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Abstract

In this paper we continue with our analysis of the interplay between the pairing and the non-

Fermi liquid behavior in a metal for a set of quantum-critical (QC) systems with an effective

dynamical electron-electron interaction V (Ωm) ∝ 1/|Ωm|γ , mediated by a critical massless boson

(the γ-model). In previous papers we considered the cases 0 < γ < 1 and γ ≈ 1. We argued that

the pairing by a gapless boson is fundamentally different from BCS/Eliashberg pairing by a massive

boson as for the former there exists not one but an infinite discrete set of topologically distinct

solutions for the gap function ∆n(ωm) at T = 0 (n = 0, 1, 2...), each with its own condensation

energy Ec,n. Here we extend the analysis to larger 1 < γ < 2. We argue that the discrete set of

solutions survives, and the spectrum of Ec,n get progressively denser as γ increases towards 2 and

eventually becomes continuous at γ → 2. This increases the strength of ”longitudinal” gap fluc-

tuations, which tend to reduce the actual superconducting Tc compared to the onset temperature

for the pairing and give rise to a pseudogap region of preformed pairs. We also detect two features

on the real axis, which develop at γ > 1 and also become critical at γ → 2. First, the density

of states evolves towards a set of discrete δ−functions. Second, an array of dynamical vortices

emerges in the upper frequency half-plane, near the real axis. We argue that these two features

come about because on a real axis, the real part of the dynamical electron-electron interaction,

V ′(Ω) ∝ cos(πγ/2)/|Ω|γ , becomes repulsive for γ > 1, and the imaginary V
′′
(Ω) ∝ sin(πγ/2)/|Ω|γ ,

gets progressively smaller at γ → 2. We speculate that the features on the real axis are consistent

with the development of a continuum spectrum of the condensation energy, for which we used

∆n(ωm) on the Matsubara axis. We consider the case γ = 2 separately in the next paper.
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I. INTRODUCTION.

In this paper, we continue our analysis of the competition between non-Fermi liquid

(NFL) physics and superconductivity (SC) near a quantum-critical point (QCP) of an itin-

erant correlated electron system, whose low-energy properties are described by an effec-

tive, momentum-integrated dynamical four-fermion interaction V (Ωm). We consider a set of

quantum-critical systems, for which the effective interaction has the form V (Ωm) = ḡγ/|Ωm|γ

(the γ-model). This interaction gives rise to NFL behavior in the normal state, with

Σ(ωm) ∝ ω1−γ
m , and at the same time mediates an attraction in at least one pairing channel,

specific to the underlying microscopic model. The two tendencies compete with each other

as a NFL self-energy reduces the pairing strength, while the feedback from the pairing re-

duces fermionic self-energy. In Ref.1 we listed quantum-critical systems, whose low-energy

physics is described by the γ-model with different γ and presented a long list of references

to earlier publications on this subject. In that and subsequent papers, Refs.2,3, hereafter

referred to as Papers I-III, respectively, our group analyzed the behavior of the γ-model for

0 < γ < 1 (at T = 0 in Paper I and at a finite T in Paper II), and at around γ = 1 (in Paper

III). In Paper I, we found that the system does become unstable towards pairing, i.e., in the

ground state the pairing gap ∆(ωm) is non-zero. However, in a qualitative distinction with

BCS/Eliashberg theory of a pairing by a massive boson, we found an infinite discrete set of

solutions for the gap function, ∆n(ωm), specified by an integer n = 0, 1, 2.... All solutions

have the same spatial gap symmetry, but are topologically distinct in the sense that ∆n(ωm)

changes sign n times as a function of Matsubara frequency (we discuss topological aspects in

this paper). A gap function ∆n(ωm) remains approximately ∆n(0) at ωm ≤ ∆n(0), oscillates

n times at ∆n(0) < ωm < ḡ, and at larger frequencies decays as 1/|ωm|γ. The magnitude

of ∆n(0) decreases with n and at large n scales as ∆n(0) ∝ e−An, where A is a function of

γ. In the limit n→∞, ∆∞ is infinitesimally small and is the solution of the linearized gap

equation. In Paper II, we found that ∆n(ωm) emerge at different onset temperatures Tp,n.

The onset temperature and the condensation energy at T = 0, Ec,n, is the largest for n = 0,

yet the existence of an infinite set of minima of the free energy is a qualitatively new feature

of the pairing at a QCP. In Paper III, we argued that the system behavior is continuous

through γ = 1, despite that the fermionic self-energy and the pairing vertex diverge at T = 0

for γ ≥ 1. The divergencies cancel out in the gap equation in a way similar to cancellation of
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contributions from non-magnetic impurities in a BCS superconductor. As the consequence,

the gap functions ∆n(ωm) and the condensation energies Ec,n still form a discrete set for

γ ≥ 1, in which Ec,0 is the largest.4

In this paper we study the γ model for γ in the range 1 < γ < 2. Our goal is to understand

whether the presence of an infinite number of gap functions has physical consequences.

The most natural conjecture is that the existence of the set gives rise to a new branch of

”longitudinal” gap fluctuations, what increases the strength of phase fluctuations and may

create a pseudogap, preformed pair region between the onset temperature for the pairing and

the actual superconducting Tc. However, this is by no means guaranteed first of all because

each Ec,n is proportional to the total number of particles in the system, and potential

barriers between minima with different n are infinitely high. Strong fluctuating effects are

only possible if the spectrum of condensation energies gets dense and eventually becomes a

continuous one.

We argue that this happens when γ is larger than one. We show that the spectrum of

Ec,n gets denser when γ increases and for γ ≤ 2 splits into two sub-sets, one for n < ncr

and another for n > ncr, where ncr ∼ 1/(2 − γ). Condensation energies for n < ncr get

progressively closer to Ec,0 as γ approaches 2, while for n > ncr, Ec,n depends on the ratio

of two large numbers n and ncr, which is a near-continuous quantity. In the limit γ → 2, ncr

tends to infinity, and Ec,n for all finite n collapse into a single Ec,0, while for n → ∞, the

condensation energy becomes a continuous function of n/ncr, whose value is determined by

how the double limit n→∞ and ncr →∞ (i.e. γ → 2) is taken. This creates a continuous

gapless spectrum of longitudinal fluctuations.

We present the numerical evidence for the collapse of the condensation energy obtained

by analysing how the functional form of the eigenfunctions ∆n(ωm) with different finite n

evolve with γ We argue that the frequency range, where ∆n(ωm) changes sign n times,

shrinks, and moves to progressively smaller frequencies at γ → 2, consistent our assertion

that in this limit Ec,n with finite n tend to Ec,0.

The transformation of the spectrum of ∆n(ωm) and Ec,n from a discrete to a continuous

one is a rather non-trivial phenomenon, and we study it from different corners. We find cor-

roborative evidence by analyzing the gap function on the Matsubara axis. We then analyze

how the gap function evolves on the real axis, and in the upper half-plane of frequency. For a

generic complex z = ω′+iω
′′

(ω
′′
> 0), ∆n(z) is a complex function: ∆n(z) = ∆′n(z)+i∆

′′
n(z),
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and can define its phase as ηn(z) = Im log ∆n(z). Our reasoning to focus on the real axis for

γ between one and two stems from the fact that the interaction there, V (Ω) ∝ eiπγ/2/|ω|γ, is

complex, and its real part, V
′
(Ω) = cos(πγ/2)/|ω|γ, becomes repulsive for γ > 1, while the

imaginary part V
′′
(Ω) = sin(πγ/2)/|ω|γ vanishes at γ → 2. Meanwhile, on the Matsubara

axis, V (Ωm) ∝ 1/|Ωm|γ remains attractive.

We show that this gives rise to a dichotomy between the behavior of the gap function on

the Matsubara and the real axis at frequencies larger than ḡ. Namely, on the Matsubara

axis, all ∆n(ωm) decrease as 1/|ωm|γ (n sign changes of ∆n(ωm) occur at ωm < ḡ). On

the real axis, ∆n(ω) display this power-law behavior only at large enough ω > ωcr, where

ωcr ∼ ḡ/(2 − γ)1/2, while at ḡ < ω < ωcr, ∆n(ω) for all n oscillate, and the phase of the

gap winds up by 2πm, where m is an integer. The value of m depends on γ, but not on

n, and approaches infinity when γ → 2. We trace these oscillations to the existence of an

exponentially small and seemingly irrelevant oscillating term in ∆n(ωm) on the Matsubara

axis. We argue that this term becomes the dominant one in the gap function upon analytical

continuation to the real axis. We compute the density of state (DoS) and show that for γ > 1

it develops a set of maxima and minima, and for γ → 2 it evolves towards a set of discrete

δ−functions, i.e., for γ → 2, the energy levels available to paired quasiparticles effectively

get quantized.

We next consider the gap function in the upper frequency half-plane. We show that the

phase winding by 2πm along the real axis between ḡ and ωcr implies the presence of m

dynamical vortices in the same range of |z| in the upper frequency half-plane. We identify

the vortices as the points where ∆(z) = 0 and show that each vortex crosses into the

upper frequency half-plane from the lower one at some γi > 1. The number of vortices is

determined by γ and is the same for all n. At γ → 2, the number of vortices increases,

the location of vortex points zi becomes independent on n, and the array of vortices (points

where ∆n(zi) = 0) extends to |z| → ∞. Simultaneously, oscillations of ∆n(ω) on the real axis

also extend to an infinite frequency. This implies that at γ → 2, the value of ∆n(|z| → ∞)

depends on the path, i.e., there is an essential singularity at |z| → ∞.

The presence of an essential singularity is crucial by the following reason. Once the set

of vortices at zi becomes infinite and the points zi accumulate at |z| → ∞, one can use it

as an input and obtain ∆n(ωm) by analytically continuing from the set onto the Matsubara

axis. If an essential singularity was not there, the analytic continuation would be unique and
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one would obtain ∆n(z) = 0 everywhere. A finite ∆n(z) emerges only because of essential

singularity, whose presence also makes the analytic continuation non-unique. The outcome

here is that the gap functions ∆n, which form a continuum spectrum on the Matsubara

axis and give rise to a continuum, massless spectrum of the condensation energies, originate

from an essential singularity at |z| =∞ on the complex frequency half-plane. At γ < 2, the

number of vortices remains finite, and the spectrum of ∆n(ωm) remains discrete.

The structure of the paper is the following. In Sec. II we briefly review the model and the

gap equation. In Sec. we clarify our assertion that the gap functions ∆n(ωm) with different

n are topologically distinct. We show that each nodal point of ∆n(ωm) is a dynamical vortex

with circulation 2π, such that ∆n(ωm) is a gap function with n dynamical vortices and is

a dynamical analog of a nodal topological superconductor. This holds for any γ > 0. In

Sec. III we analyze the structure of ∆n(ωm) along the Matsubara axis for 1 < γ < 2. In

Sec. III B we present the exact solution of the linearized gap equation, ∆∞(ωm) for γ > 1

and show that it has a small oscillating component, not present for smaller γ. In Sec. III C

we analyze the sign-preserving solution ∆n=0(ωm). We show that at vanishing ωm, ∆0(ωm)

tends to a finite ∆0(0) ∼ ḡ, and at ωm > ḡ, it decreases as 1/|ωm|γ. In Sec. III D we analyze

∆n(ωm) with a finite n and the corresponding condensation energy Ec,n. We show that at

ωm < ḡ, ∆n(ωm) oscillates n times as function of log |ωm| and then saturates at ∆n(0), which

decrease exponentially with n, while at ωm > ḡ, it decreases as 1/|ωm|γ for all n. We show

that as γ increases towards 2, the spectrum of Ec,n progressively splits into two subsets, one

for n < ncr ∼ 1/(2− γ) and the other for n > ncr. In Sec. III D 2 we discuss the evolution

of ∆n(ωm) and the corresponding onset temperatures Tp,n at γ → 2.

In Sec.IV we analyze the gap equation along real frequency axis. We present the gap

equation in Sec. IV A and solve it for n =∞ in Sec. IV B, for n = 0 in Sec. IV C, and for a

finite n in Sec. IV D. We show a complex ∆n(ω) oscillates n times at ω < ḡ. This holds for

all γ. Beyond that, for γ > 1, ∆n(ω) with any n oscillates at ḡ < ω < ωcr, and the phase of

the gap function winds up by an integer number of 2π in this region.

In Sec. V we analyze the gap function ∆(z) in the upper frequency half-plane, at z =

ω′ + iω
′′
. We again consider separately the cases n = ∞ (Sec. V A), n = 0 (Sec. V B) and

a finite n (Sec. V C). We show that besides n vortices on the Matsubara axis, which are

present for all γ, another set of vortices appears for γ > 1. These new dynamical vortices

are located near the real axis, at ḡ < |z| < ωcr, and cause oscillations on the real axis in the
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same range of ω. Each vortex from this new set moves into the upper half-plane of frequency

from the lower one at a particular discrete γi. The number of these vortices increases as

γ → 2 and they line up along a particular path in the upper frequency half-plane.

We present our conclusions in Sec. VI. Some technical details of calculations are presented

in the Appendix. The case γ = 2 requires special consideration and we will analyze it in the

next paper, where we also discuss in detail the behavior of the superfluid stiffness and the

interplay between the pair formation and the true superconductivity.

II. γ-MODEL

We consider itinerant fermions at a QCP, interacting by exchanging fluctuations of a

critical order parameter. At a QCP, the propagator of a soft boson becomes massless and

mediates singular interaction between fermions. We assume that this interaction is attractive

in at least one pairing channel and that a pairing boson can be treated as slow mode com-

pared to a fermion, i.e., at a given momentum q, typical fermionic frequency is much larger

than typical bosonic frequency. In this situation, the ratio of typical bosonic and fermionic

frequencies is a small parameter, analogous to the Migdal parameter in the electron-phonon

case. This small parameter allows one to neglect vertex corrections and explicitly inte-

grate feromionic and bosonic propagators over the momentum components. As a result, the

problem reduces to a set of coupled integral equations for frequency dependent fermionic

self-energy and the pairing vertex, in which an input is the effective, singular, frequency

dependent interaction V (Ωm) = ḡγ/|Ωm|γ. The exponent γ is different for different micro-

scopic systems. This model, nicknamed the γ−model, has been introduced in Paper I and

we refer a reader to the list of references in that paper to earlier works on the justification of

the model and its relation to various microscopic quantum-critical systems with momentum

and frequency-dependent interaction.

The local interaction V (Ωm) contributes to the fermionic self-energy Σ(kF , ωm) = Σ(ωm)

and the pairing vertex Φ(ωm). The coupled equations for Σ(ωm) and Φ(ωm) have the same

structure as Eliashberg equations for a dispersion-less phonon, albeit with the exponent γ,

instead of 2, and for shortness we will be calling them “Eliashberg equations”.
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The superconducting gap function ∆(ωm) is defined as

∆(ωm) = ωm
Φ(ωm)

Σ̃(ωm)
=

Φ(ωm)

1 + Σ(ωm)/ωm
(1)

At a finite T the Eliashberg gap equation is

∆(ωm) = ḡγπT
∑
m′ 6=m

∆(ω′m)−∆(ωm)ω
′
m

ωm√
(ω′m)2 + ∆2(ω′m)

1

|ωm − ω′m|γ
. (2)

The gap function is defined up to an overall U(1) phase factor, which we set to zero. The

gap equation for infinitesimally small ∆(ωm)

∆(ωm) = ḡγπT
∑
m′

∆(ω′m)−∆(ωm)ω
′
m

ωm

|ω′m||ωm − ω′m|γ
. (3)

determines the onset temperature for the pairing. As in previous papers, we label this

temperature Tp. Within Eliashberg theory, it is the same as superconducting Tc, but in the

presence of fluctuations Tp is generally larger than Tc.

III. GAP FUNCTION ON THE MATSUBARA AXIS, T = 0

In Paper I we showed that at T = 0 and γ < 1, Eq. (2) has an infinite number of

topologically distant solutions, ∆n(ωm), all with the same spatial gap symmetry. A gap

function with a given n tends to a finite value at ωm = 0 and decays as 1/|ωm|γ at ωm ≥ ḡ,

but in between it changes sign n times. In Paper III we showed that each of the two terms

in the r.h.s. of (2) (separate contributions from the pairing vertex and the fermionic self-

energy) diverges for γ ≥ 1 as
∫
dΩm/|Ωm|γ. However, the two divergencies cancel out, and

∆n(ωm) at T = 0 evolve smoothly through γ = 1. We now extend the analysis to γ between

1 and 2. We show that the forms of ∆n(ωm) remain qualitatively the same as for smaller γ,

yet the spectrum of condensation energies become progressively more dense. We also argue

that when γ increases towards 2, the spectrum of condensation energy En,c becomes more

and more dense, and in the limit γ → 2 all En,c with finite n < ncr become almost equal to

E0,c, while En>ncr,c form a continuous spectrum.

A. Nodal points on the Matsubara axis as dynamical vortices

Before we discuss ∆n(ωm), we pause for a moment and elaborate on the notion that

∆n(ωm) are topologically different. We argue that each nodal point is a dynamical vortex,
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FIG. 1. Left panel: The schematic forms of the first 3 solutions of the gap equation ∆0(ωm), ∆1(ωm)

and ∆2(ωm). A gap function ∆n(ωm) changes sign n times at ωm > 0. Right panel: Variation of

the phase of ∆1(z) (z = ω′+ iω
′′
) around the nodal point at ωm = ωm1 . Anticlockwise circulation

of the phase around iωm1 is 2π. The same holds for all other nodal points.

i.e., ∆n(ωm) is an n−vortex state – a dynamical analog of a nodal topological superconductor.

For definiteness, let’s compare the behavior of sign-preserving ∆0(ωm) and of ∆1(ωm),

and ∆2(ωm), which change sign once and twice between ωm = 0 and ωm =∞, respectively.

We show these functions in the left panel of Fig.1. Suppose that ∆1(ωm) changes sign

at ωm = ω1. Near this frequency, ∆1(ωm) = −c(ωm − ω1), where c > 0 for consistency

with the figure. Let us analytically continue ∆1(ωm) to a near vicinity of the Matsubara

axis, to z = ω′ + iω
′′

(on the Matsubara axis, z = iωm). Because ∆1(ωm) is non-singular,

∆1(z) = ∆1(iωm → ω′ + iω
′′
). For any non-zero ω′, ∆1(z) is a complex function: ∆1(z) =

∆′1(z) + i∆
′′
1(z), and we can introduce the phase of ∆1(z) as

η1(z) = Im[log ∆1(z)]. (4)

We plot the variation of η1(z) around z = iω1 in the right panel of Fig.1. We see that the

phase varies by 2π upon anticlockwise circulation around ω1. This implies that the nodal

point at ω1 is in fact the center of a dynamical vortex. One can verify that ∆n(ωm) with a

generic n contains n vortices, each with anticlockwise circulation 2π.

One can straightforwardly verify that n vortices on the Matsubara axis give rise to 2πn

phase variation on the real axis, between −∞ and ∞. To see this, one should compute∫∞
−∞ dω∂η1(ω)/∂ω by closing the integration contour over the upper half-plane. The function

∂η1(ω)/∂ω is analytic in the upper half-plane except for the nodal points where it has simple
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FIG. 2. Analytic continuation of ∆n(ωm) in Fig.1 to the upper half plane (iωm → z = ω′ + iω
′′
)

using Padé approximant. Panel (a): the accuracy of fitting ∆n(ωm) by Padé approximant. Panel

(b): the phase of the gap function in the upper frequency half-plane, ηn(z) = Im[log ∆(z)]. The

locations of the vortices are marked by red dots. Panel (c): the gap function ∆n(ω) along the real

axis. Panel (d): variation of ηn(ω) along the real axis. Each vortex gives rise to 2π phase variation.

For convenience of presentation, we confined ηn(ω) to (−π, π). In this convention, ηn(ω) winds by

2πn due to vortices.

poles. Modifying the contour to circle out each nodal point, one obtains 2πn phase variation

from the vortices. In addition, there is also the πγ from the integral over the upper half-

circle, due to the fact that at the largest frequencies, ∆n(z) ∝ 1/(−z2)γ/2. This form is

consistent with ∆n(ωm) ∝ 1/|ωm|γ, as one can verify by Cauchy relation.

In Fig. 2 we show ∆n(z), where z = ω′ + iω
′′
, for n = 0, 1, and 2, obtained by analytic

continuation from ∆n(ωm) in Fig.1 using Padé approximants method5. We see that ηn(ω +

i0+) indeed winds by 2πn.

We now analyze the full frequency dependence of ∆n(ωm) for 1 < γ < 2. We first consider

separately the opposite limits n =∞ and n = 0 and then discuss a finite n.
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B. Frequency dependence of ∆n(ωm). The case n =∞

The gap function ∆∞(ωm) is a potential solution of the linearized gap equation

∆∞(ωm) =
ḡγ

2

∫
dω′m

∆∞(ω′m)−∆∞(ωm)ω
′
m

ωm

|ω′m|
1

|ωm − ω′m|γ
. (5)

We found that the solution exists and obtained the exact form of ∆∞(ωm). We emphasize

that the solution exists despite that T = 0 is not a critical point for superconductivity.

We will see below that non-linear gap equation at T = 0 has solution(s) with a finite gap

magnitude. The solution exists only at a QCP, when the pairing is mediated by a gapless

boson.

We present technical details of the analysis of Eq. (5) in Appendix A and here quote the

result. It is convenient to introduce

y =

(
|ωm|
ḡ

)γ
, (6)

The gap function ∆(ωm) = ∆∞(y)

∆∞(y) =

∫ ∞
−∞

dkbke
−ik log y. (7)

is the Fourier transform of bk given by

bk =
e−i(Ik+k log (γ−1))

[cosh(π(k − β)) cosh(π(k + β))]1/2
. (8)

Here

Ik =
1

2

∫ ∞
−∞

dk′ log |εk′ − 1| tanhπ(k′ − k), (9)

εk′ =
1− γ

2

Γ
(
γ
2

(1 + 2ik′)
)

Γ
(
γ
2

(1− 2ik′)
)

Γ(γ)

(
1 +

cosh πγk′

cos πγ/2

)
, (10)

and β > 0 is the solution of εβ = 1. We plot εk′ in Fig. 3 (a). The value of β depends on γ

and evolves between β ≈ 0.79 for γ = 1 and β ≈ 0.39 for γ = 2.

The gap function ∆∞(y) can be straightforwardly obtained numerically. We show the

results in Fig. 4 for γ = 1.91. At small y, i.e., at ωm < ḡ, the gap function oscillates down to

the lowest frequencies with the period set by log y. At y > 1, i.e., at ω > ḡ, oscillations end,

and ∆∞(y) gradually decreases with increasing y. By practical reasons, we set the lowest

frequency in Fig. 4 at 10−18ḡ. There are 10 zeros of ∆∞(ω) (10 vortex points) above this

frequency.
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(b)(a)

FIG. 3. Functions εk (a) and εik (b) for γ = 1.5. The red dots show the solutions εβ = 1 and

εiβm = 1 (m = 0, 1, 2, ...).

The limiting forms of ∆∞(y) at small and large y can be obtained analytically. At y � 1

we find

∆∞(y) ∼ y1/2 cos (β log y + φ), (11)

where φ is a γ−dependent number. At y � 1

∆∞(y) ∼ 1

y
(12)

The corrections to (11) hold in powers of y and form two series, local and non-local,

depending on whether they come from fermions with running frequencies of order ωm or

much larger frequencies, of order ḡ. The full ∆∞(y) for y < 1 is

∆∞(y) = Re
∞∑
n=0

e(iβ log y+φ)C<
n yn+1/2 +

∞∑
n,m=0

D<
n,my

(n+βm+1/2) (13)

where the first term describes the sum of the leading term and the local corrections, and

the second term describes the non-local corrections. In the latter, βm > 0 are the solutions

of εiβm = 1 for imaginary argument(same as in Fig.3). There is an infinite set of such βm,

specified by integer m = 0, 1, 2.. and located at 1/2 + 2m/γ < βm < 1/2 + 2(m + 1)/γ, see

Fig. 3 (b).

For y > 1, the corrections to (12) hold in powers of 1/y and also form two series:

∆∞(y) =
∞∑
n=0

C>
n

(
1

y

)(n+1)

+
∞∑

n,m=0

D>
n,m

(
1

y

)(n+1+2(m+1)/γ)

(14)

Eq. (12) is the C>
0 term in this series.
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FIG. 4. The exact solution ∆∞(ωm) for γ = 1.91. To better display the distinctive power-law

behavior, we use different scales for ω > ḡ and ω < ḡ.

1. Distinction between ∆∞(y) at γ < 1 and γ > 1.

The limiting forms of ∆∞(y) at small and large y and the general structure of ∆∞(ωm)

for γ > 1 are the same as we obtained earlier for γ < 1. However, on a more careful look,

we found that there is a qualitative distinction between the two cases for y > 1. Namely, for

γ < 1, the series in (14) are convergent, while for γ > 1, series expansion in (14) holds only

up to a certain nmax ∼ y1/(γ−1), while instead of power series with larger n, there appears an

oscillating term (see below). The value nmax is large for y � 1, such that this term has an

exponentially small prefactor e−y
1/(γ−1)

. Yet, we will see below that once ∆∞ is analytically

continued from Matsubara to real axis, the exponential smallness is reduced, particularly

near γ = 2, and the oscillating term becomes the dominant contribution to ∆∞(ω) over a

wide frequency range and gives rise to the emergence of a new vortex structure in the upper

half-plane of frequency.

The difference between ∆∞(y � 1) for γ < 1 and γ > 1 originates from change of the

behavior of εk′ in Eq. (9). At γ < 1, εk′ vanishes at k′ →∞, while at γ > 1, εk′ diverges at

large k′ as

εk′ = (Aγ|k′|)γ−1(γ − 1), Aγ = γ

(
π

2Γ(γ) cos [π(2− γ)/2]

) 1
γ−1

(15)
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Substituting this form into (9) and integrating over k′, we find that at large k,

Ik + k log (γ − 1) = −(γ − 1)k log
Aγk

e
(16)

The integral comes from k′ ∼ k, what justifies using the form of εk′ at large k′. Substituting

(16) into (8) and approximating the denominator in (8) by its value at large k, we obtain

bk ≈ e−π|k|ei(γ−1)k log
Aγk

e (17)

Substituting this bk into (7), we find the contribution to ∆∞(y) in the form

∆∞(y) ∼
∫ ∞
kmin

e−πk cos

(
(γ − 1)k log

y1/(γ−1)e

Aγk

)
(18)

where kmin = O(1). The argument of the cos has a maximum at k = k∗ = y1/(γ−1)/Aγ. For

large y, this k∗ is well inside the range of the integration. Expanding to quadratic order

near the maximum and substituting into (18), we find after some algebra (see Appendix A)

that the integral in (18) contains the universal contribution, which we label as ∆u
∞:

∆u
∞(y) ∼ y

1
2(γ−1) e

− π
Aγ

y
1

(γ−1)

cos

[
y

1
(γ−1)

(γ − 1)

Aγ

(
1− π2

2(γ − 1)2

)
− π

4

]
(19)

In the actual Matsubara frequencies this formula reads

∆u
∞(ωm) ∝ |ωm|

γ
2(γ−1) e

−π(|ωm|/ḡ)γ/(γ−1)

Aγ cos

[(
|ωm|
ḡ

)γ/(γ−1)
(γ − 1)

Aγ

(
1− π2

2(γ − 1)2

)
− π

4

]
(20)

The oscillating contribution is exponentially small at large y. It vanishes at γ = 1 and does

not exist at smaller γ. We will return to this contribution in Sec. IV B, where we discuss

∆u
∞(ω) on the real axis.

C. Frequency dependence of ∆n(ωm). The case n = 0

We now consider the solutions of the non-linear gap equation (2) at T = 0. We begin

with sign-preserving solution ∆0(ω). To set the stage, we first quickly review the results for

γ < 1. For such γ, the term with m′ = m in the r.h.s. of (2) is non-divergent and can be

neglected as it renormalizes the prefactor for ∆0(ωm) in the r.h.s. by at most O(1). Without

this term, we have

∆0(ωm) =
ḡγ

2

∫ ∞
−∞

dω′m∆0(ω′m)

|ωm − ω′m|γ
√

∆2
0(ω′m) + (ω′m)2

, (21)

14



At small ωm, ∆0(ωm) ≈ ∆0(0), and we have

∆0(0) = ḡγ
∫ ∞

0

dω′m
∆0(ω′m)

|ω′m|γ
√

∆2
0(ω′m) + (ω′m)2

(22)

The integral is determined by ω′m ∼ ∆0(ω′m). For such ω′m, we can approximate ∆0(ω′m) by

∆0(0) up to O(1) corrections. Evaluating the integral in (22), we then obtain ∆0(0) ∼ ḡ. In

the opposite limit ωm � ḡ, we can pull out 1/|ω|γ from the r.h.s. of (21) and obtain

∆0(ωm) =

(
ḡ

|ωm|

)γ ∫ ∞
0

dω′m
∆0(ω′m)√

∆2
0(ω′m) + (ω′m)2

(23)

The integral is determined by ω′m = O(ḡ) and is O(ḡ), such that at high frequencies,

∆0(ωm) ∼ ḡ(ḡ/|ωm|)γ. The low-frequency and high-frequency forms of ∆0(ωm) then match

at ωm ∼ ḡ.

Now we do the same analysis for γ > 1. For γ > 1, there is an identity∫ ∞
−∞

dω′m
1− ω′m

ωm

|ωm − ω′m|γ
= 0. (24)

We use it to re-express Eq. (2) as

∆0(ωm)

[
1− ḡγ

2

∫ ∞
−∞

dω′m
1− ω′m

ωm

|ωm − ω′m|γ

(
1√

∆2
0(ω′m) + (ω′m)2

− 1

∆0(ωm)

)]

=
ḡγ

2

∫ ∞
−∞

dω′m
∆0(ω′m)−∆0(ωm)

|ωm − ω′m|γ
√

∆2
0(ω′m) + (ω′m)2

(25)

Each integral in (25) is infra-red convergent and determined by ω′m ∼ ∆0(ω′m).

In the limit ωm → 0, Eq. (25) reduces to

∆0(0)

[
1− ḡγ(γ − 1)

∫ ∞
0

dω′m

√
∆2

0(ω′m) + (ω′m)2 −∆0(0)

∆0(0)
√

∆2
0(ω′m) + (ω′m)2|ω′m|γ

]

= ḡγ
∫ ∞

0

dω′m (∆0(ω′m)−∆0(0))√
∆2

0(ω′m) + (ω′m)2|ω′m|γ
(26)

To estimate the magnitude of ∆0(0), assume that ∆0(ω′m) remains approximately equal to

∆0(0) for relevant ω′m ≤ ∆0(ω′m).

The r.h.s. of (26) then vanishes, and we obtain

1 = ḡγ(γ − 1)

∫ ∞
0

dω′m

√
∆2

0(0) + (ω′m)2 −∆0(0)

∆0(0)
√

∆2
0(0) + (ω′m)2|ω′m|γ

=
1− γ
2
√
π

(
ḡ

∆0(0)

)γ
Γ

(
1− γ

2

)
Γ
(γ

2

)
(27)

We plot ∆0(0)/ḡ as a function of γ in Fig.5 (a). We see that ∆0(0) is of order ḡ and weakly
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FIG. 5. Panel (a): the solution of Eq.(27) for ∆0(ωm = 0); Panel (b): the onset temperature of

the pairing Tp,0 vs γ. Panel (c): the ratio 2∆0(0)/Tp,0 vs γ. The ratio is slightly different from the

one obtained numerically in Ref.6 as here we use Eq.(27) for ∆0(ωm = 0).

depends on γ. One can further expand ∆0(ωm) in frequency and find that the expansion is

analytic and holds in powers of ω2
m. For completeness, we also show the onset temperature

Tp,0 and the ratio 2∆0(0)/Tp,0, both as functions of γ. The results are consistent with earlier

calculations6–9.

In the opposite limit of large ωm, the prefactor for ∆0(ω) in the l.h.s. of (25) is approxi-

mately 1, and 1/|ωm|γ can be pulled out from the integral in the r.h.s. This yields

∆0(ωm) ≈ Qγ

(
ḡ

|ωm|

)γ
(28)

where

Qγ =

∫ ∞
0

dω′m∆0(ω′m)√
∆2

0(ω′m) + (ω′m)2
(29)

The integral is again determined by frequencies at which ∆0(ω′m) ∼ ω′m and is of order ∆0(0).

Then ∆0(ωm) ∼ ∆0(0)(ḡ/|ωm|)γ. In Fig.6 we show Qγ, obtained by solving numerically the

nonlinear gap equation for various γ. We see that Qγ is indeed of order Qγ ∼ ∆0(0) ∼ ḡ.

The high-frequency behavior of ∆0(ωm) in (28) is the same as of ∆∞(ωm). This is

expected because at such frequencies ∆0(ωm) � ωm. This implies that ∆0(ωm) has the

same exponentially small oscillating term as in Eq. (19). In Sec.IV B we will see how this
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FIG. 6. Qγ , defined in Eq. (29), as a function of γ. To obtain this function, we solved numerically

the non-linear gap equation for sign-preserving ∆0(ωm) at a small temperature.

term evolves upon analytical continuation to the real axis.

D. Frequency dependence of ∆n(ωm). Finite n.

1. A generic γ from 1 < γ < 2.

To analyze the behavior of ∆n(ωm) at a finite n, one has to solve the non-linear gap

equation at T = 0 for a class of functions which change sign n times. At ωm > ḡ, ∆n(ωm)

decreases as 1/|ωm|γ and has an exponentially small oscillating piece, the same as in (19).

At ωm < ḡ, ∆n(ωm) oscillates n times and saturates at the smallest ωm at ∆n(0), which

decreases with increasing n. To estimate the magnitude of ∆n(0) and, more generally,

understand why there is a discrete set of solutions, we use the solution of the linearized gap

equation, Eq. (11), as an input, and treat the non-linear terms by expanding in powers of

∆n(ωm)/ωm. The gap function, obtained this way, is represented by the series

∆n(y) = ḡy1/2

∞∑
m=0

C2m+1
n fm(y), y =

(
|ωm|
ḡ

)γ
(30)

where f0(y) = cos (β log y + φ), fm≥1(y) are obtained in the order-by-order expansion

in ∆n(ωm)/ωm, and Cn is yet unknown factor. Evaluating the few first fm(y), we ob-

tain that they are also oscillating functions of log y with y−dependent prefactors of order

(1/y2m)1/γ−1/2. The perturbative expansion holds as long as Cn < y(1/γ−1/2). In this range,

one can approximate the r.h.s. of (30) by the m = 0 term for order-by-magnitude estimates.
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ncr

|Δn |
finite n < ncr

n > ncr ∼ 1
2 − γ

FIG. 7. A schematic dependence of ∆n on n at γ → 2, at some fixed ωm. All ∆n with finite n

tend to the same value, while the magnitude of ∆n→∞ depends on the ratio n∗ = n/ncr, where

ncr ∼ 1/(2− γ).

The function f0(y) changes sign n times between y = O(1) and ymin ∼ e−nπ/β. It is natural

to associate ymin with the lower boundary of the perturbative expansion. Doing this, we

obtain a discrete set of Cn:

Cn ∼ e
−nπ
β

(1/γ−1/2) (31)

For large n, ∆n(y) ≈ ḡy1/2Cn cos (β log y + φ). For n = O(1), Cn = O(1), and one needs

to keep the full series in (30). This reasoning also yields ∆n(0) ∼ y
1/2
minCn ∼ (ymin)1/γ ∼

ḡe−nπ/(βγ).

2. ∆n(ωm) for γ close to 2.

Eq. (31) shows that for a generic γ, Cn = O(1) for n = O(1), and decays exponentially at

larger n. However, for γ close to 2, the dependence on n in (31) is actually via the product

n∗ = n(2 − γ) ∼ n/ncr. In the limit γ → 2, n∗ → 0 for any finite n. The corresponding

Cn then become independent on n and coincide with C0 up to corrections, which become

relevant only at the smallest y. At the same time, at n → ∞, n∗ becomes a continuous

variable, whose value depends on how the double limit n → ∞ and γ → 2 is taken. Then

Cn→∞ and ∆n→∞ become continuous functions of n∗.10 We illustrate this in schematically

in Fig.7. We show the numerical evidence for this behavior in Figs.8 and 9. We use the

fact that each ∆n(ωm) terminates at its own Tp,n and analyze the functional forms of the

eigenvalues ∆n(ωm) at Tp,n, assuming that these forms do not change significantly between

Tp,n and T = 0. In Fig.8 we plot the largest frequency at which ∆1,2(ωm) change sign We

18



1.5 1.6 1.7 1.8 1.9 2.0
0.025

0.030

0.035

0.040

0.045

0.050

γ

2n
d
ze
ro
po
si
tio
n
in

Δ 2
(g
)

Po
sit

io
n 

of
 th

e 
2n

d 
ze

ro
 o

f Δ
2(ω

m
)

FIG. 8. The positions of the second zero of ∆2(ωm), as a functions of γ. This frequency decreases as

γ → 2, implying that sign change at the highest ωm occurs at progressively smaller frequency. The

gap function ∆2(ωm) has been obtained by solving the linearized gap equation at the corresponding

Tp,2. We conjecture that the functional form of ∆2(ωm) does not change substantially between Tp,2

and T = 0.

see that these frequencies get progressively smaller as γ approaches 2, while at larger ωm the

functional forms of ∆1(ωm) and ∆2(ωm) are the same as of ∆0(ωm). We expect the same

to hold for other finite n. On a more careful look, we find that the shift of oscillations to

smaller frequencies is related to the reduction of the corresponding Tp,n. Namely, we verified

that the largest frequency, at which ∆n(ωm) changes sign, scales with the corresponding

Tp,n. In Fig. 9 we show Tp,n for n = 1, 2 as a function of γ. We see that Tp,n decreases as γ

increases toward 2 and, within our accuracy, vanishes at γ = 2.

Now, each gap function ∆n(ωm) generates a certain condensation energy Ec,n. For a

generic γ < 2, the spectrum of Ec,n is discrete, and Ec,0 is the largest by magnitude. Then,

at low T � Tp,0, only the n = 0 solution matters, while the existence of other Ec,n affects

the system behavior only at T ≤ Tp,0. As γ increases towards two, the spectrum of Ec,n

becomes denser, and (Ec,0−Ec,n)/Ec,0 progressively gets smaller for any finite n. At γ → 2,

the spectrum of Ec,n can be viewed as almost continuous spectrum with a small gap, i.e.,

there emerges a branch of low-energy ”longitudinal” gap fluctuations. These fluctuations

affect the system behavior beginning at a progressively smaller T , as γ approaches two. At

γ = 2 − 0, the spectrum of condensation energies becomes a gapless continuous function

Ec(n
∗) with Ec(0) = Ec,0 and Ec(∞) = Ec,∞. In the next Paper V, where we specifically
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FIG. 9. The onset temperature Tp,1(left) and Tp,2(right) vs γ. Within our accuracy, Tp,1 and

Tp,2 < Tp,1 vanish at γ = 2. Other Tp,n with n > 2 are smaller than Tp,2 and also vanish at γ → 2.

analyze the case γ = 2, we show there that gapless longitudinal fluctuations give rise to

singular downward renormalization of the stiffness.

IV. GAP FUNCTION ON THE REAL AXIS

The analysis on the Matsubara axis is sufficient for the computation of the condensation

energy at T = 0 and thermodynamic properties at T > 0. For the analysis of transport

and spectroscopic properties, one needs to know the gap function on the real frequency

axis. In this section we obtain ∆n(ω) for real ω. The gap function on the real axis is

complex: ∆n(ω) = ∆′n(ω) + i∆
′′
(ω). It is convenient to introduce its ω−dependent phase as

∆n(ω) = |∆n(ω)|eiη(ω). As usual, η(ω) is defined up to a constant.

A. Eliashberg gap equation on the real axis

Eliashberg gap equation in real frequencies cannot be obtained by simply replacing ωm

by −iω in (2) as ∆n(ωm → −iω) would have branch cuts in the upper frequency half-plane,

while the actual ∆(z) must be an analytic function.

Below we follow the approach, suggested in Refs7,11–13 for electron-phonon problem, i.e.,

convert to real axis using the spectral representation f(iωm) = (1/π)
∫
dxf

′′
(x)/(x − iωm)

and, where possible, use ∆(ωm), which we treat as the known function. For our γ model

this procedure yields

∆(ω)B(ω) = A(ω) + C(ω) (32)
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where, as before, D(ω) = ∆(ω)/ω, and

A(ω) = πT
∑
ωm>0

D(ωm)√
1 +D2(ωm)

(V (ωm + iω) + V (ωm − iω))

B(ω) = 1 +
iπ

ω
T
∑
ωm>0

1√
1 +D2(ωm)

(V (ωm + iω)− V (ωm − iω))

C(ω) =
i

2

∫ ∞
−∞

dΩV
′′
(Ω)

D(ω − Ω)−D(ω)√
1−D2(ω − Ω)

(
tanh

ω − Ω

2T
+ coth

Ω

2T

) (33)

The functions A(ω) and B(ω) are obtained by just rotating the gap equation from ωm to

−iω, and the function C(ω) contains the extra term that cancels out a parasitic contribution

from the branch cuts.

The interaction V (Ω) on the real axis is V (ω) = V ′(Ω) + iV
′′
(Ω), where

V ′(Ω) =

(
ḡ

|Ω|

)γ
cos

πγ

2
, V

′′
(Ω) =

(
ḡ

|Ω|

)γ
sin

πγ

2
signω (34)

Observe that on the Matsubara axis, V (Ωm) = (ḡ/|Ωm|)γ positive (attractive in our nota-

tions), on a real axis V
′
(ω) is negative (repulsive) for γ > 1.

Below we focus on the case of zero temperature. At T = 0, the expressions for A,B and

C reduce to

A(ω) = ḡγ
2

π
sin

πγ

2

∫ ∞
0

dωm
D(ωm)√

1 +D2(ωm)

∫ ∞
0

dΩ

Ωγ−1

Ω2 − ω2 + ω2
m

[(Ω− ω)2 + ω2
m][(Ω + ω)2 + ω2

m]
(35)

B(ω) =

(
1 + ḡγ

4

π
sin

πγ

2

∫ ∞
0

dωm√
1 +D2(ωm)

∫ ∞
0

dΩ

Ωγ−1

ωm
[(Ω− ω)2 + ω2

m][(Ω + ω)2 + ω2
m]

)
(36)

C(ω) = iḡγ sin
πγ

2
signω

∫ |ω|
0

dΩ

Ωγ

D(|ω| − Ω)−D(|ω|)√
1−D2(|ω| − Ω)

(37)

At large ω,

B(ω) ≈ 1 +

(
ḡ

|ω|

)γ
Iγ, (38)

where

Iγ =
i

2

∫ ∞
0

(x− i)γ − (x+ i)γ

(x2 + 1)γ
(39)

In the two limits, I1 = π/2, I2 = 1.

B. Frequency dependence of ∆n(ω). The case n =∞.

We verified that the exact ∆∞(ω) can be obtained by converting Eq. (7) from Matsubara

to real axis by a rotation, i.e., by replacing ωm by −iω + δ. Under such rotation, e−ik log y =
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e−ikγ log |ωm|/ḡ transforms into e−ikγ log |ω|/ḡe−(kπγ/2) sgnω. At small ω < ḡ, ∆′∞(ω) and ∆
′′
∞(ω)

oscillate as functions of log |ω| down to the lowest frequencies. In explicit form, we have in

this regime

∆∞(ω) = C∞

(
|ω|
ḡ

)γ/2
e−

iπγ
4

sgnω cos

(
βγ

(
log
|ω|
ḡ
− iπ

2
sgnω

)
+ φ

)
(40)

where C∞ is infinitesimally small. Separating real and imaginary parts, we obtain

∆′∞(ω) = C∞

(
cos

πγ

4
cosD1 coshD2 + sin

πγ

4
sinD1 sinhD2signω

)
∆
′′

∞(ω) = C∞

(
cos

πγ

4
sinD1 sinhD2 − sin

πγ

4
cosD1 coshD2signω

)
(41)

where

D1 = β log

(
|ω|
ḡ

)γ
+ φ,

D2 =
πβγ

2
signω (42)

We show ∆′∞(ω), ∆
′′
∞(ω), and the phase η∞(ω) for ω < ḡ in Fig. 10 for γ = 1.91. We set

the lowest frequency in at 10−17ḡ. In this case the total phase variation up to O(ḡ) is 10π.

This is consistent with 10 vortices on the Matsubara axis (Fig. 20) as each vortex gives rise

to a phase change of π for positive ω on the real axis and another phase change of π for

negative ω.

We now move to ω > ḡ and use Eq. (32). At the largest ω, we have B(ω) ≈ 1 and

A(ω) =

(
ḡ

|ω|

)γ
Qγ,∞ cos

πγ

2

C(ω) ≈ i

(
ḡ

|ω|

)γ
sin

πγ

2
signωQ̄γ,∞ (43)

where

Qγ,∞ =

∫ ∞
0

dωm
∆∞(ωm)

ωm
,

Q̄γ,∞ =

∫ ∞
0

dω
∆∞(ω)

ω
. (44)

The two integrals in (44) are actually identical. To prove this, we recall that D∞(ω) =

∆∞(ω)/ω satisfies KK relation D
′′
(ω) = −(2/π)P

∫∞
0
dxD

′
(x)x/(x2 − ω2), where P stands

for principle part, and that D∞(ωm) = (2/π)
∫∞

0
dxD

′
(x)x/(x2 + ω2

m). Using these re-

lations, we obtain
∫∞

0
dωmD∞(ωm) =

∫∞
0
dωD

′
(ω). Using further that

∫∞
0
dωD

′′
(ω) =

22



(a)

(b)

FIG. 10. The complex gap function ∆∞(ω) along the real frequency axis and its phase η∞(ω),

constrained to (−π, π), for γ = 1.91. ∆∞(ω) oscillates an infinite number of times between ω = 0

and ω/ḡ = O(1). For better understanding of the total phase variation δη , we count oscillations

starting from a small but finite ωmin ∼ 10−17ḡ. For this choice there are 10 oscillations at ω < ḡ

(panel a). Accordingly, η∞(ω) changes by 2π five times (panel b) such that the total phase variation

is 10π.

(2/π)
∫∞

0
dxxD

′
(x)P

∫∞
0
dω/(x2 − ω2) = 0 we find Q̄γ,∞ =

∫∞
0
dωD∞(ω) =

∫∞
0
dωD

′
(ω) =∫∞

0
dωmD∞(ωm) = Qγ. Hence, at the largest ω,

A(ω) + C(ω) = ei(πγ/2)sgnω

(
ḡ

|ω|

)γ
(45)

Substituting into (32) and using (38), we obtain

∆∞(ω) ∝
(
ḡ

|ω|

)γ
e(iπγ/2)signωQ∞γ (46)

This result could also be obtained by a direct rotation of ∆∞(ωm) ∝ 1/|ωm|γ from Matsubara
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(a)

(b)

FIG. 11. (a) Comparison between the exact ∆∞(ω) along the real frequency axis (blue and

orange thick lines) and the universal contribution to ∆∞(ω) from Eq. (51) (black dotted lines) for

γ = 1.91. The agreement is nearly perfect. (b) Variation of the phase of the gap function, η∞(ω),

between ω ∼ ḡ and ω = ∞. For convenience of presentation we confined η∞(ω) to (−π, π), up to

small variations. In the inset we plot the continuous η∞(ω). We see that the total phase variation

between ω ∼ ḡ and ω =∞ is 16π + πγ/2.

to real axis.

For γ ≥ 1 there is a single crossover between the two limiting forms of ∆∞(ω), Eqs. (6)

and (46). However, for γ ≤ 2, the new intermediate regime emerges at ω > ḡ, as we now

demonstrate. In this regime, ∆′∞(ω) and ∆
′′
∞(ω) again oscillate, but with the period set by

a power of ω rather than by log |ω|.

To show this, we recall that in Sec. III B we found an exponentially small oscillating

component of ∆∞(ωm) on the Matsubara axis at ωm > ḡ. We now convert this component
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onto the real axis. Replacing ωm by −iω + δ, we obtain for ω > 0:

∆∞(ω) =

∫ ∞
kmin

dk
(
e−πk(1+γ/2)e−ikSk(ω) + e−πk(1−γ/2)eikSk(ω)

)
(47)

where kmin = O(1) and Sk(ω) = log [(|ω|/ḡ)γ(e/Aγk)γ−1] Comparing this result with Eq.

(17) we see that the exponentially small factor e−π|k| splits into e−πk(1+γ/2) and e−πk(1−γ/2).

The first term is smaller and the second one is larger than the original term. Keeping only

the larger term and evaluating the integral over k in the same way as in Sec. III B, we obtain

the oscillating term on the real axis:

∆∞(ω) ∝ |ω|
1
2

γ
γ−1 exp

(
−2− γ

Aγ

(
|ω|
ḡ

) γ
γ−1
[
π

2
− iγ − 1

2− γ

(
1− π2

2(γ − 1)2

)])
(48)

For γ ≤ 2, the exponential part of the prefactor is small in 2 − γ, and the power-law part

increases with ω. As the result, this oscillating contribution exceeds the one from Eq. (46)

for frequencies between O(ḡ) and ωcr, where

ωcr ∼ ḡ

(
| log (2− γ)|

2− γ

)1/2

� ḡ. (49)

As a result, at ḡ < ω < ωcr, ∆
′
(ω) and ∆

′′
(ω) oscillate as functions of (|ω|/ḡ)γ/(γ−1) with

weakly, yet exponentially decaying prefactor. To the leading order in 2− γ, Eq. (48) gives

∆∞(ω) ∝ |ω|e−(1−γ/2)(|ω|/ḡ)2

ei(|ω|/ḡ)
2/π (50)

We used A2 = π. For completeness, we computed the subleading term under ei.... It changes

Eq. (50) into

∆∞(ω) ∝ |ω|e−(1−γ/2)(|ω|/ḡ)2

ei((|ω|/ḡ)2+log ((|ω|/ḡ)2))/π (51)

In Fig. 11 (a), we compare the exact ∆∞(ω) with Eq. (51) for γ = 1.91. We see that the

agreement is quite good, and the range of ω2 oscillations is quite wide for this γ.

In Fig. 11 (b), we show the variation of the phase η(ω) between ω ∼ ḡ and ω = ∞. We

see that the phase changes by 2πm, where m is an integer, and the total phase variation is

2πm + πγ/2. The last piece just follows from (46), and the first one is due to oscillations

given by (50). The integer m increases one-by-one as γ increases towards 2. In Sec. V below

we associate 2πm phase variation with the emergence of m dynamical vortices in the upper

half-plane of frequency.
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FIG. 12. The density of states N∞(ω), counted from the normal state value NF . To better display

oscillations we used different scales at ω > ḡ and ω < ḡ.

In Fig. 12, we plot the DoS N∞(ω) for several γ. The DoS is defined as N(ω) =

(−1/π)ImGl(ω), where

Gl(ω) = −iπ

√
ω2

ω2 −∆2(ω)
(52)

is the retarded Green’s function, integrated over the dispersion.14 Because ∆∞(ω) is vanish-

ingly small,

N∞(ω) = NF

(
1− Re

∆2
∞(ω)

ω2

)
(53)

where NF is the DoS in the normal state. We see that N∞(ω) oscillates around NF up to

ω ∼ ωcr. At ω < ḡ, the period of oscillations is set by logω, and at ḡ < ω < ωmax, the

period is set by ωγ/(γ−1).

C. Frequency dependence of ∆n(ω). The case n = 0.

We now consider the opposite limit n = 0. We remind that on the Matsubara axis ∆0(ωm)

is sign-preserving. We show that on the real axis both real and imaginary parts of ∆0 again

oscillate in a finite frequency range at ω > ḡ, and the phase of complex ∆0(ω) is winding
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by 2πm in this range.

At high frequencies ω � ḡ, the form of ∆0(ω) can be readily obtained from (37) in the

same way as it was done in the previous section. For the case n = 0 we have

A(ω) =

(
ḡ

|ω|

)γ
Qγ cos

πγ

2

C(ω) ≈ i

(
ḡ

|ω|

)γ
Qγ sin

πγ

2
signω, (54)

where Qγ is given by (29). Substituting these forms along with B(ω) ≈ 1 into (32), we

obtain at ω � ḡ,

∆0(ω) ≈
(
ḡ

|ω|

)γ
e(iπγ/2)signωQγ (55)

This is consistent with ∆0(ωm) ∝ (ḡ/|ωm|)γ on the Matsubara axis.

At small ω, ∆0(ω) = (A(ω) + C(ω))/B(ω) ≈ ∆0(0) where ∆0(0) is the same as we

found in the ωm → 0 limit on the Matsubara axis. We note, however, that the relative

strength of A(ω), B(ω), and C(ω) changes between γ < 1 and γ > 1. For γ < 1, A(ω)

and B(ω) tend to finite values at ω → 0, while C(ω) ∝ ω1−γ vanishes. Then ∆0(0) =

A(0)/B(0). For γ > 1, B(ω) and C(ω) scale as ω1−γ sin(πγ/2)/(2 − γ) at ω → 0, while

A(ω) ∝ ω1−γ sin(πγ/2)/(1−γ) is smaller, at least for γ ≤ 2, and, moreover, its sign changes

to negative at γ > 1. The gap still tends to a finite positive value at ω = 0 because once

A(ω)� C(ω), ∆0(0) = limω→0C(ω)/B(ω) = const. However, we see that ∆0(0) now scales

with C(ω), which, we recall, is present in the gap equation on the real axis because of the

need to cancel out parasitic contributions from the branch cut. This hints that for γ > 1

the behavior of ∆0(ω) on the real axis may be quite different from that of ∆0(ωm).

We now show that this is indeed the case. We focus on frequencies ω > ḡ, where we

detected the new behavior at n = ∞. Eq. (54) for A(ω) is valid for all ω > ḡ as typical

ωm in (35) are of order ḡ. Similarly, B(ω) ≈ 1 for all ω > ḡ. For C(ω), we have to

be more careful and include not only the contribution in (37) from ω − Ω = O(ḡ), which

yields (38), but also contributions from Ω immediately below ω (i.e., ω − Ω � ḡ). These

contributions are expressed in terms of derivatives of D0(ω) = ∆0(ω)/ω. The leading term

here is the one with the first derivative: D0(ω − Ω) − D0(ω) ≈ −ΩḊ0(ω). For γ ≤ 2, the

integral
∫ ω

0
dΩ/Ωγ−1 = ω2−γ/(2− γ) is determined by small Ω, and the prefactor 1/(2− γ)

compensates the smallness of the overall factor sin(πγ/2) ≈ (π/2)(2− γ) in (37). This term
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then gives

− iπ
2
ω2−γ Ḋ0(ω)√

1−D2
0(ω)

(56)

We will also need terms of order 2 − γ. For this, we keep the subleading terms with (Ḋ0)2

and D̈0. Evaluating the prefactors, we obtain differential gap equation in the form (ω > 0)

−iπ
2
ḡγ

ω2−γ√
1−D2

0(ω)

[
Ḋ0(ω)− (2− γ)ω

(
1

2
D̈0(ω) +

D0(ω)(Ḋ0(ω))2

1−D2
0(ω)

)]
= D0(ω)ω−Qγ

( ḡ
ω

)γ
eiπγ/2

(57)

We follow Refs.11,12 and introduce D0(ω) = 1/ sin(φ(ω)). Both D0(ω) and φ(ω) are complex

functions of ω. Substituting into (57) we obtain

φ̇− (2− γ)

2
ω
(
φ̈+ (φ̇)2 tanφ

)
=

2

πḡγ

(
ωγ−1 −Qγ

ḡγ

ω2
eiπγ/2 sinφ

)
(58)

This equation is similar to the one for γ = 2 and a finite T , analyzed by Combescot in

Ref.12.

At the highest frequencies, the gap function must obey Eq. (46). This gap function is

reproduced if we choose

φ′(ω) = 2πm+
π

2
(γ + 1) (59)

φ
′′
(ω) = log

2ḡ

Qγ

+ (γ + 1) log
ω

ḡ
(60)

where m is integer. We see that at large enough ω, φ
′′
(ω) � φ

′
(ω). On the other hand,

at ω ≥ ḡ, φ′(ω) ≈ (2/πγ)(ω/ḡ)γ, and φ
′′

is small, of order (2 − γ). We use this to set the

boundary condition at ω = ḡ as

φ′ =
2

πγ
, φ

′′
= a(2− γ), (61)

where a = O(1). We will argue that the solution of (58) is largely independent on a, as long

as a(2−γ)� 1. To simplify the calculation, below we neglect φ̈ term in Eq. (58) and use the

boundary condition (61) as the initial condition for the first order differential equation. We

show that the solution of (58) without φ̈ by itself satisfies the boundary condition (59,60).

We discuss the role of φ̈ and the validity of dropping it at the end of this section.

A simple analysis of the Eq. (58) without φ̈ term shows that φ
′′
(ω) rapidly increases

shortly before φ′(ω) reaches π/2. To see this, we neglect momentarily the Qγ term in (58),
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which gives rise to a small initial φ
′′

and solve the remaining equation as a quadratic equation

on φ̇. We obtain

φ̇ =

1−
√

1− 4
π
(2− γ)

(
ω
ḡ

)γ
tanφ(ω)

(2− γ)ω tanφ(ω)
. (62)

(the sign is chosen to satisfy the initial condition). An elementary analysis shows that φ
′′
(ω)

emerges at ω = ωa, where when(
ωa
ḡ

)γ
tan(φ′(ωa)) =

π

4

1

2− γ
, (63)

This ωa is smaller than the one at which φ′(ω) reaches π/2. This is essential as in the

absence of φ
′′
, the behavior near φ′(ω) = π/2 would be singular. Once φ

′′
is non-zero, the

singularity is cut. Keeping the Qγ term, we find that φ
′′

is non-zero at all frequencies, where

Eq.(58) is valid, but still rapidly increases around ωa, specified by (63).

At larger ω, φ
′′
(ω) increases, and eventually eφ

′′
becomes larger than one. At such

frequencies, tanφ ≈ i, and (58) simplifies to

φ̇′(ω) ≈ 2

π

ωγ−1

ḡγ

φ̇
′′
(ω) ≈ 2(2− γ)

π2

ω2γ−1

ḡ2γ
(64)

Solving, we find φ′(ω) ≈ (2/πγ)(ω/ḡ)γ, φ
′′
(ω) ≈ (2 − γ)/(π2γ)(ω/ḡ)2γ. Note that these

forms are universal and do not depend on the boundary condition (i.e., on the factor a in

Eq. (61)). For γ ≈ 2, φ′(ω) ≈ (ω/ḡ)2/π. To compare with n = ∞ case, we computed the

subleading term. It comes from the second term in B(ω) in (38) and changes φ′(ω) to

φ′(ω) =
1

π

((
ω

ḡ

)2

+ log

(
ω

ḡ

)2
)
. (65)

Observe that the r.h.s. of (65) is the same function as we found for n = ∞, Eq. (51). Eq.

(64) holds up to ω at which eφ
′′
∼ (ω/ḡ)3. At larger frequencies, the second term in the

r.h.s. of (58) cannot be neglected, and the functional form of φ(ω) changes. In Fig.13 (a)

we show the result of numerical solution of (58) We see that there is a single crossover, at

ω = ωcr ∼ ḡ(| log (2− γ)|/(2 − γ))1/(2γ), from φ(ω) given by (64) to φ(ω) given by (59,60).

In Fig.13 (b) and (c) we show separately the behavior of φ′(ω) and φ
′′
(ω) at ω < ωcr and

ω > ωcr. The fits to Eq. (64) Eqs. (59,60), respectively, are almost perfect. Deviations

from the high-frequency forms decrease as 1/ωγ and oscillate as trigonometric functions of
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FIG. 13. Panel (a). The numerical solution of Eq. (58) for γ = 1.995. Frequency is in units of ḡ.

The crossover at ωcr ≈ 15ḡ is clearly visible. Panels (b) and (c) – zoom into regions ω < ωcr and

ω > ωcr. At ω < ωcr, φ
′ grows as ωγ , while φ′′ first increases step-like, and then behaves as ω2γ .

At ω > ωcr, φ
′ saturates at 2πm + (γ + 1)π/2, where m = 9 for γ = 1.995, while φ

′′
increases as

(γ + 1) logω/ḡ.

(2/πγ)(ω/ḡ)γ. In Fig.14((a) and (b)) we show that the value of φ′ for ω > ωcr is independent

on the parameter a in the boundary condition (61), as long as a = O(1). At the same time,

the value of an integer m in (59) changes if we change γ, as is shown in Fig.14(c). Specifically,

m jumps to the nearest integer at a discrete set of γi ≤ 2 (the smaller is 2− γ, the larger is

m). We demonstrate this in Fig.14(d).

In Fig 15(a) we show real and imaginary parts of the gap function

∆0(ω) =
ω

sinφ(ω)
= 2ω

sinφ′ coshφ
′′ − i cosφ′ sinhφ

′′

cosh 2φ′′ − cos 2φ′
(66)

We see that both ∆′0(ω) and ∆
′′
0(ω) oscillate between ω = O(ḡ) and ωcr and display sign-

preserving 1/ωγ behavior at ω > ωcr. At ω ≥ ḡ, ∆′(ω) varies roughly as ω/ sin ((2/(πγ))(ω/ḡ)γ)

and ∆
′′
(ω) has almost δ-functional spikes in where sin(2/(πγ))(ω/ḡ)γ) is small. At larger

ω ≤ ωcr, both ∆′ and ∆
′′

oscillate with progressively decreasing magnitude.

In Fig. 15(b) we show the variation of the phase of the gap function η(ω). The total

variation of η between ω = 0 and ω = ∞ is 2πm + πγ/2. We emphasize that this is the

result for ∆0(ω), which is sign-preserving on the Matsubara axis. We clearly see that there
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FIG. 14. (a)-(b) The functions φ′(ω) and φ′′(ω) for different boundary conditions, set by a

parameter a in eq.(61). The figure shows that the value 2πm+(γ+1)π/2, at which φ′(ω) saturates

is independent on a. The behavior of φ′(ω) in the universal regime, where both φ′ and φ′′ are

continuous functions of ω, also does not depend on a. (c) Variation of the integer m with γ. There

is a discrete set of γi, at which m changes by 1. The set becomes progressively more dense at

γ → 2. (d) The behavior of φ′(ω) near one of these γi ≈ 1.924. The value of φ′ at large ω jumps

by 2π as γ passes through γi and a new vortex moves into the upper half-plane of frequency.

is a huge difference between the forms of the gap function on the real and the Matsubara

axis in between ḡ and ωcr.

We now use more precise analysis to determine ωcr. In Eq. (58) we only included the first

two terms in the expansion of C(ω) in powers of φ̇. Meanwhile, the expansion in derivatives

holds in powers of φ̇ω/ḡ without additional (2−γ) in the prefactor. This implies that higher-

order terms are not negligible at ω > ḡ. We now use the fact that before φ(ω) crosses over to

(54,38), it shows the universal behavior in the range where 1 < eφ
′′
< (ω/ḡ)3. In this regime,

(i) φ̇ ≈ φ̇′ ≈ (2π)ωγ−1/ḡγ � ḡ, while higher-order derivatives are smaller, and (ii) D(ω) is

small, such that
√

1−D2 ≈ 1. In this situation, one can sum up the full Taylor series for

(2 − γ) term in C(ω). We use that tanφ ≈ i and the n-th detivative Dn(ω) ≈ in(φ̇)nD.

Integrating each term in Talor series over Ω, we obtain the modified l.h.s. of (58) in the
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FIG. 15. Upper panel: frequency dependence of the gap function ∆0(ω) = ∆′0(ω) + i∆′′0(ω), from

Eq. (66). We set γ = 1.95. For ḡ < ω < ωcr, both ∆′0(ω) and ∆′′0(ω) display oscillations with a

decreasing magnitude. For ω ≥ ωcr, ∆′0(ω) becomes negative and does not oscillate. Lower panel:

Variation of the phase of the gap η0(ω) as a function of ω. As before, we confined phase variation

to (−π, π), up to small variations. The phase changes by 2π three times between ω = O(ḡ) and ωcr.

There are no more 2π phase variations, despite that the phase shows wiggling at large frequencies.

In the inset we plot the continuous η0(ω). We see that the total phase variation between ωm = ḡ

and ωm =∞ is 6π + πγ/2.
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FIG. 16. Panel (a). The solution of Eq. (69) for γ = 1.88. Panels (b) and (c) - zooms into the

regions below and above the crossover frequency. The behavior of φ′(ω) and φ
′′
(ω) is qualitatively

similar to that in Fig. 14, but differs in detail. In particular, both φ′(ω) and φ
′′
(ω) approach

asymptotic forms 12π + (γ + 1)π/2 and (γ + 1) logω, respectively, without oscillations.

form

φ̇− i(2− γ)φ̇F

(
ω

ḡ
φ̇

)
(67)

where

F (x) =

∫ x

0

1− cos y

y2
= SI(x)− 1− cosx

x
(68)

and SI(x) is SinIntegral. Eq. (58) is reproduced if we approximate 1− cos y by y2/2. Then

F (x) ≈ x/2. If we use the full expression, we find that at large x, which we are interested

in, F (x) ≈ π/2. The equation for φ then reduces to

φ̇ =
2

πḡγ
ωγ−1 − Qγ ḡγ

ω2 eiπγ/2 sinφ

1− i(2− γ)π/2
(69)

We show the solution in Fig.16 and present the plots of the gap function ∆0(ω), the phase

η0(ω), and the variation of m with γ in Fig.17.

The behavior of φ(ω) is qualitatively similar to the one in Fig.13, i.e., there is a single

crossover frequency, and the total variation of η(ω) between ω = 0 and ω =∞ is 2πm+πγ/2.

However the crossover scale ωcr has different dependence on 2 − γ compared to Eq. (58),

and also the dependence of m on γ is different from that in Fig.14(b) (and there are no
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FIG. 17. Panels (a) and (b) – the same as in Fig. 15, but for φ′ and φ
′′

from Eq.(69). At large

frequencies, ∆(ω) ∝ eiπγ/2/ωγ . The total variation of the phase of ∆ is δη = 2πm + πγ/2. Panel

(c) – variation of m with γ. As before, there is a discrete set of γi, where m jumps by 1. The set

becomes progressively more dense at γ → 2.

wiggles in φ(ω) at ω > ωcr). To obtain the modified crossover frequency, ωcr, we note that

in the universal regime 1 < eφ
′′
< (ω/ḡ)3, φ̇′(ω) is still given by (64), while

φ̇
′′
(ω) ≈ (2− γ)

ωγ−1

ḡγ
(70)

Accordingly, φ′(ω) ≈ (2πγ)(ω/ḡ)γ, φ
′′
(ω) = (2 − γ)/γ(ω/ḡ)γ. The crossover frequency is

then determined by eφ
′′
∼ (ω/ḡ)3. Solving for ω, we obtain, for γ ≤ 2,

ωcr ∼ ḡ

(
| log (2− γ)|

2− γ

)1/2

(71)

This is the same scale as ωcr that we obtained for n =∞, Eq. (49).

We see therefore that for n =∞ and n = 0 the new behavior of the gap function emerges

in the same frequency range ḡ < ω < ωcr. Moreover, the period of oscillations in this range

is the same function of frequency, Eqs. (51) and (65).

In Fig.18 we plot the DoS

N0(ω) = NFRe

√
ω2

ω2 −∆2
∞(ω)

(72)

for several γ. We see that N0(ω) vanishes below a certain threshold frequency, and at

ḡ < ω < ωmax has a set of maxima and minima. The peaks in N0(ω) get progressively

sharper as γ approaches 2, while in between the peaks N0(ω) gets smaller. The positions of

the peaks almost coincide with the maxima of N∞(ω).
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FIG. 18. The DoS N(ω) for the n = 0 solution, for several γ. Peaks in N(ω) sharpen as γ → 2,

while the weight between the peaks is reduced.

Before we move to finite n, we pause to discuss the validity of neglecting the φ̈ term in

Eq. (58). This is justified if |φ̈| is smaller than (φ̇)2| tanφ| for all frequencies. Of particular

relevance here are frequencies near ωa, specified by Eq. (63). If we set a = 0 in the initial

condition (61) and use Eq. (62), we find that φ
′′

initially increases as (ω − ω0)3/2. In this

situation, φ̈ diverges at ω = ω0 + 0, and the behavior of φ(ω), which we found earlier in this

Section, is valid outside of the vicinity of ω0, while near ω0, φ̈ and higher derivatives cannot

be neglected. Specifically, evaluating φ̈, φ̇, and tanφ near ω0, we find that for γ ≤ 2, the

condition |φ̈| < (φ̇)2| tanφ| is satisfied when

φ′′ > π(2− γ) (73)

For a = 0+, this holds outside a finite range near ω0. However, if a = O(1), |φ̈| never

becomes much larger than (φ̇)2| tanφ|, hence neglecting |φ̈| does not change the results

qualitatively even near ω0.

D. Frequency dependence of ∆n(ω). Finite n

The behavior of ∆n(ω) at ω < ḡ on the real axis parallels the one on the Matsubara axis.

Namely, the phase varies by nπ between ω = 0 and ḡ due to n vortices on the Matsubara

axis. At γ → 2, oscillations shift to smaller ω. At ω > ḡ, it is natural to expect oscillations
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with the period set by (51) at ḡ < ω < ωcr and eiπγ/2/ωγ behavior at ω > ωcr. The total

phase variation between ω = 0 and ω =∞ is

nπ + 2πm+
πγ

2
(74)

The DoS at a finite n vanishes below a certain threshold frequency. Above the threshold,

it oscillates around NF with a period set by logω, and at larger ḡ < ω < ωcr has a set of

peaks and dips at about the same frequencies as N∞(ω) and N0(ω).

V. VORTICES NEAR THE REAL AXIS

We now use the Cauchy relation

∆(z) =
2

π

∫ ∞
0

dx
∆
′′
(x)x

x2 − z2
(75)

and extend the gap functions ∆n(ω) into the upper frequency half-plane, to z = ω′ + iω
′′

(ω
′′
> 0). Earlier, we demonstrated that ∆n(z) has n vortices on the Matsubara axis. Here,

we analyze the behavior of ∆n(z) between the Matsubara and the real axis. We show that

as γ increases from one to two, new vortices appear one-by-one in the upper frequency half-

plane, near the real axis. These vortices are located at |z| > ḡ, and their number, m, is

determined by γ and is the same for all n. When γ → 2, m tends to infinity. The emergence

of vortices obviously correlates with the oscillations of ∆n(ω) on the real axis, and as such

is another consequence of the change of sign of the real part of the interaction on the real

axis, V ′(Ω), which becomes repulsive at γ = 1. The increase of the number of vortices as γ

approaches 2 in turn correlates with the decrease of V
′′
(Ω).

That such vortices must be present can be understood by comparing the behavior of

∆n(z) for |z| > ḡ near the Matsubara axis and the real axis. Along the Matsubara axis,

∆n(ωm) is real and does not change sign at |ωm| > ḡ. By continuity, ∆′(z) near the Matsubra

axis should remain sign-preserving, hence η(z) does not wind. On the other hand, on the

real axis, the phase winds by 2πm, as we found in the previous Section. This number is

topologically protected against perturbations and can only disappear upon rotation from

real to imaginary z if there are vortices at some complex z. Indeed, let’s compute

δηΓ = Im

∫
Γ

dz [∂ log ∆(z)/∂z] (76)
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FIG. 19. The contour Γ used in Eq.(76). The contour consists of a real axis and an semi-circle(arc)

at z = |z|eiψ, |z| → ∞ and 0 < ψ < π. Along the arc, ∆n(z) ∝ ei(π/2−ψ)γ/|z|γ , so the corresponding

contribution to δηL is −πγ. Along the real axis, δηΓ = 2π(n + 2m) + πγ. The total δηΓ along

Γ is then 2π(n + 2m). The same δηΓ must be obtained by counting contributions from the poles

inside Γ. Each vortex is a pole with residue 2π, hence there should be n + 2m vortices. This is

consistent with our analysis of ∆(z): there are n vortices on the Matsubara axis, and 2m vortices

in the upper half plane near the real axis.

along the path Γ, which starts at the large negative real z = −R, goes along the real axis

up to +R, and then closes along the large arc in the upper half plane (see Fig.19) The arc is

chosen such that along it ∆n(z) ∝ ei(π/2−ψ)/|z|γ . The total phase variation along the arc is

−πγ, and the phase variation along the real axis is 2π(n+ 2m) + πγ. The contour integral

then gives

δηΓ = 2π(n+ 2m) (77)

This δηΓ should be equal to the contribution from inside the contour. Because ∂ log ∆(z)/∂z

has a simple pole at each point where ∆(z) vanishes, there must be n + 2m vortices inside

the contour (we recall that ∆(z) by itself has no poles in the upper half plane). There are n

vortices on the Matsubara axis, the other 2m should be located in between the Matsubara

and the real axis. By symmetry, there must then be m vortices in the first quadrant, and

another m is in the second one.

To determine the location of the vortices, it is instructive to again consider separately

the cases n =∞, n = 0, and a finite n.
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A. n =∞

We first quickly verify that there are no vortices away from Matsubara axis for |z| < ḡ.

We express ∆(z) in terms of |z| and ψ, defined via z = |z|eψ. Replacing ωm by −iz in Eq.

(7) we obtain the expressions similar to (41) and (42):

∆′∞(z) ∝ cos
(γ

2

(π
2
− ψ

))
cosD1 coshD2 + sin

(γ
2

(π
2
− ψ

))
sinD1 sinhD2

∆
′′

∞(z) ∝ cos
(γ

2

(π
2
− ψ

))
sinD1 sinhD2 − sin

(γ
2

(π
2
− ψ

))
cosD1 coshD2 (78)

but D1 and D2 are now given by

D1 = β log (|z|/ḡ)γ + φ, (79)

D2 = β
(

(π − 2ψ)
γ

2

)
(80)

The vortices are the points where ∆′∞(z) = ∆
′′
∞(z) = 0. For ∆∞(z) given by (78) this is

satisfied if D1 = π/2 + mπ and D2 = 0. The second condition is satisfied only if ψ = π/2,

i.e., on the Matsubara axis. The first condition coincides with ∆∞(ωm) = 0. In Fig.20

we show that the phase η∞(z) of ∆∞(z) = |∆∞(z)|eiη∞(z) evolves in a ”rectangular” way

upon rotation from the Matsubara to the real axis. The white curves in this Figure are

determined by ∆
′′
(z) = 0 and ∆′(z) < 0. The phase η(z) changes by 2π upon crossing each

of these curves. We see that the phase winds five times by 2π at Rez > 0, consistent with

the presence of 10 vortices on the Matsubara axis.

We now consider the range |z| > ḡ. We recall that on the real axis, ∆∞(ω) oscillates

as a function of (|ω|/ḡ)γ/(γ−1) between ḡ and a larger ωcr given by Eq. (49). We detected

the oscillating term on the Matsubara axis (ψ = π/2) , where it is exponentially small,

and converted it to the real axis (ψ = 0), where it becomes the largest piece in ∆∞(ω) at

ḡ < ω < ωcr. We now analyze this term at arbitrary ψ. Replacing ωm by |z|e−i(π/2−ψ) in

(18) and using (6), we obtain the oscillating component of ∆∞(z) in the form

∆∞(z) =

∫ ∞
kmin

dk

(
e−(π+θ)ke−ikSk(|z|) + e−(π−θ)keikSk(|z|)

)
. (81)

Here, θ = (π/2 − ψ)γ and Sk(|z|) = log [(|z|/ḡ)γ(e/Aγk)γ−1], where Aγ is defined in (15).

For γ → 2, θ → π− 2ψ, and evaluating the integral over k in the same way as in Sec. III B,

we obtain

∆∞(z) ∝ |z|
1
2

γ
γ−1 exp

(
i
γ − 1

Aγ

(
|z|
ḡ

) γ
γ−1

[
1− 1

2

(
π − θ
γ − 1

)2

+ i
π − θ
γ − 1

])
+ (θ → −θ) (82)
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FIG. 20. The phase η∞(z) in the complex plane at |z| < O(ḡ), for γ = 1.96. We set the lower

boundary for |z| at ω0 ∼ 10−18ḡ, as in Fig.10. Along the white lines, ∆
′′
(z) = 0 and ∆′(z) < 0.

The phase of the gap then changes by 2π upon crossing each of these lines. Observe that each

white line starts in between a pair of vortices on the Matsubara axis, and ends on the real axis.

As a result, if there are k vortices on the Matsubara axis, the phase variation δη on the positive

real axis is exactly kπ. In our case, k = 10.

We plot ∆∞(z) from Eq. (82) in Fig. 21 for several γ near γ = 2. We see that there is

an array of vortices near the real axis, at |z| > ḡ. We now recall that Eq. (82) is valid

in a range ḡ < |z| < ωcr(θ). At larger |z|, the oscillating term becomes smaller than the

regular piece eiθ/|z|γ and there are no vortices. The boundary frequency for vortices is

ωcr(θ) ∼ ḡ(| log (π − θ)|/(π − θ))1/2 for γ ≤ 2. Because θ ≈ π − 2ψ in this limit, the range

of |z|, where Eqn. (82) is valid, remains wide for small ψ. The vortices move closer to the

real axis at larger |z| and for |z| ≥ ωcr(θ) escape into the lower half-plane of frequency. We

see from Fig. 21 that the number of vortices increases rapidly as γ → 2.
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FIG. 21. The case n = ∞. We plot the phase of the gap function η∞(z) in the upper half plane

(z = ω′+ iω′′) for different γ near γ = 2. The locations of the vortices are marked by red dots. At

the vortex core, ∆∞(z) = 0 and η∞ is undefined. This number of vortices m rapidly increases as

γ → 2.

B. Case n = 0

We now show that the same vortex structure appears for ∆0(z), which, we recall, is

sign-preserving along the Matsubata axis.

We obtain ∆0(z) by Cauchy relation, Eq. (75), using as an input ∆
′′
(ω) from Eq. (66). In

Fig.22 we show the amplitude of the gap |∆0(z)| in the first quadrant of complex z = ω′+iω
′′

for |z| > ḡ for γ = 1.75. We see that there are two vortices at complex z. We verified that

this is consistent with m = 2 in Eq. (59) for this γ. In Fig.23 we show that the number of

vortices increases when γ increases towards 2.

In Fig.24 we show how vortices emerge in the upper frequency half-plane one-by-one at

a set of γi. A given vortex is located in the lower frequency half-plane for γ < γi and moves

into the upper half-plane at γ > γi. Right at γ = γi it appears on the real axis. At this γ,

both ∆′0(ω) and ∆′′0(ω) vanish at some frequency, hence |∆0(ω)| = 0. We see from Fig.24
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FIG. 22. The case n = 0. Left panel: Plot of log |∆0(z)| in the upper half plane, for γ = 1.75. The

gap ∆0(z) for a generic z in the upper half plane is obtained by analytic continuation from ∆
′′
(ω)

on the real axis, Eq.(69). The two bright points z1 and z2 are the locations of the vortices (points

where |∆0(z)| = 0). Right panel: Plot of η0(z) in the same region.
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FIG. 23. The case n = 0. The phase of the gap function η0(z) in the upper half plane (z = ω′+iω′′)

for different γ near γ = 2. The locations of the vortices are marked by red dots. At the vortex core

∆0(z) = 0 and η0 is undefined. The number of vortices is set by m in (59). This number rapidly

increases as γ → 2.
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FIG. 24. The gap amplitude |∆0(ω)| as a function of ω for a set of γi. For each of these γi, the

gap amplitude vanishes at a particular ω, indicating that a vortex crosses the real axis on its way

from the lower to the upper frequency half-plane.

that this indeed happens for γi specified in this Figure. Once γ becomes larger than γi, m

increases by one, and δη0 increases by 2π. We extended ω to ω ± iδ and verified that the

vortex indeed moves from the lower to the upper frequency half-plane as γ increases through

γi.

The emergence of the line of dynamical vortices (dynamical in the sense that they are at

complex z) can also be analyzed within a semi-phenomenological analytical model, in which

we combine oscillating behavior of ∆0(ω) at ḡ < ω < ωcr and non-oscillating 1/ωγ form at

ω > ωcr by approximating ∆0(ω) as the sum of the two terms:

∆0(ω) = 2ω
sinφ′ coshφ′′ − i cosφ′ sinhφ′′

cosh 2φ′′ − cos 2φ′
+ Cḡ

( ḡ
ω

)γ
eiπγ/2, (83)

where φ′ and φ′ are some functions of ω. We treat C as a phenomenological parameter,

which controls the width of the range where ∆0(ω) oscillates. We assume that C scales as

some power of 2− γ and vanishes at γ = 2. The smaller C is, the larger is the width of this

range where ∆0(ω) oscillates. The precise forms of φ′(ω) and φ
′′
(ω) are not essential for this

consideration, except that φ′(ω) must be odd in ω and φ′′(ω) must be even, and KK relations

for ∆0(ω) must be satisfied with enough accuracy within the range where ∆0(ω) oscillates.

We use φ′(ω) = ω and φ′′(ω) = (2 − γ)|ω|1.5 to generate the plots in Fig.25. At large C,

∆′0(ω) and ∆
′′
0(ω) gradually decrease without changing sign (the top panel). This models the
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FIG. 25. Left panel: The plots of log |∆′0(ω)/ḡ| and log |∆′′0(ω)/ḡ|, from Eq. (83). The form of

∆0(ω) is controlled by the parameter C. At small C (which corresponds to larger γ), the gap

function oscillates, and the range of oscillations increases with decreasing C. Middle panel. The

phase η0(ω), constrained to (−π, π), for different C. The winding number increases as C decreases.

Right panel. The phase η0(z) in the upper half-plane of frequency. At large C, there are no vortices

in the upper half-plane. As C decreases , vortices appear one-by-one .

behavior of the gap function for γ ∼ 1. As C decreases, ∆′0(ω) and ∆
′′
0(ω) evolve and start

undergoing sign changes. At first, this does not give rise to phase winding (second panel

from the top). Then, at some critical C = C1 ≈ 110, there appears a point infinitesimally

close to the real axis, where ∆′0(ω) and ∆
′′
0(ω) change sign at the same frequency. Once C

becomes smaller than this value, a vortex appears in the upper frequency half-plane, and the

phase η0(ω) rapidly changes by 2π in a narrow frequency range. At a smaller C = C2 ≈ 25,

another vortex emerges on the real axis and moves to the upper frequency half-plane at

smaller C, causing another rapid change of η0(ω) by 2π (the third panel). The third vortex

emerges at C = C3 = 1.5 and so on (the lower panels).

Comparing the results for n = 0 and n = ∞ we see that in both cases a line of vortices

emerges at complex z in the first quadrant, and equal number of vortices forms in the second

quadrant. The vortices develop for γ > 1. The number of vortices increases with γ and

tends to infinity at γ → 2. In this limit, the line of vortices extends to z =∞. Comparing
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Figs. 21 and 23, we see that the phase winding along the real axis and the number of vortices

in the upper frequency half-plane for any given γ are very likely the same for n = 0 and

n =∞ A small difference in the values of γi, where the new vortices appear in the two cases,

is most probably related to the fact that the n = 0 solution is an approximate one.

C. Finite n

Given the equivalence between the number of vortices at complex z for n = 0 and n =∞

and near-equivalence of their position, we expect that the geometry of the vortices near the

real axis is determined solely by γ and is the same for all values of n.

The emergence of the array of vortices is another indication that the pairing at γ > 1,

where V ′(ω) is repulsive, is quite special. The argument for this goes as follows. Take the

set of m points, where ∆n(z) = 0, and make it infinite by adding points zi at larger z > ωcr,

for which ∆n(zi) ∝ Cn/|zi|γ. As long as ∆n(z) vanishes at |z| =∞ everywhere in the upper

half-plane, one can continue analytically from such set and obtain a unique ∆n(z) for all z.

We see that ∆n(z) is non-zero only because we extended the set of vortex points by adding

additional zi with |z| > ωcr. The implication is that ∆n(z) for all z is actually determined

by the set of complex frequencies, above the crossover scale ωcr. At γ → 2, ωcr tends to

infinity. In this limit, the set of the gap functions on the Matsubara axis is determined solely

by an essential singularity at z =∞. This obviously points out that the pairing at γ > 1 is

highly unconventional and becomes more so as γ → 2.

VI. CONCLUSIONS

In this paper we continued with our analysis of the interplay between the pairing and

the non-Fermi liquid behavior in a metal for a set of quantum-critical (QC) systems with an

effective dynamical electron-electron interaction V (Ωm) ∝ 1/|Ωm|γ, mediated by a critical

massless boson (the γ-model). In previous papers we considered the cases 0 < γ < 1

and γ ≈ 1. We argued that the pairing by a gapless boson is fundamentally different from

BCS/Eliashberg pairing by a massive boson as for QC pairing there exists an infinite discrete

set of topologically distinct solutions for the gap function ∆n(ωm) at T = 0 (n = 0, 1, 2...),

each with its own condensation energy Ec,n. Here we extended the analysis to larger 1 <
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γ < 2. We argued that the discrete spectrum of Ec,n get progressively denser as γ increases

towards 2. This increases the strength of ”longitudinal” gap fluctuations, which tend to

reduce the actual superconducting Tc compared to the onset temperature for the pairing. We

also reported two new features on the real axis, which again become critical at γ → 2. First,

the density of states evolves towards a set of discrete δ−functions. Second, on a real axis,

∆n(ω) with all n, including n = 0, oscillate between ḡ and ωcr > ḡ, and the phase of the gap

ηn(ω) varies in this range by an integer number of π. We associated this variation with the

presence of dynamical vortices in the upper half-plane of frequency, at a complex z = ω′+iω
′′
.

The vortices appear one-by-one at a discrete set of γi > 1, and the number of vortices tends

to infinity at γ → 2. We related the emergence of oscillations on the real axis and vortices at

complex z with the fact that for real ω, the interaction V ′(Ω) ∝ cos(πγ/2) = /|Ω|γ becomes

repulsive for γ > 1, and the imaginary part V ′(Ω) ∝ sin(πγ/2)/|Ω|γ gets progressively

smaller as γ → 2. We speculated that there is the emergence of an infinite number of

vortices and a continuum spectrum of Ec,n at γ → 2 are related phenomena.

The case γ = 2 requires separate consideration and will be discussed in the next paper

in the series. There we also discuss in detail longitudinal gap fluctuations.
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Appendix A: The exact form of ∆∞(ωm)

1. The Linearized gap equation

We choose the unit for frequency to be ḡ and re-write the linearized Eliashberg equation

at zero temperature in dimensionless variable ω̄ = ω/ḡ as

∆(ω̄) =
1

2

∫
dω̄′

∆(ω̄′)−∆(ω̄) ω̄
′

ω̄

|ω̄′|
1

|ω̄ − ω̄′|γ
, (A1)

To obtain ∆(ω̄), we will explore the same strategy as in Paper I, where we found the exact

solution for γ < 1. For this, we introduce S(ω̄) = sign(ω̄)
(
|ω̄| − 1

γ−1
|ω̄|1−γ + i0+

)
and

Φ̃(ω̄) = S(ω̄)
∆(ω̄)

ω̄
. (A2)

The choice of the sign of i0+ term in S(ω̄) is arbitrary. The result for ∆(ω̄) is the same for

either sign.

The gap equation in terms of Φ̃(ω̄) takes the form

Φ̃(ω̄) =
1

2

∫
dω̄′

(
Φ̃(ω̄′)

S(ω̄′)
− Φ̃(ω̄)

S(ω̄)

)
sign(ω̄′)

|ω̄ − ω̄′|γ
− ω̄ − S(ω̄)

S(ω̄)
Φ̃(ω̄). (A3)

Like for γ < 1, we introduce complete and orthogonal basis, specified by

Φβ(Ω) =
|Ω|−2iβ+δΩ

|Ω|γ/2
, (A4)

where β ∈ [−∞,∞] and δΩ = δsign(1− |Ω|). The functions Φβ(Ω) satisfy the orthogonality

and completeness relations∫ ∞
−∞

Φ∗β(ω)Φβ(Ω)
dβ

2π
=

1

2
|Ω|1−γδ(|Ω|−|ω|). (A5)∫ ∞

−∞
Φ∗β(ω)Φβ′(ω)

dω

|ω|1−γ
= 2πδ(β − β′). (A6)

The function Φ̃(ω̄) is expressed via Φβ(Ω) as

Φ̃(ω̄) =

∫ ∞
−∞

dβ

2π
aβΦβ(ω̄), (A7)

where

aβ =

∫
dω̄

|ω̄|1−γ
Φ∗β(ω̄)Φ̃(ω̄). (A8)
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Multiplying both sides of Eq. A3 by Φ∗β(ω̄) and integrating over dω̄/|ω̄|1−γ, we obtain the

integral equation on aβ in the form

aβ =
1

2

∫ ∞
−∞

dβ′

2π
Aβ,β′aβ′ −

∫ ∞
−∞

dβ′

2π
Bβ,β′aβ′ (A9)

where

Aββ′ =

∫
dω̄

|ω̄|1−γ

∫
dω̄′
(

Φβ′(ω̄
′)

S(ω̄′)
− Φβ′(ω̄)

S(ω̄)

)
sign(ω̄′)

|ω̄ − ω̄′|γ
Φ∗β(ω̄) (A10)

Bβ,β′ =

∫
dω̄

|ω̄|1−γ
ω̄ − S(ω̄)

S(ω̄)
Φβ′(ω̄)Φ∗β(ω̄) (A11)

One can verify that Aββ′ = (γ − 1)Bββ′Fβ, where

Fβ =

∫ ∞
−∞

dx
1

|x− 1|γ
(
|x|2iβ+γ/2−1 − sign(x)

)
=

2

γ − 1
(1− εβ) , (A12)

and

εβ =
1− γ

2

Γ (γ/2− 2iβ) Γ (γ/2 + 2iβ)

Γ(γ)

(
1 +

cosh(2πβ)

cos(πγ/2)

)
. (A13)

Evaluating the integral for Bββ′ , we obtain (P
∫

means Principal Value)

Bββ′ =
2

γ − 1
P

∫ ∞
0

dω̄

ω̄

ω̄2i(β−β′)+δω̄

(γ − 1)ω̄γ − i0+
(A14)

=
2iπ

γ

e−2π(β−β′)/γ−2i(β−β′)/γ log(γ−1)

sinh(2π(β − β′)/γ − i0+)
, (A15)

The convergence factor δω̄ in the first line in (A14) is only relevant at small ω̄, where it is

positive. Substituting Aββ′ and Bββ′ into the integral equation on aβ, we obtain

aβ = −2iπεβ
γ

∫
dβ′

2π

e−2π(β−β′)/γ−2i(β−β′)/γ log(γ−1)

sinh(2π(β − β′)/γ − i0+)
aβ′ . (A16)

It is convenient to change the variables to β = γk/2, aβ = e−πk−ik log(γ−1)εγk/2b̃k. The gap

equation then takes the form

b̃k =
i

2

∫
εk′γ/2

sinh(π(k′ − k) + i0+)
b̃k′dk

′, (A17)

Once we know b̃k, one can compute Φ̃(ω) and the gap function ∆(ω) using Eqs. (A7) and

(A2).
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2. Solution of the gap equation

Let’s define the function Bz of a complex argument z as

Bz =
i

2

∫
εk′γ/2

sinh(π(k′ − z))
bk′dk

′. (A18)

For real k, b̃k = Bk−i0+ The function Bz satisfies the periodicity condition

Bz+in = (−1)nBz, (A19)

where n integer, and has branch cuts at z = x+ in, where x is real. In particular, for n = 0,

Bk+i0+ =
(
1− εkγ/2

)
Bk−i0+ . (A20)

We now take the logarithm of both sides of (A20). For γ > 1, the function εkγ/2 increases

monotonically with |k|, and εkγ/2 = 1 at k = kγ = ±β. Using this, we obtain

logBk+in+i0+ − logBk+in−i0+ = log|1− εkγ/2|+ iπχnΘ(k − β) + iπξnΘ(−k − β). (A21)

Here χn, ξn = ±1 are two parameters, which reflect the ambiguity of evaluating log (1− εkγ/2)

for |k| > β due to a discontinuity of a logarithm across its branch cut. Because of the

periodicity condition (A19), the l.h.s. of (A21) is independent to n, hence χn ≡ χ and

ξn ≡ ξ are just two numbers, each is either +1 or −1. Using the Sokhotski-Plemelj theorem,

we can then re-express (A21) as

logBk =
1

2i

∫ ∞
−∞

log|1− εkγ/2| coth (π(k′ − k)) dk′ +
πχ

2

∫ ∞
β

coth (π(k′ − k)) dk′

+
πξ

2

∫ −β
−∞

coth (π(k′ − k)) dk′ +Gk, (A22)

where Gk is an analytic function, which satisfies the periodicity relation

Gk+in = Gk + (2l + 1)inπ, l, n ∈ Z. (A23)

The last condition uniquely specifies Gk = c+ (2l + 1)πk, where c is a constant. The latter

is irrelevant as one can easily verify that it only contributes to an irrelevant overall factor

in ∆∞(ω̄). Using (A23) and absorbing the divergent piece into c, we obtain from (A22):

b̃k = Bk−i0+ = exp

[
1

2i

∫ ∞
−∞

log|1− εkγ/2| coth
[
π(k′ − k + i0+)

]
dk′

−χ
2

log
sinh[π(kγ − k + i0+)]

sinh(πkγ)
+
ξ

2
log

sinh[π(kγ + k − i0+)]

sinh(πkγ)

+(2l + 1− χ+ ξ

2
)πk

]
. (A24)

48



This b̃k depends on three parameters: χ, ξ = ±1 and l ∈ Z. Below we select χ, ξ, and l

based on the two conditions: (1) the integrand in the r.h.s. of the gap equation (A17) must

be convergent; (2) bk must give rise to a gap function ∆(ω̄), which vanishes at ω̄ →∞. The

first condition puts the following constraints:

• If χ = ξ = 1, then l = 0.

• If χ = ξ = −1, then l = −1.

• If χ = −ξ = 1, then l = 0,−1.

• If χ = −ξ = −1, there is no solution for l.

We verified that the second condition is satisfied only if χ = −ξ = 1 and l = 0,−1. The

dependence on l in (A23), and the difference between the two choices for l is an irrelevant

overall factor for ∆(ω̄). We then concludes that the two conditions uniquely specify b̃k.

Substituting these χ, ξ, and 2l + 1 into (A23) and re-expressing the result back in terms

of bk = e−πk−ik log(γ−1)b̃k, we obtain

bk = exp [−ik log(γ − 1)] exp

[
1

2i

∫ ∞
−∞

log|1− εk′γ/2| coth[π(k′ − k + i0+)]dk′

−1

2
log

sinh[π(kγ − k + i0+)]

sinh[πkγ]
− 1

2
log

sinh[π(kγ + k − i0+)]

sinh[πkγ]

]
. (A25)

3. Computation of ∆∞(ω)

We now substitute this bk into Eq. (A7) and compute Φ̃(ω) and the gap function ∆(ω)

using Eq. (A2). It is convenient to introduce y ≡|ω̄|γ. In terms of y, we obtain

∆∞(y) = y1/2

∫ ∞
−∞

dkbke
−ik log y. (A26)

The y1/2 in the prefactor can be eliminated by shifting the integration contour away from

the real axis, to k − i/2. This is a safe procedure because bk is analytic within the interval

−1 < Im(k) < 0. Shifting the integration, we obtain the final expression

∆∞(y) =

∫ ∞
−∞

dkbke
−ik log y, (A27)

where

bk =
e−iIk−ik log(γ−1)√

cosh(π(k − β)) cosh(π(k + β))
(A28)
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and

Ik =
1

2

∫ ∞
−∞

dk′ log |εk′ − 1| tanhπ(k′ − k). (A29)

4. Series expansion for ∆∞(y)

The function Ik can be expressed as an infinite product of the Gamma-functions (see

Paper I for details). For bk, this yields, up to an overall factor,

bk =
Γ(1− ik)

Γ(1 + ik)
Γ

(
1

2
+ i(k + β)

)
Γ

(
1

2
+ i(k − β)

) ∞∏
m=1

Γ
(

1
2

+ i(k − iβm)
)

Γ
(

1 + 2m
γ
− ik

)
Γ
(

1
2
− i(k + iβm)

)
Γ
(

1 + 2m
γ

+ ik
)

(A30)

Here βm > 0 are the solutions of εiβm = 1 for imaginary argument. There is an infinite set of

such βm, specified by integer m = 0, 1, 2.. and located at 1/2+2m/γ < bm < 1/2+2(m+1)/γ

(see Fig. 3 (b) in the main text).

The integral in (A27) can be evaluated by closing the integration contour along an infinite

arc in the complex plane of frequency. For y < 1, i.e., ωm < ḡ, the arc must be in the upper

half-plane, and for y > 1, i.e., ωm > ḡ, in the lower half-plane. Viewed as a function of

complex k, bk has poles from individual Γ-functions in the upper frequency half-plane at

k = ±β + i(n + 1/2), where n = 0, 1, 2.. and at k = iβm + i(n + 1/2), and in the lower

half-plane, at k = −i(n+1) and k = −i(1+2m/γ+n), where n = 0, 1, 2, ... and m = 1, 2, ....

a. y < 1

For y < 1, relevant poles are at k = ±β + i(n + 1/2) and at k = iβm + i(n + 1/2). This

yields series expansion for ∆∞(y) in the form

∆∞(y) = Re
∞∑
n=0

ei(β log y+φ)C<
n yn+1/2 +

∞∑
n,m=0

D<
n,my

n+bm/γ+1/2 (A31)

We cited this result in Eq. (13) in the main text. Here φ is some particular, γ−dependent

number, and C<
n and D<

n,m are γ-dependent coefficients. The leading term in (A31) at small

y is

∆∞(y) = y1/2C<
n cos (β log y + φ) (A32)

The first subleading term scales as y3/2 for γ ≤ 1.81, where β0/γ > 1, and as y1/2+β0/γ for

γ closer to 2, where β0/γ < 1. We verified this explicitly by subtracting the leading term,

50



(a) (b)

FIG. 26. The expansion of the exact ∆∞(ωm) in powers of ωm. The leading term at small ωm

is ∆lead
∞ |ωm|γ/2 cos (βγ log |ωm|/ḡ + φ). The subleading terms form series of local and non-local

terms. Local series hold in powers of |ωm|nγ (n = 1, 2...), and all terms in these series oscillate,

like the leading term. The non-local terms do not oscillate and form series in |ωm|(n
′+βm)γ , where

n′ = (0, 1, 2..) and βm (m = 0, 1, 2..) are some γ−dependent numbers. We show |∆∞ −∆lead
∞ | for

γ = 1.01 and γ = 1.99. An analytical analysis shows that in the first case, β0 > 1, such that

the leading correction comes from the local series and oscillates. For γ = 1.99, β0 ' 0.9 < 1. In

this case the leading correction comes from non-local series and does not oscillate. The numerical

evaluation of |∆∞ −∆lead
∞ | shown here, confirms these results.

given by (A32), from the exact solution and identifying the leading term in the leftover (see

Fig. 26).

In the direct perturbation expansion in y, the series in yn (the first term in (A31)) come

from fermions with internal y′ ∼ y and form the ”local” series. The second term in (A31))

is a sum of contributions from fermions with y′ = O(1), which for y � 1 can we regarded

as ”non-local”. We can then express ∆∞(y) = ∆∞,L(y) + ∆∞,NL(y), where

∆∞,L(y) = Re
∞∑
n=0

ei(β log y+φ)C<
n yn+1/2 (A33)

∆∞,NL(y) =
∞∑

n,m=0

D<
n,my

n+bm/γ+1/2 (A34)

The coefficients C<
n in (A33) can be obtained analytically, as we already found in Papers I
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and III for γ < 1. The computations for γ > 1 are similar, and we only present the result.

We obtained

C<
n = C<

0

n∏
m=1

1

Īm
, (A35)

Īm =
1

2

[
Γ((m+ 1/2)γ + iβγ)Γ((1/2−m)γ − iβγ)

Γ(γ)
− Γ(γ(1/2 + iβ))Γ(γ(1/2− iβ))

Γ(γ)

]
+

Γ(1− γ)

2

(
Γ((m+ 1/2)γ + iβγ)

Γ(1− (1/2−m)γ + iβγ)
+

Γ((1/2−m)γ − iβγ)

Γ(1− (m+ 1/2)γ − iβγ)

)
−Γ(1− γ)

2

(
Γ(γ(1/2 + iβ))

Γ(1− γ(1/2− iβ))
+

Γ(γ(1/2− iβ))

Γ(1− γ(1/2 + iβ))

)
(A36)

Using the expansion for Γ-functions, one can verify that at large m, Īm ∼ mγ−1, i.e., C<
n ∼

1/nn(γ−1). Interestingly, the sum in (A33) then converges for any y and can be obtained

numerically by summing up the proper number of terms in (A33). We show the results for

∆∞,L(y) for different γ in Fig. (27), extending also into the range y > 1. At γ ≤ 2, one can

expand the Γ functions in (A36) in 2− γ. For Īm we then obtain, to first order in 2− γ,

Īm =
im

β
(1 + iQ(2− γ)(m+ 1)) (A37)

where Q ≈ 0.7. This holds for Q(2− γ)m < 1. For larger m, Q(2− γ)m becomes sin(Q(2−

γ)m). Substituting Īm from (A37) into (A35), evaluating the product to first order in (2−γ),

and substituting the result into (A33), we obtain, to the same accuracy,

∆∞,L(y) ∝ √ye−2Q(2−γ)βy cos (β(log y − y)−Q(2− γ)(yβ)2/2) + φ) (A38)

The expression becomes particularly simple for γ = 2, where

∆∞,L(y) ∝ √y cos (β(log y − y) + φ) (A39)

b. y > 1

For y > 1, relevant poles are in the lower half-plane, at k = −i(n + 1) and k = −i(n +

1 + 2m/γ). This yields the expansion for ∆∞(y) in powers of 1/y in the form

∆∞(y) =
∞∑
n=0

C>
n

(
1

y

)n+1

+
∞∑

n,m=0

D>
n,m

(
1

y

)n+1+2(m+1)/γ

(A40)

We cited this result in Eq. (14) in the main text. The leading term in the series is 1/y, i.e.,

at ωm � ḡ, ∆∞(ω) ∝ 1/|ω|γ. The exact ∆∞(ω) clearly shows this behavior (see Fig. 4)
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FIG. 27. Panels (a)-(g). The gap function ∆∞,L(y) as a function of y = (|ωm|/ḡ)γ for various γ.

At y < 1, ∆∞,L(y) oscillates for all γ with the period set by log y. As γ increases towards 2, the

new oscillating regime emerges if one extends ∆∞,L(y) to y > 1. In this new regime the period of

oscillations is set by y. (h) The analytical form of ∆∞,L(y) at γ → 2. (i) The approximately linear

dependence of the upper boundary for new oscillations, y∗, on 2− γ.

Eq. (A40) is formally the same as the series expansion result for γ < 1, however the

coefficients C>
n and D>

n,m depend on γ. We now argue that this dependence is qualitatively

different for γ < 1 and γ > 1. Namely, we argue below that for γ > 1, there is a universal

piece in ∆∞(y) at large y, which does not fit into the power-law series in (A40). We obtain

this piece by analyzing the form of bk in Eq. (A27) and evaluating the integral over k

directly, without closing the itegation contour in the complex plane of k. While we didn’t

compute C>
n and D>

n,m explicitly, the presence of a piece that does not fit into power-law

series implies that the series expansion in (A40) does not converge at γ > 1 (e.g., the

coefficients C>
n grow fast enough with n and eventually overcome the smallness of 1/yn)

and would yields incorrect results, starting from some critical n, which depends on y. In
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Paper V, where we specifically focus on γ = 2, we show explicitly that this is the case and

determine a critical n.

Below we focus on the universal, non-power-law term in ∆∞(y). We show that this term

is present at γ > 1, because the complex phase of the integrand in Eq. (A27) has an extreme

at k = k∗ ∼ y1/(γ−1). The universal contribution then comes from the expansion of the

integrand around k = k∗. There is no such extreme for γ < 1.

To identify the universal term, we consider large y and analyze the contribution to the

integral in (A27) from k above some kmin = O(1). We label the corresponding term as

∆u
∞(y). In explicit form,

∆∞;u(y) =

∫ ∞
kmin

dk
cos (Ik + k log y(γ − 1))

(cosh [π(k − β)] cosh [π(k + β)])1/2
. (A41)

For large k, the integral, which determines Ik in Eq. (A29), is determined by k′ ∼ k. This

integral contains εγk′/2. For γ > 1, εγk′/2 is an increasing function of k′ and its leading term

at large k′ is εγk′/2 ' (γ− 1)(Aγk
′)γ−1, where Aγ = γ

(
π

2Γ(γ) cos(π(2−γ)/2)

)1/(γ−1)

. Substituting

this form into Eq. (A29), we obtain

I(k) + log [y(γ − 1)] ' (γ − 1)k ln
ye

Aγk
, (A42)

Substituting this form into (A41), we find that the argument of the integrand has a maxi-

mum at

k∗ = y
1

γ−1A−1
γ . (A43)

Expanding I(k) + k log [y(γ − 1)] to quadratic order in u = k/k∗ − 1, as

I(k) + k log [y(γ − 1)] ≈ (γ − 1)k∗

(
1− 1

2
u2

)
, (A44)

substituting into (A41), and approximating the denominator in (A41) by its large k value,

we obtain

∆u
∞(y) ∼

√
k∗e
−πk∗Re

[
e
−i(γ−1)k∗

(
1− π2

(γ−1)2

) ∫ ∞
−[k∗(γ−1)/2]1/2[1−iπ/(γ−1)]

dũeiũ
2

]
. (A45)

where ũ = u((γ − 1)k∗/2)1/2. The universal part of this expression is obtained by taking

the lower limit to −∞, in which case
∫∞
−∞ e

iũ2
=
√
πeiπ/4. Substituting into (A45) and
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expressing k∗ in terms of |ωm|/ḡ, we obtain for the universal term

∆u
∞(ωm) ∼

(
|ωm|
ḡ

) γ
2(γ−1)

exp

[
− π

Aγ

(
|ωm|
ḡ

) γ
γ−1

]

cos

[
γ − 1

Aγ

(
1− π2

(γ − 1)2

)(
|ωm|
ḡ

) γ
γ−1

− π

4

]
. (A46)

Working along the same lines, but extending the analysis to include the subleading terms

at large k, we obtain ∆u
∞(ωm) with a more accurate argument of the cos:

∆u
∞(ωm) ∼

(
|ωm|
ḡ

) γ
2(γ−1)

exp

(
− π

Aγ

(
|ωm|
ḡ

) γ
γ−1

)
cos Ψm(ωm/ḡ) (A47)

where

Ψm(x) =
γ − 1

Aγ

[
1− 1

2

(
π

γ − 1

)2
]
x

γ
γ−1 +

π2

2(γ − 1)Aγ
x
γ(2−γ)
γ−1 +

x
γ(2−γ)
γ−1 − 1

2− γ
A1−γ
γ − π

4
. (A48)

At γ → 2, Ψ(x) acquires a simple form Ψ(x) = (x2(1− π2/2) + log x2)/π + π/4.

5. Analytical continuation

The gap function given by (A27) can be analytically continued away from the Matsubara

axis by a simple rotation of the argument: iωm → z = |z|eiψ. Under this transformation,

log y in (A27) transforms into log yz − iθ, where yz = (|z|/ḡ)γ and θ = (π/2−ψ)γ. The gap

function transforms to

∆∞(z) =

∫ ∞
−∞

dk
e−θke−iIk−ik log yz√

cosh(π(k − β)) cosh(π(k + β))
. (A49)

Applying this transformation, we extend (A48) to

∆u
∞(z) ∼

(
|ωm|
ḡ

) γ
2(γ−1)

(Q(θ, |z|) +Q(−θ, |z|)) (A50)

where

Q(θ, |z|) = exp

(
−π − θ

Aγ

(
|z|
ḡ

) γ
γ−1

)
eiΨ(|z|/ḡ,θ) (A51)

and

Ψ(x, θ) =
γ − 1

Aγ

(
1− 1

2

(
π − θ
γ − 1

)2
)
x

γ
γ−1 +

(π − θ)2

2(γ − 1)Aγ
x
γ(2−γ)
γ−1 +

x
γ(2−γ)
γ−1 − 1

2− γ
A1−γ
γ (A52)
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The largest value of θ is on the real axis, where ψ = 0 and θ = πγ/2. Here, Q(θ, |z|) �

Q(−θ, |z|). Keeping only Q(θ, |z|), we obtain on the real axis,

∆u
∞(ω) ∼

(
|ω|
ḡ

) γ
2(γ−1)

exp

(
−π(2− γ)

2Aγ

(
|ω|
ḡ

) γ
γ−1

)
eiΨr(|ω|/ḡ) (A53)

where

Ψr(x) =
γ − 1

Aγ

(
1− π2(2− γ)2

8(γ − 1)2

)
x

γ
γ−1 +

π2(2− γ)2

8(γ − 1)Aγ
x
γ(2−γ)
γ−1 +

x
γ(2−γ)
γ−1 − 1

2− γ
A1−γ
γ (A54)

Comparing this oscillating ∆u
∞(ω) with the regular term on the real axis eiπγ/2(ḡ/|ω|)γ,

we see that for γ ≤ 2, the oscillating term is larger in a range ḡ < |ω| < ωcr, where

ωcr ∼ ḡ/(2− γ)1/2 has been defined in (49).

At γ → 2, ωcr diverges and ∆u
∞(ω) from (A53) remains the dominant term in ∆∞(ω) at

all ω > ḡ. In this limit, ∆u
∞(ω) = ∆∞(ω) simplifies to

∆∞(ω) ∼ |ω|
ḡ

exp

{
i

π

[(
ω

ḡ

)2

+ log

(
ω

ḡ

)2
]}

. (A55)
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