doublon/holon dispersion and single-particle
spectrum

Before studying HHG, we first explain the nature of
the elementary excitations in the 1d Hubbard model and
the single-particle spectrum. This will be helpful for the
following analysis. The 1d Hubbard model in equilib-
rium can be solved exactly using the Bethe ansatz.5%:69
At half filling, there exist two types of elementary ex-
ictations: (i) gapped spinless excitations called holons
and anitiholons (doublons) and (ii) gapless charge neu-
tral excitations called spinons. Physical excitations are
constructed from these elementary excitations. In par-
ticular, a holon (doublon) is parametrized by a quantity
called rapidity k, where the corresponding momentum
pr(k) (pa(k)) and the energy €, (k) (eq(k)) are given by

% dw Jo(w) sin(wsin k)

ph(k:):pd(k)+7rzsz72/0

2 w 1+ exp(%2)
(16a)
en(k) = ea(k)
= v + 2cosk + 2/ FAC) COS(W?]ID]C)B_T )
2 0 w cosh(%?)
(16b)

respectively. Here 7, is the Bessel function. We shall see
that this dispersion describes the kinetics of a doublon
and a holon under strong fields and is thus related to
HHG, see Sec. IIIC.

We show how these many-body elementary excitations
are reflected in the single-particle spectrum A(k,w), see
Fig. 1. The single-particle excitation consists of holons,
spinons, and doublons and as a result it exhibits multiple
bands™ with a direct gap near k = 7/2. In particular,
one can see that the peaks in the spectrum (red dashed
lines) match well with the doublon energy obtained from
the Bethe ansatz (Eq. (16)), see the black line. Note
that this match is nontrivial since the single-particle ex-
citation consists of combinations of holons, spinons, and
doublons®® and the weight for each state is not a pri-
ori clear. The structure of the Hubbard bands is qual-
itatively different from that obtained by the Hubbard-I
approximation’! or the dynamical mean-field theory,*®
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FIG. 2. HHG spectra of the Mott insulator for (a) Q = 0.75
and (b) © = 0.5 at field strengths Ey = 0.5 and 0.7. Solid
lines indicate the full HHG spectra, while the dashed lines in-
dicate the contribution from the doublon-holon hopping Ihop-
Here, the Mott gap and the maximum band-energy difference
extracted from the single-particle spectrum are 6.7 and 15.0,
respectively. Inverted triangles indicate the cutoff frequency
determined by the criterion [73]. The model parameters are
U = 10 and h, = 0.001. The pulse parameters are to = 60,
and o = 15, while ¢’ = 20 is used for the Fourier transforma-
tion of the current.

which gives dispersions of the upper and lower Hubbard
bands that are parallel. The Mott gap Appore estimated
from the single-particle spectrum is about 6.7.

B. HHG spectra

Here, we study the HHG in the 1d Mott insulator.
In Figs. 2(a) and 2(b), we show the HHG spectra for
Q = 0.75 and Q = 0.5, respectively, with Ey = 0.5
and 0.7. For = 0.75, we see clear intensity peaks at
the odd harmonics, as is expected in the time-periodic
steady states of a system with inversion symmetry.” The
HHG intensity decreases monotonically for energies be-
low the Mott gap, while above it, there exists a HHG
plateau. The cutoff of the plateau, which we extract as
described in [73], increases with increasing field inten-
sity. For Q = 0.5, we see peaks in Iypg(w), but they are
not necessarily located at the odd harmonics, in partic-
ular for w ~ Apors. Interestingly, one can observe peaks
at even harmonics, which is unexpected in the present
system with inversion symmetry. We believe that this

FIG. 3. HHG spectra in the plane of frequency w and field
strength Ey for (a) Q = 0.75 and (b) 2 = 0.5. The red circles
indicate the cutoff frequencies and the filled red triangle shows
the Mott gap. The solid vertical lines correspond to even
harmonics of €2, while the dashed ones show odd harmonics.
The model parameters are U = 10 and h, = 0.001. The pulse
parameters are to = 60, and o = 15, while ¢’ = 20 is used for
the Fourier transformation of the current.

is because the pulse is not long enough, and some po-
tentially relevant dephasing channels (such as electron-
phonon couplings) are missing in the present model, so
that the system does not reach a time-periodic steady
state. Indeed, a standard semiconductor system with a
similar band gap and without dephasing also shows a
HHG spectrum with some peaks deviating from the odd
harmonics for the same pump pulse (see Appendix C). On
the other hand, with a longer pulse and a phenomeno-
logical dephasing, we obtain clearer peaks at the odd
harmonics. Figures 3 (a) and 3(b) show the color plot
of the HHG intensity Iypc(w) in the plane of the fre-
quency (w) and the field strength (Ep), and the circles
represent the cutoff frequencies of the plateau.”™ In con-
trast to the case of atomic gases,’'? the cutoff frequen-
cies do not scale as E3. Rather, our results indicate a
linear scaling weut =~ Aot + @(Q)Ep as in the case of
semiconductors.?! This behavior is consistent with the
previous DMFT study of the higher dimensional Hub-
bard model.*® «(2) decreases with increasing excitation
frequency €2, and it roughly scales as 1/4).

Now, we discuss the origin of HHG and analyze the
underlying processes in detail. We first identify the dif-
ferent contributions to the HHG spectrum. The cur-
rent in semiconductors can be classified into an inter-



band current (particle-hole annihilation/creation) and an
intraband current. In the Hubbard model, we analo-
gously consider the current originating from the anni-
hilation/creation of a doublon and holon j,. and the cur-
rent associated with hopping of doublons or holons jhop,
which conserves the number of these carriers. The op-
erators corresponding to these currents can be expressed
as

3ac(t) = v Z ri,je’iA(t)’l"ij [AI,U}AL;’(_, + ili,g Aj 5
Jnop(t) = iv Yy jet A0 [ﬁi,ail},g + dngcij,o.]. (17)

We denote the contribution to HHG from these currents
by (W) = |wiac(w)]? and Thop(w) = |winop(w)|*. The
evaluation of these contributions shows that I,.(w) dom-
inates over Inop(w), in particular around the cutoff fre-
quencies [Figs. 2(a) and 2(b)]. Therefore the annihilation
of doublon-holon pairs is the dominant source of HHG in
large-gap Mott insulators, which is consistent with the
conclusion from a previous DMFT analysis.*® The fre-
quency range of the plateau approximately corresponds
to the possible energies of the doublon-holon pairs (in the
presence of the external field) just before the recombina-
tion.

C. Subcycle analysis

Next, we address the question about the dynam-
ics of the doublons and holons during the pulse. To
gain insights into this, we perform a subcycle analysis
of the induced current j(t) (see Figs. 4(a) and 4(b) )
by applying a short window function, Fyindow, around
t,. Specifically, we consider a windowed Fourier trans-
form j(w,t,) = [ dte™! Fyindow(t — t,)j(t) and evaluate
Inng(w, ty) = |wj(w,tp)®. The latter function provides
the time-resolved spectral features of the emitted light
around ¢,. In the following, we choose Fyindow(t) =
exp(—z(’;%) and ¢/ = 0.8. In Figs. 4(c) and 4(d), we
plot Inng(w,tp) for the Mott insulator. As in the case
of semiconductors, the high frequency light is emitted
around E(t,) = 0, i.e., where |A(¢)| is maximum (see
Appendix C for semiconductor data).

In semiconductors, the features of Iyug(w,t,) can be
explained by the three-step model formulated with the
semiclassical theory for electrons and holes.2%:2! In this
picture, (i) both of an electron and a hole are simultane-
ously created at the same position via tunneling; (ii) they
move around; (iii) they return back to the original posi-
tion and recombine by emitting the light. The dynamics
can be described with the equation of motion

dx;;(t) = 3p€g(]3)’p=p(t), (18a)

—200j(1) —3005(7)
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FIG. 4. (a,b) Applied electric field and induced current for
(a) 2 =0.75 and (b) 2 = 0.5. (c¢,d) Subcycle analysis of the
HHG, Iunc(w,tp), for (¢) 2 = 0.75 and (d) Q@ = 0.5. The
blue markers show the results of the semiclassical analysis
(wemit (trec)) with €4 (p) obtained from the Bethe ansatz results
Eq. (16), while the red markers correspond to those for the
unrenormalized dispersion, U — 4vsin(p). The pink markers
are the results obtained using the dispersion extracted from
the single-particle spectrum, i.e. Fig. 1, and they almost over-
lap with the blue markers. The vertical dashed lines indicate
the times when E(t) = 0. The parameters of the system and
the pump field are the same as in Fig. 2.

Here z,¢1(t) indicates the relative distance between the
electron and the hole, and €,4(p) = €.(p) —€,(p) with e.(p)
(e4(p)) denoting the energy of the conduction (valence)
band electron with momentum p. The velocity of an
electron (hole) is given by the derivate Ope.(p) (Opey(p)),
and the effect of the field is taken into account via the
shift of the momentum. Here, pg is the momentum where
€g(p) is minimum. The initial condition is assumed to be
|Zre1(to)] = 0. The light emission from the recombination
oceurs at tyec (> to) when |Zrel(frec)] = 0. The frequency
of the emitted light is assumed to be equal to the en-
ergy of the electron-hole pair: Wemit(trec) = €4(P(trec))-
Note that the photo-exicitation only produces electron-
hole pairs with zero total momentum. €,4(p) describes the
energy of such an electron-hole pair as a function of half
the relative momentum, p. Equation (18) implies that
the relative momentum is changed by the vector poten-
tial, and the dispersion relation €,(p) dictates the relative
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FIG. 5. (a) Single-particle spectrum A(p,w) in equilibrium
calculated by iTEBD for U = 7 and h, = 0.001. The red
dashed lines indicate the peak positions of the spectrum at
each p. The black dot-dashed line indicates €q4(pa) (Eq. (16)).
To obtain A(p,w) from G®(p,t), we apply a Gaussian window

exp(— 252) with ¢’ = 5.0 for the Fourier transformation. (b)

Subcycle analysis of the HHG, Inng(w,tp) for U = 7 and
h, = 0.001. The parameters of the pump are Q = 0.3, Ey =
0.4,to = 100 and o = 30. The blue markers show the results
of the semiclassical analysis (Wemit (trec)) With €4(p) obtained
from the Bethe ansatz results Eq. (16), while the red markers
correspond to those for the unrenormalized dispersion, U —
4usin(p). The pink markers are the results obtained using
the dispersion extracted from the single-particle spectrum in
panel (a), and they almost overlap with the blue markers.
The vertical dashed lines indicate the times when E(t) = 0.

motion of the electron and the hole.

In the 1d Mott insulator, the relevant excitation pro-
cess is the creation of doublon-holon pairs with zero
total momentum pg + pn = 0, see Refs. 69 and 74.
Such a doublon-holon pair is parametrized by half of
the relative momentum between the two charge carri-
ers prol = (Pa — pn)/2, and, under an adiabatic change of
the vector potential potential A, the relative momentum
is changed to pye; — A.9%7* This is the same situation as
for the electron-hole pair in the semiconductor. Hence,
we expect that the three-step model can be extended
to the Mott insulator by considering the dispersion of a
doublon-holon pair of zero total momentum with respect
to the relative momentum. In other words, the analogy
suggests that the kinetics of the relative position between
the doublon and the holon under strong fields is deter-
mined by this doublon-holon pair dispersion.

We test this idea using the dispersion relation of the
doublon-holon pair, €4(pre1) = €q(Prel) + €n(—Pret), Ob-
tained from the Bethe ansatz solution Eq. (16) and sub-

stituting it into Eq. (18). The process of computing t,ec
for given tq is the same as in the semiconductor case.”™
The resulting wemit(trec) is shown by blue markers in
Figs. 4(c) and 4(d).”® One can see that the semiclas-
sical analysis explains the fact that the high-frequency
light is emitted when A(¢t) ~ 0, and the blue mark-
ers approximately overlap with the strong intensity re-
gion in Iupc(w,tp). In general, the semiclassical anal-
ysis tends to underestimate the frequencies where the
maxima of Iyupc(w,t,) are located. The match be-
tween Inyng(w,tp) and the semiclassical result is worse
for higher frequency excitations as seen from the com-
parison between 2 = 0.75 and €2 = 0.5. Such disagree-
ment is expected because the tunneling picture becomes
worse for high frequency excitations. In fact, the agree-
ment between Iypg(w,t,) and the semiclassical result
becomes better for smaller U and Q (Fig. 5). We note
that the agreement with the semiclassical analysis is as
good as that between the standard semiconductor system
and the corresponding semiclassical analysis, see Fig. 9 in
Appendix C. Hence, we conclude that the present semi-
classical analysis for the 1d Mott insulator captures im-
portant aspects of the doublon-holon dynamics and their
recombination.

We also show the results of the semiclassical analysis
using the dispersion relation of the single-particle spec-
trum (the red dashed lines in Figs. 1 and 5(a)), see the
pink markers in Figs. 4(c), 4(d) and 5(b). More specif-
ically, we extract the “e.(p)” and “e,(p)” in the three
step model from the dispersion of the upper and lower
Hubbard bands in the single-particle spectrum. Since
they agree well with €;(p) and —e,(p), respectively, the
results of this semiclassical analysis also agree well with
the above results (the blue markers). This result demon-
strates that, in the present case, the dispersion obtained
from the single-particle spectrum provides the relevant
information on the kinetics of the doublons and holons,
as in the semiconductor. However, we emphasize that it
is not necessarily the case for general SCESs. We will
come back to this point in Sec. IITE.

In addition, we show the results of the semiclassical
analysis based on the unrenormalized dispersion €4(p) =
U —4usin(p) in I:IMott,l by the red markers in Figs. 4(c),
4(d) and 5(b). By comparing the red and blue mak-
ers, one realizes that the renormalization of the Mott
gap as well as the dispersion are important for a rea-
sonable agreement between the semiclassical results and
IHHG (w, tp).

Finally, we note some major differences from the semi-
conductor results: i) the high-frequency signals remain
even after the pulse, and ii) the recombination is en-
hanced during the period when |E(t)| increases. Interest-
ingly, the latter observation indicates that the recombi-
nation happens more likely for doublon-holon pairs which
move around for more than half a period (7/2) after their
creation by tunneling.
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FIG. 6. (a) Single-particle spectrum A(p,w) of the effective
model fIMotm in equilibrium evaluated with iTEBD for U =
10. Here, the spin configuration of the equilibrium state is
determined by Hepin = Hipinex + hz d.;(—) '8z, with h. =
0.001. The red lines indicate +% £ 2vsin(p). (b) Comparison
of the HHG spectra of the Hubbard model and the effective
model Heg 1,1 for @ = 0.5. (c) Subcycle analysis of the HHG,
Inng(w, tp), for I:Ieﬁ,m. Here, U = 10 and h, = 0.001 is
used and the excitation parameters are 2 = 0.5 and Ey =
0.7. The red markers indicate the result of the semiclassical
theory (wemit (trec)) with the unrenormalized dispersion, U —
4vsin(p). (d) Comparison between the HHG spectra from
Heff,1,1, Heff,1,1 + ﬁspin and Heff,l,l + I:[dh,ex for U = 10,
h. = 0.001 and 2 = 0.5. In panels (b-d), we use to = 60
and o = 15 for the pump. In (b,d), the two black solid lines
indicate the Mott gap (= 6.0) and the maximum band energy
(= 14.0).

D. Analysis of the effective models

In this section, we study to what extent the effec-
tive models explain the HHG in the 1d Mott insulator
and clarify the role of different processes. In Fig. 6(a),
we show the single-particle spectrum obtained by the
iTEBD for the lowest order model Heg 1,1(t). The equi-
librium spin configuration is determined from the ground
state of Hypin = Hypinyex + Rz p_;(—)*52,. In this model,
the dispersion of the upper and lower Hubbard bands
matches well with £4 & 2vsin(p), see Fig. 6(a). Note
that this dispersion (+2vsin(k)) is exactly that of the
doublon (antiholon) and holon obtained from the Bethe
ansatz for U — 00% or from the direct construction of
the wave functions.”” In Fig. 6(b), we show the corre-
sponding HHG spectrum. The HHG intensity and the
cutoff are underestimated compared to the full simula-
tion (dashed lines), while the response at low frequencies
around w = () is already well described. The subcycle
analysis for the effective model shows that the transient
signal is consistent with the semiclassical analysis with
the dispersion ¢,(p) = U — 4vsin(p), see Fig. 6(c). This
observation again underpins that the dispersion of the
doublon-holon pair with respect to their relative momen-
tum is closely related to the HHG in the 1d Mott insula-
tor. Furthermore, the effective model already captures
the characteristic subcycle feature of the Mott HHG,
points i) and ii) mentioned in the last part of the pre-
vious subsection.

Now, we study the effects of the higher order terms on
the HHG. First, we discuss the effect of the Heisenberg
term Hgpin on the HHG signal. In Fig. 6(d), we com-
pare the results for ]A{eﬂ‘71,1(t) and for Heﬂ‘7171(t) + ﬁspin.
One can see that the HHG intensity is substantially sup-
pressed by Hgpin. One may think that this is an un-

expected effect, since ffspin applies only to the singly-
occupied sites and it looks unrelated to the dynamics
of the doublons or holons. Moreover, unlike in higher-
dimensional systems, the doublon and holon dynamics
does not disturb the spin background directly (spin-
charge separation). We think that the reduction origi-
nates from a reduced recombination probability for the
doublon and holon. While the doublon and holon move
around, the spin background can change through the ac-
tion of Hgpin. Thus, the spin background can be substan-
tially different when the doublon and holon return back
to neighboring positions for possible recombination. If
we denote such an excited state by |¥Uey) and the ground
state by |¥g), the matrix element (W, |7|¥o) should be
decreased compared to the case without f[spin due to the
mismatch of the spin background. This result shows that
the HHG intensity in Mott systems is sensitive to spin
dynamics, which raises interesting questions about the
effects of different types of spin couplings and external
magnetic fields on the HHG in Mott insulators. In a
similar way, one can study the effects of the exchange
term for the doublon and holon (Hgy ex), which turn out
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FIG. 7. HHG spectra for the effective models evaluated with
ED for U = 10,h, = 0 and L = 10. The corresponding
Hamiltonians are indicated in the labels. In particular, the
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H éiL is used for the simulation. The parameters for the pump
pulse are Q = 0.5, Ep = 0.7, to = 60 and o = 15.

to be minor, see Fig. 6(d).

The role of the other higher order corrections is stud-
ied with ED, since the terms involving sites beyond the
nearest neighbor are difficult to treat with iTEBD. First,
we discuss the effects of corrections in Hyott(t). In
Fig. 7(a), we show the result of H(t) (Eq. (1)), Heg1.1(t),
IA{eﬂ‘,271(t)7 and ﬁeg,371(t) for L = 10. The cutoff is sub-
stantially increased from Heﬁ"Ll(t) to Heff’g’l(t), and al-
ready reproduces well the cutoff in the ED results for
the original Hubbard model. The detailed information
on the effects of each term in Heg21(t) (Eq. (14)) is
shown in Fig. 7(b). As is expected, the correction to

the hopping of the doublons and holons, i.e. IA{}(IEL =
2)

ﬁéin,LHB + fIS&UHE increases the intensity both at high
frequencies and around the gap edge as well as the cutoff
frequency compared to Heg 11(¢). Further inclusion of

ﬁg ihift and f[spimex reduces the HHG intensity in gen-

eral. The former is expected since H [(Jz’ihift increases the
Mott gap, while the latter effect has already been pointed
out above. Heg 31(t) well reproduces the shape of the
HHG spectrum of the full Hubbard model. However, this
model substantially underestimates the HHG intensity.

In Fig. 7(c), we show the HHG spectra for
.Heﬂ"g,l(t%ﬁeﬁ’g’g(t), and .E[eff’g’g(t) to illustrate the ef-
fects of the higher order dipole-like terms, ﬁex(t). Inter-
estingly, the shape of the HHG above the band gap is
hardly changed but its intensity substantially increases,
while the response around w = ) is only slightly affected.
This shows that although the higher order corrections to
the dipole term are not relevant for the response around
w = (2, they are necessary to quantitatively reproduce the
HHG signal above the gap. The coefficients of the higher
order corrections in Hgy are small, but they include long-
range terms, which help the creation of doublon-holon
pairs via tunneling.

E. Discussion: Kinetics of doublons and holons

Here, we would like to discuss the kinetics of the dou-
blons and holons, and its relation with the single-particle
spectrum. First, although we showed that the band dis-
persion obtained from the single-particle spectrum of the
1d Mott insulator (Fig. 1) can be used in a phenomeno-
logical three step model for the doublon-holon recombina-
tion, we note that the full information on the doublon and
holon dynamics may not be obtainable from the single-
particle spectrum. To exemplify this, we consider Heg 11
and choose the antiferromagnetic state (| 1,1,7,4, )
as the initial equilibrium state. Remember that ﬁMott,l
shows degenerated ground states, i. e., the states with
no doublons and holons become the ground states re-
gardless of the spin configuration. In this case, the
single-particle spectrum is independent of momentum
and there is no clear dispersion relation, see Fig. 8(a).
Thus, from the single-particle spectrum, it is hard to ex-
tract useful information on the kinetics of the doublons
and holons. On the other hand, when the HHG spec-
trum is measured, one finds almost the same result be-
tween the cases with the initial state determined from
Hypin = Hypinex + he Y ;(—)"3,,; and the antiferromag-
netic initial state, see Figs. 8(b) and (c). This result
is consistent with the fact that in }AIMott,l, the charge
dynamics concerning with the doublons and holons is in-
dependent of the spin configuration.”” The above results
demonstrate that the HHG spectrum directly reflects the
doublon-holon dynamics, but the single-particle relation
does not necessarily so. Thus, the relation between the
HHG spectrum and the single-particle spectrum can be
very different from what we expect in a semiconductor
system.*® Our findings indicate that the HHG spectrum
is the more direct tool to study the kinetics of the dou-
blons and holons in a Mott insulator.
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FIG. 8. (a) Single-particle spectrum A(p,w) of the effec-
tive model I;IMott,l in equilibrium evaluated with iTEBD for
U = 10. Here, the spin configuration of the equilibrium state
is antiferromagnetic. (b)(c) Comparison of the HHG spectra
of the effective model, Ijlcﬁ"’l’l with U = 10, for the ground
state of Iffspin—i-hz El(—)léu and the antiferromagnetic state.
Here, (b) is for Q = 0.75 and (c) is for Q = 0.5. The parame-
ters of the pump are to = 60 and o = 15.

A lesson from our HHG analysis of the 1d Mott insu-
lator is that the three step model (18) can be useful even
for strongly correlated systems if we use a proper dis-
persion relation €4(p) related to many-body elementary
excitations. Here, the dispersion e,(p — A) describes the
change of the energy under an adiabatic change of A, for
the doublon-holon pair with the half relative momentum
p at A =0. It is an interesting question if the same idea
applies to other types of SCESs. Namely, one may ob-
tain e5(—A) by following the change of the energy of an
excited state under an adiabatic change of A and use it
within the three step model to explain the HHG features.

10
IV. CONCLUSIONS

In this paper, we studied HHG in the 1d Mott insu-
lator described by the single-band Hubbard model us-
ing iTEBD and exact diagonalization. We pointed out
that the HHG originates from the doublon-holon recom-
bination, at least when the gap is large enough, and
demonstrated that the subcycle features are reasonably
well captured by the semiclassical three step analysis for
doublon-holon pairs. The dynamics of a doublon-holon
pair is ruled by the dispersion of the doublon-holon pair
with respect to its relative momentum, which is not nec-
essarily captured by the single-particle spectrum due to
the many-body nature of the elementary excitations. Our
results indicate that HHG in Mott insulators can be ap-
plied for a spectroscopy to directly measure the disper-
sion of the relevant many-body elementary excitations,
here the doublon-holon pairs.

Moreover, we introduced effective models based on the
Schrieffer-Wolff transformation, which allows us to iden-
tify processes similar to and different from the semicon-
ductor models, and to discuss the role of these individual
processes. We showed that the spin dynamics, which has
no analogue in semiconductor systems, substantially re-
duces the HHG intensity. This result indicates that the
HHG intensity in Mott systems can be sensitive to spin
dynamics. It will be interesting to study the effects of
different types of spin couplings and to discuss the con-
trollability of the HHG spectrum via external magnetic
fields. Furthermore, we revealed the importance of the
long-range component of the “dipole moment” between
the doublon band and the holon band for the HHG inten-
sity, as well as the role of the correlated hopping of dou-
blons and holons for the shape of the HHG spectrum. We
expect that our results are also relevant for charge trans-
fer (CT) insulators, although a detailed study of HHG in
these systems is required for a precise statement. Can-
didates of 1d Mott insulators and CT insulators range
from organic crystals, e.g., ET-F3TCNQ, to cuprates,
e.g., SroCu03.%? It would be interesting to experimen-
tally explore the HHG in these systems, and to compare
the measurements with our theoretical predictions.

For understanding the detailed relation between the el-
ementary excitations and HHG in various SCESs; it is an
interesting future problem to introduce concepts similar
to doublon-holon pairs with different relative momenta,
i.e. a series of states that is connected via adiabatic
changes of the vector potential and their dispersions, to
other SCESs systems such as dimer-Mott insulators.??
This would help us to explore the spectroscopic appli-
cation of HHG to detect the dynamics of these elemen-
tary excitations. Also, in many-body systems, elemen-
tary excitations can strongly interact with each other,
as in the doublon-holon dynamics in a correlated spin
background™ or the singlon-triplon string state in multi-
orbital systems.?° Such effects may be taken into account
as an extra potential between elementary excitations; for
example, in the spin background, the potential should



be proportional to the distance between the doublon and
holon. How this affects the dynamics of elementary ex-
citations under strong fields and consequently the HHG
spectrum is an interesting open question. In addition, it
is also important to understand the behavior of HHG in
SCESs in a wider range of excitation frequencies.

Last but not least, in this study, we have introduced a
new numerical method to measure the fermionic single-
particle spectrum within iTEBD. The method has ad-
vantages in that i) a momentum- and energy-resolved
spectrum is obtained from a single-shot calculation and
ii) it can be directly evaluated for a system in the ther-
modynamic limit. The idea can be extended to nonequi-
librium situations, and we expect future applications to
various nonequilibrium evolutions of the single-particle
spectrum.
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Appendix A: Evaluation of the single-particle
spectrum in iTEBD

Here, we explain how to measure the single-particle
Green’s function for fermions,

—i0(t){[é: (1), €5(0)]+),

within iTEBD. Using DMRG or ED for finite systems,
one can directly apply an operator é;[(O) to the wave-
function and measure ¢;(t) to evaluate the single-particle
Green’s function of finite size systems in principle. In the
case of iTEBD, using the infinite boundary condition,™
we can calculate the spectral functions in spin sys-
tems®?:®! without finite size effects, which corresponds
to applying a bosonic operator to the system. However,
it is not straightforward to apply a fermionic operator
to the matrix product state while keeping its canonical
form. In the following, we describe how to measure the
single-particle Green’s function via a pump-probe simu-
lation by considering an auxiliary band and measuring a
nonlocal correlation function of fermionic operators.

In general, the pump-probe approach allows us to di-
rectly measure the linear response function,

XBa(t) = =i0()([B(2), A(0)])sys.

Gii(t) = (A1)

(A2)

11

Here, we express the unperturbed Hamiltonian for the
system of interest as Hgys, ()sys denotes the expectatlon
value for an equlhbrlum state of HSys7 and A and B are
some operators. x%,(t) dictates the change of the ex-
pectation value of B (§B(t)) induced by the small per-
turbation from He, = 6F(t)A:

5B(t) = [ dbci (¢ - DIF(E). (A3)

The Fourier components satisfy §B(w) = x% , (w)dF(w).
One can evaluate x£ ,(¢) directly by the real time evo-
lution of a weak-enough excitation. This can be utilized
in any type of real-time numerical simulation to evaluate
the response functions, for example, see e.g., Refs. 82
and 83 for applications in the context of nonequilibrium
Green’s function methods.

On the other hand, with iTEBD, the wave function
|¥(t)) is expressed as a matrix product state in the canon-
ical form. Using this fact one can efficiently evaluate
equal-time nonlocal correlation functions,

Xpaig(t) = (U()[ 552 (D)), (A4)

regardless of the type of Bl and &;, i.e., fermionic or
bosonic.

We use the above two points to measure Gfi(t). First,
we separate GR() into two parts as GZ- = GZI +
G2, where GIL(t) = —if(t)(¢;(t)ct(0)) and GE*(t) =
—i6(t)(¢; 1(0)¢;(t)). Then, we consider an auxiliary band
of fermlons Haowx = wo > l;:rl;l
without external perturbation is Hioy = Hgys + ﬁaux.
We take the initial state |Piot) as

The total Hamiltonian

|\I’t0t> = |\Ijsys> & |Vac>aux7 (A5)

where |vac)aux is the vacuum state of the auxiliary band
and |Wyy) is the ground state of the system. Next, we
Weakly excite the system by applylng a homogeneous ﬁeld

OF(t )Zl Aywith A, = b ¢+ ¢ bl at time 0 and observe

BJZ = b .¢; at time t. This procedure enables us to mea-

—i00([Ba0. A0,

= i9(t)6“°t@(O)Ci(t))sys ==

Xij (t)
et G (L), (A6)

and we obtain Gf-?(t) by setting wy = 0. Note that since
the canonical form of the matrix product for |Ugys) ®
|vac)aux is easily expressed by taking the direct product
of the canonical representation for |Wyy) and [vac)aux,
we do not need to deal with ﬁtot. This fact saves the
computational cost for the preparation of the initial state.

In the same way, we can calculate Gﬁl(t) by exciting

the system with 0F(t) >, flg and A/, = bé 4—6;51T at time
0 and observing B;; = b;¢; at time ¢. This process can be



circumvented in special cases where Gﬁl (t) can be related
to Gf}z(t). For example, the half-filled Hubbard model is
symmetric under é;[a — (=)%¢;,. If this symmetry is not
broken in the ground state, we have

=i0(t){ei0 (1)2],(0)) = —(=)/ G ().
(A7)

R
Gijl (t) =

Although precise single-particle spectra in equilibrium
can be obtained by dynamical DMRG,3* its application
is limited to finite systems. Our method has the advan-
tage that it is directly applicable to the thermodynamic
limit and that it can be easily extended to nonequilibrium
situations.

Appendix B: Higher order correction of the effective
model

The higher order terms of S and ﬁMott can be obtained
recursively using the following fact:%° If an operator M,
changes the number of doublons by n and does not change

the total number of charges, we have

[Hy, M) = nUM,,. (B1)

The procedure for determining St and .FAIMott’i is the
following:

1. Write down the components in HMott of the order

O(U($)"), which involve i[S@(t), Hy]. We denote

the components except for i[S)(t), Hy] by MO (¢).

2. We use M. () to denote the terms in M) (t) that
change the number of doublons by n.

3. 80 s given by

90 = 2 3 i) (B2)
n#0

4. I:-’Mott,i(t) = I;[Mott,ifl(t) + Moi) (t).

One can directly see that with Eq. (B2), i[S®, Hy] can-
cels with MV for n # 0.

For example, the component of Hypost for o (%)2)
can be expressed as

i[SM(t), Hin,o(t)] + %W”(t% Hygn - (t)] +i[SP (1), Hy)

(B3)

with Hyin,0 = Hyin,LuB+Hyin,uas and Hyin,+ = Hign ++
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Hyin,—. Then, we have

30 = 5[}1 1), g 0],
VD (6) = & i+ 1), Fin- (0], (B4)
M) () = P ).

More explicitly, we have

~ (2
M () =
2
v ~ ~ R ~
- 2? ;[h;rﬂ o Iac;r&hj 16t dj+1,6ci,cfci,6dl—1,a]
—|— — Z Z e2iAm QdLm 5_01 5Ci, ghj m,5 (B5)
i,0 m==+1

+ (o — Mig)dl o bl ]

i+m,c' "i—m,o
Also, we have
r(2 2 2
MO( )( ) nguz LHB + Hliuz ,UHB + H{I lhlft
+ Hspm ex T Hdh ex T H((ii)shdc’ (BG)

with

A =225 3 e

i,0 m==+1

ni,a'ili-i-m,ojﬁ - é;géi,&ﬁiﬁ-m shi_ } (B7)

—m,o r—m,o

ZX Z Z eQiA-m

1,0 m

|:ﬁi70dz+m adl m,o + 61,6éi70dz+m adl m,a:| ) (B8)

(2)
Hkm UHB —

(2 R 1., 1
HI(J,)shifc = Jox Z(nn - 5)(7”% - 5), (B9)

<

ex 21A A+ A

Hap,ex = Y [e™ =0 Mgy + €2iAﬁi_ﬁj:k1 + 2071074415

(B10)

H((ii slide — Jex Z Z |: i+m, UAj:g Ajgdl m,o T hc]

i,0 m==+1

(B11)

85,86 g ﬁj _
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Here we introduced the n-operators

0;¢ cmcu, N, =8¢ ¢ and 0 = 7(ni —



given in Eq. (15). The meaning of each term is as follows.
I:ISI)MLHB describes the hopping of a holon and flliizz’UHB
describes the hopping of a doublon. HI(JQ’)Shift describes
the shift of the local interaction U, while Hgp ex is the

exchange coupling of the doublon and holon. H. gﬂslide
describes the simultaneous hopping of a doublon and a
holon to the neighboring sites.

For the case of i = 3, we have

VR (6) = S M (0), Higo, () (B12)
N 2 1
M-(i-gl) (t) 3U [Hkm,-‘rv M(Q) (t)] + E [MI(Q) (t)’ Hkin,O]
N 1
$96) = S0, Hn - (0] = 5030, Hign.1 (0]
and M) () = MP )t and MP)(t) = M8 ()"

As for Hgy, we can expand it as

Ae(t) = ~5 — 28,8 + é[sss — 9888 + 888 +--- |
(B13)
where S = 0;5(t). Thus, we have
O (B14)
for O(Ep - %),
) [ M) (B15)
for O(Ey - (%)?) and
— 5B %[S“), S - %w(?),é(l)] (B16)
l[g 1§ GM) _ 98 GM M) 4 §(1) G G)]
6

for O(Ey-(%)?). Note that —S() includes doublon-holon
pair creation at the nearest neighbor sites. As one can see
from the form of Ml(Z) —S®) includes doublon-holon pair
creation at the next-nearest neighbor sites. Similarly,

—S5®) includes doublon-holon pair creation at the 3rd-
nearest neighbor sites.

Appendix C: Semiconductor models

In this section, we show how the HHG results of the
simplest but typical semiconductor model look like in
the parameter regime relevant for this paper. As the
semiconductor model, we consider the spin-less two-band
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FIG 9. (a) (b) HHG spectra of the semiconductor with

E, = 6.0 for (a) @ = 0.75 and (b) Q@ = 0.5 for the speci-
fied field strengths Here, we use to = 60 and o = 15 for the
pulse and ¢’ = 20 for the FT. (c) HHG spectra of the semicon-
ductor with Fy = 6.0 for Q2 = 0.5, Ey = 0.7,to = 160,0 = 40
with and without the phenomenological dephasing term (75).
Here, ¢/ = 60 is used for the FT. (d)(e) Subcycle analysis
of the HHG signal. Imng(w,tp) is plotted for (d) 2 = 0.75
and (e) Q = 0.5. Here, we use £, = 6.0, Ey = 0.7, to = 60
and o = 15 for both cases. (f) Imnc(w,tp) for E, = 3.0.
The parameters of the pump are Q = 0.3, Ep = 0.4,tp = 100
and o = 30. For the subcycle analysis o’ = 0.8 is used.
The red markers indicate the results of the subcycle analysis
(wemit (trec)) with the dispersion e,(k) = i% =+ 2v, cos(k).
The results in panels (a)(b)(d)(e)(f) are obtained without
phenomenological dephasing term (7> = c0).

model in the dipole gauge,'-66-67

ﬁsemi = - Z [U

1,a=cC,V

+ g > i — hiw] — E(t) Z; datl éia

i

—iA(t) A T

éz+1a + h.c.] (C1)

Here, a is the index for the conduction band (c¢) or the
valence band (v), D is the band level difference and d,
is the dipole moment, which is assumed to be local. The
light-matter coupling is taken into account by the Peierls
phase and the dipole excitation term (the last term). The
size of the latter determines the transitions between the
conduction band and the valence band, and the size of
the dipole moment can be usually comparable but no
more than the lattice constant. Here, we assume that it
is the same as the lattice constant, d, = 1. We study this
model by solving the equation of motion for the single-
particle density matrix, i.e. the semiconductor Bloch



equation.29:21:67 Note that the equations of motion in this
gauge are essentially identical to those for the Hamilto-
nian in the length gauge,2®2! so that the semiclassical
theory derived in Ref. 21 is directly applicable. Addi-
tionally, in the semiconductor Bloch equation, one can
phenomenologically take account of the dephasing effects
originating from electron-phonon coupling, disorder and
electron-electron interactions via the relaxation time ap-
proximation, which involves the dephasing time T5.292!
(T, = oo means no dephasing). In the following, we set
v. = 1 and vqg = —1, where the system has a direct band
gap. We note that, conceptually, the band level differ-
ence D corresponds to the local Coulomb interaction U in
the Hubbard model. The band gap E, is D — 2(v. — vq).

In Figs. 9(a,b,d,e), we show the HHG spectrum, which
corresponds to Fig. 2(a)(b), and the results of the sub-
cycle analysis, which correspond to Fig. 4(c)(d). For
Q = 0.75, one can clearly see the HHG signals at odd
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frequencies [Fig. 9(a)]. On the other hand, for Q = 0.5
the HHG peaks are less clear and some of them devi-
ate from the odd harmonics [Fig. 9(b)]. This can be
attributed to the short pulse and the lack of dephasing
in the present model (C1), i.e. T = oo. Indeed, with a
longer pulse, the peaks become sharper around the upper
edge of the plateau [Fig. 9(c)], while the peaks around the
gap edge become ill-defined without the dephasing. With
the dephasing, the latter peaks become sharper.202! As
for the subcycle analysis, similar subcycle feature as in
the Mott insulators are observed here, see Fig. 9(d)(e).
The semiclassical model captures several features such as
the timing of the emission of high frequency light, and
the level of agreement with the actual results is similar
to the case of the Mott insulator. The agreement with
the semiclassical theory tends to become better as we
decrease the gap and the excitation frequency, see for
example Fig. 9(f).
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