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Abstract

We have measured the momentum distribution and renormalization factor ZkF in liquid and

solid lithium by high-resolution Compton scattering. High-resolution data over a wide momentum

range exhibit a clear feature of the renormalization and a sharp drop of momentum densities at the

Fermi momentum kF . These results are compared with those computed by quantum Monte Carlo

simulation performed both on a disordered crystal and a liquid exhibiting very good agreement.

Asymptotic behavior of the experimental and theoretical momentum distributions are examined to

estimate ZkF . The experimentally obtained ZkF = 0.43 +0.11
-0.01 for liquid Li and 0.54 +0.11

-0.02 for solid

Li are in good agreement with theoretical results of 0.54± 0.01 and 0.64± 0.01, respectively.

PACS numbers: 71.10.Ca, 78.70.Ck, 02.70.Ss
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I. INTRODUCTION

A free Fermi gas has fully occupied momentum states below the Fermi surface and unoc-

cupied ones above. However, the electrons in an actual metal have a continuous occupation

number between zero and one for all values of momentum because electron-electron inter-

actions causes electrons to be scattered from below the Fermi surface to above the Fermi

surface1–3. This reduces the discontinuity of the occupation number at the Fermi surface

though it still exists; the remaining discontinuity is proportional to the renormalization fac-

tor ZkF
4,5. The electron-ion interaction leads to secondary Fermi surfaces in higher Brillouin

zones, so that the discontinuity can be further reduced but still remains. The renormaliza-

tion factor may be considered as a quantity that defines how correlated electrons are in a

given material. For example, in strongly correlated systems such as heavy fermion mete-

rials, a substantially reduced ZkF (or similar features) is reported.6–8 Nonetheless, there is

very little opportunity to directly measure the momentum distribution since very few ex-

perimental techniques allow us to estimate the ZkF in a quantitative manner. In fact, even

for the simplest metals like Li and Na, an exact agreement has not been achieved between

experiment and theory so far.

The energy spectrum of Compton scattered photons provides information on the electron

momentum density (EMDs)9. Under the impulse approximation (IA)10,11, the differential

scattering cross-section is proportional to the Compton profile (CP), defined as

d2σ

dΩdE
∝ J(pz) =

∫ ∫
n(kx, ky, kz=pz) dkxdky. (1)

Because of energy and momentum conservation, pz can be determined from the scattered

photon energy E once the incident photon energy E o and the scattering angle θ are given. In

order to determine the momentum density n(k), a tomographic reconstruction is generally

necessary from the CPs measured in various directions. For an isotropic sample, n(k) can

be obtained from the derivative

n(k) = − 1

2πp

dJ(p)

dp
|p=k. (2)

Note that n(k) obtained in this way has very large errors at small values of k because of the

small phase space there. An advantage of Compton scattering is that a sum rule is available

so that the CP can be normalized by the known electron density, allowing an absolute
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FIG. 1: (a) CPs for liquid Li. The inset shows the geometry of the experiment. (b) Elastic line,

monitoring the instrumental resolution, (c) Spectral density function, indicating the final-state

broadening, (d) Convolution of (b) and (c), providing the broadening function for a comparison

with theory. O is the optimally fitted function while G and L denote Gaussian and Lorentzian,

respectively.

quantitative comparison between theory and experiment. Though the observation of n(k)

and ZkF is straightforward in principle, reports of direct measurements are extremely rare

because the resolution of the experiments is usually not high enough. To our knowledge, a

report on Na a decade ago is the only successful example12. Even in this case, n(k) was only

shown in a limited region near kF , not permitting comparison of the overall shape of n(k).

Lithium has been investigated as a case in which the homogeneous electron gas (HEG)

model is applicable. However, there has been discrepancy for several decades. Interacting

HEG models generally predict ZkF in the range 0.6-0.7 at Li valence density rs = 3.25.

The first experimental determination performed by Schülke et al. provided 0.1±0.1 along

the [100] axis based on a model analysis on n(k) obtained via a reconstruction on a single

crystal13. In fact, there is a tendency for theory to predict higher CPs in p < pF while

lower in p > pF
14. Kubo15,16 ascribed this to electron correlation effects, showing that his

GW calculation agreed well with experiments and had a lower ZkF . He found a variation in
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ZkF between 0.15-0.35 along several crystallographic axes. Filippi and Ceperley calculated

CPs by quantum Monte Carlo (QMC) simulation that explicitly included electron-ion and

electron-electron interactions, and concluded that electron correlation only partly accounted

for the difference between theory and experiment17. Disorder18 and temperature19 were

discussed as contributing to the difference but their analysis was not conclusive, leaving

the puzzle unsolved. Recently, Klevak et al.20, calculated EMD by a real-space multiple-

scattering Green-function approach including disorder and found a smooth drop of n(k) at

kF without a finite ZkF . We note that the conduction electrons in Li have a strong electron-

ion interaction. This renders the Fermi surface anisotropic and generates secondary Fermi

surfaces in higher Brillouin zones due to the Umklapp process. This fact makes quantitative

comparisons between theory and experiment difficult. Probably, this is the source for the

discrepancy existing for several decades even though Li is one of the simplest elements.

In this study, we estimate ZkF in Li using ultra-high resolution Compton scattering. A

0.016 atomic unit (a.u.) instrumental resolution and a 0.024 a.u. overall resolution were

achieved. A tomographic reconstruction of the EMD is required for solid Li because it has

an anisotropic Fermi surface. However, this reconstruction produces artifacts, making a

quantitative analysis difficult. To avoid this procedure, we measured Li above the melting

point. The liquid sample is isotropic and thus a straightforward estimation of n(k) is possible

from Eq. (2). As a reference, we also measured a polycrystalline sample before melting the

sample. Both samples exhibit a clear break of n(k) at kF allowing determination of the

renormalization and the generic behavior of the momentum distribution of the HEG4.

II. EXPERIMENT AND THEORY

The experiment was performed at Taiwan IXS beamline at SPring-8 (BL12XU). The

most critical parameter in determining ZkF is the momentum resolution. Since a typical

radius of the Fermi sphere is 0.5 - 1.0 a.u., a resolution of an order of 0.01 a.u. is needed

to estimate ZkF , which is a technical challenge. One can easily improve the instrumental

resolution if low energy photons are used but the spectrum is then substantially broadened

by final-state effects21,22. We have chosen E o=25.54 keV to obtain dE=5 eV (instrumental),

corresponding to dp=0.016 a.u.

Synchrotron radiation from the undulator light source was monochromatized at 25.54
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FIG. 2: Valance CPs of liquid (a) and solid Li (b), compared with theory convoluted by the

broadening function. The insets show the difference between the experimental and theoretical

CPs. EMDs in liquid (c) and solid Li (d), compared to theory with or without the convolutions.

The insets show EMD for HEG and the spherically averaged EMD from band theory (LDA). The

♦’s in (c) and (d) show the n(kF ) obtained by RPA fits near kF .

keV by Si 111 double crystals. Then the beam was focused into a 80 × 120 µm2 (V × H)

spot on the sample by a Pt toroidal mirror. The energy spectrum of the scattered photons

were measured by a bent Laue spectrometer23. The analyzer was a 170-mm long, 80-mm

wide (base) and 0.5-mm thick triangular Si crystal having a 1.27 m bending radius. The

660 reflection was used. The detector was a NaI scintillator equipped with 8 × 16 channel

photomultiplier tube. A 6 × 6 mm2 pixel size makes an uncertainty of the scattering

angle, affecting the momentum resolution in the experiment. Nonetheless, this effect only

contributes to an additional broadening as small as 0.001 a.u. in the present set-up.

A 99.9% purity polycrystalline Li sample having a cylindrical shape of 9-mm diameter
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and 10-mm height was placed in the furnace made of stainless steel (SUS) equipped with

a heater at the bottom (see, Fig.1a, inset). The experiment was first performed at 297 K

on solid Li and then at 493 K on liquid Li. The furnace had openings along the directions

of the incident and the scattered photons. In order to avoid the sample leaking out of the

openings on the furnace when melted, the Li cylinder was first surrounded by a 10-µm thick

SUS foil in a glovebox, and then it was placed in the furnace. As seen in the figure, the

scattered photons from the foil were blocked by the thick part of the furnace so that they

were not detected.

The obtained CPs were corrected for self-absorption, background, multiple scattering,

and the energy dependence of the detection system (Fig.1a). The background curve was

determined by an E scan with a 2◦ offset of the analyzer angle. In such a geometry, the

detector does not accept photons reflected from the analyzer due to Soller slits in front.

Multiple scattering events were simulated up to the triple scattering process on a polycrys-

talline Li cylinder for the correction24. The energy dependence of the detection system is

determined by the absorption coefficients of the sample, the air-path, the analyzer and the

detector material (scintillator). Also, the reflectivity of the analyzer crystal smoothly varies

as a function of the energy. Both effects were theoretically calculated and applied to the

correction.

Diffusion Monte Carlo calculations were performed on molecular dynamics (MD) con-

figurations of the ions sampled at 330K and 500K for the solid and the liquid phases, re-

spectively. The classical MD temperatures were elevated by 33K in the solid and 7K in the

liquid phase to account for quantum fluctuations of the nuclei by matching kinetic energy

following Ref.[25]. We used Slater-Jastrow wavefunction with local density approximation

(LDA) orbitals on simulation cells containing 432 lithium atoms. The finite-size error of the

momentum distribution was corrected using the leading-order correction from Ref.[26]. The

pseudopotential error was corrected using an all-electron calculation for the perfect crystal.

All calculations were performed at rs = 3.25. After the QMC calculation, we rescaled k and

n(k) to the kF s corresponding to the actual experimental densities (rs = 3.265 for the solid

and rs = 3.31 for the liquid). We used LAMMPS27 for the MD simulations, QE28,29 for the

DFT calculations, and QMCPACK30 for the QMC calculations. The disordered calculations

have been automated using the Nexus suite of tools31. More computational details will be

described elsewhere32.
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Theory α− β− no α+ β+

QMC 0.145 4.20 0.89 0.091 -4.19

Liquid (a) QMC-C 0.159 4.14 0.89 0.091 -4.20

QMC-CL 0.204 4.00 0.87 0.120 -4.46

QMC 0.116 4.99 0.90 0.062 -3.72

Solid (b) QMC-C 0.143 5.35 0.90 0.065 -3.85

QMC-CL 0.188 4.66 0.88 0.097 -4.28

HEG (c) QMC 0.111 3.13 0.97 0.111 -6.61

Exp.

Liquid (c) 0.169 2.95 0.85 0.142 -5.39

Solid (d) 0.134 3.24 0.85 0.144 -6.21

TABLE I: Outputs from ”power fit” or linear fit to log n(k) vs log(|k − kF |) plot : Superscripts

(a-d) indicate correspondences to panels (a-d) in Fig.3.

Finally, theoretical CPs were convoluted by the broadening function due to the instru-

mental resolution and the final-state effect. The former was monitored by a line profile of

the elastic scattering (Fig.1b), which had a width of 0.016 a.u. For the latter, we calculated

a spectral density function (SDF) for HEG based on Soininnen’s form22. The SDF consists

of the main feature having a width of ∼ 0.013 a.u. and a small satellite associated with

a plasmon excitation. The broadening function given by a convolution of those functions

showed a shape between Gaussian and Lorentzian. We fit this profile with a broadening

function b(p) = 1/[Σ2
n=0 an (2p/Γ)2n] and obtained (a0, a1, a2) =(1.0, 0.85, 0.15) with Γ =

0.024 a.u. (Fig.1d). Note this function becomes Lorentzian using the parameters (1, 1, 0)

while effectively Gaussian using the parameters (0.6, 0.3, 0.1).

III. RESULTS AND DISCUSSIONS

Figures 2a and 2b compare the experimental valence CPs J(p) to (convoluted) theory

while Fig. 2c and 2d the experimental n(k) to theory with and without convolutions. As

a reference, another n(k) convoluted by Lorentzian having longer tails is also shown. We
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Power fit n−pow n+pow ζkF ZkF

Theo. QMC 0.74 0.091 0.65 0.78

Liquid QMC-C 0.73 0.091 0.64 0.77

QMC-CL 0.67 0.120 0.55 0.66

Exp. 0.69 0.142 0.54 0.62

Theo. QMC 0.75 0.082 0.67 0.81

Solid QMC-C 0.74 0.084 0.66 0.80

QMC-CL 0.68 0.113 0.57 0.68

Exp. 0.72 0.144 0.57 0.65

RPA fit n−RPA n+RPA

Liquid Theo. QMC 0.61 0.155 0.45 0.54

Solid Theo. QMC 0.66 0.125 0.53 0.64

RPA correction n−cor n+cor

Exp. QMC 0.56 0.206 0.35 0.42

Liquid QMC-C 0.57 0.206 0.36 0.43

QMC-CL 0.63 0.178 0.45 0.54

Exp. QMC 0.62 0.187 0.44 0.53

Solid QMC-C 0.63 0.185 0.45 0.54

QMC-CL 0.69 0.156 0.54 0.65

TABLE II: ZkF and related parameters: “Power fit” results are from a linear fit to log n(k) vs

log(|k − kF |). “RPA fit” means n(k) is fitted to RPA form Eq. (4). “RPA correction” applies the

correction n±cor = n±pow(Exp.)+∆n±, where ∆n± = n±RPA(Theo.)-n±pow(Theo.).Theory QMC are

the raw QMC n(k) values, QMC-C values are corrected with the optimally-fit convolution, and

QMC-CL are from the Lorentzian convolution having long tails. The bold values are our best

estimates.
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first computed J(p) with Eq.(1), then convoluted, and finally transformed back to n(k) with

Eq. (2). The n(k) of the liquid and solid Li are similar and clear features of the momentum

distribution renormalization can be seen. Theory seems to match the experiment better with

the Lorentzian-type broadening function, especially the height of n(k) and the curvature

near kF , perhaps implying that SDF could have a larger tail than expected. This possibility

will be discussed later. Liquid Li has a slightly lower density, thus a smaller kF , making

J(p) higher for k < kF . Furthermore, n(k) in the liquid shows a slightly smaller drop

at kF possibly because of more disorder effect and larger electron correlation effect in the

expanded system. As mentioned above, solid Li has an anisotropic Fermi surface; its radius
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varies by several percent depending on the directions 13,14. Hence a simple comparison

is problematic. Nonetheless, the comparison across the melting point is consistent with

expectations, indicating that the solid sample consists of randomly oriented domains. A

sharp drop at kF persists even after the spherical averaging, as we verified with band theory

calculations based on the LDA (see, Inset in Fig.2d).

ZkF is defined in the limit of k → kF . Therefore a model to extrapolate n(k) is required

to obtain ZkF . Schülke et al. constructed a model where n(k) decreases as −(k/kF )8 or

(k/kF )−8 with increasing k.13 The (k/kF )−8 behavior is theoretically justified at the limit

of large k while it is not otherwise as mentioned in their report. Thus, we adopt a more

general power law model to examine the asymptotic behavior :

n(k) = n0 − α−(k/kF )β
−

(k ≤ kF )

= α+(k/kF )β
+

(k > kF ). (3)

The − (or +) sign represents the extrapolation from below (or above) kF .

Figure 3 shows the log-log plots for n(k) vs (k/kF ). Table I summarizes the fit results. We

find that the theoretical n(k) has exponents β∼ ±4, depending on the broadening functions.

The HEG would have β = -8 at k � kF , which is very different from the results for Li. The

reasons for the difference are (i) that HEG can have a different behavior as k approaches

kF and (ii) that Umklapp process may significantly influence the asymptotic behavior. The

experiments, on the other hand, show β+∼ 3 and β−∼ -5. The difference between theory

and experiment may be due to Umklapp features that appear more prominent in theory.

The extrapolated densities α− and α+ give no − n− and n+, respectively. ZkF is given by

ζkF (n FFG
kF

/n DFT
kF

), where ζkF = n− − n+. We adopt n FFG
kF

= 1 in free Fermi gas while n DFT
kF

= 0.83 in LDA band theory. The renormalization factors ZkF are summarized in Table II.

The power model fits given as Eq. (3) tend to overestimate ZkF because the momentum

distribution is expected to have a divergent slope at kF
33. This effect is significant in Li

though such a deviation is much smaller in HEG [see, Fig.3(c)]. To account for the slope,

we fit the QMC n(k) to the RPA form Eq. (4)

ñ(x) = n1 + A|1− x|log (|1− x|) , (4)

where x ≡ k/kF , ñ ∈ [0, 1]. n1 and A are fitting parameters. The fitted n1 corresponds

to n− in the range x ∈ (0.8, 0.97) and n+ in the range x ∈ (1.02, 1.2). Points too close

10



to kF were excluded because spherical average of anisotropic n(k) smears out the Fermi

break. kF of the MD configurations were determined by unfolding the LDA bands from

the 432-atom supercell to the primitive cell Brillouin zone using the BandUP code34,35.

ZkF = 〈ζkF 〉/n LDA
kF

, where 〈· · ·〉 indicates average over MD configurations and n LDA
kF

≈ 0.83.

The QMC ZkF obtained in this way are 0.64± 0.01 and 0.54± 0.01 for the solid and liquid,

respectively. Further, we expect the addition of back flow correlation will reduce QMC ZkF

by ∼5%26.

The RPA form Eq. (4) cannot be directly fit to the experimental data because of the

resolution and final-state smearing effects at kF . Therefore, we use theory to determine

the slope near kF and attempt to correct the experimental ζkF and ZkF . The difference

between the extrapolated densities in the two models ∆n± ≡ n±
pow(theo.)−n±

RPA are used

for the corrections to the experiments. ∆n± depends on a shape of the broadening function

b(p), which involves the SDF. The shape is not exactly known (see, Table II) and it leads

to an uncertainly for determining ZkF . Experimental values for n±, ζkF , and ZkF after the

corrections are shown in Table II. Assuming the behavior of the QMC determined n(k) for

k near kF , an upper estimate for experimental ZkF is 0.54 (liquid) and 0.65 (solid) by the

broadest, Lorentzian-type b(p) while the lower estimates are 0.42 (liquid) and 0.53 (solid)

by the narrowest b(p).

IV. CONCLUSION

In summary, we obtained in experiment ZkF = 0.43 +0.11
-0.01 for liquid Li and 0.54 +0.11

-0.02 for

solid Li, while using QMC we obtained 0.54±0.01 for the liquid and 0.64±0.01 for the solid.

The agreement is much better than in previous studies. To reduce the experimental errors

further, the broadening due to final state effects needs to be made smaller. It is possbile

if Compton scattering is perfomed at higher energies, e.g. at ≥ 50 keV while keeping an

instrumental resolution of ∼0.01 a.u. Such an experiment is a technical challenge at present

but we believe it will be available in near future since the synchrotron radiation techniques

are being advanced day-to-day.
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J. Kim, K. Esler, D. M. Ceperley, et al., Phys. Rev. Lett. 105, 086403 (2010).

13 W. Schülke, G. Stutz, F. Wohlert, and A. Kaprolat, Phys. Rev. B 54, 14381 (1996).

14 Y. Sakurai, Y. Tanaka, A. Bansil, S. Kaprzyk, A. T. Stewart, Y. Nagashima, T. Hyodo,

S. Nanao, H. Kawata, and N. Shiotani, Phys. Rev. Lett. 74, 2252 (1995).

12



15 Y. Kubo, J. Phys. Soc. Jpn 65, 16 (1996).

16 Y. Kubo, J. Phys. Soc. Jpn 66, 2236 (1997).

17 C. Filippi and D. M. Ceperley, Phys. Rev. B 59, 7907 (1999).

18 S. B. Dugdale and T. Jarlborg, Solid State Commun. 105, 283 (1998).

19 C. Sternemann, T. Buslaps, A. Shukla, P. Suortti, G. Döring, and W. Schülke, Phys. Rev. B
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