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Square skyrmion crystal in centrosymmetric itinerant magnets

Satoru Hayami and Yukitoshi Motome
Department of Applied Physics, the University of Tokyo, Tokyo 113-8656, Japan

We theoretically investigate the origin of the square-type skyrmion crystal in centrosymmetric itinerant mag-

nets, motivated from the recent experimental finding in GdRu2Si2 [N. D. Khanh et al., Nat. Nanotech. 15, 444

(2020)]. By simulated annealing for an effective spin model derived from the Kondo lattice model on a square

lattice, we find that a square skyrmion crystal composed of a superposition of two spin helices is stabilized

in a magnetic field by synergy between the positive biquadratic, bond-dependent anisotropic, and easy-axis

anisotropic interactions. This is in stark contrast to triangular skyrmion crystals which are stabilized by only

one of the three, suggesting that the square skyrmion crystal is characteristic of itinerant magnets with magnetic

anisotropy. We also show that a variety of noncollinear and noncoplanar spin textures appear depending on the

model parameters as well as the applied magnetic field. The present systematic study will be useful not only

for identifying the key ingredients in GdRu2Si2 but also for exploring further skyrmion-hosting materials in

centrosymmetric itinerant magnets.

I. INTRODUCTION

A magnetic skyrmion has attracted great interest owing to

rich physics emerging from its topological spin texture1–7. For

example, a periodic arrangement of the skyrmions, which is

referred to as the skyrmion crystal (SkX), gives rise to a gi-

ant topological Hall effect8–10, Nernst effect11,12, and non-

reciprocal transport13,14 through the spin Berry phase mech-

anism15–17. The topological robustness and unconventional

transport properties may provide potential applications to

next-generation magnetic memory and logic computing de-

vices in spintronics7,18,19. While many materials have been

found to host the skyrmions thus far, they have been mostly

limited to the materials with noncentrosymmetric lattice struc-

tures and strong spin-orbit coupling. In fact, the SkXs were

observed in chiral and polar magnets20–29 where the spin-

orbit coupling generates the Dzyaloshinskii-Moriya interac-

tion30,31.

Recently, several SkXs exhibiting the giant topological Hall

and Nernst effects were discovered also in centrosymmet-

ric f -electron compounds, such as triangular-type SkXs in

Gd2PdSi3
32–34 and Gd3Ru4Al12

35, and a square-type SkX

in GdRu2Si2
36,37. Due to the centrosymmetric lattice struc-

tures, their origin might be attributed to magnetic frustra-

tion38–42 or effective magnetic interactions arising from the

spin-charge coupling between conduction and localized elec-

trons43–47 rather than the DM interaction. In particular,

GdRu2Si2 can be a prototype for the SkX originating from the

spin-charge coupling, since the crystal structure is tetragonal

that is free from geometrical frustration. Although the origin

was speculated to be four-spin interactions mediated by itiner-

ant electrons in the presence of easy-axis anisotropy36, it has

not been fully clarified yet from the microscopic point of view.

In the present study, we theoretically examine an instability

toward the square SkX on a centrosymmetric tetragonal lattice

in itinerant magnets. By performing simulated annealing for

an effective spin model which incorporates the itinerant nature

of electrons, we show that the square SkX is stabilized by the

interplay among the four-spin biquadratic interaction, bond-

dependent anisotropic interaction, and easy-axis anisotropic

interaction in a magnetic field. The SkX is a double-Q state

composed of a superposition of two spin helices, similar to

the one observed in GdRu2Si2
36. We find that the SkX ex-

hibits a larger scalar spin chirality, which leads to a stronger

topological Hall response, for a larger biquadratic interaction

and smaller bond-dependent anisotropy. Besides the square

SkX, we find several noncollinear and noncoplanar spin states

depending on the model parameters. In particular, different

types of double-Q states, which appear next to the square SkX

upon increasing or decreasing the magnetic field, well explain

the experimental results in GdRu2Si2
36,37. We also discuss

the stability of the square SkX in comparison with that of

triangular SkXs; the interplay among the biquadratic, bond-

dependent, and easy-axis anisotropic interactions plays an im-

portant role in the square SkX, whereas only one of them can

stabilize the triangular ones. Our systematic analyses would

be a reference to further exploration of skyrmion-hosting ma-

terials in centrosymmetric itinerant magnets.

The rest of the paper is organized as follows. In Sec. II, we

introduce the effective spin model with the biquadratic and

anisotropic interactions, and the numerical method to investi-

gate the ground state. We discuss the magnetic phase diagram

at zero field in Sec. III. In Sec. IV, we show the results in a

magnetic field and identify the key ingredients for the square

SkX. We discuss the results in comparison with the experi-

ments for GdRu2Si2 in Sec. V. We also compare the stability

of the square SkX with the triangular one. Section VI is de-

voted to the summary. In Appendix A, we show the effect of

the magnetic field on the double-Q state which is not focused

on in the main text.

II. MODEL AND METHOD

We consider an effective spin model on the basis of the

Kondo lattice model consisting of itinerant electrons and lo-

calized spins37,46,48–50, whose Hamiltonian is given by

H =2
∑

q

(

−Jλq +
K

N
λ2
q

)

−H
∑

i

Sz
i , (1)



2

with

λq =
∑

αβ

Γαβ
q Sα

q S
β
−q, (2)

where the localized spins Si at site i form a square lattice with

the number of spins N . We regard Si as a classical spin with

a fixed length |Si| = 1 for simplicity. Sq is the Fourier trans-

form of Si. The first term in Eq. (1) consists of the bilinear

and biquadratic interactions in momentum (q) space, whose

coupling constants are represented by J and K , respectively.

Γαβ
q in Eq. (2) is a q-dependent dimensionless form factor to

represent the magnetic anisotropy that satisfies the fourfold

rotational symmetry of the square lattice37. The second term

in Eq. (1) represents the Zeeman coupling to an external mag-

netic field H along the z direction.

The effective spin model with the momentum-space inter-

actions is obtained from the Kondo lattice model by using the

perturbation expansion in terms of the spin-charge coupling

between itinerant electrons and localized spins44–46,51. The bi-

linear term is derived from the lowest-order expansion, which

is referred to as the Ruderman-Kittel-Kasuya-Yosida (RKKY)

interaction52–54. Meanwhile, the biquadratic term is one of the

second lowest-order contributions, which plays a crucial role

in stabilizing noncoplanar spin textures composed of super-

positions of multiple helices46. The other contributions are

ignored by assuming distinct peak structures of the bare sus-

ceptibility46. The coupling constants J and K depend on the

electronic state of the itinerant electrons, such as the band fill-

ing and hopping parameters. We regard them as independent

parameters in the following calculations, and take J = 1 as

an energy unit and K > 0.

In order to investigate the magnetic phase diagram in the

model in Eq. (1), we simplify the interaction term by focus-

ing on the situation where the magnetic bare susceptibility of

the itinerant electrons shows maxima at Q1 = (Q, 0) and

Q2 = (0, Q), which are compatible with the fourfold rota-

tional symmetry. We take Q = π/3 without loss of generality.

In other words, we ignore the contributions from the interac-

tions except for Q1 and Q2. Then, only the form factors at

Q1 and Q2, ΓQ1
and ΓQ2

, are taken into account, which are

given by

ΓQ1
=





Γiso − IBA 0 0
0 Γiso + IBA 0
0 0 Γiso + Iz



 ,

ΓQ2
=





Γiso + IBA 0 0
0 Γiso − IBA 0
0 0 Γiso + Iz



 . (3)

Here, Γiso represents the isotropic form factor; we take Γiso =
1. Meanwhile, IBA and Iz represent the anisotropic form fac-

tors which are taken to be invariant under the fourfold rota-

tional operation. These anisotropic interactions arise from the

spin-orbit coupling under the crystalline electric field48,55,56.

Their magnitudes and signs depend on the detailed electronic

band structures. Hereafter, we mainly focus on the easy-axis

anisotropic case with Iz = 0.2 unless otherwise noted, since it

is well known that the easy-axis anisotropy favors the SkX in

centrosymmetric magnets39–41,49,57. We also focus on the case

with IBA > 0, since qualitatively similar results are obtained

for IBA < 0 by exchanging the x and y spin components.

The magnetic phase diagram of the model in Eq. (1) is ob-

tained for the system size with N = 962 by carrying out

simulated annealing in the following procedures. First, we

start from a random spin configuration from high temperature

T0 = 1.0-10.0. Then, we reduce the temperature with the rate

Tn+1 = αTn, where Tn is the temperature in the nth step

and α = 0.99995-0.99999. At each temperature, we perform

the standard Metropolis local updates in real space. The final

temperature, which is typically taken at T = 0.01, is reached

by spending totally 105-106 Monte Carlo sweeps. Finally, we

perform 105-106 Monte Carlo sweeps for measurements at the

final temperature, after 105-106 steps for thermalization. We

also start the simulations from the spin patterns obtained at

low temperatures to determine the phase boundaries between

different magnetic states.

In order to identify each magnetic phase, we examine the

spin and chirality configurations in the obtained states. The

spin structure factor is given by

Sα
s (q) =

1

N

∑

j,l

Sα
j S

α
l e

iq·(rj−rl), (4)

with α = x, y, z. For the in-plane component, we use the

notation

Sxy
s (q) = Sx

s (q) + Sy
s (q). (5)

We also introduce the magnetic moments at q component as

mα
q =

√

Sα
s (q)

N
. (6)

In order to distinguish the in-plane components parallel and

perpendicular to Q1 and Q2, we use local coordinate frames

for the Q1 and Q2 components as

mQη
= (m

‖
Qη

,m⊥
Qη

,mz
Qη

), (7)

for η = 1 and 2, where m
‖
Qη

and m⊥
Qη

are the in-plane paral-

lel and perpendicular components, respectively. We also com-

pute the net magnetization along the z direction

m0 =
1

N

∑

i

Sz
i . (8)

On the other hand, the scalar chirality χ0 is evaluated by

χ0 =

[

1

N

∑

i,δ=±1

Si · (Si+δx̂ × Si+δŷ)

]2

, (9)

where x̂ (ŷ) is the unit vector in the x (y) direction20. This

quantity signals noncoplanarity of the spin structure. To dis-

tinguish the topology of each magnetic state, we also compute

the skyrmion number defined by58

nsk =
1

2πNm

∑

i,δ=±1

tan−1 Si · (Sj × Sk)

1 + Si · Sj + Sj · Sk + Sk · Si

,

(10)
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FIG. 1. (a) Magnetic phase diagram at zero magnetic field for Iz =
0.2 obtained by the simulated annealing down to T = 0.01. 2Q-I

and 2Q-II stand for two different double-Q states, while 1Q is for

the single-Q state. The hatched area shows the parameter region

where the system undergoes a phase transition to a double-Q state

with nonzero scalar chirality in an applied magnetic field, which is

deduced to realize the SkX in the ground state. (b) Contour plot of

the maximum value of χ0 while varying H . The gray lines are the

phase boundaries in (a).

where Nm is the number of magnetic unit cell in the system,

and j = i+δx̂ and k = i+δŷ; the range of the arctangent is set

as [−π, π). nsk is quantized at a nonzero value for topological

spin textures, whereas χ0 is not.

III. ZERO-FIELD PHASE DIAGRAM

First, we discuss the result in the absence of the magnetic

field, H = 0. Figure 1(a) shows the magnetic phase diagram

while varying IBA and K at Iz = 0.2 obtained by the sim-

ulated annealing down to T = 0.01. There are three mag-

netic phases, whose spin configurations in real space and the

spin structure factors in momentum space are shown in Fig. 2.

Note that each state is energetically degenerate with the one

obtained by 90◦ degree rotation in the xy plane because of the

fourfold rotational symmetry of the system. The three mag-

netic states do not have a net scalar chirality χ0.

In the region for small IBA and K , the single-Q (1Q) state

is stabilized. At IBA = 0, the 1Q state is characterized by

an elliptical spiral in either the xz or yz plane. Reflecting

the easy-axis anisotropy by Iz , the z component of the spin

structure factor is larger than the xy component. A nonzero

IBA sets the spiral plane perpendicular to the ordering vector,

i.e., the xz (yz) plane for the ordering vector Q2 (Q1); the

state with Q2 is shown in Fig. 2(a). Thus, the 1Q state has an

elliptical proper-screw spiral.

For larger IBA and K , two types of the double-Q (2Q) state

are realized. The 2Q-I state occupies the largest portion of the

phase diagram, adjacent to the 1Q state upon increasing IBA

andK in Fig. 1(a). The xy spin component is characterized by

the double-Q peaks with different intensities, while the z spin

component is characterized by the single-Q peak, as shown

in the right two panels in Fig. 2(b). The real-space spin con-

figuration in the left panel in Fig. 2(b) indicates that the spin

texture in the 2Q-I state is represented by a superposition of

the proper-screw spiral along the Q2 direction and the sinu-

soidal wave along the Q1 direction. The double-Q structure

in the xy spin component leads to a periodic array of vortices.

Although this state does not have a net scalar chirality, it ex-

hibits the chirality density wave along the Q1 direction59–61.

For large K and small IBA, the other double-Q state de-

noted as 2Q-II appears in the phase diagram in Fig. 1(a). In

this state, both xy and z components of the spin structure fac-

tor exhibit the single-Q peak at Q2 and Q1, respectively, as

shown in Fig. 2(c). From the real-space spin structure, the

spin pattern is represented by a superposition of the sinusoidal

wave along the Q1 direction in the z-spin component and the

cycloidal spiral along the Q2 direction in the xy-spin compo-

nent. This state also exhibits the chirality density wave along

the Q1 direction59–61.

IV. SKYRMION CRYSTAL IN A FIELD

Next, we discuss the result in the presence of the magnetic

field H . From the results obtained by the simulated annealing

down to T = 0.01, we find that the system undergoes a phase

transition to a double-Q state with nonzero scalar chirality χ0

under the magnetic field in the hatched area in Fig. 1(a). The

maximum value ofχ0 in the field is plotted in Fig. 1(b). As de-

tailed later, the field-induced double-Q state is deduced to re-

alize a square-type SkX in the ground state. The region spans

both 2Q-I and 2Q-II states; we could not find the instability

toward the SkX in the 1Q region.

In the following, we discuss the detailed changes of the spin

textures for the magnetic field mainly in this region. Inter-

estingly, the region is drastically extended down to the small
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FIG. 2. (Left) Snapshots of the spin configurations in (a) the 1Q state for K = 0.025 and IBA = 0.1, (b) the 2Q-I state for K = 0.15 and

IBA = 0.2, and (c) the 2Q-II state for K = 0.5 and IBA = 0.04. The arrows and the contour show the xy and z components of the spin

moment, respectively. (Middle and right) The square root of the xy and z components of the spin structure factor, respectively. The black solid

squares represent the first Brillouin zone.

K region by introducing IBA; it is limited to K & 0.58 at

IBA = 0 (not shown), whereas the boundary comes down

to K ≃ 0.07 for IBA ≃ 0.05. This indicates the impor-

tance of the bond-dependent anisotropic interaction IBA for

the stabilization of the square SkX. We show the result while

changing IBA in Sec. IV A. Then, we discuss the effects of

the biquadratic interaction K in Sec. IV B and the easy-axis

anisotropic interaction Iz in Sec. IV C. In these sections, we

mainly focus on the region where the 2Q-I state is stable at

zero field, which appears to be relevant to the experiment in

GdRu2Si2 as discussed in Sec. V A; the 2Q-II region with

smaller IBA and larger K is discussed in Appendix A.
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FIG. 3. H dependence of (a) m0 and (b) χ0 for IBA = 0, 0.1, 0.2,

and 0.3 at K = 0.2 and Iz = 0.2.

A. Effect of bond-dependent anisotropic interaction

Figures 3 and 4 show the magnetic field dependence of the

spin- and chirality-related quantities for several values of IBA

at K = 0.2 and Iz = 0.2. In the simulations, as in the

case of zero field, energetically-degenerate magnetic states

are obtained from different initial configurations owing to the

fourfold rotational symmetry; e.g., the single-Q state with

mQ1
6= 0 is equivalent to that with mQ2

6= 0. For better

readability, we show the spin texture in each ordered state by

appropriately sorting (mQν
)2 in Fig. 4 and hereafter.

At IBA = 0, where the 2Q-II state is stabilized at H = 0,

the dominant (mz
Q2

)2 is suppressed and the subdominant

(m
‖
Q1

)2 and (m⊥
Q1

)2 are enhanced while increasing H , as

shown in Fig. 4(a). In the narrow range of 0.60 . H . 0.65,

a different double-Q (2Q-III) state is stabilized, whose real-

space spin configuration and spin structure factor are shown in

Fig. 5(a). Compared to the 2Q-II state, the 2Q-III state has ad-

ditional magnetic moments in (mz
Q1

)2, (m
‖
Q2

)2, and (m⊥
Q2

)2,

as shown in Fig. 4(a). The net magnetization m0 shows a

small anomaly corresponding to the appearance of the 2Q-III

state, as shown in Fig. 3(a). Upon further increasing H , the

2Q-II state appears again for H & 0.65, which turns into the

single-Q conical spiral state at H ≃ 0.93 with a jump of m0,

as shown in Figs. 3(a) and 4(a). The single-Q conical state

 0.0
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 0.3(a)

(b)

(c)
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FIG. 4. (a)-(d) (mµ
q)

2 (µ =‖,⊥, z and q = Q1,Q2) for (a) IBA =

0, (b) IBA = 0.1, (c) IBA = 0.2, and (d) IBA = 0.3 at K = 0.2
and Iz = 0.2. The green regions in (b) and (c) indicate the states

with nonzero χ0.

continuously changes into the fully-polarized state at H ≃ 2.
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FIG. 5. (Left) Snapshots of the spin configurations in (a) the 2Q-III state for IBA = 0 and H = 0.65, (b) the SkX for IBA = 0.1 and

H = 0.78, (c) the 2Q-IV state for IBA = 0.1 and H = 1, and (d) the meron-like crystal for IBA = 0.2 and H = 0.74 at K = 0.2. The

arrows and the contour show the xy and z components of the spin moment, respectively. (Middle and right) The square root of the xy and z
components of the spin structure factor, respectively. The black solid squares represent the first Brillouin zone.

Throughout all these spin states, χ0 is always zero, as shown in Fig. 3(b) (see also Fig. 1(b).
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For IBA = 0.1 and 0.2, however, we find another double-Q
state with nonzero χ0 in a magnetic field. In both cases, we

obtain three double-Q states in addition to the fully-polarized

state, as shown in Figs. 4(b) and 4(c). The low-field state cor-

responds to the 2Q-I state connected to that at H = 0 [see

Fig. 2(b)], while the high-field state before entering the fully-

polarized state corresponds to a different double-Q (2Q-IV)

state, whose spin structure is shown in Fig. 5(c). This 2Q-

IV state exhibits the double-Q peaks at (m⊥
Q1

)2 and (m⊥
Q2

)2

in addition to the uniform magnetization. In other words,

this state is characterized by a superposition of two sinusoidal

waves along the Q1 and Q2 directions. We note that a similar

spin texture was also obtained even without IBA by consider-

ing large K46.

The intermediate-field state, which is sandwiched by the

2Q-I and 2Q-IV states, shows nonzero χ0, as shown in

Fig. 3(b). The phase transitions between these three double-Q
states are of first order with discontinuities in χ0 as well as

m0. The spin structure of the intermediate state in the case of

IBA = 0.1 is shown in Fig. 5(b). It is a square-type SkX with

fourfold rotational symmetry, composed of the equal weights

for Q1 and Q2 in both xy- and z-spin components. Indeed,

we find that the skyrmion number nsk in Eq. (10) for this

state asymptotically approaches ±1 while lowering temper-

ature (not shown). Note that the SkX is energetically degen-

erate with the anti-skyrmion counterpart in the present model;

the degeneracy can be lifted by including contributions from

higher harmonics, as discussed in Ref. 62.

The results are overall similar for IBA = 0.2, as shown

in Figs. 3 and 4(c). We note, however, that the field range

of the intermediate double-Q state becomes narrow and χ0

is reduced compared with those for IBA = 0.1, since IBA

tends to forces the spins to lie in a plane; actually, |nsk| ob-

tained at T = 0.01 decreases while increasing IBA in the

hatched region in Fig. 1(a) (not shown). In the present simu-

lation for IBA = 0.2, the intermediate state with nonzero χ0

has a nonzero value of |nsk| close to 1 in the region close to

the phase boundary with the lower-field 2Q-I state, but it is

reduced to less than 0.5 when approaching the phase bound-

ary with the higher-field 2Q-IV state. Interestingly, the spin

configuration with the reduced |nsk| less than 0.5 is charac-

terized by the meron-crystal-like one as shown in Fig. 5(d),

which has a periodic swirling spin texture as the SkX but all

the spins have positive z-spin moments49,63–66.

The results with non-quantized nsk indicate that the tem-

perature in our simulated annealing is not sufficiently low to

reach the ground state. From the temperature dependence of

nsk, however, we conclude that the system exhibits the square-

type SkX with nsk = ±1 in most of the hatched region in

Fig. 1(a) except for a narrow window with large IBA. For in-

stance, the window ranges for 0.25 . IBA . 0.27 at K =
0.2. In the narrow window, there are, at least, three possibili-

ties for the fate of the system in the low-temperature limit: a

SkX with nsk = ±1, a meron crystal with nsk = ±1/2, and a

topologically trivial double-Q state with nonzero χ0 but van-

ishing nsk. We may have successive phase transitions among

these states, while changing the magnetic field and tempera-

ture. To clarify this subtle issue, we need further studies at

lower temperature, which are computationally laborious.

When increasing IBA outside the hatched region in

Fig. 1(a), the intermediate state with nonzero χ0 vanishes, as

exemplified for IBA = 0.3 in Figs. 3 and 4(d). In this case,

the 2Q-I state continuously changes into the 2Q-IV state.
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FIG. 6. H dependence of (a) m0 and (b) χ0 for K = 0, 0.1, 0.2, and

0.4 at IBA = 0.1 and Iz = 0.2.

B. Effect of biquadratic interaction

Next, we discuss the behavior while changing K . Figures 6

and 7 show the magnetic field dependence of the spin- and

chirality-related quantities for K = 0, 0.1, 0.2, and 0.4 at

IBA = 0.1 and Iz = 0.2. At K = 0, the 1Q state is stabilized

at H = 0, as shown in Fig. 1(a). While increasing H , the 1Q
state continuously turns into the 2Q-I state at H ≃ 0.68, and

then, there is a first-order phase transition to the 2Q-IV state

at H ≃ 0.93, as shown in Fig. 7(a). The 2Q-IV state changes

into the fully-polarized state at H ≃ 2.2. m0 shows a jump at

the transition from 2Q-I to 2Q-IV, as shown in Fig. 6(a). χ0

is always zero as shown in Fig. 6(b).

Meanwhile, for K = 0.1, 0.2, and 0.4, where the 2Q-

I state is stabilized at zero field as shown in Fig. 1(a), the

square SkX phase appears in the intermediate-field region.

The phase sequence while increasing H is similar to those

in Sec. IV A, namely, from 2Q-I, SkX, 2Q-IV, and finally to

the fully-polarized state, as shown in Fig. 7(b) for K = 0.1,

Fig. 4(b) for K = 0.2, and Fig. 7(c) for K = 0.4. The emer-
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2 (µ =‖,⊥, z and q = Q1,Q2) for (a) K = 0,

(b) K = 0.1, and (c) K = 0.4 at IBA = 0.1 and Iz = 0.2. The

result at K = 0.2 is shown in Fig. 4(b). The green regions in (b) and

(c) indicate the states with nonzero χ0.

gence of the SkX is signaled by nonzero χ0 in Fig. 6(b) as

well as the jumps in m0 in Fig. 6(a). The maximum value of

χ0 becomes larger for larger K , as shown in Fig. 6(b). At the

same time, the field range of the SkX state also becomes wider

for larger K . These indicate that the biquadratic interaction K
originating from the itinerant nature of electrons plays an im-

portant role in the stabilization of the SkX, as in the previous

studies46,47,49,67.

 0.0

 0.2

 0.4

 0.6

 0.8

 1.0(a)

 0.00

 0.04

 0.08

 0.12(b)

 0.0  0.4  2.0 0.8  1.2  1.6

FIG. 8. H dependence of (a) m0 and (b) χ0 for Iz = −0.05, 0, 0.1,

and 0.2 at IBA = 0.05 and K = 0.2.

C. Effect of easy-axis anisotropic interaction

Lastly, we investigate the effect of Iz on the SkX by con-

sidering the parameter region where the SkX is relatively ro-

bust, i.e., in the small IBA region. We show the results at

IBA = 0.05 and K = 0.2 while decreasing Iz from 0.2 to

0 in Figs. 8 and 9. While decreasing Iz , the region for the

SkX becomes narrower. For Iz = 0, χ0 retains a tiny nonzero

value only at H ≃ 0.58, as shown in Figs. 8(b). In the present

simulation at T = 0.01, this state exhibits a nonzero absolute

value of nsk less than 0.5, whose spin texture is similar to that

in the meron-like crystal shown in Fig. 5(d). By introducing

the easy-plane anisotropic interaction with Iz = −0.05, the

region with nonzero χ0 vanishes as shown in Fig. 9(d). The

results clearly indicate that the easy-axis anisotropic interac-

tion plays an important role in the stabilization of the SkX.

This tendency is commonly seen in centrosymmetric systems

on a triangular lattice39–41,57.
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FIG. 9. (a)-(d) (mµ
q)

2 (µ =‖,⊥, z and q = Q1,Q2) for (a) Iz =

0.2, (b) Iz = 0.1, (c) Iz = 0, and (d) Iz = −0.05 at IBA = 0.05
and K = 0.2. The green regions in (a), (b), and (c) indicate the states

with nonzero χ0.

V. DISCUSSION

A. Comparison with experiment

Let us compare our results with the recent experiments for

a centrosymmetric material GdRu2Si2 where the square SkX

was discovered in the magnetic field36,37. In GdRu2Si2, three

distinct phases were observed besides the fully-polarized state

at high fields, which were denoted as Phase I, II, and III from

the low to high magnetic field36,37. Phase I has an anisotropic

double-Q structure, while Phase II and III show isotropic

double-Q structures. Among the three, Phase II shows a

large topological Hall effect, and was identified as the square

SkX by the Lorentz transmission electron microscopy36. The

resonant x-ray scattering and the subsequent spectroscopic-

imaging scanning tunneling microscopy measurements im-

plied that the spin textures in Phase I and III were charac-

terized by a superposition of the modulated screw and the fan

structure, respectively36,37.

Our effective spin model exhibits the square SkX in the

intermediate-field region similar to Phase II in GdRu2Si2.

The SkX appears in a wide parameter region of IBA and K
for Iz > 0. Furthermore, we obtain two different types of

double-Q states, the 2Q-I and 2Q-IV states, in the lower- and

higher-field regions of the SkX, which possess similar features

to Phase I and III in GdRu2Si2, respectively; the low-field

2Q-I state shows the modulated screw structure consisting of

the proper-screw spiral and the sinusoidal wave as shown in

Fig. 2(b), and the high-field 2Q-IV state shows the fan struc-

ture consisting of the sinusoidal waves and the uniform mag-

netization as shown in Fig. 5(c). These results indicate good

agreement between Phase I, II, and III in GdRu2Si2 and the

2Q-I, SkX, and 2Q-IV states in our model.

Moreover, our model analysis explains the stability of the

square SkX against the other phases semiquantitatively. In

GdRu2Si2, the square SkX was observed in a narrow field

range between 2.1 T and 2.5 T, where the saturation field is

around 10 T36. Thus, the ratio of the magnetic field range

where the square SkX is stabilized to the saturation field is

about 4%. On the other hand, the ratio in the present model

ranges is typically a few percent of the saturation field as

shown in Sec. IV, which is consistent with the experimental

value.

From these observations, we conclude that our model de-

scribes the essential physics in the centrosymmetric skyrmion

material GdRu2Si2. Our results clearly indicate that the syn-

ergy between the biquadratic interaction arising from the itin-

erant nature of electrons, the bond-dependent anisotropic in-

teraction, and the easy-axis anisotropic interaction plays a

central role in the skyrmion physics in this compound.

B. Comparison with the triangular skyrmion crystal

Let us compare the stability between the square and tri-

angular SkXs in centrosymmetric itinerant electron systems.

The triangular SkX on a triangular lattice is stabilized by tak-

ing into account either the positive biquadratic46, the bond-
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dependent anisotropic68,69, or the easy-axis anisotropic inter-

action70. In other words, it can be stabilized by only one of the

three interactions. In stark contrast, as shown in the present

study, the interplay among the three interactions is essential

to realize the square SkX on a square lattice. Furthermore,

the square SkX on a centrosymmetric lattice system has not

been reported by other mechanisms thus far, in contrast to the

triangular ones being realized, e.g., by frustrated exchange in-

teractions38–42. Thus, the present square SkX is characteristic

of itinerant magnets with magnetic anisotropy, which strongly

suggests that the SkX observed in GdRu2Si2 is generated as a

consequence of such a synergetic effect.

VI. SUMMARY

We have investigated the stability of the square SkX on a

centrosymmetric tetragonal lattice in itinerant magnets. Our

results were obtained by numerically simulated annealing for

an effective spin model with the long-ranged anisotropic in-

teractions defined in momentum space. We found that the

square SkX is stabilized by the interplay among the posi-

tive biquadratic, bond-dependent anisotropic, and easy-axis

anisotropic interactions in an external magnetic field. The

square SkX is a double-Q state composed of two helices

with equal weight, retaining the fourfold rotational symme-

try of the square lattice. In addition, we found several dif-

ferent double-Q states around the SkX. We showed that the

SkX becomes more stable for larger biquadratic interaction,

smaller but nonzero bond-dependent anisotropic interaction,

and larger easy-axis anisotropic interaction. Our results well

reproduce the three magnetic phases including the square SkX

observed in GdRu2Si2 in the magnetic field36,37, indicating the

importance of the synergetic effect between the three interac-

tions in this material. Our systematic study would be a ref-

erence to further exploration of skyrmion-hosting materials in

centrosymmetric itinerant magnets.

Appendix A: Effect of magnetic field on 2Q-II state

In this Appendix, we show the effect of the magnetic field

on the 2Q-II state within the hatched region in Fig. 1(a). We

show that the square SkX is induced also in this region by the

magnetic field. Figure 10 shows the result at IBA = 0.02 for

K = 0.4 and Iz = 0.2. In contrasts to the result in Fig. 4(a)

for IBA = 0 and K = 0.2, which is also the 2Q-II state

at zero field, there appear four states in addition to the fully-

polarized state for H & 2: the 2Q-II state for 0 . H . 0.44,

the 2Q-III state for 0.44 . H . 0.71, the square SkX for

0.71 . H . 0.82, and the 2Q-IV state for 0.82 . H . 2,

as shown in Fig. 10(b). Their phase transitions are signaled

by the kinks in m0 around H ≃ 0.44 and H ≃ 2 and the

jumps in m0 and χ0 at H ≃ 0.71 and H ≃ 0.82, as shown in

Fig. 10(a).

 0.0
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 0.2
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 0.0  0.4  2.0 0.8  1.2  1.6  2.4
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,

FIG. 10. H dependence of (a) m0 and χ0 and (b) (mµ
q )

2 (µ =‖,⊥, z

and q = Q1,Q2) for IBA = 0.02 at K = 0.4 and Iz = 0.2. The

green region in (b) indicates the states with nonzero χ0.
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