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The modern theory of orbital magnetization addresses crystalline materials at the noninteracting
level: therein the observable is the k-space integral of a geometrical integrand. Alternatively, magne-
tization admits a local representation in r space, i.e. a “density”, which may address noncrystalline
and/or inhomogeneous materials as well; the Chern number admits an analogous density. Here we
provide the formulation for ribbons, polymers, nanowires, and single-layer materials, where both
k-space and r-space integrations enter the definition of the two observables.

I. INTRODUCTION

By definition, orbital magnetization M is the deriva-
tive of the macroscopic free-energy density with respect
to the magnetic field (orbital term thereof, and with a mi-
nus sign). Customarily, the field adopted is H; instead—
because of the reasons well explained in Ref. 1—first-
principle theory adopts the more fundamental field B.
The modern theory of orbital magnetization dates since
2006; therein, the observable M is cast as the k-space
integral of a geometrical integrand.2 The expression ad-
dresses on the same ground trivial insulators, Chern in-
sulators, and metals; it is also clear since then that M
and the Chern invariant are closely related quantities on
the theory side. In insulators the band spectrum is al-
ways gapped, but in the Chern case M depends on the
value of the Fermi level µ in the gap: this behavior is
consistent with the fact that, in a bounded sample, the
spectrum is not gapped and the topologically protected
edge states contribute to M.

In more recent years it has been shown that both
the Chern invariant and M can also be defined for a
bounded sample, where there is no k-vector to speak of:
both observables can be computed by means of an r-
space integration, where the integrand is to be regarded
as the dual version of its k-space counterpart.3,4 While
the k-space theory requires crystalline periodicity, the r-
space approach is capable of dealing with strongly disor-
dered cases and/or macroscopically inhomogeneous ma-
terials as well. In this paper we are going to address the
“hermaphrodite” cases,5 i.e. those which require an inte-
gration over both r-space and k-space. The paradigmatic
system in this class is a ribbon: a 2d materials bounded
in one Cartesian direction and lattice periodical in the
other. The ribbon is also the simplest at the level of for-
mulation and notations; the other hermaphrodite cases
basically require to adopt the same logics within different
notations. In this work we provide explicit formulæ, thus
extending the first-principle theory of both observables
beyond their known formulation. In the ribbon case, we
validate our expressions by means of model-Hamiltonian
simulations.

The paper is organized as follows. In Sec. II we show
in detail the derivation of the ribbon magnetization for-
mula; this also sets the logics to be adopted in the other
hermaphrodite cases. The ribbon formula for the Chern
number is derived as well. In Sec. III we provide a few
test-case simulations based on the (by now famous) Hal-
dane Hamiltonian.6 In the following Sec. IV we provide
explicit formulæ for the case of either a stereoeregular
polymer or a nanowire (where only the normal compo-
nent of M needs a nontrivial approach) and for the case
of a single-layer material (where only the in-plane com-
ponent of M was not accessible to the existing theory).
Finally, in Sec. V we draw some conclusions.

II. CHERN NUMBER AND ORBITAL
MAGNETIZATION IN A RIBBON

The 2d orbital magnetization M is a pseudoscalar with
the dimensions of an orbital moment per unit area, while
the Chern invariant is the (dimensionless) Chern number
C1 ∈ Z. In the topological case M as a function of µ in
the gap is

M(µ) = M(0)− µ e

hc
C1, (1)

where the zero of µ is set at the top of the valence states;
notice that the ribbon as a whole is gapless, but its bulk
is insulating. We address a ribbon of width w in the
x-direction, and lattice-periodical (“crystalline”) along y
with periodicity a (”lattice constant”). The elementary
definition of M is given as the circulation of the micro-
scopic orbital current per unit area:

M =
1

cwa

∫ ∞
−∞

dx

∫ a

0

dy x j(micro)
y (x, y), (2)

an expression dominated by boundary currents (we as-
sume that the macroscopic current vanishes). As first
proved in Ref. 4, M is a local observable and admits a
microscopic “density” called M(r); in the case of a ribbon
we have

M =
1

wa

∫ ∞
−∞

dx

∫ a

0

dy M(x, y). (3)
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The macroscopic average of M(x, y) can be identified
with (minus) the B-derivative of the free-energy density.
Eqs. (2) and (3) provide an identical M at any width
w, but their integrands are very different. The trans-
formation is similar in spirit to an integration by parts,
and M(x, y) is not a function of the microscopic orbital
current.

What remains to be done is to express M in terms of
1d Bloch orbitals, thus transforming the y-integral into
a k-integral over the 1d Brillouin zone (BZ). We expect
that Eqs. (2) and (3) converge to the bulk M value like
1/w, but it will be shown that the present approach also
allows to approach the large-w limit in a more efficient
way.

In all the hermaphrodite cases, the occupied orbitals
obey the so-called open boundary conditions (OBCs) in
some Cartesian direction(s), and Born-von-Kàrmàn pe-
riodic boundary conditions (PBCs) in some other(s). In
order to address both cases, one needs a “bridge” provid-
ing a seamless path between the two frameworks. The
key ingredient of this bridge must be the ground-state
projector P (a.k.a. the one-body density matrix), whose
virtue is rooted in the “nearsightedness” principle, and
which applies to P, but not to the individual eigenstates.7

Not surprisingly, P is one essential ingredient of our for-
malism.

The microscopic magnetization density M(r) may be
cast in several equivalent forms; here—inspired by Ref.
8—we adopt (in 3d and 2d, respectively):

M(r) =
e

2~c
Im 〈r| |H − µ| [r,P]× [r,P] |r〉, (4)

M(r) =
e

~c
Im 〈r| |H − µ| [x,P] [y,P] |r〉, (5)

where |H − µ| = (H− µ)(I − 2P), i.e. it is the operator
which acts as (µ − H) over the occupied states, and as
(H − µ) over the unoccupied ones. From Eq. (5) the
µ-derivative of M in 2d is

d

dµ
M(r) =

e

hc
4π Im 〈r| P [x,P] [y,P] |r〉 = − e

hc
C(r),

(6)
where C(r) is a “topological marker” (a.k.a. Chern den-
sity), equivalent to the one defined in Ref. 4; Eq. (6) is
pespicuously consistent with Eq. (1).

Eqs. (5) and (6) are obviously well defined within
OBCs, but it is not so obvious that they are well de-
fined even in the crystalline case, where the Hamiltonian
H is lattice periodical and P projects over a set of oc-
cupied Bloch orbitals. The multiplicative operator r is a
trivial one within OBCs, but is “forbidden” within PBCs:
it maps a vector in the PBCs Hilbert space into some-
thing not belonging to the space.9 The commutators in
Eqs. (5) and (6) effectively “tame” the nasty multiplica-
tive r: this can be seen as follows. In a crystalline ma-
terial the projector P (as well as any other legitimate
operator) is lattice-periodical:

〈r| P |r′〉 = 〈r + R| P |r′ + R〉, (7)

where R is a lattice vector. It is immediate to verify that
i[r,P] is indeed a legitimate, lattice periodical, Hermitian
operator.

The Bloch orbitals of a ribbon are |ψjk〉 = eiky|ujk〉,
with 〈x, y|ujk〉 square-integrable along x and periodical
along y; we normalize them as∫ ∞

−∞
dx

∫ a

0

dy 〈x, y|ujk〉〈uj′k|x, y〉 = δjj′ . (8)

The |ujk〉 are eigenstates of Hk = e−ikyHeiky with eigen-
values εjk. Within these notations, the ground-state pro-
jector per spin channel is, in the Schrödinger representa-
tion:

〈r| P |r′〉 =
a

2π

∫
BZ

dk eiky〈r| Pk |r′〉e−iky
′
, (9)

Pk =
∑
εjk≤µ

|ujk〉〈ujk|. (10)

The integrand in Eq. (9) is a periodic function of k with
period 2π/a, ergo the BZ integral of its k-derivative van-
ishes:

0 =
a

2π

∫
BZ

dk
d

dk
(eik(y−y

′)〈r| Pk |r′〉) (11)

= i(y − y′)〈r| P |r′〉+
a

2π

∫
BZ

dk eiky〈r| P ′k |r′〉e−iky
′
,

where P ′k is the k-derivative of Pk. In compact operator
notations this reads

i[y,P] = − a

2π

∫
BZ

dk eikyP ′ke−iky, (12)

while the other commutator is identically written as

[x,P] =
a

2π

∫
BZ

dk eiky[x,Pk]e−iky
′
; (13)

we also cast the Hamiltonian in a similar form:

H =
a

2π

∫
BZ

dk eikyHke−iky, (14)

where the integrand is actually k-independent. We have
by now all the ingredients needed to evaluate the triple
product in Eq. (5), ergo in Eq. (3). The triple k-
integration contracts to one (details are given in the Ap-
pendix) and we get

M(r) =
e

~c
Im

(
ia

2π

∫
BZ

dk

2π
〈r| |Hk − µ| [x,Pk]P ′k |r〉

)
=
ea

hc
Re

∫
BZ

dk

2π
〈r| |Hk − µ| [x,Pk]P ′k |r〉. (15)

This is a periodic function of y; we take the trace over the
1d cell to obtain the (microscopic) linear magnetization
density (as a function of the bounded coordinate)

M(x) =
e

hc
Re

∫
BZ

dk

2π
Try{ |Hk − µ| [x,Pk]P ′k }. (16)
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FIG. 1. (color online). A typical armchair Haldanium ribbon;
the linear cell (N = 46 sites in the figure) and the central cell
(4 sites) are shown. We performed simulation up to ' 100
sites in the linear cell.

M =
1

w

∫ ∞
−∞

dxM(x). (17)

Eq. (16) is one of the major results of this work: it obvi-
ously yields M via Eq. (17), but—as shown below—can
be used in a more efficient way by averaging it in the
central region of the ribbon (not on the whole ribbon).

The analogous formulae for the topological marker and
for the Chern number are

C(x) = −4πRe

∫
BZ

dk

2π
Try{Pk [x,Pk]P ′k }. (18)

C1 =
1

w

∫ ∞
−∞

dx C(x). (19)

Owing to gauge invariance, the k-derivative of P can
be safely evaluated by numerical differentiation. In a
tight-binding implementation (as the one shown below)
the evaluation of the trace amounts to perform multi-
plications of small matrices. In a first-principle imple-
mentation it would perhaps be more convenient to write
the expression in terms of the |ujk〉 in the “Hamiltonian
gauge”,2 i.e. using Eq. (15) as it is.

III. SIMULATIONS FOR AN “HALDANIUM”
RIBBON

The paradigmatic model for validating results of the
present kind is the one proposed by Haldane in 1988.6 It
is a tight-binding 2d Hamiltonian on a honeycomb lat-
tice with onsite energies ±∆, first neighbor hopping t1,
and second neighbor hopping t2 = |t2|eiφ, which pro-
vides time-reversal symmetry breaking. The model is
insulating at half filling and metallic at any other fill-
ing; according to the parameter choice the insulator can
be either trivial or topological (Chern number ±1). The
model has been previously used to demonstrate the local-
ity of M, and implemented for bounded samples within
OBCs in order to address insulators (both trivial and
topological)4,10 and metals.11 We are going to benchmark
the present hermaphrodite results by implementing the
model Hamiltonian on a periodic “Haldanium” ribbon,
as the one shown in Fig. 1.
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FIG. 2. (color online). Orbital magnetization in the non-
topological case as a function of the ribbon width N (number
of sites in the cell). The symbols M , Mbulk, and Mcell are
defined in the text. Units of e/(~c)

We evaluate C1 and M at finite widths, and we study
their convergence as a function of the number of sites, us-
ing three different expressions. In the figures the symbol
M results from Eq. (17), Mbulk results from averaging
over 1/2 of the sites in the central region, Mcell results
from averaging over the central cell (four sites); similar
symbols are adopted for C1. In the topological case the
ribbon is gapless; we therefore adopt a “smearing” tech-
nique, common to many metallic simulations. In order
to present homogeneous results, we adopt the smearing
even in the topologically trivial case.

As a prototype of nontopological Haldanium we adopt
the parameters t1 = 1, t2 = 1/3, ∆ = 1.5, φ = π/4 at
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FIG. 3. Central-cell orbital magnetization Mcell in the topo-
logical case as a function of the Fermi level µ in units of e/(~c).
After Eq. (1) the µ-derivative of M is −1/(2π) ' −0.159 in
the plot units.
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FIG. 4. Convergence of the Chern number with the ribbon
width. C, Cbulk, and Ccell are defined in the text, in analogy
to Fig. 2

half filling; this choice also allows benchmarking to Ref.
11, where some simulations adopt the same Haldanium
parameters. As a prototypical topological (C1 = 1) case
we adopt a nonpolar case: t1 = 1, t2 = 1/3, ∆ = 0,
φ = π/2; the simulations have been performed at various
µ values.

We start displaying the nontopological case in Fig.
2. The integral over the whole ribbon converges like
1/w: this was expected, since Eq. (17) is equivalent to
Eq. (2), whose integrand can be interpreted as the cir-
culation of the macroscopic boundary current. We in-
dicate as M(N) the finite-size M value: we thus have
NM(N) ' M(∞)(N − A). Therefore N − A looks like
an effective ribbon width, where A/2 measures the “cen-
ter” of the boundary macroscopic current (from the rib-
bon edge, in units of N): our data yield A = 6.45.
The virtue of the other two expressions is their much
faster convergence, which owes to the quasi-exponential
decay of the projector P in the present insulating case.
Next we switch to our topological case study; it has been
proved that even in this case the projector P has a quasi-
exponential decay,12 and in fact the plot (not reproduced
here) is qualitatively quite similar to Fig. 2 for any µ
value in the bulk gap. Next we show, for the same topo-
logical case, the value of Mcell, as defined above, when
the Fermi level µ is varied across the gap in Eq. (16).
The perspicuous linear behavior is due to the filling of
the topologically protected boundary states.

Finally in Fig. 4 we show the convergence of our topo-
logical marker C(x), Eq. (18), to the Chern number C1,
where C, Cbulk, and Ccell are defined analogously as for
the magnetization plots. Here again the convergence is
1/w when C(x) is averaged over the whole ribbon, as in
Eq. (19), but it is exponential when the average is per-
formed over an inner sample region.

IV. POLYMERS AND SINGLE-LAYER
MATERIALS

As said above, there is a family of hermaphrodite
cases: (i) 2d materials bounded in one Cartesian direc-
tion and lattice periodical in the other (ribbons, dealt
with above); (ii) 3d materials bounded in 2 directions
and lattice-periodical in the third (stereoregular poly-
mers and nanowires, where only the normal M compo-
nent is problematic); (iii) 3d materials bounded in one di-
rection and lattice-periodical in the remaining two (where
the in-plane component of M is problematic). Above
we have discussed and demonstrated—via tight-binding
simulations—the test case of a ribbon. The correspond-
ing formulæ for cases (ii) and (iii) above are reported in
the following.

Magnetization of polymers and nanowires

We deal here with a T-breaking quasi-1d system, pe-
riodic along z with period a. The Bloch orbitals are
|ψjk〉 = eikz|ujk〉, normalized as∫ ∞

−∞
dx

∫ ∞
−∞

dy

∫ a

0

dz 〈r|ujk〉〈uj′k|r〉 = δjj′ , (20)

and the ground-state projector is (per spin channel):

〈r| P |r′〉 =
a

2π

∫
BZ

dk eikz〈r| Pk |r′〉e−ikz
′
, (21)

Pk =
∑
εjk≤µ

|ujk〉〈ujk|. (22)

Since the system is microscopic in the (x, y) plane, the
intensive quantity of interest M is defined as (minus) the
B-derivative of the free-energy per unit length (although
the system is actually 3-dimensional).

The z-component af M is simply proportional to the
orbital moment per unit length:

Mz = − e

2ac

∫ ∞
−∞

dx

∫ ∞
−∞

dy

∫ a

0

dz

× [ x j(micro)
y (r)− y j(micro)

x (r)]; (23)

this is well defined since the system is bounded in the
(x, y) directions. The normal components requires in-
stead to be addressed via the modern theory. From the
main text it follows that

Mx =
1

a

∫ ∞
−∞

dx

∫ ∞
−∞

dy

∫ a

0

dz Mx(r) ,

Mx(r) =
e

~c
Im 〈r| |H − µ| [y,P] [z,P] |r〉. (24)

The commutator [z,P] is then transformed as in the
main text. After contracting the k-integrals (see the Ap-
pendix) we get, similarly to the ribbon formula in Sec.
II:

Mx(r) =
ea

hc
Re

∫
BZ

dk

2π
〈r| |Hk − µ| [x,Pk]P ′k |r〉. (25)
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Magnetization of lattice-periodical slabs

We consider a 3d system which is bounded in the z
direction and lattice periodical in the (x, y) coordinates.
The Bloch orbitals are |ψjk〉 = ei(kxx+kyy)|ujk〉, normal-
ized as ∫ ∞

−∞
dz

∫
BZ

dk 〈r|ujk〉〈uj′k|r〉 = δjj′ , (26)

where k is the 2d Bloch vector and BZ the relative Bril-
louin zone. The ground-state projector is (per spin chan-
nel):

〈r| P |r′〉 =
Ac

(2π)2

∫
BZ

dk eik·r〈r| Pk |r′〉e−ik·r
′
, (27)

Pk =
∑
εjk≤µ

|ujk〉〈ujk|, (28)

where only the (x, y) components of r enter the products
k · r. The |ujk〉 are eigenstates of Hk = e−ik·rHeik·r;
notice that Hk is a 3d Hamiltonian, and k is a 2d Bloch
vector.

The intensive quantity M of interest is the magnetiza-
tion per unit area. The z component of M can be derived
from the standard modern theory of orbital magnetiza-
tion, as shown in the original literature. Here we address
the in-plane component of M; if Ac is the area of the 2d
unit cell, then

Mx =
1

Ac

∫ ∞
−∞

dz

∫
Ac

dx dy Mx(r) ,

Mx(r) =
e

~c
Im 〈r| |H − µ| [y,P] [z,P] |r〉. (29)

Here again we transform only the commutator [y,P]:

i[y,P] = −Ac

∫
BZ

dk

(2π)2
eik·r(∂kyPk)e−ik·r, (30)

while the other two entries in the matrix element are

H = Ac

∫
BZ

dk

(2π)2
eik·rHke−ik·r

[z,P] = Ac

∫
BZ

dk

(2π)2
eik·r[z,Pk]e−ik·r. (31)

After contracting the three k-integrals (see the Ap-
pendix) we get, in analogy to the ribbon case,

Mx(r) =
eAc

~c
Re 〈r| |Hk − µ| (∂kyPk) [z,Pk] |r〉. (32)

V. CONCLUSIONS

We have shown how to extend the theory of orbital
magnetization beyond the two cases dealt so far in the
literature: periodic crystalline materials, where M is the
reciprocal space integral of a geometrical integrand;2 and

bounded samples (possibly noncrystalline), where the
magnetization density has a well defined expression in r-
space.4,11 Similarly, the Chern number enjoyed a known
dual picture.3 Here we have completed the theory of or-
bital magnetization, providing explicit formulæ for all
the cases which require integration over both reciprocal
space and coordinate space.

We have also provided a formulation for the Chern
number C1 in a ribbon geometry; the study of its con-
vergence as a function of the ribbon width w yields some
important comments. Our formula converges like 1/w
when integrated over the whole ribbon, and instead ex-
ponentially when integrated in a more efficient way (see
text). When an unbounded crystalline sample is con-
sidered, C1 is computed as a k-integral on a 2d BZ: in
this case even a coarse k-mesh provides the converged
result.13 If instead we address a flake (a sample bounded
in both Cartesian directions), the integral over the whole
flake is zero: the boundary therefore yields an extraordi-
nary negative contribution,3 and the topological marker
C(r) does not average to one over a line. The boundary
acts as a “reservoir”: the marker may equal one in the
bulk only if the boundary provides a negative compen-
sating contribution.

The fundamental reason for the difference between un-
bounded samples and bounded samples is that the trace
of the commutator of two finite-size matrices is zero,
while the commutator of two unbounded operators may
have a nonzero diagonal. In our ribbon case the opera-
tor is bounded in the x direction and unbounded in the
y one: the nontrivial message from Fig. 4 is that—at
variance with the flake case—there are no extraordinary
boundary contributions. A “reservoir” is not needed: the
average of C(x) over the whole ribbon converges indeed
to C1, although slowly.

Last but not least, the case of a finite B field is worth
a comment. For bulk materials a macroscopic field is in-
compatible with PBCs (except in commensurate cases);
the modern theory only addresses spontaneous magneti-
zation. Instead, in all the hermaphodite cases the adop-
tion of the appropriate Landau gauge yields a periodical
Hamiltonian. The present formulation can therefore be
applied in principle even to cases where a finite B field is
present. The ubiquitous presence of Landau levels could
be a problem in metallic cases;11 it is not expected to
make any harm in the insulating ones.
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APPENDIX: PRODUCTS OF
LATTICE-PERIODICAL OPERATORS

We are going to make use of two simple lemmas.
The first lemma concerns the integral of a plane wave

eiky times a periodic function f(y):∫ ∞
−∞

dy eikyf(y) =
2π

a
δ(k)

∫ a

0

dy f(y). (33)

The second lemma is best formulated forgetting for a
while the hermaphrodite cases, by addressing instead a
standard lattice-periodical Hermitian operator O in 2d.
Given that O commutes with the lattice translations, its
eigenstates have the Bloch form (no differently from the
Hamiltonian eigenstates). For instance the “dielectric
band structures” of solids are routinely computed.14 If
we indicate as |ψ̃jk〉 = eik·r|ũjk〉 the O eigenstates, and
as ojk the corresponding eigenvalues, spectral decompo-
sition yields

O =
Ac

(2π)2

∫
BZ

dk eik·rÕke−ik·r, (34)

Õk =
∑
j

|ũjk〉ojk〈ũjk|. (35)

At fixed k, both |ũjk〉 and the Hamiltonian eigenstates
|ujk〉 are a complete orthonormal set in the Hilbert space

of lattice-periodical functions, ergo a unitary transforma-
tion yields:

Ok =
∑
jj′

|ujk〉〈ujk| Õk |uj′k〉〈uj′k|. (36)

O =
Ac

(2π)2

∫
BZ

dk eik·rOke−ik·r. (37)

By definition O is lattice periodical, i.e.

〈r| O |r′〉 = 〈r + R| O |r′ + R〉, (38)

where R is a lattice vector; Eq. (36) shows that Ok enjoys
the additional property

〈r| Ok |r′〉 = 〈r + R| Ok |r′〉 = 〈r| Ok |r′ + R〉. (39)

Equipped with the above lemmas, we may now proceed
to the ribbon case. Arguments similar to those leading
to Eq. (37) show that any ribbon-periodic operators A
and B in the Schrödinger representation can be written
as:

〈r| A |r′〉 =
a

2π

∫
BZ

dk eiky〈r| Ak |r′〉e−iky,

〈r| B |r′〉 =
a

2π

∫
BZ

dk eiky〈r| Bk |r′〉e−iky
′
. (40)

The diagonal element of their product is then

〈r| AB |r〉 =
a2

(2π)2

∫
BZ

dk

∫
BZ

dk′ei(k−k
′)y

∫ ∞
−∞

dx′′
∫ ∞
−∞

dy′′ 〈r| Ak |r′′〉ei(k
′−k)y′′〈r′′| Bk′ |r〉

=
a

2π

∫
BZ

dk

∫ ∞
−∞

dx′′
∫ a

0

dy′′ 〈r| Ak |r′′〉〈r′′| Bk |r〉

=
a

2π

∫
BZ

dk 〈r| AkBk |r〉, (41)

where the passage from the first to the second line owes
to the ribbon-analogue of Eq. (39) and to the first lemma
above.

The contraction is associative and can be repeated for

three operators. It can also be generalized to system
periodic in 2 or 3 dimensions, with an obvious change of
notations.
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