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Abstract:  

Bragg coherent diffractive imaging (BCDI) is a non-invasive microscopy technique that can visualize 
the morphology and internal lattice deviations of crystals with nanoscale spatial resolution and 
picometer deformation sensitivity. While BCDI has been successfully applied in various studies of 
materials, it is less successful for highly-strained crystals. Specifically, it is difficult to correctly 
reconstruct the electron density of a highly-strained object using conventional phase retrieval 
algorithms. Although various algorithms have been developed to overcome this challenge, most of 
them require a priori knowledge that is not always available in practice. Here we report on a new 
phase retrieval workflow that can invert diffraction patterns from multiple Bragg peaks 
simultaneously. The new workflow is explored via simulated diffraction from crystals with various 
strain conditions. Reconstructions from the new workflow consistently demonstrate more accurate 
electron density maps, in comparison with the conventional method. For highly-strained crystals, the 
new workflow improves the reliability and consistency of BCDI phase retrieval significantly.  

I. Introduction 

Strain describes the spatial deformations of a crystal structure from its ground state. It is 
connected to the internal stress of the crystal through elasticity theory and has a tensorial nature. For 
decades, strain has been known as an effective mechanism for manipulating the physical and 
chemical properties of materials [1–3]. Specifically, nanostructured materials can withstand much 
larger strain in comparison with bulk materials, leading to new possibilities for tuning the functional 
properties. Developing the imaging capability that can quantitatively monitor the strain field in 
nanomaterials is essential for modern materials science.  

Bragg coherent diffractive imaging (BCDI) [4–7] is a non-invasive strain probing technique that can 
measure the 3D strain fields of finite crystals with nanometer spatial resolution and picometer-scale 
deformation sensitivity. Utilizing iterative phase retrieval algorithms, diffraction from a strained 
crystal can be inverted to a complex object function, where the magnitude represents the effective 
electron density distribution of the crystal, and the phase represents a projection of the lattice 
deviations to the momentum transfer vector of the measured Bragg peak. Similar to the other 
coherent diffractive imaging (CDI) techniques [8–12], the resolution of BCDI is based on the 
wavelength of the illumination and the largest scattering angle recorded, rather than the image-
forming lens [13–15]. 

Various iterative algorithms have been developed to invert the diffraction patterns [16–18]. 
However, since phase retrieval is a nonlinear and nonconvex optimization problem, error 
minimization strategies are prone to stagnation due to the presence of local minima. Specifically, 
BCDI is less successful for highly strained crystals, which are defined in the continuum limit as the 
real-space phase exceeds the range of ±π/2 [19,20]. The retrieved object usually shows an unphysical 
electron density map with a “gap” in the region of strong phases. Special algorithms have been 
developed to better reconstruct highly-strained crystals. For example, Newton et al. [19] applied an 
additional density normalizing algorithm to the regular hybrid input-output (HIO) algorithm [16], in 
order to acquire a uniform electron density in the reconstruction. In another work, Huang et al. [20] 
performed phase-constrained HIO several times to obtain a reasonable support, then ran regular HIO 
using this refined support to correctly reconstruct the object. However, both methods require a priori 
knowledge – knowing that the crystals should not have discontinuity in electron density – that is not 
always available.  

In practice, one could improve the reliability and consistency of the convergence of iterative phase 
retrieval by increasing data redundancy, such as the overlap constraint in ptychography [11,12]. 
Conventional BCDI is based on a single Bragg peak, resulting in limited data redundancy. Although it 



has been shown that reconstructions from multiple diffraction peaks can be combined together to 
retrieve the strain tensor [21], the multiple peaks were inverted separately rather than treated as one 
dataset. While the independently reconstructed objects can be considered as a consistency validation, 
it may introduce extra errors associated with alignment, as the projection from Fourier-space to real-
space is insensitive to translation. Recently, Newton [22] proposed a concurrent approach to 
eliminate such alignment-induced artifacts by reconstructing the strain field concurrently with the 
iterative phase retrieval. Meanwhile, Wang et al. [23] proposed a new algorithm to reconstruct 
highly-strained crystals that are undergoing phase transformations. The new approach 
simultaneously inverts multiple scans of the same Bragg peak from a particle at different states, 
assuming that the shape of the particle does not change while the structure phases are evolving. 
Although this method fits well with some in situ and operando studies, it may not be implemented in 
more general cases.  

In this paper, we use simulated Bragg diffraction from strained crystals to demonstrate that 
multiple Bragg peaks can be treated as one dataset and simultaneously inverted using a modified 
workflow based on the established error reduction (ER) and HIO algorithms [16]. In the obtained 
object, the deformation can be completely determined if proper Bragg peaks were selected. In the 
case of a highly-strained crystal, the object can be correctly reconstructed in a single run without a 
priori knowledge.  

II. Forward modeling and phase retrieval method 

A. Bragg diffraction simulation 
All diffraction simulations presented in this paper were performed in the kinematic diffraction 

regime [24]. We considered only the elastic scattering of X-rays, while the other effects – such as 
absorption, inelastic scattering, refraction, and partial coherence effect – were excluded. We also 
ignored instrument effects, such as the detector counting statistics or background scattering.  

The diffraction intensity of a crystal is determined by the square of the crystal form factor, which is 
a function of the momentum transfer vector  ൌ  െ ሻሺܣ  : [25] ൌ  ݂ሺሻ expሾെiሺ · ሻሿே࢘

ୀଵ  #ሺ1ሻ  

where  and  are the wavevectors of incident and diffracted photons, respectively. The vector ࢘ 
defines the coordinate of atom ݊ with respect to an arbitrary origin. The summation is performed 
over all atoms ܰ in the crystal. ݂ሺሻ is the atomic form factor of atom ݊, which depends on the type 
of the atom and the scattering angle defined by .  

In this study, we chose Ag crystals with a face-centered cubic lattice as the object. The atomic form 
factor was taken from the Xraylib library [26]. For a crystal with a specific shape, the coordinates of all 
atoms in a perfect lattice were first calculated with respect to the geometric center of the crystal. A 
deformation vector was then added to ࢘, if the ݊th atom was displaced from its ideal lattice position. 
Finally, the crystal was rotated to satisfy the Bragg condition by applying a rotation matrix to each 
member of the set {࢘}. Since Eq. 1 is computationally expensive, the maximum number of unit cells 
in the Ag crystal is 60 × 60 × 60, which is approximately 25 × 25 × 25 nm3 in size.  

The diffraction intensity was calculated in a volume of reciprocal space surrounding a Bragg peak, 
mimicking a rocking curve scan with an illumination wavelength of 1 Å, a sample-detector distance of 
0.25 m, and a pixel size of 220 µm. These parameters are dictated by several factors, including the 
spatial sampling rate, the detection dynamic range, and the largest scattering angle. A detailed 
discussion is given in Appendix A.  

The schematic diagram of a typical rocking curve scan is presented in Fig. 1(a). To evaluate the 
performance of the new workflow, we simulated the diffraction from Ag crystals under two 



conditions: a “low-strain” case and a “high-strain” case. In the former case, we generated a cubic 
crystal with Lorentzian-shaped defects. As shown in Fig. 1(b), all the six defects are centered on a y’-z’ 
plane passing through the center of the crystal, while the displacements are along different axes with 
a maximum magnitude of 10% of the lattice constant.  As for the “high-strain” case shown in Fig. 1(c), 
a square-frustum-shaped crystal was generated, with only one screw dislocation along the x’ 
direction. In both cases, the following diffraction patterns were simulated: [111], [111തതതതത], [200], [020], 
[002], [220], [202], [022], [311], [131], and [113]. 

B. Simultaneous phase retrieval of multiple diffraction peaks 
Iterative algorithm in CDI can be expressed in a projector notation [17,18], including the modulus 

constraint ߨ, the support constraint ߨ௦, and the complex object function ሺሻ. Using this notation, 
ER can be expressed as  ሺାଵሻ ൌ ሺߨ௦ߨሻሺሻ #ሺ2ሻ  
while HIO is ሺାଵሻ ൌ ሾሺ1 െ ௦ሻሺ1ߨ െ ሻߨߚ  ሺሻ #ሺ3ሻሿߨ௦ߨ
where ߚ is the HIO parameter. ߨሺሻ is the best estimate of the object on the ݇th iteration.   

For Bragg scattering, the 3D diffraction pattern is sampled by the Ewald sphere in a skewed 
coordinate system [27]. In conventional BCDI, the iterative reconstruction is performed in the 
detector frame, followed by one coordinate transformation at the end to acquire the object in the 
crystal frame. For the new workflow, however, we need to transform the object between the crystal 
frame and multiple detector frames in each iteration. We introduce a coordinate transformation 
projector, ܶ, where ܶௗ՜ is the transformation from a detector frame to the crystal frame and  ܶ՜ௗ 
is its inverse. Details of this projector are discussed in Appendix B. We can write ER and HIO to 
explicitly apply the support constraint in the crystal frame:  Ԣሺሻ ൌ ൫ߨ௦ ܶௗ՜ߨ ܶ՜ௗ൯ሺሻ #ሺ4ሻ Ԣሺሻ  ൌ ሾሺ1 െ ௦ሻߨ ܶௗ՜ሺ1 െ ሻߨߚ ܶ՜ௗ  ௦ߨ ܶௗ՜ߨ ܶ՜ௗሿሺሻ #ሺ5ሻ  
where ݆ ൌ 1,2, …   .are different Bragg peaks ܯ

The magnitude of ሺሻ, i.e., electron density of the crystal, should be identical for all Bragg peaks. 
The phase, however, represents different projections of the deformation, ࢁ. The phase of voxel ݅ of ሺሻ from Bragg peak ݆, ߰, is linked to the crystal deformation by ߰ ൌ   is theࡽ , whereࢁࡽ
matrix representation of the momentum transfer vector of Bragg peak ݆, and ࢁ  is the matrix 
representation of the displacement vector of voxel ݅. 

The magnitude and phase of ሺሻ need to be treated separately when combining different peaks 
together. We define the transformation from one peak to another as ,ାଵሺሻ ൌ ቚᇱ,ሺሻቚ expሾi൫ࡽାଵࢁ൯ሿ for ݆ ൌ 1,2, … , M െ ,ଵሺାଵሻ1 ൌ ቚᇱ,ሺሻቚ expሾi൫ࡽଵࢁ൯ሿ for ݆ ൌ M  #ሺ6ሻ  

It is necessary to simultaneously solve ࢁ during the iterative phase retrieval. Inspired by the bisection 
method [28], we define an iterative procedure  ࢁሺ,ାଵሻ ൌ ሺ,ሻࢁ  ାࡽ  ቄarg ቂԢ,ሺሻቃ െ ሺ,ሻቅ #ሺ7ሻࢁࡽ  

where ࡽା is the Moore-Penrose pseudoinverse [29] of ࡽ, satisfying ࡽାࡽ ൌ -is zero ࢁ The initial .ࡵ
valued. For peak ݆ on the ݇th iteration, Eq. 7 finds the difference between the phase of the object 

after modulus and support constraints, Ԣሺሻ, and the phase derived from the current estimate of the 

deformation, ࡽࢁሺ,ሻ. Then, ࢁ is updated, assuming the lattice displacements along three different 
axes equally contribute to such difference in phase. As discussed in a previous study [30], ࢁ can be 
fully retrieved if 3 reflections with linearly independent ࡽ vectors are measured, while collecting 
more reflections results in a higher over-determination ratio and decreases the uncertainty of the 
measurements.  



In this study, various combinations of 4 diffraction peaks with non-planar ࡽ vectors were inverted. 
The simulated diffraction intensity with a random phase was used as the starting point of the phase 
retrieval. The initial support box was 50% of the input array and filled with a constant real density. 
Shrinkwrap [31] was implemented to refine the support using a Gaussian blurring function with a 
sigma of 1 voxel and 20% cutoff threshold. For all reconstructions, 250 iterations were carried out 
with 200 iterations of simultaneous phase retrieval and 50 iterations of individual phase retrieval. 
The first 200 iterations were performed by alternating between ER and HIO. The remaining 50 
iterations used ER with 10 iterations in the crystal frame followed by 40 iterations without coordinate 
transformation to eliminate the numerical error introduced by interpolations. ࢁ was updated every 5 
iterations from 21st to 200th iteration. For iterations on which ࢁ was not updated, the phase terms in 
Eq. 6 were from corresponding peaks in the previous iteration. The final object of each peak was 

obtained from the last estimate, ߨሺଶହሻ, without averaging. 

III. Analysis of the reconstructions 

In this section, we evaluate the performance of the new workflow. We call the conventional 
workflow the “individual-peak approach” (IP) and the modified workflow the “multiple-peak 
approach” (MP). The parameters of ER and HIO in IP are identical to those in MP. Objects 
reconstructed from two approaches are compared to the ground truth by visual inspection and the 
reciprocal-space χ-squared error metric. For the high-strain cases, the success rates of reconstruction 
are also reported.  

A. Reconstructions of low-strain objects 
The low-strain case is aimed to reveal potential numerical artifacts that the new workflow could 

induce. Since the crystal contains only minor deformation, MP of any 4 diffraction peaks with non-
planar ݍԦ vectors can reconstruct the object correctly. Alternating the sequence of peaks in MP does 
not show any significant change in the reconstruction quality (see Appendix C). Here, reconstructions 
from [311] are demonstrated as a representative example.  

[311] was inverted with [002], [220], and [111തതതതത] in MP. Fig. 2(a) and 2(b) show a typical 
reconstruction. Both the shape and size of the crystal are reconstructed accurately, and the 
magnitude inside the crystal is relatively uniform. Comparing Fig. 2(b) with Fig. 1(b), the crystal 
deformation is clearly revealed in the phase map. The phase changes induced by deformation along x’ 
are approximately three times of those induced by deformation in y’ and z’, which is consistent with 
the magnitude of the components of the momentum associated with [311] peak. Using IP, the shape 
and size are also reconstructed correctly, but obvious errors in the magnitude of the reconstructed 
crystal are observed. As shown in Fig. 2(e)-(h), these magnitude errors are spatially correlated to the 
deformation along x’, suggesting that they are induced by the strong phases.  

Fig. 3(a) shows the behaviors of χ2 during MP reconstruction. The χ2 of all 4 peaks converge to a 
value below 0.01 after switching from HIO to ER for the first time. The following iterations do not 
show a significant change in χ2 until the 200th iteration, except the second round of HIO. The first 
round of HIO and the update of ࢁ started from the 21st iteration, resulting in a fast converging of χ2 in 
a few iterations. In the following iterations, the converged ࢁ only causes minor increases in χ2. Two 
notable decreases in χ2 are seen at the 201st and 211th iterations, respectively. The former 
corresponds to the switch from simultaneous phase retrieval to individual phase retrieval in the 
crystal frame, indicating that transformations from one peak to another introduce extra errors. These 
transformation-induced errors, as well as the ࢁ-induced errors mentioned above, are linked to the 
numerical error caused by interpolating the object from one peak to another, namely a “mismatch” 
between any two Bragg peaks (see Appendix C). The latter decrease at the 211th iteration is because 
of ceasing the coordinate transformation in the individual phase retrieval, indicating the numerical 



error induced by interpolation itself. The final χ2 values of MP are very close to the ones of IP, 
although the reconstructions from MP do not exhibit the magnitude errors seen in IP.  

B. Reconstructions of high-strain objects 

For the high-strain case, we present the reconstructions of [022], [111തതതതത], [002], and [200]. While 
most algorithm settings are identical to the ones in the low-strain case, ࢁ updating starts from the 
61st iteration instead of the 21st. Since [022] and [002] are insensitive to the screw dislocation along x’ 
direction, the objects retrieved from these two peaks should be deformation free. The 
reconstructions of dislocation-sensitive peaks – [111തതതതത] and [200] in this case – should show a circular 
phase wrap around the axis of the screw dislocation. As shown in Fig. 4, both IP and MP can invert 
[022], [111തതതതത], and [002] accurately. As for [200], while the reconstruction from MP is still accurate, IP 
cannot obtain the correct magnitude or phase of the truth object.  

In Fig. 4(b), reconstructions of [111തതതതത] and [200] show a cylindrical volume of low electron density, 
which spatially overlaps with the axis of the screw dislocation. This is commonly seen in crystals 
containing screw dislocations [32]. Their phases are circularly wrapped in opposite directions, 
consistent with their momentum transfer vectors. Comparing the phase maps of [200] and [111തതതതത] 
with the displacement map shown in Fig. 1(c), the locations of sharp discontinuities are different 
from those in the truth object. This is not surprising since this location can be rotated around the 
dislocation axis by adding a global phase offset [33]. The simultaneous phase retrieval is able to lock 
the dislocation at the same spatial position in different reflections. However, the individual phase 
retrieval in the end of the iterative process eliminates the constraint, allowing different reflections to 
have arbitrary global phase offsets. It is also worth mentioning that the discontinuities shown in the 
phase of [200] are slightly curved, suggesting the presence of a phase ramp. This can be eliminated 
by centering the object’s Fourier transform in the Fourier-space volume. 

The behaviors of χ2 of the high-strain case are shown in Fig. 3(b). Similar to the low-strain case, χ2 
converges in less than 70 iterations. However, unlike the low-strain case, χ2 of all 4 peaks stagnate at 
relatively high levels, while [200] has the highest value. After switching from simultaneous phase 
retrieval to individual phase retrieval at the 201st iteration, χ2 decreases from 0.05 - 0.2 to around 
0.005. Both the stagnations and the dramatic decreases, as well as the larger ࢁ-induced errors, 
indicate that the “mismatch” mentioned earlier plays a significant role in the numerical error (see 
Appendix C). At the 211th iteration, ceasing the coordinate transformation results in a further 
decrease from 0.005 to 0.002.  

We also monitored the success rates of IP and MP in the high-strain case. As shown in Table I, 
three dislocation-sensitive peaks, [111തതതതത], [200], and [311], were inverted respectively with random 
seeds for 20 trials using IP. Surprisingly, reconstructions of [111തതതതത] show a success rate as high as 90%. 
The success rates drop to 0% for both [200] and [311], because of the strong phase present in the 
truth objects corresponding to those peaks. Employing MP, various combinations of 4 peaks were 
inverted with random seeds for 10 trials. Two types of combinations were tested. In one type, only 
one dislocation-sensitive peak was combined with three dislocation-insensitive peaks. A success rate 
of 100% is achieved for a combination containing [111തതതതത], while the success rate of a combination 
containing [200] is 50%. In the other type, two dislocation-sensitive peaks were mixed with two 
dislocation-insensitive peaks. The combination of [111തതതതത] and [200] gives a 70% success rate, while the 
one of [111തതതതത] and [311] has a 60% success rate. The lowest success rate, 30%, is from the combination 
of [200] and [311]. We notice that alternating the sequence of the 4 peaks used as a particular 
dataset does not affect the success rate significantly.  

IV. Discussion 

Table I clearly demonstrates that the new workflow has better performance in the case of highly-



strained objects. While [111തതതതത] can be inverted by IP with a reasonable success rate, the reconstruction 
using [200] or [311] is unreliable. As a comparison, combining [200] with dislocation-insensitive 
peaks dramatically improves the success rate, as the electron density is forced to converge to the 
truth object. Adding [111തതതതത] to the combination can further increase the success rate due to the use of 
an iteratively updated ࢁ : since the truth object corresponding to [111തതതതത] is reliably recovered, the 
phases retrieved from [111തതതതത] and the other two dislocation-insensitive peaks are enough to 
reconstruct ࢁ. With the assistance of ࢁ, it is much easier to solve the phase ambiguities in [200] and 
[311].  

The new workflow has another advantage that the dislocation-sensitive peaks can be identified by 
monitoring χ2. As shown in Fig. 3(b), [200] peak, which has the strongest phase among the four peaks, 
shows the highest χ2 value in all MP iterations. Higher χ2 values are observed when inverting peaks 
including [311], as shown in Fig. A3 and A4. Utilizing this feature, we can define a weighted multiple-
peak approach, in which the dislocation-insensitive peaks dominate the reconstruction of the 
electron density. Assigning non-uniform weighting factors in the estimation of ࢁ is more likely to 
result in the correct shape of the crystal and facilitate the resolution of any phase ambiguities in the 
dislocation-sensitive peaks.   

The new workflow not only improves the reliability of phase retrieval but also enhance the 
effective sensitivity of crystal deformation. In BCDI, diffraction peaks with larger momentum transfer 
vectors are more sensitive to the deformation. However, when applying BCDI on highly-strained 
crystals, such peaks are usually not selected, since they exhibit strong phases and cannot be reliably 
inverted. In the new workflow, diffraction peaks with different levels of sensitivity can be inverted 
together. Therefore, one can measure large deformation with high sensitivity, which is challenging in 
conventional BCDI.  

A practical challenge of the new workflow is the computation requirement. Due to the numerous 
interpolations, the new workflow is more time-consuming than the conventional method. A detailed 
discussion is given in Appendix D.  

V. Conclusion 

In summary, we propose a new BCDI phase retrieval workflow that can reliably reconstruct highly-
strained crystals by inverting multiple diffraction peaks simultaneously. We have tested the workflow 
on simulated particles with different morphologies and strain levels. By combining peaks that have 
different levels of sensitivity of crystal deformation, the new workflow significantly increases the 
success rate of phase retrieval. The displacement field of the crystal can be fully resolved if proper 
Bragg peaks were selected, allowing complete determination of the strain tensor. Meanwhile, the 
reconstructions obtained from the new workflow show more accurate electron density maps, in 
comparison with those from conventional BCDI phase retrieval. Our workflow provides a reliable 
method to perform BCDI on nanomaterials exhibiting large strains and complicated phase structures. 
We expect that this method will find widespread applications to functional nanomaterials under 
working conditions or in extreme environments, such as energy storage and conversion materials [34], 
electronic or micromechanical devices [35,36], and engineered catalysts [2,37].  
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Appendix A: Experiment parameters of BCDI simulations 

In this study, the diffraction data are simulated to mimic the realistic BCDI experimental conditions, 
while the inherent instrument errors are ignored. Limited by the computing resource, the simulated 
datasets are 64 × 64 × 64 matrices, corresponding to a 64-frame rocking-curve scan with 64 × 64 
pixels on each frame.  
 
For a BCDI measurement, several factors are critical, such as the spatial sampling rate, the data 
dynamic range, the largest scattering angle that needs to be recorded, and the aliasing effect. These 
factors determine the experiment parameters including illumination wavelength, detector pixel size, 
sample-detector distance, and the angular step of the rocking-curve scan. This section provides a 
detailed discussion of all these factors. 
 
Spatial sampling rate. CDI requires that the diffraction intensity is sampled above the Nyquist 
frequency [38]. Although it has been shown that 3D objects can be successfully reconstructed using 
an oversampling ratio as low as 2.57 [39], recent work demonstrated that a higher oversampling ratio 
can improve the quality of reconstructions [40]. To eliminate the potential risk of deficient sampling, 
we set an oversampling ratio above 3 in each dimension, resulting in a 3D oversampling ratio of more 
than 40.  
 
Data dynamic range. Due to the well-known Q-4 power-law decay of the diffraction signal [41], the 
dynamic range of the intensity data determines the quality of the accessible information in a 
diffraction experiment. In practical experiments, data dynamic range is commonly dictated by the 
radiation dose limits of samples, temporal constraints of data collection, and the photon dynamic 
ranges of detectors. However, in this simulation study, we only consider the effect of deficient data 
dynamic range on the quality of reconstructed objects. Öztürk et al. [40] have shown that an order of 
6 in dynamic range is necessary for the intensity measurements to reach ultimate reconstruction 
performance. To be conservative, we set the dynamic range of simulated diffraction data to 107. The 
diffraction pattern from a perfect crystal was generated as a reference. The maximum pixel intensity 
was fixed to 107 photons, and the intensities of rest pixels were rounded to non-negative integer 
numbers. Then, diffraction patterns from strained crystals were normalized to the reference using 
integrated intensity.  
 
Largest scattering angle. The largest scattering angle in the simulated diffraction data affects the 
spatial resolution of the reconstructed objects. The half-period resolution of a CDI measurement, ∆ݔ, 
is dictated by the illumination wavelength, ߣ, and the largest scattering angle of the collected 

diffraction signal, ߠ௫, by ∆ݔ ൌ ఒଶୱ୧୬ ሺఏೌೣሻ. In this study, since the simulated sample crystals are 

around 25 × 25 × 25 nm3, a spatial resolution of 2.5 nm or less is necessary to obtain reasonably good 
reconstructions. Meanwhile, the required oversampling ratio and the size of the data array set an 
upper limit on the scattering angle. In the third dimension, the spatial resolution is linked to the 
angular step of the rocking curve scan, as well as the momentum transfer vector of the Bragg peak.  
 
Aliasing effect. This effect can occur when the continuous boundary conditions of the Fourier 
transform are violated as the diffraction intensity does not completely decay to zero within the 
detection range. Since the diffracted power decays with spatial frequency, this effect also affects 



  .௫ and the data dynamic rangeߠ
 
Taking account of all factors discussed above, we set ߠ௫ to 1.5° in both directions of the detector 
plane. The corresponding real-space in-plane resolution is approximately 1.9 nm in both directions. 
The detector pixel size is 220 µm for a sample-detector distance of approximately 0.25 m and an 
illumination wavelength of 1 Å. For each Bragg peak, a proper angular step was selected so that the 
spatial resolution in the third dimension is the same as the in-plane resolution. 
 
The aliasing effect in the reconstruction is evaluated by zero-padding the data [42]. Diffraction 
simulations of [002], [220], [311], and [111തതതതത] from the low-strain crystal are zero-padded from 64 × 64 
× 64 matrices to 96 × 96 × 96 matrices. The padded arrays were reconstructed using the multiple-
peak approach described in the main text. The obtained objects were compared with the ones 
reconstructed from the original arrays, using visual inspection and the χ-squared error metric. We did 
not observe any notable change in the quality of the reconstruction except a resolution effect, as the 
spatial resolution is artificially improved due to zero-padding. 

Appendix B: Coordinate transformation in BCDI 

In a typical rocking curve scan, the coherent diffraction pattern is measured by sweeping the Ewald 
sphere through the Bragg peak. The obtained 3D diffraction intensity, which is sampled uniformly on 
an orthogonal grid in the detector frame, is actually on a non-uniform oblique grid when transformed 
to the crystal frame. Thus, one obtains a skewed object by directly inverting the collected diffraction 
data. In conventional BCDI, the skewed object can be corrected via coordinate transformation. Such 
methods exist in literatures [27,43–45].  
 
Our coordinate transformation method follows the same logic as those described above, with a slight 
alteration aimed at reducing computation time. The traditional method is computationally expensive 
due to the interpolation of 3D scattered data. This is prohibitively time-consuming in the proposed 
workflow, since the dataset from each Bragg peak must be interpolated twice in every iteration. To 
accelerate the process, we move the 3D interpolation to the detector frame by mapping the 
orthogonal grid in the crystal frame to a new oblique grid in the detector frame. As a result, the data 
that needs to be interpolated becomes a gridded array, reducing the computational complexity 
dramatically. For example, it typically takes 7-10 seconds to interpolate a scattered 64 × 64 × 64 
complex array, while the interpolation of a gridded array in the same size takes only about 0.5 
seconds.  
 
The curvature of the Ewald sphere is also considered in our coordinate transformation method. A 
rocking curve scan can be imagined as slicing the 3D coherent diffraction pattern with the Ewald 
sphere. Traditionally, these slices are approximated to a set of sheared parallel planes in the 
reciprocal space, where the shearing effect is from the non-orthogonal nature of the rocking curve 
scan [6,45,46]. This approximation is valid when the length scale of the sampled reciprocal space is 
much smaller than the momentum transfer vector of the Bragg peak. With this approximation, the 
coordinate transformation is simply a linear transformation from non-orthogonal bases in the 
reciprocal space to orthogonal bases in the real space. However, this approximation is not necessarily 
valid for our simulations due to the large scattering angles.  
 
To investigate whether the approximation is valid in this study, we tested the coordinate 
transformation and its inverse on an object reconstructed from the [111] diffraction of a rectangular-
prism-shaped crystal. Fig. A1(a) shows the object obtained by directly inverting the [111] diffraction 
pattern. Since the object is in the detector frame, slices through the object reveal significant shearing 



effects. Fig. A1(b) demonstrates the object after applying the linear coordinate transformation, i.e. 
the Ewald sphere is approximated to a flat plane when calculating the coordinates in reciprocal space. 
As a comparison, the object in Fig. A1(c) is obtained from a coordinate transformation that takes the 
curvature of the Ewald sphere into account. Obviously, the object in Fig. A1(b) is still skewed, while 
the object in Fig. A1(c) is transformed correctly. Fig. A1(d) and A1(e) show the objects after applying 
the inverse transformation with and without the approximation, respectively. Both look almost 
identical to the original object shown in Fig. A1(a).  

Appendix C: Numerical errors introduced by 3D interpolation 

To evaluate the numerical error introduced by applying interpolations during iterative phase retrieval, 
we conducted two numerical experiments, namely a “fatigue test” that repeatedly applying 
coordinate transformation and its inverse on a reconstructed object, and a “shuffle test” that 
alternating the sequence of Bragg peaks in the multiple-peak approach.  
 
Fatigue test. This test is intended to reveal the numerical error that could accumulate during the 
iterative phasing process, due to the numerous interpolations. We use two error metrics to evaluate 
the error in the object. One is the σ-squared error metric, defined as  ߪଶ ൌ |࣠ሺߩሻ െ ࣠ሺߩ௧ሻ|ଶ|࣠ሺߩ௧ሻ|ଶ , #ሺ1ܣሻ  
where ߩ௧ is the initial object in the detector frame, ߩ is the object in the detector frame after 
applying full coordinate transformation ݊ times, and ࣠ denotes the Fourier transform operation. A 
full coordinate transformation includes two interpolations, one is from the detector frame to the 
crystal frame and the other is the inverse. Similar to the χ-squared error metric used to monitor the 
convergence of the phase retrieval algorithms, the σ-squared error metric tracks the change in 
Fourier magnitudes of the object after multiple interpolations. The other error metric tracks the 
marginal change in Fourier magnitudes. It is defined as  ߟଶ ൌ |࣠ሺߩሻ െ ࣠ሺߩିଵሻ|ଶ|࣠ሺߩିଵሻ|ଶ . #ሺ2ܣሻ  

 
Fig. A2 demonstrates the behaviors of σ-squared and η-squared error metrics during the repeated 
coordinate transformations. In Fig. A2(a), the initial σ2 values of all four peaks are around 0.001. The 
error metric increases rapidly in a few tens of coordinate transformations, then slows down after the 
σ2 values are above 0.05. Fig. A2(b) shows the behavior of the η-squared error metric. The η2 values 
start from the highest value around 0.001 and decrease to 10-6 rapidly in less than 100 
transformations.  
 
The behaviors of σ2 demonstrated in Fig. A2(a) is consistent with the ones shown in Fig. 3. In Fig. 3(a), 
the χ2 values decrease rapidly after ceasing the coordinate transformation in the individual phase 
retrieval at the 211th iteration, indicating that the numerical error from coordinate transformations 
increase the χ2 values by approximately 0.002. This increment is close to the σ2 values after one full 
coordinate transformation. Fig. 3(b) also shows a similar decrement at the 211th iteration, suggesting 
these interpolation-induced errors are independent of the strain-level of crystals.  
 
Shuffle test. This test is aimed to investigate whether alternating the sequence of peaks in the 
multiple-peak approach affects the quality of obtained reconstructions. In this test, diffraction 
patterns of [002], [220], [311], and [111] were inverted in various sequences, using the multiple-peak 
approach with only ER for 220 iterations. For each sequence, the phase retrieval process was 
repeated 10 times with random seeds. No significant change in the reconstruction quality was 



observed in the visual inspection. However, we find that the final χ2 value of each peak depends on 
the previous peak. For example, in sequences [220] => [311] => [002] => [111] and [002] => [220] => 
[311] => [111], peak [311] has the identical final χ2, while the other three peaks give different final χ2 
values. Table A1 summarizes the final χ2 of each peak when it is reconstructed after different peaks. 
This interesting behavior suggests that the numerical error introduced by the multiple-peak approach 
is caused by a “mismatch” between two Bragg peaks, rather than the interpolation itself.  

Appendix D: Computation requirement of the new workflow 

A practical challenge of the new workflow is the computation time. It takes approximately 30 minutes 
for the new workflow to invert four 64 × 64 × 64 data arrays with 250 iterations of ER and HIO, 
because of the numerous interpolations. As a comparison, inverting one array using the conventional 
method takes only 57 seconds. However, phase retrieval from data in the case of highly-strained 
crystals is a difficult problem and usually requires a guided approach [47]. Typically, this involves tens 
of random starts and several generations. The resultant computational requirement commonly 
exceeds those of the new workflow.  
 
The new workflow will also encounter the time consumption problem when the data arrays become 
larger. Since the interpolation has an ܱሺ݊ሻ complexity, interpolating a 128 × 128 × 128 array takes 
about 4 seconds, in comparison with 0.5 second for a 64 × 64 × 64 array. As a result, the time 
consumption of the phase retrieval process will increase from minutes to hours. A workaround is 
binning the data array, which decreases the oversampling ratio. One can use the new workflow to 
invert the binned data arrays and acquire a reasonable support and crystal deformation. Then, the 
original array can be inverted in a conventional workflow, using the obtained support and the crystal 
deformation as the seed.  
 
It is worth mentioning that the new workflow can invert diffraction datasets with different sampling 
conditions. One can adjust the spatial sampling rate and the largest scattering angle of a specific 
diffraction measurement, based on the complexities of the effective electron density and strain 
distributions. Although it requires an additional binning step during the multiple-peak phase retrieval 
process, this feature can accelerate the interpolations dramatically. Therefore, assigning non-uniform 
data collection conditions can significantly reduce the computation requirement. 
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Tables 

TABLE I. Success rate of phase retrieval in high-
strain cases (screw dislocation along x’ direction). 

 Bragg peak(s) Trials 
Success 
Rate 

IP 

[022] 20 100%

[002] 20 100%

[111തതതതത] 20 90%

[200] 20 0%

[311] 20 0%

MP 

[022] [111തതതതത] [002] [020] 10 100%

[022] [200] [002] [020] 10 50%

[022] [111തതതതത] [002] [200] 10 70%

[022] [111തതതതത] [002] [311] 10 60%

[022] [200] [002] [311] 10 30%

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
TABLE A1. Final χ2 values of [002], [220], [311], and [111] reconstructed in different sequences. 

 After [002] After [220] After [311] After [111] 

[002] - 0.0821 ± 0.0009 0.0184 ± 0.0005 0.0052 ± 0.0004 

[220] 0.0544 ± 0.0006 - 0.0210 ± 0.0005 0.0456 ± 0.0006 

[311] 0.0173 ± 0.0003 0.0233 ± 0.0003 - 0.0124 ± 0.0002 

[111] 0.0079 ± 0.0004 0.0686 ± 0.0009 0.0157 ± 0.0006 - 

 
  



Figures 

 
FIG. 1. Schematic diagram of the simulated diffraction. (a) A typical diffraction geometry in a right-handed coordinate 
system with z in the direction of the propagation of the incident X-ray beam.  and  are the wavevectors of 
incident and diffracted X-ray photons, respectively. θ and φ are the diffractometer angles, while δ and γ are the 
detector angles. (Inset) Simulated crystals in the crystal frame (i.e. x’, y’, and z’). (b) Lattice deformation within a cubic 
crystal along x’ (left), y’ (middle), and z’ (right) directions, on the plane defined by the red square shown in (a) inset. (c) 
Screw dislocation within a frustum-shaped crystal along x’ direction. (d) and (e) show the [111] Bragg peak from the 
two crystals, respectively.  
 

 
FIG. 2. Reconstruction of [311] peak using different approaches. (a) and (b) are the magnitude and phase of the object 
obtained from the multiple-peak approach, while the ones retrieved from individual peak approach are shown in (c) 
and (d). The phase maps are masked by the isosurface level of 30%. The color bars are from 0 to 1 in (a), and from -π 
to π in (b). (e) and (g) are the magnitude lineouts along horizontal lines at the locations marked by 1 and 2, 
respectively. Red lines are from (a) and blue lines are from (c). Similarly, (f) and (h) are the phase lineouts from (b) and 
(d). The dashed lines in (f) and (h) show the phase changes estimated from the deformation in the truth object.  
 
 



 
 
 
 

 
FIG. 3. The χ2 error metric during multiple-peak phase retrieval for the low-strain case (a) and the high-strain case (b). 
For both cases, χ2 values from the 180th iteration to the 250th iteration are shown in the insets.  
 
  



 

 
FIG. 4. Reconstructions from [022], [111തതതതത], [002], and [200] of a crystal with a screw dislocation, using individual-peak 
approach (a) and multiple-peak approach (b). The phase maps are masked by the isosurface level of 30%. The scale 
bar is 10 nm in length. The color bars are from 0 to 1 for magnitude, and from -π to π for phase.  
 
 
  



 
FIG. A1. Coordinate transformation of a reconstructed object between detector frame and crystal frame. (a) The 
object in the detector frame, obtained by directly inverting the [111] diffraction from a rectangular-prism-shaped 
crystal. Three slices through the center of the object along x-z (left), y-z (middle), and x-y (right) planes are shown. (b) 
and (d) show the object after applying coordinate transformation and the inverse transformation, while the Ewald 
sphere is approximated to a flat plane. (c) and (e) are similar to (b) and (d), respectively. However, the curvature of the 
Ewald sphere is taken into account while calculating the coordinates of grid points.  
 
  



 
FIG. A2. Behaviors of (a) σ-squared and (b) η-squared error metrics during the repeated coordinate transformations. 
Each full transformation contains two interpolations, one from detector frame to crystal frame and the other is the 
inverse.  
 
 

 
FIG. A3. Reconstructions from [022], [111തതതതത], [002], and [311] of a crystal with a screw dislocation, using the multiple-
peak approach. The scale bar is 10 nm in length. The color bars are from 0 to 1 for magnitude, and from -π to π for 
phase. 
 
  



 

 
FIG. A4. χ-squared error metric during multiple-peak phase retrieval for high-strain case, using [022], [111തതതതത], [002], and 
[311]. Inset: χ2 values from the 180th iteration to the 250th iteration. 
 
 
 
 
 
 

 


