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In itinerant systems, electron-electron interactions may lead to the formation of local magnetic
moments and their effective exchange coupling, which in turn gives rise to long-range magnetic
order. Therefore, when moment formation is weakened, such as in the single-band Hubbard model
on a square lattice with the on-site repulsion being randomly switched off on a fraction x of sites,
magnetic order is suppressed beyond some critical xc, which was found to lie below the classical

percolation threshold, x
(perc,sq)
c . Here we study dilute magnetism in flat band systems, namely in

the Hubbard model on a ‘Lieb’ lattice. Interestingly, we show that magnetic order persists to x
almost twice as large as the classical percolation threshold for the lattice, thus emphasizing the
central role of electron itinerancy to the magnetic response. The analysis of the orbital-resolved
order parameters reveals that the contribution of the four-fold coordinated ‘d’ sites to magnetism is
dramatically affected by dilution, while the localized ‘p’ states of the flat band provide the dominant
contribution to long-range correlations. We also examine the transport properties, which suggest
the existence of an insulator-to-metal transition in the same range of the critical magnetic dilution.

PACS numbers: 71.10.Fd, 02.70.Uu

I. INTRODUCTION

The study of magnetic systems with quenched random
site or bond dilution has raised fundamental issues
over the years. One question which was the subject
of considerable scrutiny was whether or not critical
exponents are altered; the Harris criterion suggests they
remain at pure system values as long as the specific
heat exponent α > 0 [1]. Initial explorations focused
on classical spin models. For instance, Monte Carlo
simulations of the square lattice bond-diluted [2] and
site-diluted [3] Ising models verified ‘strong universality’.
The exponents were found to be the same as that of the
pure system (even though α = 0). Another issue of
special experimental interest relates to dilute magnetic
semiconductors, since even a few of percent transition-
metal atoms introduce ferromagnetism, which might be
harnessed to change device functionality [4, 5]. The
possibility of magnetic order even in the high dilution
limit emphasizes the crucial role of coupling of moments
through the free carriers, an effect not captured in Ising-
like models of spins interacting purely through local
exchange coupling.

Indeed, in dilute magnetic insulators where there
is no long-range Rudermann-Kittel-Kasuya-Yosida
(RKKY) [6–8] coupling and interactions are only
between neighboring sites, geometrical aspects dominate
the suppression of magnetic order as the interactions
between the localized spins are randomly switched off.
This can be achieved by either replacing atoms possessing
localized moments by non-magnetic atoms (the site-
dilution problem), or by removing atoms mediating
the superexchange interaction between localized spins
(the bond-dilution problem) [9, 10]. In both cases,

the underlying lattice structure is fundamental, since
only in the percolating regime in which at least one
path of connected sites spans the whole lattice [11] can
long-range magnetic order be established. The ground
state magnetization decreases steadily and vanishes at
some critical concentration of sites (s) or bonds (b), such

that x
(s)
c ≤ x

(b)
c [11], beyond which no long-range order

can be sustained [9, 10].

For itinerant systems, however, the situation is quite
different. Consider the repulsive Hubbard model in
which the on-site interaction U is switched off on a
fraction x of sites. Ulmke et al. [12] considered a square
lattice at half-filling and ratio of on-site interaction to
hopping integral U/t = 8. Long range antiferromagnetic
(AF) order disappears at xc & 0.43 ± 0.07. The large
uncertainty results from the challenges in doing the finite
size and zero temperature extrapolations. Nevertheless,
this strong coupling critical value is consistent with the

classical site-percolation threshold, x
(perc,sq)
c = 0.41 [11].

On the other hand, at weaker coupling U/t = 4,
deviations from classical percolation have been found
[13–16]. For the square lattice xc is significantly less than
the expected percolation value [14, 16] [17].

The fact that, at coupling U/t = 4, the
dilution threshold for itinerant electrons is lower than
the classical, geometry-dependent, percolation value
suggests that enhanced double occupancy plays a role
in weakening magnetic order before the percolation
threshold is reached. Interestingly, the recovery of the
percolation value at U/t ∼ 8 is consistent with the
fact that this is the crossover interaction strength to
the regime where the Hubbard model is well described
by the Heisenberg Hamiltonian [18–20]. That is, charge
fluctuations are strongly suppressed and no longer play
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a role on the effects of dilution in the eventual magnetic
response.

In this paper we extend this understanding of dilution
in itinerant electron system to the Hubbard model on
the Lieb lattice [21–29], also known as a decorated
square lattice, or as the ‘CuO2 lattice’; see Fig. 1 (a).
This geometry is realized in the CuO2 sheets of high-Tc
cuprates [30] and also has been emulated in photonic and
optical lattices [31–37], as well as in atomic manipulation
of electronic states in Cu(111) surfaces [38]. The Lieb
lattice geometry allows us to explore diluted itinerant
electron systems in an entirely new physical context, one
in which a flat band is present at half-filling (for the
noninteracting case), as displayed in Fig. 1 (c), and for
which compact localized states are present even for strong
hopping disorder [39]. As a consequence of these features,
the electron dynamics on the Lieb lattice is quite different
from that on more conventional structures, leading to the
possibility of alternate magnetic response when electron-
electron interactions are taken into account. Indeed, the
fact that the two sublattices have unequal numbers of
sites already gives rise to unique physics even in the
absence of dilution: a ferrimagnetic state at half-filling
[40, 41], with a large contribution of the p-band to this
long-range ordered state [25]. Here we investigate the
robustness of this ferrimagnetic state in presence of site
disorder. However, from the outset we stress that due
to limitations on the system sizes used for quantum
systems [42–44], in particular to the itinerant electronic
case, numerical calculations can rarely provide critical
exponents with sufficient accuracy to settle issues related
to the Harris criterion. So, although we have discussed
this issue to lend broad perspective to our work, we will
not attempt to address this issue directly.

The layout of the paper is as follows. In Sec. II we
present details of the model, the calculational procedure,
determinant Quantum Monte Carlo (DQMC), and the
magnetic and transport observables used to characterize
the system. The results are presented and discussed in
Sec. III, while Sec. IV summarizes our findings.

II. MODEL AND METHODOLOGY

The Hubbard Hamiltonian for the Lieb lattice reads

Ĥ =− tpd
∑
rσ

(
d†rσp

x
rσ + d†rσp

y
rσ + H.c

)
− tpd

∑
rσ

(
d†rσp

x
r+x̂σ + d†rσp

y
r+ŷσ + H.c

)
+
∑
r,α

Uαr

(
nαr↑ −

1

2

)(
nαr↓ −

1

2

)
+
∑
r,σ,α

(εα − µ)nαrσ , (1)

with drσ, pxrσ, and pyrσ being standard annihilation
electron operators in second-quantized formalism, while
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FIG. 1. (Color online) (a) The Lieb (or CuO2) lattice. The
fourfold coordinated d sites appear in lighter color (orange)
and belong to one sublattice, while the twofold coordinated
p sites appear in darker color (blue) and belong to the
other sublattice. The dashed box corresponds to the unit
cell. Panels (b) and (c) respectively show the non-interacting
density of states on d and p sites.

nαrσ are the number operators for their corresponding
orbitals, α = d, px, or py; our notation therefore follows
closely that of the CuO2 lattice realization. The first
two terms on the right hand side of Eq. (1) denote the
inter- and intra-cell hopping between d- and p-orbitals,
respectively, while the third term corresponds to a site
and orbital-dependent local repulsive interaction. The
last term involves the onsite energies εα and the chemical
potential µ, which we set to εα = µ = 0, a choice which
makes each orbital precisely half-filled. The hopping
integral is taken as tpd = 1, thus defining the energy
scale.

We model dilution by allowing for random
distributions of Uαr , such that a fraction x of the
sites have their interaction strength suppressed,

Uαr =

{
U with probability (1− x);
0 with probability x.

(2)

The U = 0 sites no longer support moment formation as
a result of charge fluctuations. Our simulations focus on
the intermediate coupling value U/tpd = 4, since this is
the case where previous work has found that magnetic
order vanishes (below) away from the percolation value.
It is important to notice that, for the noninteracting case,
since the bandwidth of the Lieb lattice is Wlieb/t = 4

√
2

[see, e.g., Fig. 1 (b)-(c)], being smaller than the one for
the square lattice (Wsqr/t = 8), we effectively have
a larger U/W for the former. Therefore, one should
naively expect stronger geometrical effects for this choice
of interaction strength.

We investigate the ground state properties of the
Hamiltonian (1) by means of DQMC simulations
[45–49]. This is an unbiased numerical method
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based on an auxiliary-field decomposition of the
interaction which maps onto free fermions moving in
a fluctuating space and (imaginary) time dependent
potential. The first key step is a separation (the
Trotter-Suzuki decoupling) of the noncommuting parts

of the Hamiltonian: Ĥ0 containing the terms quadratic
in the fermion creation and destruction operators and

the quartic term ĤU which occur in the partition

function Z = Tr e−βĤ = Tr [(e−∆τ(Ĥ0+ĤU))M ] ≈
Tr [e−∆τĤ0e−∆τĤUe−∆τĤ0e−∆τĤU · · · ], where β =
M∆τ , with ∆τ being the grid of the imaginary-time
coordinate axis. This decomposition leads to an error
proportional to (∆τ)2, which can be systematically
reduced as ∆τ → 0. Here, we choose ∆τ = 0.125,
which is small enough so that the systematic errors
for the magnetic structure factor are comparable to the
statistical ones (from the Monte Carlo sampling). The
second central step is a discrete Hubbard-Stratonovich

(HS) transform [46] on the two-particle terms e−∆τĤU

which converts them also to quadratic in the fermion
operators. In this way the resulting trace of fermions
propagating in an auxiliary bosonic field, whose
components depend on the space and imaginary-time
lattice coordinates, can be performed.

The HS fields are sampled by standard Monte
Carlo techniques, allowing the measurement of Green’s
functions, and other physical quantities including spin,
charge, and pair correlation functions. The DQMC
method, as with many fermionic QMC approaches,
in general suffers from the minus-sign problem when
particle-hole symmetry (PHS) is broken [50]. Here,
however, we stress that the Lieb lattice is bipartite
and the introduction of randomness in the interaction
strength preserves PHS at half-filling, so that the sign
problem is absent for this case. A detailed introduction
to DQMC can be found, e.g. in Refs. 49, 51, and 52.

The magnetic response of the system is probed by the
real space spin-spin correlation functions

cαγ(`) =
1

3
〈Sαr0 · S

γ
r0+`〉 , (3)

with r0 being the position of a given unit cell, while α
and γ denote the orbitals (d, px, or py). The Fourier
transform of cαγ(`) is the magnetic structure factor,

S(q) =
1

Ns

∑
α,γ

∑
`

cαγ(`)eiq·` , (4)

where the number of sites is Ns = 3L2, with L being
the linear size of the underlying Bravais square lattice.
S(q) peaks at the dominant magnetic wavevector of the
system. The existence of a global ferromagnetically
ordered state is probed by the usual Huse finite-size
scaling form [53] with q = (0, 0),

S(0, 0)

L2
= (mF )2 +

A

L
, (5)
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FIG. 2. (Color online) The global FM spin structure factor
as a function of inverse of temperature for (a) x = 0.20, (b)
x = 0.40, (c) x = 0.55, and different lattice sizes L. Solid
lines are guides to the eye. Here, and in all subsequent figures,
when not shown, error bars are smaller than the symbol size.

where mF is the associated order parameter, and A is a
constant.

In addition, for a global ferromagnetic arrangement,
Eq. (4) allows us to separate the individual orbital
contributions as

S(0, 0) =
(
Sd d + Spx px + Spy py

+ 2Spx py + 2Sd px + 2Sd py
)
/3 , (6)

with

Sαγ =
1

L2

∑
`

cαγ(`) , (7)

where we use the fact that Sαγ = Sγα. Since the π/2
real space rotational invariance is recovered after disorder
averaging, one should find Spx px = Spy py ≈ Spx py , and
Sd px = Sd py . It is therefore useful to define

Sp p =
1

4

[
Spx px + Spy py + 2Spx py

]
, (8)

and

Sd p =
1

2

[
Sd px + Sd py

]
, (9)

which leads to

S(0, 0) =
1

3

[
Sd d + 4Sp p − 4|Sd p|

]
. (10)

The last term in Eq. (10) enters in absolute value because
the d-p spin correlations are always antiferromagnetic at
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half-filling, i.e.Sd p < 0 (in accordance to rigorous results
derived in Ref. 54), and indicative of the ferrimagnetic
nature which combines a nonzero overall magnetic with
anti-alignment of d and p spins within the unit cell.

The individual components of the structure factors
obey the same finite size scaling form[53], allowing us
to extract the orbital-resolved order parameters in the
thermodynamic limit,

(mF
d d)

2 =
Sd d
L2

+
a

L
, (11)

(mF
p p)

2 =
Sp p
L2

+
b

L
, (12)

(mAF
d p )2 =

|Sd p|
L2

+
c

L
, (13)

where a, b and c are constants.
Finally, the metallic or insulating character of the

system is probed with two independent quantities. One
is the direct-current conductivity,

σdc =
β2

π
Λxx(q = 0, τ = β/2), (14)

where

Λxx(q, τ) = 〈jx(q, τ)jx(−q, 0)〉, (15)

with jx(q, τ) being the Fourier transform of

jx(i, τ) = eτH

[
it
∑
σ

(
c†i+xσciσ − c

†
iσci+xσ

)]
e−τH;

(16)
This approximation has been extensively used to identify
metal-insulator transitions [55, 56]. The other quantity
is the electronic compressibility, defined as

κ =
1

n2

∂n

∂µ
, (17)

where n is the global electronic density. We should note
that in principle our data for κ could suffer from the
sign-problem when the chemical potential moves slightly
around half-filling in the finite difference implementation
of Eq. (17). However, in a regime where κ is small, the
sign problem is less serious, because even though a non-
zero chemical potential is applied, the density stays close
to half-filling. Indeed, we have systematically checked
that the average sign was always close to 1 within the
range of parameters analyzed. Therefore, our data for
the compressibility are free from the minus-sign problem.

III. RESULTS

We consider lattices with linear sizes up to L = 9
(Ns ≤ 243), and we take U/tpd = 4 throughout the
paper. Further, in what follows our results are obtained
by averaging over 20-60 disorder realizations, depending
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FIG. 3. (Color online) Finite-size scaling of the normalized
global ground state structure factor for different impurity
concentrations.

on the temperature and lattice sizes; this procedure keeps
the error bars in the correlation functions small enough
to give rise to unambiguous extrapolations. The disorder
configurations are generated in a canonical ensemble,
i.e. for a given concentration, x, of free sites one randomly
chooses xNs sites to set U = 0, so that there are no
fluctuations in the number of free sites. For dilution
fractions x which do not correspond to an integer number
of sites for a given L, we perform a weighted average over
the adjacent integers.

Figure 2 illustrates the behavior of the global uniform
structure factor S(0, 0) with the inverse temperature,
β = 1/T , for three different concentrations of free sites.
In each case S(0, 0) approaches an asymptotic value for
sufficiently large β, reflecting the fact that, in an ordered
phase, the correlation length is limited by the finite
size of the lattice. These large β values give S(0, 0) at
T = 0 (for the given system size and concentration)
and are used for the scaling analysis of Eq. (5). The
outcome is depicted in Fig. 3. For each concentration
the ground state magnetization in the thermodynamic
limit is obtained from the intercept with the vertical axis
(1/L = 0). These, in turn, are plotted as a function of
the concentration in Fig. 4.

From Fig. 4 we see that the global magnetization
decreases steadily with increasing disorder and vanishes
around xc ≈ 0.55, a value more than twice as large as the
classical site-percolation threshold for the Lieb lattice,

x
(perc,Lieb)
c ≈ 0.26 [57, 58]. This clearly shows that the

disorder-induced transition is not purely geometric.

In order to understand why the magnetic behavior on
the diluted Lieb lattice is more robust, in the sense that

xc > x
(perc,Lieb)
c , we must examine the orbital-resolved

order parameters. Figure 5 shows their temperature
dependence for a given linear system size. We see that the
dominant correlations between electrons on p orbitals are
ferromagnetic, and so are those on d sites; by contrast,
when one electron is on a p-site and the other on a d-
site, the correlations are antiferromagnetic, justifying the
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FIG. 4. (Color online) Global ground state ferromagnetic
order parameter mF as a function of dilution fraction, x.
The error bars are due to the uncertainties in the 1/L → 0
extrapolation; see Fig. 3. The solid curve is a guide to the eye
for the magnetization, while the vertical dashed line marks
the classical site-percolation threshold for the Lieb lattice.

form of Eq. 10. Following the procedure adopted for the
global structure factor, in Fig. 6 we extrapolate the low
temperature results to L → ∞. The thermodymanic
limit intercepts with the vertical axis are plotted in Fig. 7.

A strong coupling analysis for the clean system [25]
attributes the robustness of the pp FM order parameter
to the p spins locking into triplets. In contrast, the
weakness of the dd correlations originates in a shielding
by these surrounding triplets. This picture in fact
persists to seemingly rather small values of U/tpd, as a
result of the flatness of p-band, which makes the ratio
of the interaction to bandwidth large. The formation of
such triplets seems to be only weakly affected if U = 0
on all d-sites: as discussed in Ref. 25, magnetic order
persists even in this limiting case. Upon random dilution,
one should notice that the long-range behavior of d-sites
(mF

dd) is strongly suppressed for a small dilution strength,
while magnetism is dominated by the p-sublattice, as
shown in Fig. 7: the pp contribution to the magnetization
is much stronger than those involving d-sites, both in
intensity and in its resilience to disorder, sustaining
order well beyond the classical percolation threshold.
It is worth noticing that the robustness of the long-
range behavior of p-sites is due to their coupling to d-
sites, which may restore the triplets even when U = 0
on a given p-site. As displayed in Fig. 7, long-range
antiferromagnetic correlations between p and d-electrons
(i.e., mAF

dp ) occur even for mF
dd = 0, and has almost

the same threshold as mF
pp. It therefore emphasizes

the importance of d-electrons to global magnetism,
and seems to be the key feature for the occurence of
magnetism beyond the classical percolation limit.

Once the disorder threshold is exceeded, there are not
enough strongly repulsive U -sites to sustain an insulating
state at half-filling, and we expect a metallic state to set
in. This can be checked with the aid of the conductivity,
calculated through Eq. (14). Figure 8 (a) shows the
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FIG. 5. (Color online) Orbitally-resolved contributions to the
structure factor from d-d (squares), d-p (triangles), and p-
p (inverted triangles) correlations as functions of the inverse
temperature, for fixed L = 8 and (a) x = 0.20, (b) x = 0.40,
and (c) x = 0.55. Solid lines are guides to the eye.
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FIG. 6. (Color online) Finite-size scaling of the normalized,
orbitally-resolved structure factors of (a) d-d, (b) d-p, and (c)
p-p contributions for different dilutions.

temperature dependence of σdc for different disorder
concentrations, while Figure 8 (b) shows σdc as a function
of concentration, for different temperatures. Two distinct
regimes are clearly identified: insulating, when σdc

decreases as the temperature decreases, and metallic,
when σdc increases as the temperature decreases. One
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FIG. 8. (Color online) Conductivity (a) as a function of
temperature, for different dilutions, and (b) as a function
of dilution, for different temperatures. The solid lines are
guides to the eye. Both presentations of the data suggest
insulating behavior for x < xc ∼ 0.5 and metallic behavior
for x > xc ∼ 0.5.

can roughly estimate that the change in behavior occurs

at x
(σdc)
c = 0.50±0.03, which is consistent with the results

suggesting a change in magnetic behavior at the same xc.
The transition across xc is therefore from an insulating
ferrimagnetic phase to a metallic paramagnetic one.

Further evidence in favor of the insulator-metal
transition is provided by the compressibility, Eq. (17).
Figure 9 shows the global compressibility, the change in
the overall density with chemical potential. We see that
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FIG. 9. (Color online) Global compressibility as a function of
the inverse temperature, for different dilution concentrations,
x. The solid lines are guides to the eye.

for x = 0.3 and 0.4 the system has a small, temperature
independent value of κ, while for x = 0.5 and 0.6, κ
increases with β. In Figure 10 the compressibility is
broken into individual contributions from p and d sites,
and we see that the dominant behavior comes from p
sites, which are the ones forming the flat band. That is,
xc defines a value above which the p sites become weakly
compressible. It is also worth noticing that for x > xc,
κp seems to diverge at low temperatures, a behavior
already present in the noninteracting case due to the
dispersionless middle band [see, e.g., Fig. 1 (c)]. Thus,
for x > xc, the transport properties resemble those for
the noninteracting one, despite the presence of electron-
electron interactions on a subset of sites.

The following picture emerges from the combination
of data for the magnetic structure factor, conductivity,
and compressibility: The low temperature insulating
ferrimagnetic state can accommodate extra electrons on
the U = 0 sites at low energetic cost, provided there are
not too many of them. As dilution increases, more U = 0
p sites become available, and the system becomes fully
compressible. One should also notice that, since there is
an energetic cost to break the triplets formed by spins on
p sites, the compressibility is reduced as the temperature
decreases, for x . 0.30, and grows faster for x & 0.40.

IV. CONCLUSIONS

Studies of the Periodic Anderson Model [59–61]
and of the single band Hubbard model with random
dilution of the on-site interaction [12–16] have provided
opportunities for the exploration of magnetic order in
systems possessing both sites where moments form and
those for which charge fluctuations are allowed. By
considering dilution on the repulsive Hubbard model on a
Lieb lattice, in which the on-site repulsion U is switched
off on a fraction x of sites, we have established some new
features of this problem.



7

0.00

0.50

1.00

1.50

2.00

2.50

3.00

κ p

x = 0.60

x = 0.50

x = 0.40

x = 0.30

0 4 8 12 16 20 24 28 32 36 40

β

0.00

0.50

1.00

1.50

2.00

2.50

κ d

(a)

(b)U/t
pd

 = 4 L = 6

FIG. 10. (Color online) Site-resolved compressibility as a
function of the inverse temperature, for different dilution
concentrations, x: (a) compressibility on p sites, and (b)
compressibility on d sites. Solid lines are guides to the eye.

In particular, although studies of the diluted
square lattice Hubbard model suggested the critical
concentration for U = 0 sites is less than the percolation
value, we have shown here that on the Lieb lattice
magnetic order is more robust than one might expect
from percolation arguments: the percolation threshold,
xc, is higher than the one solely determined by the

geometry of the lattice, x
(perc,Lieb)
c . While a dynamic

(i.e. interaction-driven) influence on xc had already been
noted [14, 16] for the attractive Hubbard model at
half-filling (which has a corresponding behavior in the
repulsive case), there the classical percolation threshold
provides an upper bound to the quantum case. A second
observation is that, simultaneously with the ‘percolative’
magnetic transition, the system undergoes an insulator
to metal transition, as evidenced by both the dc-
conductivity and the compressibility. These properties
are a direct consequence of the flat p-band displayed by
the non-interacting Lieb lattice. Our results therefore
show that disordered quantum itinerant systems display

a non-trivial interplay between dynamics and lattice
geometry leading to features with no counterpart in
classical systems.

Previous works [12–16] have suggested that the
presence of two regimes, one at strong coupling where

xc ∼ x
(perc,sq)
c , and one at weaker coupling where

xc < x
(perc,sq)
c , might be connected to the two distinct

physical pictures for the origin of antiferromagnetism
(AF) in the half-filled single-band square lattice Hubbard
model. For large U/t one thinks of a Mott insulating
state in which a superexchange interaction J = 4t2/U
couples neighboring spins. A (quantum) Heisenberg spin
description is appropriate in this regime. On the other
hand, at weak coupling, AF can be viewed as arising from
a spin-density wave instability driven by Fermi surface
nesting. In this case, the U = 0 band structure and
electron itinerancy play a central role. Our work suggests
that, although a criterion for xc based purely on the
strength of U/t might be correct for a single band model,
a more complex picture is necessary to understand the
multiple band case. Specifically, the orbitally-resolved
magnetic order parameters mαγ must be analyzed, and
might vanish at very different dilution fractions. Finally,
it would also be interesting to verify whether the metal-
insulator and the ferrimagnetic transitions always take
place concomitantly, or may occur at different regions of
the parameter space, e.g. if turns out that xFer

c 6= xIns
c ,

one could have a ferrimagnetic metal or a nonmagnetic
Mott insulating state. Further work is needed to clarify
this interesting issue.
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