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We calculate the Curie temperature of layered ferromagnets, chromium tri-iodide (CrI3),
chromium tri-bromide (CrBr3), chromium germanium tri-telluride (CrGeTe3), and the Néel temper-
ature of a layered anti-ferromagnet iron di-chloride (FeCl2), using first-principles density functional
theory calculations and Monte-Carlo simulations. We develop a computational method to model
the magnetic interactions in layered magnetic materials and calculate their critical temperature. We
provide a unified method to obtain the magnetic exchange parameters (J) for an effective Heisenberg
Hamiltonian from first-principles, taking into account both the magnetic ansiotropy as well as the
out-of-plane interactions. We obtain the magnetic phase change behavior, in particular the critical
temperature, from the susceptibility and the specific-heat, calculated using the three-dimensional
Monte-Carlo (Metropolis) algorithm. The calculated Curie temperatures for ferromagnetic materi-
als (CrI3, CrBr3 and CrGeTe3), match well with experimental values. We show that the interlayer
interaction in bulk CrI3 with R3̄ stacking is significantly stronger than the C2/m stacking, in line
with experimental observations. We show that the strong interlayer interaction in R3̄ CrI3 results
in a competition between the in-plane and the out-of-plane magnetic easy axis. Finally, we calcu-
late the Néel temperature of FeCl2 to be 47 ± 8 K, and show that the magnetic phase transition in
FeCl2 occurs in two steps with a high-temperature intralayer ferromagnetic phase transition, and a
low-temperature interlayer anti-ferromagnetic phase transition.

I. INTRODUCTION

Two-dimensional (2D) magnetic materials [1–3] have
attracted immense attention for their possible use in a
plethora of spin-based applications, ranging from spin-
tronics [4], valleytronics [5], magnetic memories [6] to
topologically protected magnons [7]. Recently, 2D mag-
netic crystals like CrI3 [8–10], CrGeTe3 [11], as well
as doped 2D magnetic materials, e.g., doped graphene
[12] and metal doped tansition-metal dichalcogenides
(TMDs) [2, 3, 13–16] have been realized.

Layered magnetic materials open a plethora of oppor-
tunities for realizing novel magnetic devices [17–19]. In
layered magnetic materials, the strength of interlayer and
the intralayer magnetic interaction remains significantly
different [2, 9, 11, 20], opening the possibility to control
their interlayer interaction electrically [19]. Moreover,
in layered anti-ferromagnets, e.g., CrCl3, recent exper-
iments have revealed a two-step phase transition, with
a high temperature in-plane ferromagnetic (FM) phase,
and a low-temperature out-of-plane anti-ferromagnetic
phase [21]. The phenomenon of the two-step phase tran-
sition in layered anti-ferromagnets is interesting from the
point of view of physics, as well as for the application of
layered anti-ferromagnets in realizing novel devices for
memory applications [18].

Theoretical understanding of magnetism in 2D lay-
ered materials is of great importance for their possible
use in futuristic spin-based technologies [17, 22]. Reli-
able quantification of the critical parameters using first-

principles calculations, such as the critical temperature
(Curie/Néel), is necessary for evaluating the candidacy
of layered magnetic materials for their possible applica-
tion [23, 24], and for designing newer layered materials
and their heterostructures [18, 25]. Although many 2D
magnetic materials have recently been investigated, the-
oretical efforts in modeling the magnetic structure, and
the calculation of critical temperatures have mostly re-
mained confined to their monolayers [26–28], ignoring
their layered bulk forms, which are more interesting in
terms of applications [17] and are physically more sta-
ble [8–11]. Several methods including, the mean-field ap-
proximation [29, 30], the Ising model [28], the random-
phase approximation (RPA) [31], and the linear spin-
wave [24, 27], have been used to calculate the critical
temperature and the magnetic phase transition of the
monolayers of 2D magnetic materials. However, a similar
theoretical effort for modeling layered magnetic materials
is missing.

Unfortunately, the magnetic structure of layered
magnetic materials mostly has been modeled qualita-
tively [32–37], not quantitatively [38, 39]. Most theoret-
ical works on layered magnetic materials have either fo-
cussed on explaining the experimental observations qual-
itatively, e.g., in bilayer CrI3 [32–35], or have used inputs
directly from experiments to calculate experimental ob-
servables, e.g., the Curie temperature of CrGeTe3 calcu-
lated in ref. [11]. To our knowledge, the magnetic struc-
ture of layered materials has not been studied entirely
from the first principles while accounting for full mag-
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netic anisotropy. A study of the magnetic phase tran-
sition and critical temperature in bulk layered materi-
als, which feature different in-plane and out-of-plane ex-
change interactions, is missing.

In this paper, we calculate the Curie temperature of
bulk ferromagnets CrI3, CrBr3, CrGeTe3, and study the
magnetic phase transition of the layered anti-ferromagnet
FeCl2 along with calculating its Néel temperature. We
model the magnetic interactions using first-principles
density functional theory (DFT) calculations and study
the magnetic phase transition using three-dimensional
(3D) Monte-Carlo simulations. In Section II, we intro-
duce our model for the magnetic structure. In Section III,
we investigate the difference in the magnetic interaction
between C2/m and R3̄ stacked CrI3, and calculate the
Curie temperatures of three ferromagnetic layered mate-
rials, CrI3, CrBr3, and CrGeTe3. We obtain Curie tem-
peratures of 72 K, 49 K, and 103 K for CrI3, CrBr3, and
CrGeTe3, respectively, which we show to be in agree-
ment with their experimentally measured Curie temper-
atures. Further, we calculate the Néel temperature of
a layered anti-ferromagnet, iron di-chloride (FeCl2), and
find its Néel temperature to be 47± 8 K, and show that
FeCl2 undergoes a double phase transition. In Section
IV, we present our computational model detailing how we
obtain the magnetic interactions from the first-principles
DFT calculations and estimate the critical temperature
using three-dimensional (3D) Monte-Carlo simulations.
In section V, we conclude.

II. MAGNETIC STRUCTURE MODEL

We start from the general form of the Heisenberg
Hamiltonian,

H = −
∑

i 6=j

SiJijSj −D
∑

i

(Szi )2. (1)

The first term is the exchange term between the ith and
the jth magnetic atom where Si are the spin-operator
for the ith magnetic atom. Jij measures the strength
of the exchange interaction between the ith and the jth

magnetic atom. We treat the Heisenberg Hamiltonian
in the classical approximation where the spin-operator
is the local magnetic moment (magnetization) associated
with the magnetic atom. The second term is the onsite
anisotropy term, with D being the strength of the on-
site anisotropy. The magnetic moments S in Eq. (1) are
vectors with S = Sxx + Syy + Szz. Jij is a tensor,

Jij =



Jxxij Jxyij Jxzij
Jyxij Jyyij Jyzij
Jzxij Jzyij Jzzij


 . (2)

We illustrate various elements of the Jij tensor in
Fig. 1. Figures 1 (a) and (c) show that Jxxij and Jzzij are
the coupling strength when the magnetic axis for both
the atoms i and j are both oriented in the x and z di-
rection, respectively, Fig. 1 (b) shows that Jzxij is the

coupling strength when the magnetic axis of atom i is
oriented in the z direction and the magnetic axis of atom
j is oriented in the x direction. It is important to under-
stand that an atom at site i and j have a difference in
their magnetic axis measured by a “magnetic angle (Θ)”
which is completely different than the “geometric angle
(θ)” (illustrated in Fig. 1d) measuring the angle between
the axis connecting atoms i and j in the plane.
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FIG. 1: Illustration of the elements of matrix Jij for
various magnetic axis orientation in different directions
for atoms i and j (a), (b) and (c), and the azimuthal

angle θij between atoms i and j in two different layers
of a magnetic material and the magnetic anisotropic

angle Θj for the magnetic atom j (d).

The diagonal elements of Jij represent the collinear
exchange interaction, i.e., the exchange interaction be-
tween the same components of the magnetic moments of
atoms i and j. The off-diagonal elements of the tensor
Jij represent a non-collinear exchange interaction, i.e.,
the exchange interaction between different components
of the magnetic moments of atoms i and j.

We model the pair-wise exchange interaction tensors
Jij as a parameterized continuous function of distance
(rij = ri − rj), azimuthal angle (θij , illustrated in
Fig. 1(d)), and the in-plane angle φij , between atoms i
and j. Typically for monolayers, only up to the nearest-
neighbor exchange interaction has been used by most
of the previous works [27, 29, 40] because going beyond
the nearest-neighbor interaction increases the number of
non-zero Jij tensors rapidly [28]. We go beyond the
nearest-neighbor interaction and also take into account
the out-of-plane exchange interactions for layered ma-
terials, but a continuous function to approximate Jij
helps in reducing the number of Jij tensors. The ele-
ments of the Jij tensor then read, Jαβ(rij , θij , φij) where,
α, β ∈ {x, y, z}. Using the parametrized Jαβ(rij , θij , φij)
yields a parametrized Heiseberg Hamiltonian. Since we
only consider layered materials in this paper with a 3-fold
rotational symmetry axis, we assume the exchange inter-
action to be isotropic in-plane and to be independent of
the in-plane angle. We further denote J(r, θ) omitting
the in-plane angle φij .

The functions Jαβ(rij , θij) are obtained by fitting
the energies obtained from the parametrized Heisenberg
Hamiltonian to the total energies calculated using the
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FIG. 2: (a) Side view of R3̄ CrI3 . (b) Top view of the net of Cr atoms in R3̄ CrI3. (c) Side view of the Cr atoms in
R3̄ CrI3 with A, B, and C stacks are shown explicitly. (d) Side view of FeCl2 bulk. (e) Top view of the net of Fe

atoms in FeCl2 bulk. (f) Side view of C2/m CrI3.

first-principles calculations for several magnetic configu-
rations including, ferromagnetic, ferrimagnetic, and anti-
ferromagnetic configurations. Having obtained optimal
Jαβ(rij , θij), we calculate the critical temperature by
simulating the phase change of the parameterized Heisen-
berg Hamiltonian of Eq. (1), using the 3D Monte-Carlo
algorithm. The details on our computational procedure
including the exact parametrized functional form, the al-
gorithm to obtain the parameters of the functional form,
and the calculation of critical temperatures using MC
simulations, are provided in Section IV.

Our method of parameterizing Heisenberg Hamilto-
nian only relies on ground state calculations of super-
cells and differs from the computationally more expen-
sive spin-spiral method which relies on the generalized
Bloch condition [41, 42]. Fitting a functional form for
the J-parameters, decaying at long distances, is compu-
tationally more efficient than the spin-spiral method and
can be expanded to the study of lattices with random
magnetic dopants.

III. RESULTS

We first calculate the Curie temperature of layered fer-
romagnets CrI3, CrBr3, and CrGeTe3, and compare with
experimental data, revealing a much-improved match
compared to previous calculations. We then apply our
method on the layered anti-ferromagnet FeCl2, and pre-
dict its Néel temperature and a two-step phase transition
behavior.

III.1. Crystal structure of CrI3, CrBr3, CrGeTe3 and
FeCl2

Figure 2 (a-c) show the crystal structure of CrI3 with
the R3̄ space group. The in-plane lattice of chromium
atoms shown in Fig. 2 (b) has a hexagonal lattice struc-
ture for all the three mentioned materials. The R3̄ struc-
ture (Fig. 2) (c) resembles the ABC stacking of hexag-
onal materials, with the unit-cell comprising of six Cr
atoms. Figure 2 (d) and (e) show the lattice structure of
FeCl2. In FeCl2, each Fe atom has six nearest-neighbors
(NN) and twelve next-nearest-neighbors (NNN) in-plane,
as shown in Fig. 2 (e). In the out-of-plane direction, there
are six neighboring (O-NN) Fe atoms. Figure 2 (f) shows
the side-view of the lattice structure of C2/m CrI3 . The
in-plane lattice structure is similar to that of R3̄ CrI3 but
the out-of-plane stacking is different, and the Bravais lat-
tice is monoclinic in nature instead of rhombohedral as
in the case of R3̄ CrI3 .

All three chromium compounds and FeCl2 have a
low-temperature stacking order commensurate with the
R3̄ space group. Bulk CrI3 and CrBr3 exhibit a struc-
tural phase transition from the C2/m to the R3̄ space
group at low temperature (below 200 K). The crys-
tal structures of the magnetic compounds shown in
Fig. 2, agree well with their experimental lattice struc-
tures [9, 11, 43]. More details on structural parameters
are provided in the supplementary document.
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FIG. 3: (a)Shows the J parameter (Jzz(r, θ)) when the magnetic easy axis is out-of-plane for (a)R3̄ CrI3 and
(b)C2/m CrI3 . The circle shows the range of interaction (rc = 6.81 Å for R3̄ and rc = 7.01 Å for C2/m) with
respect to the atom at the centre (in red). The atoms inside the interaction circle are the ones considered while

obtaining the J parameters.

III.2. Comparing the magnetic interaction in
R3̄ CrI3 and C2/m CrI3

In this section, we analyze CrI3 in its R3̄ phase which
is the most stable phase as well as its C2/m phase,
which is stable at high temperature. However, the high-
temperature C2/m phase is of interest because CrI3 bi-
layer or tri-layered CrI3 have been experimentally shown
to exist both in the R3̄ and the C2/m phase [10], and
stacking in bilayer C2/m or R3̄ CrI3 has been of much
theoretical interest [32–35].

III.2.1. Difference between the exchange interaction in
R3̄ and C2/m CrI3

Figure 3 shows the exchange interaction strength
between the z components of two magnetic moments
Jzz(r, θ) for CrI3 with (a) R3̄ stacking and (b)
C2/m stacking. Here, the interaction is between the
central Cr atom and the surrounding atoms, within a ra-
dius of interaction (rc=6.81 Å for R3̄ and rc=7.01 Å for
C2/m). The color scale indicates the interaction strength
Jzz(r, θ) with respect to the central Cr atom.

We find that the in-plane interaction strength in both
the C2/m CrI3 and the R3̄ CrI3 is similar but the out-
of-plane interaction is significantly weaker in C2/m CrI3

compared to R3̄ CrI3. This result is in line with the
experimental observation where the out-of-plane inter-
action was found to be comparable to the in-plane in-
teraction in R3̄ CrI3 [9]. The weak ferromagnetic out-
of-plane interaction in a few-layer C2/m phase of CrI3

has also been reported experimentally [10]. Our result is
also consistent with previous theoretical works on R3̄ and
C2/m stacked bilayer CrI3 in which, the difference in

the out-of-plane interaction in C2/m and R3̄ CrI3 was
attributed to the difference in their out-of-plane super-
superexchange interaction [44].

Referring to Fig. 4, we find that the critical exponent
β is lower for the C2/m phase of CrI3 and the reason
for that is the low out-of-plane interaction strength in
C2/m CrI3 as shown in Fig. 3. The weak out-of-plane
interaction makes the out-of-plane magnetic orientation
unstable at temperatures even below the Curie tempera-
ture in C2/m CrI3, resulting in a lower β.

III.2.2. Curie temperature and critical behaviour

Figure 4 shows the magnetization (M) and the suscep-
tibility (χ) as a function of temperature for the R3̄ and
the C2/m phases of CrI3. We fit the Curie-Weiss function
(M ∼ (Tc−T )β) to the magnetic moment obtained from
the MC simulations for both the R3̄ and C2/m CrI3.
From our fit, shown in Fig. 4, we find β = 0.312 for R3̄,
while for C2/m, we find a slightly lower value of β = 0.28.

The susceptibility peaks at around 72 K for the R3̄ and
55 K for the C2/m phase of CrI3. The temperature at
which the susceptibility peaks is the Curie temperature.
Therefore, we find that the stacking does not make a
significantly big difference (< 20) K in the Curie temper-
ature of bulk CrI3.

III.2.3. Interplay between geometric and magnetic
anisotropy in CrI3

Up to now, we discussed the geometric anisotropy of
C2/m and R3̄ CrI3. In this section, we focus on the
magnetic anisotropy of C2/m and R3̄ phases of CrI3.
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FIG. 4: Shows the magnetization Vs temperature (left)
and susceptibility vs temperature (right) for CrI3 with
R3̄ space-group (blue) and C2/m space-group (red).

Solid lines show the Curie-Weiss function
(M ∝ (T − Tc)β) fit, dots show the magnetization (M)
obtained from the MC simulation, dotted lines show the

susceptibility obtained from the MC simulation.
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FIG. 5: The interplay between the magnetic and
geometric anisotropy. The difference in the J parameter

(∆J = Jzz(r, θ)− J‖(r, θ)) for CrI3 bulk when the
magnetic easy axis is out-of-plane (001) Vs when the

magnetic easy axis lies in-plane (010)

Figure 5 shows the difference between the J parameters
(∆J = Jzz(r, θ) − J‖(r, θ), where J‖(r, θ) = Jxx(r, θ) =
Jyy(r, θ)) when the magnetic axis is oriented out-of-plane
(z) and when the magnetic axis is oriented in-plane (‖).
The difference in the out-of-plane interaction is negative,
and the difference in the in-plane interaction is positive.
This means that the out-of-plane magnetic axis max-
imizes the intralayer interaction, and a magnetic axis
along the in-plane direction maximizes the interlayer in-
teraction. Hence, we see a competition between the
magnetic orientation (along the easy axis or not), the

intralayer interaction, and the interlayer interaction in
R3̄ CrI3.

The out-of-plane magnetic axis is the easy-axis in
R3̄ CrI3 because, in the in-plane direction of R3̄ CrI3,
there are three nearest-neighbors, whereas, in the out-
of-plane direction, there are only two nearest-neighbors.
Therefore, an out-of-plane alignment of the magnetic mo-
ments minimizes the total energy gain because it maxi-
mizes the intralayer interaction in R3̄ CrI3.

We do not find any competition between geometric
and magnetic anisotropy in C2/m CrI3. An out-of-plane
magnetic axis maximizes the intralayer interaction but
the interlayer interaction is insensitive to the change
in the magnetic axis in C2/m CrI3, and its easy-axis
turns out to be in the out-of-plane direction. The ab-
sence of competition between magnetic and geometric
anisotropy in C2/m CrI3 , which has a weak out-of-plane
super-superexchange interaction [33–35], implies that the
interplay between geometric and magnetic anisotropy
in R3̄ CrI3 is a result of strong out-of-plane super-
superexchange interaction.

III.3. The Curie temperature of CrI3, CrBr3 and
CrGeTe3

TABLE I: Curie temperatures for CrI3

CrBr3 and CrGeTe3

Compound CrI3 (R3̄) CrBr3 (R3̄) CrGeTe3 (R3̄)

Tc (our work, bulk) 72 K 49 K 103 K
Tc (our work, single-layer (SL)) 69 K 39 K 65 K

Tc (experimental, bulk) 61-70 K[9, 10, 45] 37-47 K[45, 46] 66-75 K[11]
Tc (experimental, SL) 45 K[10] 34 K[47] 45 K[11]
Tc (theory, S > 1) 161 K[1], 95 K[30] 314 K[1]

Tc (theory (S = 1), SL) 46 K[29] 41 K[29] 57 K[40], 130 K[48]

Table I shows the calculated Curie temperature and a
comparison with experimental and previous mono/single-
layer (SL) calculations [49]. The previous theoretical
calculations, which used the mean-field approximation
and ignored magnetic anisotropy, labeled as “Tc (theory,
SL)”, are off by 318% for the SL CrGeTe3 and 163%
for CrI3, from their experimental values, respectively.
Whereas, in our calculation, the relative deviation from
the experimental value for bulk compounds is as low as
37%, 13%, and 3% for bulk CrGeTe3, CrBr3, and CrI3,
respectively. For monolayers in our calculations, the rel-
ative deviation from the experimental value is, 53.3 %,
14.7 %, and 44.4 % for CrI3 , CrBr3, and CrGeTe3, re-
spectively.

Another set of calculations labeled as “Tc (theory
(S = 1), SL)”, also used the mean-field approxima-
tion but used Tc = 3J

(2kB) instead of the more gener-

ally used Tc = 3J
(2kB)S

2. In those mean-field calculations

(Tc(theory(S = 1),SL)), the relative deviation from the
experimental value for monolayers was as low as 26.6%,
20%, and 2% for CrGeTe3, CrBr3, and CrI3, respectively.
In the (S = 1) calculations, it appears that not account-
ing for S2 compensated for the usual overestimation ob-
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FIG. 6: The magnetization vs temperature (blue) and
the specific-heat vs temperature (red), of bulk

CrBr3,CrGeTe3,CrI3. Solid lines show the interpolated
data using a savgol filter while dots show the data
obtained from the MC simulations. The saturation

magnetization for CrBr3,CrGeTe3, and CrI3 are 2.7 µB,
2.7 µB, and 2.9 µB, respectively.

served when using the mean-field equation to predict the
Curie temperature of 2D magnets [50]. However, ignor-
ing S2 to compensate for the overestimation using mean-
field cannot be expected to be a reliable strategy when
studying materials with a significantly larger or smaller
magnetic moment. On the other hand, our method does
account for magnetic moment and provides a relatively
good agreement to the experimental Curie temperatures
for most of the ferromagnetic compounds.

We also calculate the critical exponent β of the Curie-
Weiss function (M ∼ (Tc − T )β), which determines the
near-criticality behavior of the magnetic materials. We
obtain a β = 0.312 for CrI3, and β = 0.28 and β =
0.341 for CrBr3 and CrGeTe3, respectively. Recently,
experimental work in Ref. [51] has reported the value of
β for R3̄ CrI3 to be 0.32. Just like the Curie temperature,
the critical exponent β we obtain for CrI3 is very close
to the experimentally observed β for CrI3.

Figure 6 shows the average magnetization (M̂), and

the specific-heat (Ĉv) as a function of temperature (T )
for CrBr3, CrGeTe3, and CrI3. All three compounds are
ferromagnets and show a transition from the paramag-
netic phase to a ferromagnetic phase at the onset of the
Curie temperature, which is the temperature at which
the specific-heat peaks. However, below the Curie tem-
perature, we observe a small fluctuation in the specific-
heat even though the magnetization remains stable. We
find that the reason for such small fluctuations in Ĉv is
the difference in the strength between the in-plane and
the out-of-plane exchange interaction, which we refer as
geometric anisotropy, as well as magnetic anisotropy.

To visualize the consequence of geometric and mag-
netic anisotropy on the magnetic order, we depict the
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FIG. 7: The magnetic orientation of a supercell of
R3̄ CrI3 at various temperatures. Magnetic orientations
within the demarcated box are the orientations below

the Curie temperature.

ground state magnetic configuration of R3̄ CrI3 at vari-
ous temperatures in Fig. 7. At a temperature of 204 K,
the magnetic moments orient randomly, which implies a
paramagnetic phase. At 74 K, which is slightly above the
Curie temperature, we see that ferromagnetic domains
start forming within layers but interlayer magnetic axis
orientation remains randomized, resulting in a low aver-
age magnetization. At 46 K, which is below the Curie
temperature of R3̄ CrI3, we see a short-range magnetic
order within the layers but a preferred direction of mag-
netic orientation is missing. We see some layers with
an in-plane magnetic axis and some layers with an out-
of-plane magnetic axis, which is a direct consequence of
the geometric and magnetic anisotropy, hindering a pre-
ferred magnetic axis orientation. At 31 K, and below,
we see the ferromagnetic phase with the magnetic axis
starting to orient in the out-of-plane direction with some
perturbations which last till 23 K. Finally, at 6 K, we see
a perfectly aligned ferromagnetic phase with a magnetic
axis in the out-of-plane direction.

III.4. Double phase transition in FeCl2

Figure 8 shows the absolute value of the average mag-

netization ( ˆ|M |) (blue dots) and the specific-heat (Ĉv)
(red dots) as a function of temperature, obtained from
the MC simulations for bulk FeCl2. The solid lines in
Fig. 8 show the interpolated specific-heat (red line) and
the interpolated magnetization (blue line) as a function
of temperature. The dotted line shows the average mag-
netization as a function of temperature for a single layer
of bulk FeCl2. Unlike in Fig. 6 where, we have plot-
ted the average magnetization (M̂), in Fig. 8, we have

plotted the absolute value of the magnetization ( ˆ|M |) in
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FIG. 8: Solid lines show the interpolated magnetization
vs temperature (blue) and the specific-heat vs

temperature (red), of bulk FeCl2 obtained from the MC
simulations. Dots show the data obtained from the MC
simulations. The dotted line shows the magnetization

vs temperature for one of the layers of FeCl2. The
maximum magnetizations are |Mmax| ≈ 0.9µB at 250

K, and |Msat| ≈ 0.1µB at 6 K, respectively.

order to separate the paramagnetic phase from the anti-
ferromagnetic phase (for further details, see Eq. (13) and
our discussion thereof). The paramagnetic phase at high
temperature has higher absolute magnetization than the
anti-ferromagnetic phase at low temperature because the
magnetic moments orient themselves randomly in each
MC step, whereas, for the anti-ferromagnetic phase the
magnetic moments orient themselves in an opposite di-
rection, causing the absolute magnetization to go to zero.

CONFIDENTIAL1

𝑇𝑇 = 386 K 𝑇𝑇 = 160 K 𝑇𝑇 = 70 K

𝑇𝑇 = 50 K 𝑇𝑇 = 38 K 𝑇𝑇 = 6 K

FIG. 9: Shows the magnetic ground state of a 5× 5× 2
supercell of FeCl2 at various temperatures obtained

from the MC simulations. Magnetic orientations within
the demarcated box are the orientations below the Néel

temperature.

The specific-heat plot in Fig. 8 shows one peak and one
cusp, which implies that FeCl2 undergoes two magnetic
phase transitions. The high-temperature phase transi-
tion, which is the most prominent phase transition, oc-
curs near a temperature close to 250 K. At this tem-
perature, we observe from the magnetization of a sin-
gle layer FeCl2(dotted line in Fig. 8) that the layers of
FeCl2 undergo a ferromagnetic phase transition. How-
ever, the magnetization per Fe atom in the entire sample
of FeCl2 reaches a maximum value of 0.9µB, which is
less than its maximum value of 3.5µB. This low magne-
tization in bulk FeCl2 after the high-temperature phase
transition is observed because even though each of the
layers undergo a ferromagnetic phase transition, their
alignment in the out-of-plane direction remains param-
agnetic, reducing the overall magnetization of the bulk
sample.

Lowering the temperature below 250 K, a second mag-
netic phase transition occurs between a temperature
range of 40 − 55 K. This low-temperature phase tran-
sition is unique because, instead of showing a peak, the
interpolated specific-heat curve (Cv) shows a cusp. Such
cusps in specific-heat versus temperature plots have been
observed recently in experiments for materials with two-
step phase transitions[21]. In FeCl2, the difference in the
phase transition is very prominent. Lowering the tem-
perature below this phase transition temperature, the
magnetization of FeCl2 tends towards zero, which im-
plies that this is an anti-ferromagnetic phase transition.
Because this state evolves from the intralayer ferromag-
netic phase, there is smearing in the specific-heat data,
hence, instead of a number for the Néel temperature, we
consider the Néel temperature to be 47± 8 K, which dif-
fers only by a factor of two with the previously reported
experimental value of 24 K [43].

To further understand the magnetic behavior of FeCl2,
we show the magnetic order in FeCl2 at various temper-
atures in Fig. 9. At a temperature of 386 K, we ob-
serve a paramagnetic phase with randomly aligned mag-
netic moments of Fe atoms. The first phase transition in
FeCl2 occurs below 250 K. At a temperature of 160 K,
we see that the layers of FeCl2 are aligned ferromagnet-
ically, confirming that the high-temperature phase tran-
sition is intralayer ferromagnetic in nature. In the out-
of-plane direction, the magnetic orientation is paramag-
netic, and each of the layers of FeCl2 start behaving like
a single unit, where all the magnetic moments of each
layer change their orientation simultaneously. At a tem-
perature of 70 K, we see a transition from a paramagnetic
to an anti-ferromagnetic orientation in the out-of-plane
direction, which persists until T = 50 K. At T = 38
K, we see an anti-ferromagnetic alignment in the out-of-
plane direction, but due to weak geometric and magnetic
anisotropy of FeCl2, the anti-ferromagnetic alignment is
not perfect yet. However, we see that the phase transi-
tion occurs between 70− 38 K. Finally, at a temperature
of 6 K the anti-ferromagnetic ground state is reached,
showing an ideal atomic Néel pattern, with a saturation
magnetization as low as 0.1µB per Fe atom. The inter-
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layer anti-ferromagnetic phase of FeCl2 evolves from the
intralayer ferromagnetic phase and is similar in nature
when compared to the experimental observation of the
two-step phase transition in CrCl3 [21].
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FIG. 10: The J parameters for the FeCl2 bulk with
magnetic easy axis in the out-of-plane direction

(Jzz(r, θ)). The circle shows the range of the interaction
(rc = 6.22 Å) with respect to the atom at the centre (in

red). The atoms inside the interaction circle are the
ones considered while obtaining the J parameters.

Figure 10 shows the exchange function (Jzz(r, θ))
with magnetic dipoles (S) oriented along its magnetic
easy axis (z) for FeCl2. We find that the in-plane ex-
change interaction J in FeCl2 is very strong, with a
nearest-neighbor interaction strength of 0.64 meV/µ2

B,
compared to the nearest-neighbor interaction strength
of CrI3 which is, 0.24 meV/µ2

B. The out-of-plane in-
teraction in FeCl2 is weak and anti-ferromagnetic with
Jout = −1.8 × 10−2 meV/µ2

B. The strong in-plane inter-
action is consistent with the previous DFT based stud-
ies of monolayer FeCl2 [52]. Also, the out-of-plane anti-
ferromagnetic orientation is in accordance with the pre-
vious experimental reports [43]. Thanks to the strong
in-plane and weak out-of-plane interaction, the double
phase transition of FeCl2 shown in Fig. 8 is very promi-
nent.

IV. COMPUTATIONAL MODEL

In this section, we provide the details of our computa-
tional model, detailing how we construct the Heisenberg
Hamiltonian to obtain the J parameters. We provide the
details regarding the Monte-Carlo simulations we employ
to simulate the phase transition using the parameterized
Heisenberg Hamiltonian.

We calculate the critical temperature from first-
principles DFT calculations without any input from ex-
periments. Our method treats both magnetic and ge-
ometric anisotropy simultaneously, which is not possi-

ble using the methods which use direct energy differ-
ence [26, 29, 40]. Moreover, as discussed in Ref. [24], the
daunting task of modeling helimagnetic configurations,
i.e., comparing energies of magnetic configurations with
a different magnetic axis, is included in our method.

IV.1. Obtaining the exchange parameters

Figure 11 shows the flowchart of our computational
procedure to obtain the J parameters. The crystal struc-
ture is the only overall input. Details of each of the com-
putational block are provided in the subsequent sections.

5. Our method

1

Total energy 
using DFT

Construct classical 
Heisenberg 
Hamiltonian

Minima 
reached?

Yes

Update Functional-
Form

No

All/select 
magnetic 

configurations

Optimization loop

Obtain the 
optimized 

parameters

FIG. 11: The various blocks of our computational
model.

IV.1.1. Total energy calculation for various magnetic
configurations

(a) (b)

FIG. 12: Illustration of a ferrimagnetic configuration of
CrI3 with (a) out-of-plane magnetic easy axis, and (b)

in-plane magnetic easy axis. The circle shows the range
up to which the exchange interaction is considered.

For DFT, we build supercells of size Nx ×Ny ×Nz by
repeating the primitive unit-cell of the magnetic mate-
rial Nx/Ny/Nz times in the x/y/z direction. The size
of the supercells (Nx/Ny/Nz) is set by the range of the
interaction, quantified by the radius of interaction (rc).
Within the radius of interaction rc, the total energy
of all the possible magnetic configurations, i.e., anti-
ferromagnetic, ferromagnetic, and ferrimagnetic config-
urations is calculated using DFT. For example, a super-
cell of CrI3 (C2/m) is shown in Fig. 12 with a sphere of
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interaction rc = 6.5 Å, and with a ferrimagnetic configu-
ration.

To account for the magnetic anisotropy, we use mag-
netic configurations with the magnetic axis of all the
magnetic atoms oriented in different planes (out-of-plane
along z (001), in-plane along y (010), mixed plane along
yz (011)), and calculate their total energy using non-
collinear DFT calculations. For example, Fig. 12 (a)
shows a magnetic configuration with the magnetic axis
in the out-of-plane (001) direction while (b) shows the
same magnetic configuration but with magnetic axis in
the in-plane (110) direction.

IV.1.2. Functional-form for the exchange parameters

As mentioned earlier in section II, we use a functional
form to describe the J parameters. Using a functional
form J(r) with a physical exponential decay at the long
range, instead of discrete Jij parameters between each
pair ij reduces the number of parameters to be deter-
mined to describe accurately long-range interactions.

For brevity, we ignore the superscripts of the exchange
interactions, e.g., Jxx(r, θ), in this subsection. We in-
troduce a rotationally invariant exchange function with
in-plane isotropy [3, 53],

J(rij , θij) =

(
c‖ cos(θij)

2 + c⊥ sin(θij)
2
)

r3
ij

exp


−rij

√√√√
(

cos(θij)2

λ2
‖

+
sin(θij)2

λ2
⊥

)
u(rc − rij) (3)

Here, u(r) is the Heavyside function limiting the range
of the interaction to the radius rc. For 2D materials that
are isotropic in the layer, there are two sets of param-
eters, c⊥, λ⊥ for the out-of-plane magnetic interaction,
and c‖, λ‖ for the in-plane magnetic interaction. rij is the
distance between the magnetic ions with rij = |ri − rj |.
θij is the azimuthal (out-of-plane) angle between the
magnetic atom i and j (refer to Fig. 13).

The functional-form in Eq. (4) has a long-range ex-
ponential screening (∝ exp(−rij/λ)) and a short-range
cubic screening (∝ 1/r3

ij). These asymptotic behaviors
match both the short-range magnetic interaction (cu-
bic) and the long-range exchange interaction (exponen-
tial) [3].

Note that for any future calculations on 2D single lay-
ers, the derivation of the functional-form is trivial with
θij = 0 leading to,

J(rij , θij) =
c‖

r3
ij

exp

(
−rij
λ‖

)
u(rc − rij) (4)

Here, only the parameters c‖, λ‖ are optimized.

IV.1.3. Building the Heisenberg Hamiltonian

To obtain the parameters of the exchange function,
we build the classical Heisenberg Hamiltonian for vari-
ous magnetic configurations and fit the calculated ener-
gies for each of the magnetic configurations to the energy
obtained from the DFT calculations. We parameterize
the Heisenberg Hamiltonian using continuous J(rij , θij)
functions, and optimize the parameters of J(rij , θij) to fit
the energies obtained from the DFT calculations (more
details on optimization is provided in section. IV.1.4).

We implement the full J tensor in our computational
model. However, to explain our method here, we omit
the off-diagonal elements of tensor J(rij , θij) of Eq. (2)
and expand the Heisenberg Hamiltonian as,

H = −
∑

i 6=j

Sxi J
xx(rij , θij)S

x
j −

∑

i 6=j

Syi J
yy(rij , θij)S

y
j

−
∑

i 6=j

Szi J
zz(rij , θij)S

z
j −

∑

i

SziDS
z
i . (5)

We convert the magnetic moment components in their
polar form using,

Sx = S cos(Φ) sin(Θ), (6a)

Sy = S sin(Φ) sin(Θ), (6b)

Sz = S cos(Θ) (6c)

S =
√

(Sx)2 + (Sy)2 + (Sz)2, (6d)

Φ = tan−1(Sy/Sx), (6e)

Θ = tan−1(Sz/
√
S2
x + S2

y) (6f)

The resulting Hamiltonian with in-plane isotropy
(Jxx(rij , θij) = Jyy(rij , θij) = J‖(rij , θij)) reads,

H = −
∑

i 6=j

J‖(rij , θij)SiSj(cos(Φi−Φj) sin(Θi) sin(Θj))

−
∑

i 6=j

Jzz(rij , θij)SiSj cos(Θi) cos(Θj)

−
∑

i

D(Si cos(Θi))
2. (7)

To illustrate the difference between θ and Θ, Fig. 13
shows the geometric angle θ (green) between the Cr
atoms of two layers in CrI3 whereas, angle Θ (in red)
shows the angle of the magnetic moment of a particular
Cr atom in CrI3. We have dropped the indices of θ and
Θ in Fig. 13 for brevity.

The Hamiltonian in Eq. (8) is now written for each of
the magnetic configurations with an index l as a function
of exchange functions, J‖(rij , θij) and Jzz(rij , θij), and
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FIG. 13: Illustration of the geometric (θ) and the
magnetic azhimuthal angle (Θ).

the onsite anisotropy (D),

Hl(J
‖, Jzz, D) = −

∑

i 6=j

SliS
l
j{J‖(rij , θij)(cos(Φli − Φlj)

sin(Θl
i) sin(Θl

j)) + Jzz(rij , θij) cos(Θl
i) cos(Θl

j)}
−
∑

i

(Sli cos(Θl
i))

2(D). (8)

We build the Heisenberg Hamiltonian for all the magnetic
configurations for which we calculate the total energy
(El) and the magnetizations S using DFT, as discussed
in section IV.1.1.

In the case of magnetic structures with he-
limagnetic configurations (off-diagonal elements of
Jij), mixed terms will be added to Eq. (8),
e.g., for a term like Sxi J

xy(rij , θij)S
y
j we get,∑

i 6=j SiSjJ
xy(rij , θij)(cos(Φli) sin(Φlj) sin(Θl

i) sin(Θl
j)).

IV.1.4. Optimization of the exchange interaction
parameters

We fit the Heisenberg Hamiltonian, Hl(J
‖, Jzz, D), to

the total energy (El) calculated using the DFT calcula-
tions for the same magnetic configurations. We fit using
a least-squares objective function,

O =

√∑

l

|El − ENM −Hl(J‖, Jzz, D)−Hself
l |2, (9)

and the differential evolution technique [54, 55] to obtain
the parameters of the exchange functions J‖/zz(rij , θij),
and the onsite anisotropy D.

In Eq. (9), ENM is the total energy of the non-magnetic
configuration obtained using DFT. Hself

l is the self-
energy interaction term for the lth magnetic configura-
tion,

Hself
l =

∑

i

t(|Sli|)2. (10)

Here, t is the self-interaction for the lth magnetic config-
uration, and Sli is the magnetic moment for the lth mag-
netic configuration and the ith magnetic atom. We find

that the contribution of self-interaction is very-small in
terms of the energy difference (∆E) calculated between
various magnetic configurations.

IV.2. Obtaining critical temperatures

We calculate the critical temperature of a material us-
ing Monte-Carlo simulations. The Monte Carlo simula-
tions are performed on supercells built from the original
crystal. The supercells we employ here are much larger
than those we use in the DFT calculations to determine
the parameters of the exchange functional. Every atom
in the Monte Carlo simulation domain has a spin con-
figuration which is flipped based on a localized Heisen-
berg Hamiltonian. Following we describe how the local-
ized Heisenberg Hamiltonian is constructed and how the
Monte Carlo algorithm proceeds.

IV.2.1. Mapping J to Heisenberg Hamiltonian

The localized Heisenberg Hamiltonian is,

H = −M2
∑

i6=j

σ̂iJ(rij , θij)σ̂j −M2
∑

i

σziDσ
z
j (11)

where J(rij , θij) is the exchange interaction tensor be-
tween the ith and the jth magnetic atom. σ̂i/j = σxi/jx+

σyi/jy+σzi/jz, is the spin-polarization vector of the ith/jth

magnetic atom. D is the onsite anisotropy.
All information from the DFT calculations is contained

in J(r, θ) and D except for the value of the magnetic mo-
ment M . Since every atom in the different simulated
magnetic configuration gives rise to a slightly different
magnetic moment. We calculate the average magnetiza-
tion as,

M =
1

Nc

∑

l

1

N

∑

j

M l,j
DFT (12)

Here, M l,j
DFT is the average of the magnetic moment of the

jth magnetic atom of lth magnetic configuration obtained

from DFT, M l,j
DFT = |Slj | with S = Sxx+Syy+Szz. Nc

and N are the total number of the magnetic configura-
tions simulated and the magnetic atoms, respectively.

IV.2.2. Monte-Carlo algorithm

We use the Monte-Carlo method to simulate the mag-
netic phase-change using the Metropolis algorithm [56].
For the Monte-Carlo calculations of bulk materials, we
use periodic boundary conditions.

The Monte-Carlo algorithm goes as follows:

• For a particular temperature, we perform NMC

Monte-Carlo (MC) steps.
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• For each MC step, Natom spin-flip steps are per-
formed where, for each spin-flip step, an atom (i)
of the chosen supercell is selected at random and
its magnetic polarization (σi) is rotated randomly
with a uniform probability. The polarization vector
can be rotated by multiplying it with a rotator vec-
tor: sin(Φ)

√
1− u2x + cos(Φ)

√
1− u2y + uz, with

u ∈ [−1, 1], and in-plane angle, Φ ∈ [0, 2π], which
yields a uniform sampling of all angles.

• If the resulting magnetic moment results in a low-
ering of the total energy, the resulting magnetic
moment replaces the previous one. Otherwise, the
new magnetic moment is replaces the previous one

with a probability exp
(

∆E
kBT

)
. Where, ∆E is the

difference between the total energy of the mate-
rial system before and after the magnetic moment
of the chosen atom was rotated, calculated using
Eq. (11).

The number of the spin-flip steps (Natom) is equal to
the number of atoms in the supercell, whereas, the num-
ber of MC steps (NMC) is chosen based on the size of the
structure as well as the exchange parameters (J). For
each temperature, we start with the magnetic configura-
tion of the previous temperature and perform Neq MC
steps, which are not used for taking the average but help
in equilibrating the system.

From the Monte-Carlo calculations, we obtain the av-
erage magnetization 〈M〉 as a function of temperature
(T ) as,

〈M(T )〉 =
1

NMCNatoms

NMC∑

i

Natoms∑

j

Mij(T ). (13)

We also calculate the absolute average magnetization by
taking |Mij(T )| instead of Mij(T ) in Eq. (13). The sus-
ceptibility is calculated as the second moment of the mag-
netization M ,

χ(T ) =
1

kBT
(〈M(T )2〉 − 〈M(T )〉2). (14)

The temperature at which the susceptibility (χ(T )) peaks
is the critical temperature (Curie/Néel) for a magnetic
phase transition (ferromagnetic/anti-ferromagnetic).
Hence, TC = argmax(χ(T )).

We also obtain the total energy E(T ) as a function
of temperature from the MC simulations using which we
calculate the specific-heat as,

Cv(T ) =
1

kBT 2
(〈E(T )2〉 − 〈E(T )〉2). (15)

In material systems with complicated phase tran-
sitions, critical temperatures are the temperatures at
which the specific-heat peaks. Multiple peaks of the
specific-heat suggest multiple phase transitions.

Due to statistical noise near criticality, we use the
Savitzky-Golay (savgol) filter to cancel the statistical

noise in the MC magnetic moment and specific heat as
a function of temperature. We use a window range of 51
(total window 180) and a polynomial of order 5 for the
savgol filter.

To calculate the Curie temperature of ferromagnets
CrI3, CrBr3 and CrGeTe3 using MC simulations, we use
supercells of size 6×6×2, which results in 216 Cr atoms
for CrI3, CrBr3, and 300 Cr atoms for CrGeTe3. For tak-
ing the average in the Monte-Carlo simulations, we use
3000 steps (NMC = 3000). Also, we use 3000 steps for
equilibration at the start of each temperature cycle.

To calculate the Neél temperature of FeCl2 using MC
simulations, we use a 5× 5× 2 supercell of FeCl2 (216 Fe
atoms). We use 1000 equilibration steps for equilibrating
the magnetic structure at the start of every temperature
cycle and 1000 MC steps for averaging the observables.

We find that the chosen number of equilibration and
MC steps are sufficient for reaching thermal equilibrium
and calculating average quantities, respectively. More
details on equilibration and convergence are provided in
the supplementary information.

IV.3. DFT calculations

All the first-principles DFT calculations reported in
this work were performed using the Vienna ab-initio sim-
ulation package (VASP) [57, 58]. The ground state self-
consistent field SCF calculations were performed using
the projector-augmented wave (PAW) method [57] within
the generalized gradient approximation, as proposed by
Perdew-Burke-Ernzerhof (PBE) [59]. To take into ac-
count the Van der Waals interaction in layered magnetic
materials, we use the DFT+D3 method [60, 61]. For the
ionic relaxation, we relax the crystal structure until the
force on each of the ions is less than 5 meV/Å. For the
SCF convergence, we use an energy threshold of 10−4 eV.
We use a Monkhorst-Pack k-point sampling scheme [62]
of 5 × 5 × 5. The plane-wave energy-cutoff scheme was
set to 400 eV for all the materials reported in this work.

To calculate the J parameters of R3̄ CrI3, CrBr3 and
CrGeTe3, we use supercells (periodic repitition of the
primitive unit-cell) of size 2 × 1 × 1, 1 × 2 × 1 and the
unit-cell (shown in Fig. 2). We use non-collinear (NCL)
DFT calculations with spin-orbit coupling for calculat-
ing the total energy of the magnetic configurations. The
magnetic axis we choose for the NCL calculations are

(001), (010) and (0 1√
2

√
3

2 ). For each of the chosen axes,

we simulate all the magnetic configurations within a cut-
off radius of 6.81 Å.

For C2/m CrI3, we use supercells of size 2 × 1 × 1,
1 × 2 × 1 and 1 × 1 × 2, with a cut-off radius of 7.1 Å
for evaluating the J parameters. We use the same set of
magnetic axis for the NCL calculations as for the R3̄ CrI.

To calculate the J parameters of FeCl2, we use a su-
percell of size 2 × 2 × 1. We orient the magnetic axis in
the (001), (010), and (100) direction for the total energy
calculations. The lattice structure of FeCl2 is isotropic in
the in-plane direction with (001) as the direction of the
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magnetic easy axis.

V. CONCLUSION

We have calculated the Curie temperature of ferromag-
nets CrI3 , CrBr3 and CrGeTe3 to be 72 K, 49 K, and
103 K, whose experimentally measured values are, 61 K,
37 K and 66 K, respectively. We have calculated the
Néel temperature of FeCl2 to be 47± 8 K. Moreover, we
have matched the near-criticality behavior of the Cr com-
pounds by estimating their critical exponent β = 0.312
for CrI3, while experimentally β = 0.325.

We have shown that the out-of-plane interaction in
R3̄ stacked CrI3 is stronger than the C2/m stacked CrI3.
The strong out-of-plane interaction in R3̄ CrI3 and the
weak out-of-plane interaction in C2/m CrI3 is in line
with experimental observations. We have shown that
the strong out-of-plane interaction in R3̄ CrI3 results in a
competition for the magnetic easy axis orientation. How-
ever, the magnetic easy axis orients itself in the out-of-
plane direction thanks to the increased in-plane interac-
tions, lowering the total energy.

In FeCl2, we have shown that the magnetic inter-
action is strongly ferromagnetic in-plane and weakly
anti-ferromagnetic out-of-plane. We have shown
that FeCl2 undergoes two phase transitions, a high-

temperature phase transition with in-plane FM order and
out-of-plane paramagnetic order, and a low-temperature
phase transition with out-of-plane anti-ferromagnetic or-
der and in-plane FM order.

We have presented a method to calculate the magnetic
exchange (J) parameters and the critical temperature of
magnetic materials from first principles. Our method is
very general and can be applied for both monolayer and
multi-layered magnetic materials, and yields much better
results, compared to the previous theoretical works for
the layered ferromagnetic compounds CrI3, CrBr3, and
CrGeTe3.
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