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We theoretically investigate a relation between the crystalline symmetry and the transient modu-
lation of optical properties of crystalline dielectrics in pump-probe measurements using intense pump
and attosecond probe fields. When the photon energy of the pump field is much below the bandgap
energy, the modulation of the optical conductivity is caused by the intraband electronic motion,
that is, the dynamical Franz-Keldysh effect. We analytically investigate symmetry properties of the
modulated optical conductivity utilizing the Houston function, and derive a formula that relates the
temporal oscillation in the absorption with the transformation properties of the modulated optical
conductivity. To verify the validity of the formula, we perform real-time first-principles calculations
based on the time-dependent density functional theory for a pump-probe process taking 4H-SiC
crystal as an example.

I. INTRODUCTION

Recent progress in attosecond metrology has made it
possible to investigate electron motion in solids in a time-
scale less than a cycle of an optical pulse1. To explore
the ultrafast electron motion, the attosecond transient
absorption spectroscopy (ATAS) method has been often
utilized2–4. In the ATAS measurements, a strong pump
pulse of visible or infrared frequency and a weak attosec-
ond probe pulse irradiate on a thin film with a certain
time delay. The modulation of the optical absorption of
the probe pulse is used to explore the ultrafast change of
optical properties of the thin film. In a number of mea-
surements in dielectric materials, field-driven oscillations
of the absorption change as a function of the pump-probe
delay time have been observed5–10.

Depending on the choices of parameters of applied
laser pulses and materials, several mechanisms that con-
tribute to modulations in ATAS have been proposed.
Among them, the intraband motion of electrons induced
by the strong pump electric field that causes the dynami-
cal Franz-Keldysh effect (DFKE) is considered to be one
of the primary mechanisms. The Franz-Keldysh effect
(FKE) is a modulation of the absorption properties of
dielectrics at around the bandgap energy under a static
electric field and has been extensively investigated since
it was first discussed more than half a century ago11–18.
The DFKE is the modulation under an alternating elec-
tric field and has also been investigated in a number of
literatures19–25.

In Ref. 26, it has been analytically shown that the
frequency of ATAS modulation is twice the pump fre-
quency Ω in an isotropic two-band model. It was also
confirmed numerically by the first-principles calculations
conducted for a crystalline diamond. There are some
cases where oscillations different from 2Ω frequency: an
oscillation with frequency Ω was theoretically described
in two-dimensional material27, while an oscillation with
3Ω has been reported in GaN7. Although a relation
between the crystalline symmetry and the static FKE

has been discussed17,28,29, such analysis has not been re-
ported for the time-resolved DFKE. We note that, for the
high harmonic generation in solids, dynamical symme-
tries that involve temporal as well as spatial invariances
have been extensively studied30–43.

In the present paper, we first theoretically investi-
gate a relation between symmetry properties of a di-
electric crystal and its DFKE response using an ana-
lytical framework extending that introduced in Ref. 26.
We will show that the oscillation property of the time-
resolved DFKE response is determined from the trans-
formation properties of the pump-modulated conductiv-
ity tensor under the point group symmetry operation of
the crystal. We next numerically verify this statement
by performing first-principles calculations employing the
time-dependent density functional theory (TDDFT)44

for hexagonal silicon carbide (4H-SiC) crystal. We solve
the time-dependent Kohn-Sham (TDKS) equation in the
time domain and directly simulate ATAS in the crystal.
We show that the calculated results under several polar-
ization conditions confirm the validity of our analytical
results.

This paper is organized as follows: In Sec. II, a gen-
eral description of the ATAS is considered introducing a
frequency-resolved absorbance function. Section III de-
scribes analytical considerations for DFKE and its sym-
metry dependence. In Sec. IV, we present a formalism
and results of real-time first-principles calculations. In
Sec. V, a conclusion is presented.

II. TRANSIENT ABSORPTION IN A UNIT

CELL OF SOLIDS

We first provide a theoretical description of ATAS
extending and clarifying the description presented in
Ref. 26. We introduce a transient conductivity that de-
pends both on the time and frequency. In the derivation,
we put emphasis on the relation between the frequency-
dependent absorption spectrum of the probe pulse and
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the transient conductivity under the intense pump field.

A. Frequency-dependent modulation of probe

absorption

We consider a unit cell of dielectrics under irradiation
of intense pump and weak probe fields. In ATAS, the fre-
quency of the probe pulse is much higher than that of the
pump pulse. We assume that there is no overlap between
two pulses in the frequency domain. Assuming that both
wavelengths of the pump and the probe pulses are suffi-
ciently longer than the size of the unit cell, we employ a
dipole approximation treating electric fields of the pump
and the probe pulses as spatially-uniform fields. This as-
sumption will be justified for attosecond probe fields up
to, at least, a few tens of eV.
We express the electric field applied to the unit cell as

E(t) . It induces electron dynamics and charge current in
the unit cell. We express the macroscopic charge-current
density as I(t) that is obtained as a spatial average of
the microscopic current density in the unit cell. The
optical absorption can be evaluated from the work done
by the electric field E(t) to electrons in the unit cell. It
is expressed as

W [E] =

∫

dtI[E](t) ·E(t). (1)

In the above expression, we write the work as W [E] and
the macroscopic current density as I[E](t) to stress that
they are defined for the electric field E(t).
To discuss frequency-resolved signals, we rewrite the

work as the integral over frequency,

W [E] =
1

π

∫ ∞

0

dω
dW̃

dω
, (2)

where the frequency-resolved work is defined by

dW̃

dω
= Re

[

Ĩ[E](ω) · Ẽ∗(ω)
]

. (3)

Here we introduce time-frequency Fourier transforma-
tions, for example, by

Ẽ(ω) =

∫ ∞

−∞

dteiωtE(t). (4)

We consider three cases, pump only, probe only, and
pump plus probe. Expressing the pump field as Epump(t)
and the probe field as Eprobe(t), we have

dW pump

dω
= Re

{

Ĩ[Epump](ω) · Ẽpump∗(ω)
}

, (5)

dW probe

dω
= Re

{

Ĩ[Eprobe](ω) · Ẽprobe∗(ω)
}

, (6)

dW pump+probe

dω
=

Re
{

Ĩ[Epump+probe](ω) · Ẽpump+probe∗(ω)
}

, (7)

where Ẽpump+probe(ω) is given by Ẽpump(ω)+Ẽprobe(ω).
The modulation in the ATAS is then given as the differ-
ence between dW pump+probe/dω and dW probe/dω.
In the following development, we will consider a quan-

tity A(ω) defined below instead of dW pump+probe/dω,

A(ω) = Re
[

δĨ(ω) · Ẽprobe,∗(ω)
]

, (8)

where we introduce a modulated current density of the
probe pulse,

δĨ(ω) = Ĩ[Epump+probe](ω)− Ĩ[Epump](ω). (9)

We note that A(ω) accurately describes the absorption
in the frequency region of the probe pulse,

A(ω) ≃
dW pump+probe

dω
(ωprobe

1 < ω < ωprobe
2 ), (10)

where ωprobe
1/2 is the lower/upper bound of the frequency

spectrum of the probe pulse. To understand it, we note
that Ẽpump(ω) in Ẽpump+probe(ω) of Eq. (7) does not
contribute in the probe frequency region, since we assume
that there is no overlap between pump and probe fields in
the frequency domain. A term containing Ĩ[Epump](ω)
of Eq. (9) in A(ω) does not contribute in the probe fre-
quency region, since we assume that frequencies of the
pump and the probe pulses are well separated. In prac-
tice, Ĩ[Epump](ω) has a small contribution in the spectral
region of the probe pulse through nonlinear effects such
as high harmonic generation. However, the contribution
will be extremely small since it is related with high order
nonlinear processes. In the following, we will call A(ω)
the frequency-resolved absorbance. We note that A(ω)
was treated as a central quantity to discuss the modula-
tion of the dielectric property in the literatures8,26.

B. Conductivity under a strong pump field

We consider the current difference introduced in
Eq. (9) in time domain,

δI(t) = I[Epump+probe](t)− I[Epump](t). (11)

Since we assume that the probe pulse is a weak pertur-
bation, we may introduce a linear constitutive relation,

δIα(t) =
∑

β

∫

dt′σαβ(t, t
′)Eprobe

β (t′), (12)

where α and β denote the Cartesian components, α, β =
x, y, z. Here we introduced a conductivity σαβ(t, t

′) un-
der the strong pump field, Epump(t). It depends on t
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and t′ separately, since the pump field breaks the trans-
lational invariance in time.
We may express the constitutive relation in the fre-

quency representation as

δĨα(ω) =
∑

β

∫

dω′σ̃αβ(ω, ω
′)Ẽprobe

β (ω′), (13)

where the frequency-dependent conductivity is defined
by

σ̃αβ(ω, ω
′) =

∫

dtdt′

2π
eiωt−iω′t′σαβ(t, t

′). (14)

This conductivity is related to the ordinary conductivity
in the absence of the pump pulse, which we denote as
σ̃0
αβ(ω), by

σ̃αβ [E
pump = 0](ω, ω′) = δ(ω − ω′)σ̃0

αβ(ω). (15)

Using the conductivity thus defined, the frequency-
resolved absorbance defined by Eq. (8) is expressed as

A(ω) = Re
∑

αβ

∫

dω′Ẽprobe∗
α (ω)σ̃αβ(ω, ω

′)Ẽprobe
β (ω′).

(16)

C. Periodic pump field

We next assume that the pump field is periodic in time
with a frequency Ω,

Epump (t+ TΩ) = Epump(t), (17)

where TΩ = 2π/Ω is the period of the pump field. We
assume that the conductivity has the same periodicity.

σαβ (t+ TΩ, t
′ + TΩ) = σαβ(t, t

′). (18)

This assumption may be justified for systems without
resonant absorption, for example, a wide-gap dielectric
under a pump pulse whose photon energy is much below
the bandgap energy. Hence, our discussion is restricted
to the ATAS signal caused by the DFKE, which is a non-
resonant process. We leave an extension to resonant pro-
cesses where signal grows non-adiabatically in time as a
future task.
To proceed, we write the two-time conductivity

σαβ(t, t
′) as σαβ(t + s, t), and recognize it as a function

of t and s. Then, it is a periodic function of t with the
period TΩ, and we may introduce a Fourier decomposi-
tion,

σαβ(t+ s, t) =

∞
∑

n=−∞

einΩtσ
(n)
αβ (s), (19)

σ
(n)
αβ (s) =

1

TΩ

∫ TΩ

0

dte−inΩtσαβ(t+ s, t). (20)

Using this property, we may express σ̃αβ(ω, ω
′) defined

by Eq. (14) as

σ̃αβ(ω, ω
′) =

∑

n

δ(ω − ω′ + nΩ)σ̃
(n)
αβ (ω), (21)

σ̃
(n)
αβ (ω) =

∫

dseiωsσ
(n)
αβ (s). (22)

Therefore, the conductivity σ̃αβ(ω, ω
′) contributes only

when ω − ω′ is equal to integer multiples of the pump
frequency Ω. The frequency-resolved absorbance now be-
comes

A(ω) = Re
∑

αβn

Ẽprobe∗
α (ω)Ẽprobe

β (ω + nΩ)σ̃
(n)
αβ (ω). (23)

D. Transient absorption using impulsive probe

pulse

To proceed, we next specify the pulse shape of the
probe pulse. We first consider an impulsive field as an
extreme case,

EI
α(t) = Fαδ(t− T ), (24)

where T specifies the time when the impulsive field is
applied and Fα is a parameter that specifies the strength
of the field in α direction. For this impulsive field, the
induced current is given by

δIIα(t) =
∑

β

σαβ(t, T )Fβ. (25)

Taking Fourier transformation of the both sides, we have

δĨIα(ω) =
∑

β

σ̃I
αβ(T, ω)Ẽ

I
β(ω), (26)

where the conductivity σ̃I
αβ(T, ω) that depends on both

time T and frequency ω is introduced as

σ̃I
αβ(T, ω) =

∫

dteiω(t−T )σαβ(t, T )

=
∑

n

einΩT σ̃
(n)
αβ (ω). (27)

Using this conductivity, the frequency-resolved ab-
sorbance of Eq. (8) is expressed as

A(ω) = Re
∑

αβ

FαFβ σ̃
I
αβ(T, ω). (28)

In this way, we can introduce the conductivity σ̃I
αβ(T, ω)

with mixed indices, the time T that specifies when the
impulsive field is applied and the frequency ω that spec-
ifies the frequency of the absorption of the probe pulse.
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E. Transient absorption using general probe pulse

We next consider a more general case with a finite
duration of the probe pulse. For a probe pulse applied
at time t = T , we express the time profile of the probe
pulse by

Eprobe
α (t) = fα(t− T ), (29)

where the function fα(t) has a maximum at t = 0. The
Fourier transform of the probe pulse is given by

Ẽprobe
α (ω) = eiωT f̃α(ω). (30)

The phase of the function f̃α(ω) may not depend much on
the frequency. For example, if fα(t) is an even function

of t, f̃α(ω) is a real function. If fα(t) is an odd function

of t, f̃α(ω) is a pure imaginary function. In both cases,

the phase part of f̃α(ω) shows no frequency dependence.
The frequency-resolved absorbance of Eq. (8) is calcu-

lated as

A(ω) = Re
∑

αβn

f̃∗
α(ω)f̃β(ω + nΩ)einΩT σ̃

(n)
αβ (ω). (31)

This result indicates again that the modulation in the
absorption depends on the time T through the frequency
Ω and its multiples.
In the ATAS, an extremely short attosecond pulse is

used for the probe pulse. For such pulses, we may ap-
proximate f̃β(ω + nΩ) ≃ f̃β(ω), Then Equation (31) can
be expressed as,

A(ω) ≃ Re
∑

αβ

f̃∗
α(ω)f̃β(ω)σ̃

I
αβ(T, ω). (32)

We thus find that the frequency-resolved modulation in
the absorption of the probe pulse can be described us-
ing the impulsive time-resolved conductivity, σ̃I

αβ(T, ω),
if the probe pulse is sufficiently short. In the next section,
we focus on the symmetry properties of this conductivity.

III. ANALYTIC CONSIDERATION

A. Conductivity using Houston function

To investigate symmetry properties of the conductiv-
ity in the presence of a strong pump field, we utilize a
model description in which the electronic system in a unit
cell of the crystal is described by a single-electron Bloch
equation. We first consider a static problem,

Hkunk(r) ≡

[

1

2
(p+ k)2 + V (r)

]

unk(r) = εnkunk(r),

(33)
whereHk and unk are the effective single-electron Hamil-
tonian and the Bloch orbital in the ground state, re-
spectively. We next consider electron dynamics under a

spatially-uniform electric field which is described by the
vector potential A(t). The Bloch orbital that describes
electron dynamics under the electric field, vnk(r, t), fol-
lows the time-dependent Schrödinger equation,

i
∂

∂t
vnk(r, t) = Hk+ 1

c
A(t) vnk(r, t). (34)

Here we assume that the same periodic potential V (r) is
used in Eqs. (33) and (34). The electric current density
averaged over the unit cell is given by

I(t) = −
1

V

∑

nk

fnk

∫

cell

dr v∗nk(r, t)

×

(

p+ k +
A(t)

c

)

vnk(r, t), (35)

where V and fnk are the volume of the unit cell and the
occupation rate, respectively.
We will derive an explicit expression for the con-

ductivity σαβ(t, t
′) defined by Eq. (12) in this model.

We express the vector potential for the pump pulse as
Apump(t) and for the probe pulse as Aprobe(t). They
are related to the electric field by Epump,probe(t) =
−(1/c)(d/dt)Apump,probe(t). The Hamiltonian with both
pump and probe fields is given by,

Hpump+probe
k

(t)

=
1

2

[

p+ k +
1

c

{

Apump(t) +Aprobe(t)
}

]2

+ V (r)

= HK(t) +∆V (t) +O((Aprobe)2), (36)

where we have defined K(t) = k +Apump(t)/c and the
perturbation potential ∆V (t) = 1

c (p+K(t)) ·Aprobe(t).
We express the current density defined by Eq. (35) as
Ipump+probe(t) = Ipump(t) + δI(t), where δI(t) is the
current density defined by Eq. (11). Using the standard
procedure of the time-dependent perturbation theory, we
obtain a formula for the conductivity defined by Eq. (12)
as,

σαβ(t, t
′) = neδαβθ(t− t′) +

2

V
θ(t− t′) Im

∫ t

t′
dt′′

×
∑

k

∑

n6=n′

fnk[P
k

nn′(t)]α[P
k

n′n(t
′′)]β , (37)

where we have introduced the averaged electron number
density, ne =

∑

nk fnk/V , and the matrix element of the
momentum operator,

P k

nn′(t) =

∫

cell

drw∗
nk(r, t)pwn′k(r, t). (38)

Here wnk(r, t) is the Bloch orbital in the presence of the
pump field only, which satisfies

i
∂

∂t
wnk(r, t) = HK(t)wnk(r, t). (39)
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To proceed further, we approximate the time-
dependent Bloch orbital wnk(r, t) using the Houston
function19,45,

uH
nk(r, t) = unK(t)(r) exp

[

−i

∫ t

−∞

dτ εnK(τ)

]

. (40)

Then, Eq. (38) is given by

P k

nn′(t) ≃ (p)
K(t)
nn′ exp

[

i

∫ t

−∞

dτ ω
K(τ)
nn′

]

, (41)

where we have defined (p)knn′ =
∫

cell dr u
∗
nk pun′k and

ωk

nn′ = εnk − εn′k. Using this matrix element, we have26

σαβ(t, t
′) =

neδαβθ(t− t′) +
2

V
θ(t− t′)

∫ t

t′
dt′′

∑

k

∑

n6=n′

fnk

×Im

[

(pα)
K(t)
nn′ (pβ)

K(t′′)
n′n exp

(

i

∫ t

t′′
dτ ω

K(τ)
nn′

)]

. (42)

Substituting Eq. (42) into Eq. (27), we have the following
expression for the impulsive time-resolved conductivity,

σ̃I
αβ(T, ω) =

ine

ω
δαβ +

2

V

∑

k

∑

n6=n′

fnk

∫ ∞

0

ds eiωs

∫ s

0

dt′′

×Im (pα)
K(T+s)
nn′ (pβ)

K(T+t′′)
n′n exp

(

i

∫ s

t′′
dτ ω

K(T+τ)
nn′

)

.

(43)

Below, we will investigate the symmetry properties of
the transient conductivity using this expression. For this
purpose, we introduce a quantity Fω

αβ [K(t)] that is re-

garded as a functional of K(t) = k +Apump(t)/c,

Fω
αβ [K(t)] =

∑

n6=n′

fnk

∫ ∞

0

ds eiωs

∫ s

0

dt′′

×(pα)
K(s)
nn′ (pβ)

K(t′′)
n′n exp

[

i

∫ s

t′′
dτ ω

K(τ)
nn′

]

. (44)

Using this quantity, we can rewrite the impulsive time-
resolved conductivity as

σ̃I
αβ(T, ω) =

ine

ω
δαβ −

i

V

∑

k

(

Fω
αβ [k +A

pump
T (t)/c]

−F−ω
αβ [k +A

pump
T (t)/c]∗

)

, (45)

where we have introduced a time-shifted vector potential,
A

pump
T (t) ≡ Apump(T + t). Hereafter, we will often use

a notation σ̃ω
αβ [A

pump
T (t)] instead of σ̃I

αβ(T, ω) to stress

that this conductivity is the functional of Apump
T (t).

B. Symmetry properties of the time-resolved

conductivity

Let us consider a point group symmetry operation of
the crystal. We consider a 3 × 3 orthogonal matrix cor-
responding to the symmetry operation, S = (Sαβ), such

that the crystalline potential satisfies V (Sr) = V (r). For
this symmetry operation, we have

(pα)
Sk

nn′ =
∑

β

Sαβ(pβ)
k

nn′ , (46)

εn,Sk = εnk, (47)

where we have used the well-known relation for Bloch
orbital, un,Sk(r) = unk(S

−1r). Therefore, the functional
Fω = (Fω

αβ) satisfies the following relation

Fω[SK] = SFω[K]ST , (48)

where we have used the matrix notation for tensors of
rank 2. Summing up this relation over the Brillouin zone,
we get
∑

k

SFω[k +A
pump
T /c]ST =

∑

k

Fω[S(k +A
pump
T /c)]

=
∑

k

Fω[k + SApump
T /c],

(49)

where we have used the symmetry of the the Brillouin
zone:

∑

k
(· · · )Sk =

∑

S−1k
(· · · )k =

∑

k
(· · · )k. Finally,

we obtain the symmetry relation of the time-resolved con-
ductivity as follows:

Sσ̃ω[Apump
T ]ST = σ̃ω[SApump

T ]. (50)

This is the central result of this paper.
Let us consider a periodic pump field which satisfies the

following relation for certain sets of symmetry operation
S and period TS ,

Apump(t+ TS) = SApump(t). (51)

Combining it with Eq. (50), we obtain dynamical sym-
metry properties of the time-resolved conductivity,

Sσ̃I(T, ω)ST = σ̃I(T + TS, ω). (52)

This relation is a direct consequence of the dynamical
symmetry of the Hamiltonian,

H
k+ 1

c
Apump(t+TS) = USHSTk+ 1

c
Apump(t)U

†
S , (53)

where US is the unitary operator representing S. With
this operator, the position and the momentum operators

satisfy U †
SrUS = Sr and U †

SpUS = Sp, respectively.
Here we mention a few special cases. If the pump field

does not exist, Eq. (50) is equal to the usual transforma-
tion law for rank 2 tensors. If we set the pump field as a
static electric field, Apump(t) = −cEt+ (const.), we get

Sσ̃[E](ω)ST = σ̃[SE](ω), (54)

where we express the conductivity in the presence of a
static electric field E as σ̃αβ [E](ω). This is a transfor-
mation law for the static FKE.
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We note that the use of the Houston function [Eq. (41)]
is not the only route to derive Eq. (50). In the ap-
pendix, we discuss the perturbation expansion of the
time-resolved conductivity with respect to the pump field
to reach Eq. (50) without the Houston function approxi-
mation.
In the following, we investigate the dynamical symme-

tries of the time-resolved conductivity for each case of
crystalline symmetry.

1. Dielectrics with inversion symmetry

We first consider dielectrics with inversion symmetry,

S =





−1 0 0
0 −1 0
0 0 −1



 , (55)

exposed to a periodic electric field Apump(t) =
ReA0 e

−iΩt. From Eq. (50), the time-resolved conduc-
tivity satisfies the following relation,

σ̃ω
αβ [A

pump
T ] = σ̃ω

αβ [−A
pump
T ]. (56)

Namely, we get

σ̃I
αβ(T, ω) = σ̃I

αβ

(

T +
TΩ

2
, ω

)

. (57)

Therefore the transient conductivity σ̃I
αβ(T, ω) shows an

oscillatory behavior with an even multiple of the fre-
quency of the field (2Ω oscillation). This is consis-
tent with previous works reporting the 2Ω oscillation
in the transient optical response for inversion symmet-
ric dielectrics8,26.

2. Dielectrics with reflection symmetry under a linearly
polarized field

We next consider dielectrics with reflection symmetry.
We consider a system that has reflection symmetry with
respect to the xy plane,

S =





1 0 0
0 1 0
0 0 −1



 , (58)

and a linearly-polarized periodic field along the z direc-
tion:

Apump(t) = (0, 0, A0 cosΩt). (59)

Similarly to Eq. (57), for α, β = x, y or α = β = z
components, we obtain

σ̃I
αβ(T, ω) = σ̃I

αβ

(

T +
TΩ

2
, ω

)

, (60)

and therefore these components have a feature of the 2Ω
oscillation.
For α = x, y and β = z (or α = z and β = x, y), we

obtain

σ̃I
αβ(T, ω) = −σ̃I

αβ

(

T +
TΩ

2
, ω

)

. (61)

These components show oscillation with a period of Ω.
Namely, the transient absorption shows no more symme-
try than that of the applied field.
In Ref. 27, it has been reported that there appears 2Ω

oscillation originating from the reflection symmetry and
Ω oscillation for a system without any symmetry.

3. Dielectrics with N-fold proper/improper rotational
symmetry under a circularly-polarized field

We consider dielectrics with N -fold rotational symme-
try around the z axis and a circularly-polarized periodic
field,

Apump(t) = (A0 cosΩt, A0 sinΩt, 0). (62)

In this case, it is convenient to use a complex-valued
function in the xy plane,

kc +AT (t)/c, AT (t) = A0 e
iΩ(T+t), (63)

where kc is given by kc = kx + iky. Using the N -fold
rotation operation around the z axis,

S : kc −→ kc e
2πi/N , (64)

and Eq. (50), we obtain

σ̃ω
zz [AT ] = σ̃ω

zz[AT e2πi/N ]

= σ̃ω
zz[AT+ 1

N
TΩ

]. (65)

Namely, we obtain

σ̃I
zz(T, ω) = σ̃I

zz

(

T +
TΩ

N
,ω

)

, (66)

and therefore this component has the NΩ oscillation.
For the case of dielectrics with an improper rotational

symmetry, we may consider a product of Eq. (58) and
Eq. (64). Since the reflection Eq. (58) does not change
Eq. (62), the same discussion as given above holds.
Therefore we get Eq. (66) again.

IV. FIRST-PRINCIPLES PUMP-PROBE

CALCULATIONS

A. Formalism

In order to verify the symmetry properties of the
transient absorption spectroscopy, we perform real-time
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TDDFT calculations. Since we have made several as-
sumptions and approximations in developing the analyt-
ical consideration, numerical calculations will be useful
to confirm their validity.
The details of the computational methods have already

been reported elsewhere26,46–48. We solve TDKS equa-
tion for the pump-probe process,

i
∂

∂t
vKS
nk (r, t) =

[

1

2

[

p+ k +
1

c

{

Apump(t) +Aprobe(t)
}

]2

+VH(r, t) + Vxc(r, t) + Vion(r)

]

vKS
nk (r, t), (67)

where VH(r, t), Vxc(r, t), and Vion(r) are the electron-
electron Hartree, the exchange-correlation, and the
electron-ion potential, respectively. If we ignore the
time dependence of VH(r, t) and Vxc(r, t), the Hamil-
tonian of Eq. (67) coincides with Eq. (36). In most
dielectric materials, differences of the Hartree and the
exchange-correlation potentials from those in the ground
state are small and are not significant8,49. We em-
ploy the norm-conserving pseudopotential50 for Vion(r)
and the adiabatic local-density approximation51 for
Vxc(r, t). For simplicity of implementation, we ignore
the exchange-correlation term of the vector potential,
Axc(t), which should be included for a rigorous treat-
ment of the exchange-correlation effects of infinite peri-
odic systems52. Because of the pseudopotential approx-
imation, our calculations do not take into account core
electron dynamics.However, we note that our symmetry
consideration is valid even when core electrons are in-
volved as long as the process is non-resonant.
For the time profile of the pump and the probe pulses,

we employ the following form:

Apump(t) = −
cEpump

0

Ω
cos2

πt

Tpump
sinΩt,

(−Tpump/2 < t < Tpump/2), (68)

Aprobe(t) = −
cEprobe

0

ωprobe
cos2

π(t− T )

Tprobe
sin [ωprobe(t− T )] ,

(−Tprobe/2 < t− T < Tprobe/2), (69)

where Tpump and Tprobe are the full duration of the pump
and probe pulses, respectively. Here ωprobe stands for
the average frequency of the probe pulse. Again, T is
the central time of the probe pulse and now corresponds
to the delay time between the pump and probe pulses.
In the calculations below, we will use a sufficiently large
value for Tpump so that the pump field Apump(t) can be
regarded as periodic as given in Eq. (17).
Using the TDKS orbital vKS

nk (r, t) instead of vnk(r, t)
in Eq. (35), we can obtain the spatially averaged cur-
rent density corresponding to the pump-probe process.
We include a term originating from the nonlocality of
the pseudopotential as well47. We calculate the energy
transfer, or work, from the probe pulse to electron in the
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FIG. 1. Energy transfer [Eq. (70)] as a function of the delay
time T with the pump and the probe pulses of the x polariza-
tion (lower panel). Upper panel: time-profile of pump electric
field for comparison.
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FIG. 2. The same as in Fig. 1, but for the z polarization.

unit cell of dielectrics,

δW =

∫

dt δI(t) ·Eprobe(t), (70)

where δI(t) is defined by Eq. (11). If we make a
frequency-resolved analysis, we obtain A(ω) defined in
Eq. (8). To confirm the symmetry property, however, it
is sufficient to examine without frequency resolution.

B. Results

We present results for 4H-SiC crystal, which has C6v

point group symmetry. We employ the pump pulse of
~Ω = 1.55 eV and the probe pulse of ~ωprobe = 40 eV.
We set Tpump and Tprobe to 20 fs and 1 fs, respectively.
The field strength of the pump and probe pulses are set to

Epump
0 = 6.1× 10−1 V/Å and Eprobe

0 = 2.7× 10−2 V/Å,
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FIG. 3. The same as in Fig. 1, but for the circular polarized
pump field in the xy plane and the z polarized probe field.

respectively, where the latter value is small enough to
justify the perturbative treatment for the probe process.

We performed the calculations by using the open-
source software SALMON (Scalable Ab-initio Light-
Matter simulator for Optics and Nanoscience)53 which
has been developed in our group and is available from
the website, Ref. 54. The code solves Eq. (67) in the
time domain with the real-space finite-difference method
in the 3D Cartesian coordinate. We employ a real-space
grid of 20 × 32 × 64 for the rectangular unit cell of 16
atoms and a k-space grid of 20× 12× 6 for the Brillouin
zone sampling. The Taylor expansion method is used for
the time evolution with a time step of dt = 0.02 in atomic
units. The number of time steps is typically 42 000.

Figure 1 shows the energy transfer as a function of the
delay time T using the pump and probe pulses of the
linear polarization along the x axis. The energy transfer
shows an oscillation with the frequency of twice the pump
frequency Ω. This 2Ω oscillation is due to the reflection
symmetry of the hexagonal structure with respect to the
x axis [see Eq. (60)].

Figure 2 shows the energy transfer for the pump and
probe pulses with the z polarization. Since the hexagonal
crystal structure has no symmetry along the z axis, the
energy transfer indicates the Ω oscillation.

Figure 3 shows the energy transfer for the circularly-
polarized pump field in the xy plane and the linearly-
polarized probe field in the z direction. The energy
transfer shows the 6Ω oscillation. This is expected from
Eq. (66) and the 6-fold rotational symmetry of the crystal
structure.

We thus find that the oscillatory structures of the en-
ergy transfer seen in our calculations are all consistent
with our analytical investigation for three cases of differ-
ent symmetry properties. The difference in the magni-
tude of the modulation seen in Fig. 1-3 can be understood
from perturbation orders with respect to the pump field
(see Appendix). Eq. (A7) suggests that the nΩ oscilla-

tion of the time-resolved conductivity starts to appear
in the (n+1)th order nonlinear response. Therefore, the
magnitude of the 6Ω oscillation (Fig. 3) is 5-order smaller
than that of the Ω oscillation (Fig. 2), and so on.
In Ref. 55, it was reported that an oscillation of the

DFKE response in diamond crystal almost disappears
for circularly polarized light from TDDFT calculation.
It could be understood from the order of the perturba-
tion: 4Ω oscillation signal is expected from the 4-fold ro-
tational symmetry of the diamond structure. However,
the magnitude is 2-order smaller than the 2Ω oscillation
signal seen in the linearly-polarized probe field. Because
of the difference of two-orders in the perturbation, the
signal in the circularly-polarized pulse looks extremely
small.

V. CONCLUSION

We have discussed the relation between crystalline
symmetry and the signal of attosecond transient ab-
sorption spectroscopy caused by the dynamical Franz-
Keldysh effect. We found that an oscillation property
of a transient conductivity in a laser-exposed crystal
is determined by a transformation low of the transient
conductivity tensor under a crystalline symmetry oper-
ation. We obtained selection rules for the frequency of
the laser-driven oscillation of the probe response in the
pump-probe time domain. First-principles calculations
based on the time-dependent density functional theory
confirmed validity of these selection rules for several crys-
talline symmetries. This work paves the way for under-
standing the physics of attosecond transient absorption
spectroscopy in crystalline solids.
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Appendix A: Perturbation expansion

In this Appendix, we develop a perturbation theory
for the modulation of the conductivity in which the per-
turbation expansion is carried out with respect to the
pump field of the form, Apump(t) =

∑

p Ã(Ωp)e
−iΩpt.

The Hamiltonian of Eq. (34) can be rewritten as

HK(t) = Hk +∆Vpump(t) + ck(t), (A1)
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where ∆Vpump(t) = p ·Apump(t)/c and ck(t) are the per-
turbation potential and the remaining c-number term,
respectively. The time-dependent Bloch orbital wnk(r, t)
is expanded as

|wnk(t)〉 =

∞
∑

N=0

|w
(N)
nk (t)〉, (A2)

where the subscript “(N)” stands for the Nth perturba-
tion order. Nth order orbital is expressed as

|w
(N)
nk (t)〉 = e−iεnkt

∑

m

|umk〉
∑

p1···pN

× C̃
(N)
mnk(Ωp1

, · · · ,ΩpN
)e−i

∑N
i=1

Ωpi
t. (A3)

Here the coefficient C̃
(N)
mnk is determined from C̃

(0)
mnk =

δmn and a recursion formula,

C̃
(N)
mnk(Ωp1

, · · · ,ΩpN
) =

1

c

∑

l

(p)kml · Ã(ΩpN
)

∑N
i=1 Ωpi

− ωk
mn

×C̃
(N−1)
lnk (Ωp1

, · · · ,ΩpN−1
). (A4)

Up to here the procedure is mostly the same as that
of the ordinary time-dependent perturbation theory for
nonlinear optical susceptibility56.
Hereafter we will deal with monochromatic light:

Apump(t) = ReA0 e
−iΩt. Namely we set the frequency as

Ωp = pΩ, (p = ±) and the coefficients as Ã(Ω+) = A0/2,

Ã(Ω−) = A∗
0/2. Then we rewrite the matrix element of

Eq. (38) as

Pk

nn′(t) = eiω
k

nn′t
∞
∑

ν=−∞

e−iνΩt P̃k

nn′(ν), (A5)

where

P̃k

nn′(ν) =

∞
∑

N,N ′=0

∑

p1···pN

∑

q1···qN′

δν,−
∑

pi+
∑

qi

×
∑

mm′

C̃
(N)∗
mnk (Ωp1

, · · · ,ΩpN
)

×(p)kmm′C̃
(N ′)
m′n′k

(Ωq1 , · · · ,ΩqN′
). (A6)

Using Eq. (37) and Eq. (27), we get

σ̃I
αβ(t, ω) =

ine

ω
δαβ +

i

V

∑

k

∑

n6=n′

fnk
∑

νν′

×

[

P̃k

nn′(ν)
]

α

[

P̃k

n′n(ν
′)
]

β
e−i(ν+ν′)Ωt

{ω+ − (ν + ν′)Ω} (ω+ − νΩ + ωk

nn′)

+(ω → −ω)∗, (A7)

where ω+ = ω + i0.

From Eq. (A3) and Eq. (A4), the t dependence of
Eq. (A7) can be absorbed in the vector potential of
the pump field by redefinition, A0 → At, 0 ≡ A0 e

−iΩt.
Here At, 0 is equal to the coefficient of the time-shifted
vector potential A

pump
t (x) = Apump(t + x). Further-

more, Eq. (50) is valid in this situation because the

coefficient C̃
(N)
mnk is unchanged under a transformation

S : k → Sk, Apump
t → SApump

t . Therefore we can re-
peat the argument described below Eq. (50). We note
that for the case of Apump(t) = 0, Eq. (A7) agrees with
the well-known Kubo-Greenwood formula of the conduc-
tivity since ν = ν′ = 0 and P̃k

nn′(ν) = (p)knn′ .

1 E. Goulielmakis, V. S. Yakovlev, A. L. Cavalieri,
M. Uiberacker, V. Pervak, A. Apolonski, R. Kienberger,
U. Kleineberg, and F. Krausz, Science (80-. ). 317, 769
(2007).

2 E. Goulielmakis, Z.-H. Loh, A. Wirth, R. Santra,
N. Rohringer, V. S. Yakovlev, S. Zherebtsov, T. Pfeifer,
A. M. Azzeer, M. F. Kling, S. R. Leone, and F. Krausz,
Nature 466, 739 (2010).

3 H. Wang, M. Chini, S. Chen, C.-H. Zhang, F. He,
Y. Cheng, Y. Wu, U. Thumm, and Z. Chang, Phys. Rev.
Lett. 105, 143002 (2010).

4 M. Holler, F. Schapper, L. Gallmann, and U. Keller, Phys.
Rev. Lett. 106, 123601 (2011).

5 M. Schultze, E. M. Bothschafter, A. Sommer, S. Holzner,
W. Schweinberger, M. Fiess, M. Hofstetter, R. Kien-
berger, V. Apalkov, V. S. Yakovlev, M. I. Stockman, and
F. Krausz, Nature 493, 75 (2013).

6 M. Schultze, K. Ramasesha, C. D. Pemmaraju, S. A.
Sato, D. Whitmore, A. Gandman, J. S. Prell, L. J. Borja,
D. Prendergast, K. Yabana, D. M. Neumark, and S. R.
Leone, Science (80-. ). 346, 1348 (2014).

7 H. Mashiko, K. Oguri, T. Yamaguchi, A. Suda, and H. Go-
toh, Nat. Phys. 12, 741 (2016).

8 M. Lucchini, S. A. Sato, A. Ludwig, J. Herrmann,
M. Volkov, L. Kasmi, Y. Shinohara, K. Yabana, L. Gall-
mann, and U. Keller, Science (80-. ). 353, 916 (2016).

9 A. Moulet, J. B. Bertrand, T. Klostermann, A. Guggen-
mos, N. Karpowicz, and E. Goulielmakis, Science (80-. ).
357, 1134 (2017).

10 F. Schlaepfer, M. Lucchini, S. A. Sato, M. Volkov,
L. Kasmi, N. Hartmann, A. Rubio, L. Gallmann, and
U. Keller, Nat. Phys. 14, 560 (2018).

11 W. Franz, Z. Naturforschg , Tech. Rep. (1958).
12 L. V. Keldysh, Sov. Phys. JETP , Tech. Rep. 33 (1958).
13 K. Tharmalingam, Phys. Rev. 130, 2204 (1963).
14 B. O. Seraphin and R. B. Hess, Phys. Rev. Lett. 14, 138

(1965).
15 R. E. Nahory and J. L. Shay, Phys. Rev. Lett. 21, 1569

(1968).
16 H. Shen and M. Dutta, J. Appl. Phys. 78, 2151 (1995).
17 J. K. Wahlstrand and J. E. Sipe, Phys. Rev. B 82, 075206

(2010).
18 F. Duque-Gomez and J. Sipe, J. Phys. Chem. Solids 76,

138 (2015).
19 Y. Yacoby, Phys. Rev. 169, 610 (1968).
20 A. P. Jauho and K. Johnsen, Phys. Rev. Lett. 76, 4576



10

(1996).
21 K. B. Nordstrom, K. Johnsen, S. J. Allen, A.-P. Jauho,

B. Birnir, J. Kono, T. Noda, H. Akiyama, and H. Sakaki,
Phys. Rev. Lett. 81, 457 (1998).

22 A. Srivastava, R. Srivastava, J. Wang, and J. Kono, Phys.
Rev. Lett. 93, 157401 (2004).

23 Y. Mizumoto, Y. Kayanuma, A. Srivastava, J. Kono, and
A. H. Chin, Phys. Rev. B 74, 045216 (2006).

24 S. Ghimire, A. D. DiChiara, E. Sistrunk, U. B. Szafruga,
P. Agostini, L. F. DiMauro, and D. A. Reis, Phys. Rev.
Lett. 107, 167407 (2011).

25 A. H. Chin, J. M. Bakker, and J. Kono, Phys. Rev. Lett.
85, 3293 (2000).

26 T. Otobe, Y. Shinohara, S. A. Sato, and K. Yabana, Phys.
Rev. B 93, 045124 (2016), arXiv:1504.01458.
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