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Organic molecular crystals are expected to feature appreciable electron-phonon interactions that
influence their electronic properties at zero and finite temperature. In this work we report first
principles calculations and analysis of the electron-phonon self-energy in naphthalene crystals. We
compute the zero-point renormalization and temperature dependence of the fundamental band
gap, and the resulting scattering lifetimes of electronic states near the valence and conduction
band edges employing density functional theory. Further, our calculated phonon renormalization
of the GW -corrected quasiparticle band structure predicts a fundamental band gap of 5 eV for
naphthalene at room temperature, in good agreement with experiments. From our calculated
phonon-induced electron lifetimes, we obtain the temperature-dependent mobilities of electrons and
holes in good agreement with experimental measurements at room temperatures. Finally, we show
that an approximate energy self-consistent computational scheme for the electron-phonon self-energy
leads to the prediction of strong satellite bands in the electronic band structure. We find that a single
calculation of the self-energy can reproduce the self-consistent results of the band gap renormalization
and electrical mobilities for naphthalene, provided that the on-the-mass-shell approximation is used,
i.e., if the self-energy is evaluated at the bare eigenvalues.

Molecular crystals, periodic arrays of molecules bound
by noncovalent interactions, can nonetheless feature rel-
atively high charge carrier mobilities [1–4]. The acene
family of molecular crystals are of particular interest, hav-
ing high crystalline purity, making them attractive for
fundamental studies and various optoelectronic applica-
tions [5–8]. In acenes, each monomer consists of a rigid
unit of fused benzene rings. These monomers crystallize
in a herringbone structure (Fig. 1). Naphthalene, the
second smallest of the acene family, provides a popular
testbed for electronic structure calculations and experi-
ments, with results that can often be extrapolated to its
larger siblings [9].

Electron-phonon coupling (EPC) has long been under-
stood to be important in determining the electronic and
transport properties of these materials [10–12]. Along
with contributions from thermal lattice expansion, the
EPC is responsible for the temperature-dependent renor-
malization of the band structure. Electron-phonon scat-
tering and decay channels also result in finite lifetimes
for electronic states and limit charge carrier mobilities.
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The finite lifetimes result in a broadening of the elec-
tronic bands that can be observed with photoemission
spectroscopy, for example [13, 14].

The vast majority of prior theoretical studies of temper-
ature effects in organic crystals arising from EPC focus on
lifetimes and mobilities of charge carriers [4, 12, 15–27].
Prior ab initio studies that explicitly calculate the renor-
malization of band gaps are usually limited to few-atom
systems [28–33] or small molecules [34]. One study that
calculated both the broadening and renormalization of the
band gap of pentacene crystals used a tight-binding model
parametrized by many-body perturbation theory (MBPT)
calculations [35], reporting unusual quasi-discontinuities
in the band structure caused by EPC that have been
corroborated by experimental results, showing “kinks” in
the electronic dispersion [35, 36]. In another study, Vuk-
mirović et al. [37] evaluated the EPC matrix elements for
two pairs of bands in naphthalene using first-principles
methods. They reported weak EPC, strengthening the
argument for band-like charge carrier transport. Lee
et al. [25] use a fully ab initio approach to calculate the
temperature-dependent hole mobility.

In this work, we compute from first principles the tem-
perature dependence of the band structure and the elec-
tron and hole transport properties of naphthalene crys-
tals. We use density functional theory and the dynamical
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Allen-Heine-Cardona theory to compute both the real
and imaginary contributions to the electron-phonon self-
energy. With this quantity, we predict the temperature
renormalization of the band gap, and obtain the hole
and electron mobilities within the relaxation time ap-
proximation. We discuss the details of the calculated
frequency-dependent electron-phonon self-energy of the
electron or hole, and identify features that should apply to
acene and other molecular solids, such as the approximate
independence of the self-energy on the electron wave vec-
tor k. We find that in naphthalene, the band dispersion,
phonon frequencies, and the renormalization energies are
of the same order of magnitude, challenging the validity of
perturbation theory in this system. We address this issue
by exploring a self-consistent computational scheme for
the electron-phonon self-energy, and show that a single
calculation of the self-energy can reproduce self-consistent
results of the band gap renormalization and charge carrier
mobilities, provided that the on-the-mass-shell approxi-
mation is used.

I. THEORY AND METHODS

A. Theoretical Framework

The starting point for our calculations is density func-
tional theory (DFT), which provides Kohn-Sham orbital
wave functions ψnk and orbital energies ε0nk, where n is
the band index and k is the wave vector. We rely on
density functional perturbation theory (DFPT) to com-
pute the phonon coupling potential, and incorporate the
electron-phonon interactions via many-body perturbation
theory, specifically a low-order diagrammatic expansion
of the electron-phonon self-energy [38–40].

To obtain the electron-phonon self-energy we follow
the approach described in [31, 41]. To lowest order in
perturbation theory, the electron-phonon self-energy Σep

nk
can be divided into two terms, the Fan and Debye-Waller
(DW) term

Σep
nk(ω, T ) = ΣFan

nk (ω, T ) + ΣDW
nk (T ). (1)

We briefly summarize each term. The frequency-
dependent Fan term is given as

ΣFan
nk (ω, T ) =

∑
νq

1

2ωνq

∑
m

|gnmν(k,q)|2

×
[
Nνq(T ) + fmk+q(T )

ω − ε0mk+q + ωνq + iη
+
Nνq(T ) + 1− fmk+q(T )

ω − ε0mk+q − ωνq + iη

]
.

(2)

In Eq. (2), the phonon modes are specified by indices
ν, wave vector q, and energies ωνq. Phonons couple
electrons in state nk with state mk+q through the first

derivative of the electron crystal potential V
(1)
νq associated

with the respective phonon’s atomic displacement pattern.
The electron-phonon matrix elements gnmν(k,q)=〈ψnk |

V
(1)
νq | ψmk+q〉 determine the coupling strength between

the electronic states and the phonons. The temperature
dependence of the Fan term arises from the phonon (N)
and electron (f) occupation factors. We can see that even
at zero temperature, the self-energy has a finite value.
The denominators give rise to poles at ω = ε0±ωνq, which
are rendered smooth with the parameter η; η, in principle,
is real, infinitesimal and has the same sign as ω in Eq. (2),
which yields the time-ordered self-energy, in contrast to
the retarded self-energy [40]. In practice, we use a value of
0.025 eV to account for the finite q-grid sampling. Details
of the convergence of the self-energy with respect to q-grid
and η can be found in the supplemental material [42].

The frequency independent Debye-Waller term

ΣDW
nk (T ) =

∑
νq

1

2ωνq
〈nk | V (2)

νq,νq | nk〉
[
2Nνq(T ) + 1

]
(3)

makes up the second part of the electron-phonon self-
energy. The DW term depends on the second derivative

of the potential V
(2)
νq,νq, which is somewhat more arduous

to calculate. We use the rigid-ion approximation, which
allows us to write Eq. (3) in terms of the first derivative [38,
43, 44]. In this way, we can obtain all values from DFT
and DFPT calculations.

There are two main challenges in calculating the self-
energy efficiently. The first challenge is that q-space
has to be sampled more densely compared to a typical
phonon band structure calculation, which rapidly becomes
the main bottleneck for large systems. In this work, we
interpolate the phonon coupling potential in real space,
following prior work [45–48]. It is standard practice to
interpolate the phonon frequencies of a regular q-grid onto
arbitrary q-points by means of a Fourier transform of the
dynamical matrices to real space, and back to reciprocal
space. Applying the same principle here, we calculate the
potential derivative with DFPT on a coarse q-point grid
and interpolate to a finer grid via Fourier transform. We
define the long-range component of the phonon potential
of atom κ along the Cartesian direction j as

V Lκj(q, r) = i
4π

Ω

∑
G6=−q

ei(q+G)·(r−τκ)(q + G)j′ · Z∗κ,j′j
(q + G) · ε∞ · (q + G)

,

(4)

where ε∞ is the static dielectric matrix without the lattice
contribution to the screening, and Z∗κ,j′j is the Born
effective charge tensor. These quantities are computed
from DFPT by including the response of the system to
a macroscopic electric field. The long-ranged component
of the phonon potential represents the dipole potential
created by displacing the Born effective charges of each
atom, and becomes the dominant contribution to the
potential in the limit q→ 0. Next, we perform a Fourier
transform of the short-range component of the phonon
coupling potential, starting from the coarse q-point grid,

Wκj(r−Rl) =
∑
q

eiq·Rl

[
V

(1)
κj (q, r)− V L

κj(q, r)
]
, (5)
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where Wκj(r − Rl) represents the short-range compo-
nent of the perturbative potential associated with the
displacement of atom κ in the unit cell l along the Carte-
sian direction j, and r is defined within the first unit
cell (R0 =0). The interpolated phonon potential for an
arbitrary point q̃ is then

V
(1)
κj (q̃, r) ≈

∑
l

Wκj(r−Rl)e
−iq̃·Rl + V L

κj(q̃, r). (6)

This interpolation scheme reproduces the electron-phonon
coupling matrix elements with accuracy better than 1%,
as shown in the supplemental material [42]. It achieves
the same goal as the Wannier interpolation used in other
works [48–50], but avoids the computation of Wannier
functions altogether.

The second challenge in the computation of the electron-
phonon self-energy lies in the sum over electronic states m
in Eq. (2), which can converge slowly with the number of
bands. We evaluate this sum explicitly using all valence
bands, and conduction bands up to 5 eV above the last
electronic state for which the self-energy is computed.
Above this cut-off the sum over infinite bands is replaced
by a Sternheimer equation, and their contribution to the
self-energy is treated statically, an approximation that
has been shown to be effective in prior work [41, 44].
Furthermore, this contribution is evaluated on the coarse
q-grid, since the denominator of the self-energy in Eq. (2)
is never small for these bands, and is thus a smooth
function of q.

B. Computational details

DFT calculations are performed with the ABINIT
code [51–53] using Fritz-Haber-Institut norm-conserving
pseudopotentials [54], and setting the plane waves ki-
netic energy cutoff to 45 Ha. We use the Perdew-Burke-
Ernzerhof (PBE) functional in combination with the
Grimme-D3 correction [55, 56] to account for London
dispersion forces. To obtain the electronic ground state
density, we sample the Brillouin zone on a Γ-centered
k-grid of 2 × 4 × 2. All electronic energies in this work
are given relative to the valence band maximum.

The phonons and associated potential derivatives are
calculated with DFPT, including the treatment of dis-
persion forces [57–60]. A coarse Γ-centered 4 × 6 × 4
q-grid gives well converged phonon frequencies and dis-
placements after interpolation of the dynamical matrix, as
shown in our previous work [61]. In the present work, we
start from an even finer 6×8×6 grid, and interpolate not
only phonon frequencies and displacements, but also the
phonon potentials and self-energy onto a 12× 14× 12 q-
grid, which converges the renormalization and broadening
values within a few meV (see the supplemental material
[42] for convergence studies).

FIG. 1. Naphthalene is the smallest acene that crystallizes
in a herringbone structure. There are two molecules in the
monoclinic unit cell, each situated at inversion centers.

C. Lattice parameters

Naphthalene crystallizes in the P21/a space group,
forming a herringbone structure with two molecules per
unit cell (Fig. 1) that are held together by noncovalent
interactions. As discussed in previous work [62], relaxing
lattice parameters and atomic coordinates with van der
Waals corrected functionals or pair-wise dispersion correc-
tions results in excellent agreement with low-temperature
experiments. The relaxed unit cell volume of naphthalene
obtained with PBE-D3 is within 0.4 % of the experimental
value measured at 5 K1. We use this relaxed unit cell for
most of our calculations, and refer to it by its computed
volume, ΩDFT.

To simulate thermal lattice expansion, we use fixed
experimental lattice parameters obtained at 295 K1, and
relax the internal atomic coordinates using PBE-D3. The
volume of this room temperature structure is about 6 %
larger than that of the low-temperature structure. The
main expansion occurs in the ab plane, and through a
decreased tilt of the monoclinic cell (see the supplemental
material for all unit cell parameters [42]). Any calculations
that use this experimental lattice are labeled by this larger
volume, Ω295K.

II. RESULTS AND DISCUSSION

A. Electronic and phonon band structures

The electronic band structure of naphthalene is char-
acteristic for a small molecule crystal [62]: it possesses
a sizeable band gap combined with flat, well separated
groups or complexes of bands (Fig. 2). DFT yields an in-
direct gap of 3.01 eV between the valence band maximum

1 The experimental crystal structures used in this work are available
at the Cambridge Structural Database [63]. The identifiers for
the structures measured at 5 K and 295 K are NAPHTA31 and
NAPHTA36, respectively, and published in association with [64].
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FIG. 2. Electronic band structure of naphthalene calculated
with DFT. The locations of the conduction band minimum
(CBM) and valence band maximum (VBM) are indicated with
black dots.

(VBM) at A and the conduction band minimum (CBM)
at Γ. The weak intermolecular interactions lead to small
bandwidths for the complexes less then 0.4 eV. Further-
more, because naphthalene has two molecules per unit
cell, the electronic bands double up in so-called Davydov
pairs [65, 66]. In the vicinity of the band gap, these Davy-
dov pairs are separated from each other by about 0.4 eV.
This separation drastically reduces mixing of states from
different Davydov pairs. The wave functions of solid naph-
thalene at the band edges therefore vary little throughout
the Brillouin zone, and closely resemble linear combina-
tions of gas-phase-like molecular orbitals. Dispersion and
interband interactions are higher for bands just below
−2 eV as the spacing between electronic levels decreases,
and for bands above 4.5 eV as the wave functions become
more delocalized.

For the phonon frequencies, we obtain excellent agree-
ment with experiments across the Brillouin zone us-
ing PBE-D3 (see supplemental material [42] for the full
phonon band structure in comparison with experimental
measurements from Refs. [67, 68]), similar to our previ-
ous results with the vdW-DF-cx functional [61]. Since
we analyzed the vibrational properties of naphthalene
in depth in Ref. [61], we give only a brief overview of
the main features here. In naphthalene, intermolecular
modes (<20 meV) can be clearly distinguished from in-
tramolecular modes (20–400 meV). Intermolecular modes
are translational and librational modes of rigid molecules,
while for intramolecular modes, the phonon displacement
vectors resemble linear combinations of gas phase vibra-
tions.

We emphasize that, despite the clear separation be-
tween inter- and intramolecular modes, we treat all
phonon modes on the same footing in our work. While
hopping transport models often use the rigid molecule
approximation [69–71], it has been shown that the mixed
inter- and intramolecular low-frequency modes can have
large EPC contributions, especially for larger molecules
like rubrene [72].

Upon thermal lattice expansion the spacing between
molecules becomes larger. The lowered interaction leads
to softening of the intermolecular modes, decreasing the
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FIG. 3. a) Renormalization and temperature dependence of
the band edge states at Γ and A, with ΩDFT. The dotted lines
indicate the ZPR, connecting the bare eigenvalues calculated
with PBD-D3 (circles) with the renormalized energies at 0 K.
The renormalized energies for Ω295K (squares) at 300 K are
plotted for comparison. b) ZPR (dotted) and temperature
dependence (solid) of the indirect band gap of naphthalene
for ΩDFT. The red square shows the renormalization at 300 K
using Ω295K.

lowest frequencies by up to 40 %. In contrast, intramolecu-
lar frequencies, which depend on the covalent interatomic
forces, are found to change very little, as shown in the
supplemental material [42].

B. Temperature-dependent renormalization of the
band structure

We obtain the temperature-dependent electronic band
structure of naphthalene from the real part of the electron-
phonon self-energy using the on-the-mass-shell approxi-
mation [73]

εnk(T ) = ε0nk + Re
[
Σep
nk(ε0nk, T )

]
, (7)

where ε0nk is the bare DFT eigenvalue with band index n
and wave vector k, and εnk is the renormalized energy.

The temperature dependence of the VBM, CBM, and
indirect band gap at fixed lattice parameters and neglect-
ing thermal expansion is shown in Fig. 3. The zero-point
renormalization (ZPR) of the DFT band gap is calculated
to be −0.23 eV, with nearly equal contributions from
a decrease of the CBM (−0.12 eV) and increase of the
VBM energies (0.11 eV). This large correction reduces
the DFT-PBE gap from 3.01 eV to 2.78 eV.

At 300 K, the band gap at unit cell volume ΩDFT

is predicted to be reduced by an additional −0.12 eV.
The rate of change of the gap at this temperature is
0.05 eV/100 K, and increases only slightly to the linear
limit of 0.064 eV/100 K at temperatures beyond 500 K.

The DFT gap for the experimental room temperature
structure at the enlarged volume Ω295K is 3.12 eV, an
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increase of 0.11 eV compared to ΩDFT. The renormal-
ization calculated at 300 K (−0.44 eV) brings it down
to 2.68 eV. We observe that the two contributions to
the renormalization we compute—the lattice expansion
and the zero-temperature contribution from the electron-
phonon interaction—are not independent, additive terms.
The EPC shows non-negligible volume dependence, with
the renormalization increasing by 26 % from −0.35 eV at
ΩDFT to −0.44 eV at Ω295K. This can be explained by
a narrowing of the electronic bands upon lattice expan-
sion and hence an increase in the electronic DOS. The
increased DOS near and at the band edges leads to more
scattering channels on the scale of the phonon energies,
and thus an overall larger self-energy. Altogether, the
volume expansion of Ω295K leads to two contributions to
the renormalization of opposite signs, resulting in a band
gap at 300 K that is only 70 meV smaller than the value
at 0 K.

For a more detailed analysis of the ZPR and tempera-
ture dependence we examine the individual phonon con-
tributions to the renormalization. Reorganizing Eq. (1)
we can write

Σep
nk(ω) =

∑
νq

[
ΣFan
nk,νq(ω) + ΣDW

nk,νq

]
=
∑
νq

Σep
nk,νq(ω)

(8)

to obtain the contribution from each phonon. For this
analysis we calculate the self-energy on a q-grid of 6×8×6,
since this phonon decomposition does not hold for our
interpolation scheme with two q-grids.

In Fig. 4 we plot the real part of each Σep
nk,νq(ε0nk) at

0 K—i.e. each phonon’s contribution to the ZPR. To
account for finite sampling of reciprocal space we used
a Lorentzian broadening of 1 meV. The intramolecular
phonon modes around 190 meV are found to have the
largest individual contributions, in agreement with previ-
ous studies [25, 37]. Overall however, the contribution as
a function of phonon frequency is distributed relatively
equally over the frequency range, especially for the VBM,
as can be seen from the integral of the spectral density
(blue line in Fig. 4a). The intermolecular modes situated
below 19 meV (gray dashed line in Fig. 4) contribute com-
paratively little to the ZPR. Only these weakly coupling
intermolecular and few soft intramolecular modes are pop-
ulated at ambient temperatures, and contribute to the
further reduction of the gap at finite temperatures.

A more quantitative description of the fundamental
band gap can be achieved by correcting the DFT band
gap with many-body perturbation theory within the GW
approximation for the self-energy due to electron-electron
interaction, then adding the EPC corrections to account
for the electron-phonon interaction. Our previous work
shows that the GW method increases the indirect DFT
band gap of naphthalene by about 2.3 eV [62], thus bring-
ing the band gap of the expanded room temperature
structure to 5.4 eV. Adding the electron-phonon coupling
renormalization computed at 300 K, we obtain a funda-
mental gap of 5.0 eV, in excellent agreement with the
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FIG. 4. Individual contributions of the phonon modes to
the renormalization of the CBM and VBM plotted against
frequency, with a Lorentzian smearing of 1 meV (red solid
line, left axis). The grey dotted line at 19 meV indicates the
separation of inter- from intramolecular modes. The blue
dashed line (right axis) shows the cumulative integral of the
individual contributions.

experimental room temperature value of 5 eV [74].

The electron-electron correlation itself affects the EPC,
as reported in prior work, and efforts have been put to-
wards developing methods to capture and quantify this
effect. [33, 34, 75–77]. Considering the similarity of mag-
nitudes of electronic bandwidth, phonon, and electron-
phonon coupling energies in naphthalene, it is plausible
that inclusion of electron-electron correlation has a sig-
nificant effect on the renormalization; however, we defer
this investigation to future work.

C. Electrical mobilities

We compute the electrical mobilities of the electrons
(µe) and the holes (µh) in the self-energy relaxation time
approximation [40, 78, 79] with the expression

µe,h
α (T ) =

−e
ρe,hΩ

∑
n

∫
dk

ΩBZ

∂f(ε, T )

∂ε

∣∣∣
εnk

|vnk,α|2τnk(T ),

(9)
where α is the Cartesian direction of the applied electric
field and the current, ρe,h is the carrier density of the
electrons or the holes, Ω and ΩBZ are the volumes of the
unit cell and the Brillouin zone, vnk,α is the velocity of
the electronic state nk along direction α, and the sum
over bands is restricted to conduction bands for µe and
valence bands for µh. The lifetimes τnk are obtained from
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TABLE I. Calculated mobilities in comparison with experimen-
tal values. We interpolated the experimental results reported
in Ref. [81] to 50 K and 300 K, and compare to calculations
using the relaxed (ΩDFT) and experimental room temperature
volume (Ω295K), respectively. Mobility values are given along
crystal vectors a and b, as well as c∗, defined as the vector
perpendicular to the ab plane. All values in cm2/Vs.

hole electron
µh
a µh

b µh
c∗ µe

a µe
b µe

c∗
T = 50 K
Calc. (ΩDFT) 20.03 25.73 5.84 20.45 2.74 5.02
Exp. 65.73 68.31 35.89 7.18 3.31 0.94

T = 300 K
Calc. (ΩDFT) 3.42 4.89 0.56 2.48 0.66 0.38
Calc. (Ω295K) 0.96 2.24 0.20 0.61 0.29 0.19
Exp. 0.79 1.34 0.31 0.58 0.63 0.39

the imaginary part of the electron-phonon self-energy

τ−1nk (T ) =
2

h̄
Im
[
Σep
nk(ε0nk, T )

]
. (10)

To evaluate Eq. (9) we use the Wannier90 package [80]
to interpolate our computed electronic eigenvalues and
velocities to a 60× 60× 60 k-grid. Calculating the EPC
on this fine mesh is prohibitively expensive. We find,
however, that the frequency-dependent self-energy for
the bands around the gap is nearly independent of k for
naphthalene (see the supplemental material for a detailed
analysis [42]). We therefore obtain the lifetimes τnk on
the dense k-grid by interpolating the self-energy Σep

nk′ of
a single point k′ using the approximation

τ−1nk (T ) ≈ 2

h̄
Im[Σep

nk′(ε
0
nk, T )]. (11)

To minimize errors associated with this approximation,
we choose k′ to be at A for the hole, and Γ for the electron
mobility, the locations of the VBM and CBM, respectively.

The calculated temperature-dependent hole and elec-
tron mobilities are shown in Table I for the directions a,
b, and c∗ (cf. Fig. 1). We compare the mobilities at 50 K
and 300 K, using the relaxed (ΩDFT) and experimental
room temperature volume (Ω295K), respectively. Below
50 K, the mobilities become dependent on the electric
field. At the same time, the volume between 5 K and 50 K
expands less than 0.5 %, and the contribution of thermal
lattice expansion to the mobility at these temperatures is
expected to still be negligible. This allows us to use the
relaxed lattice parameters and to extract the contribution
of the lattice expansion to the mobility.

At 50 K, our calculations generally underestimate the
hole mobilities, consistent with prior work [25], and over-
estimate the electron mobilities. At 300 K, the agreement
with experiment is reasonably good when using the exper-
imental lattice parameters. This suggests that electronic
band transport limited by phonon scattering accounts for
much of the electrical mobility. It is also apparent that the

lattice expansion plays an important role in obtaining ac-
curate values, as the agreement at 300 K greatly improves
in most cases when using the room temperature unit cell
with Ω295K. To more accurately predict the power law
(or the slope) of the experimental mobilities, calculations
need to be repeated using experimental lattice parameters
obtained at different temperatures. This has been shown
to lead to good agreement of the power law exponents
in prior work [25]. Possible reasons for any disagreement
with experiment include our neglect of polaronic effects
and the physics of a hopping transport mechanism. In
particular, at temperatures above 100 K, the experimen-
tal electron mobilities in the b and c∗ direction show a
decreased temperature dependence, commonly attributed
to the transition to hopping transport [6, 82–84] (see also
the supplemental material [42]). Nonetheless, our work
can be considered an important baseline for comparing
with experiments and future work incorporating polaronic
effects.

To gain insight into the mobilities, we decompose
them into energy-resolved contributions by approximating
Eq. (9) in the following way

µe,h
α ≈

−e
ρe,h

∫
dε D(ε)f ′(ε)v2α(ε)τ(ε), (12)

where D(ε) is the density of states (DOS), f ′(ε) is the
derivative of the Fermi-Dirac distribution with respect to
energy, and where we define the average squared velocity
function

v2α(ε) =
1

D(ε)

∑
n

∫
dk

ΩBZ
(vnk,α)2δ(ε− εnk), (13)

and the average lifetime function

τ(ε) =
1

D(ε)

∑
n

∫
dk

ΩBZ
τnkδ(ε− εnk). (14)

The bounds of the integral in Eq. (12) go from −∞ to
the Fermi energy εF for holes, and from εF to +∞ for
electrons, and we add a small Gaussian smearing of 5 meV
to evaluate the Dirac delta functions in Eqs. (13) and (14).

Equation (12) approximates the energy-resolved contri-
butions to the mobilities as the product of four functions
of energy. We plot these quantities for Ω295K in Fig. 5.
At 300 K, the contributions to the mobilities extend up to
about 0.1 eV above or below the band edges. Within this
region, the DOS, velocity, and lifetime are generally not
monotonic functions of energy, but show distinct features.
This highlights the need for our detailed calculations; in
contrast, for example, approximations of the mobility
that only use the effective mass of the band extrema,
or constant effective lifetimes will be inadequate. This
is especially true for µe

b, where the main contribution
to the mobility is situated near the peak of the DOS,
almost 0.1 eV within the conduction band. Using this
analysis, we can also explain why the electron mobilities
are generally lower than the hole mobilities. Comparing
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the individual quantities, we see that the velocities of
electrons along the a and c∗ directions are actually larger
than those of the holes. However, the lower electron life-
times compared to the hole lifetimes, especially near the
band edge, more than compensate for the higher veloci-
ties. In general, this analysis shows the critical role the
individual contributions of Eq. (9) play in quantitatively
determining the mobility.

While the expression in Eq. (12) is of great practicality
for computing the mobilities and visualizing the energy-
resolved lifetimes and velocities, it also turns out to be
an excellent approximation. The maximum relative error
compared to Eq. (9) is below 10 %, and the mean abso-
lute relative error below 5 %. Mobilities calculated with
this approximation deviate less than 3.3 % (see supple-
mental material [42]). In addition to being independent
of k, the frequency-dependent self-energies of the two
highest (lowest) valence (conduction) bands are almost
identical. This is because the wave functions, and hence
the electron-phonon matrix elements, of Davydov pairs
are so similar for naphthalene (see [42]). Within this k-
and n-independent approximation, the electron and hole
lifetimes are only a function of energy, and the expressions
in Eq. (9) and Eq. (12) become equivalent.

D. Self-consistent electron-phonon self-energy

Figure 6 shows the frequency-dependent electron-
phonon self-energy of the valence and conduction band
extrema alongside the electronic DOS. We see a clear
correlation. This is mainly due to the fact that the
electron-phonon coupling matrix elements are relatively
independent of k and n within a Davydov pair. The imag-
inary part of Eq. (2) then becomes proportional to the
joint electronic and vibrational density of states, weighted
by the coupling strength of each phonon. In agreement
with previous studies [25, 37], we find that intramolecular
modes around 0.19 eV have the strongest coupling (Fig. 4).
Correspondingly, the peaks of the imaginary part of the
SE are shifted by about 0.19 eV compared to the peaks
of the DOS.

We also note from Fig. 6 that the real part of the
electron-phonon self-energy varies rapidly between 0 and
0.15 eV over the frequency range corresponding to the
band width, which is on the order of 0.4 eV. The renor-
malization of the bands will therefore significantly alter
the shape and width of the DOS, upon which the self-
energy depends. The magnitude of the self-energy cor-
rections suggests that we should compute the self-energy
self-consistently, by updating the electronic energies in
Eq. (2) with the renormalized values.

Accordingly, we examine using an eigenvalue–self-
consistent (evSC) cycle for the self-energy, whose iterative

steps can be summarized as

ε1nk = ε0nk + Re
[
Σep
nk(ε0nk, ε

0
mk+q)

]
ε2nk = ε0nk + Re

[
Σep
nk(ε1nk, ε

1
mk+q)

]
. . .

εink = ε0nk + Re
[
Σep
nk(εi−1nk , ε

i−1
mk+q)

]
, (15)

where Σep
nk(εi−1nk , ε

i−1
mk+q) indicates the use of renormalized

eigenvalues in the self-energy. We use the k-independence
approximation to efficiently calculate the renormalized
states mk+q as

εimk+q ≈ ε0mk+q + Re
[
Σep
nk(εi−1mk+q)

]
. (16)

This procedure converges the renormalized energies
rapidly to within 2 meV for the bands around the gap
(see supplemental material [42]).

Our method effectively includes all high-order non-
crossing electron-phonon coupling diagrams in the self-
energy. It does not, however, allow for multi-phonon
satellite bands to form in the spectral function, as, for
example, the cumulant expansion would [85]. A similar
level of theory as evSC was previously achieved using a
time propagation of the Green’s function [86].

While the self-consistent calculation of the electron-
phonon coupling self-energy offers a clear description of
the quasiparticle temperature renormalization and life-
times, one generally aims to compute these quantities
from a one-shot calculation of the self-energy for practical
reasons. Two different procedures are often used. In the
on-the-mass-shell approximation [73], which we have used
so far, the renormalized energies are computed accord-
ing to Eq. (7). A more rigorous approach, in theory, is
to evaluate the self-energy at the quasiparticle energy,
corresponding to the peak of the spectral function, that
is,

εnk(T ) = ε0nk + Re[Σep
nk(εnk, T )]. (17)

In Table II, we compare the two one-shot procedures
against the self-consistent scheme. For the VBM and the
CBM, the on-the-mass-shell approximation appears to
better reproduce the self-consistent scheme, both for the
real and imaginary part of the self-energy. The quasi-
particle solution vastly overestimates the lifetimes of the
band extrema (see supplemental material [42]). For the
real part of the self-energy, such a result agrees with
the one found for the Fröhlich model, compared with
diagrammatic Monte Carlo results [85, 87].

Next, we examine the effect of the evSC approach
through the spectral function, given by the imaginary
part of the Green’s function:

Ank(ω) =
1

π

∣∣Im[Σep
nk(ω)]

∣∣[
ω − ε0nk − Re[Σep

nk(ω)]
]2

+ Im[Σep
nk(ω)]

2
.

(18)
It describes the probability of finding an electron in state
nk at energy ω. The quasiparticle (QP) peaks of the
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TABLE II. Comparison of the one-shot self-energy computed
in the on-the-mass-shell approximation (Σ(ε0)), the one-shot
self-energy evaluated at the quasiparticle solution (Σ(ε)), and
the eigenvalue–self-consistent self-energy (evSC). Renormal-
izations ∆ε are in eV, lifetimes τ in fs.

Σ(ε0) Σ(ε) evSC

∆εVBM (0 K) 0.11 0.09 0.12
∆εCBM (0 K) -0.12 -0.09 -0.12
τVBM (300 K) 8.70 38.47 7.91
τCBM (300 K) 4.73 21.16 6.42

spectral function appear at ω = ε0 − Re[Σep(ω)], which
corresponds to the solution of Eq. (17). The spectral
function allows us to compare both the renormalization
(position of the QP peak) and the broadening (width and
height of the QP peak) simultaneously.

Figure 7 shows both the one-shot and evSC spectral
function, where we use the k-independence approximation
to interpolate Ank(ω) across the Brillouin zone. We chose
the self-energy at Γ as starting point for the interpolation,
and checked that the choice of starting point does not
alter the results significantly.

The QP bands of the evSC spectral function show a dis-
continuity at energies around 0.2 eV below the VBM and
above the CBM, due to the spectral weight being trans-
ferred from the main quasiparticle peak to the satellite
band. In contrast, the bands of the one-shot calculation
are continuous, and the distinction between the main
quasiparticle peak and the satellite remains clear in most
cases. This band discontinuity (or splitting) happens
when the real part of the self-energy has a unitless slope
>∼ 1. In this case, the Dyson equation (17) may admit
more than one solution in certain regions of the Brillouin
zone. Such high slope in the self-energy is seen near the
poles, located one phonon frequency away from the peaks
of the DOS, as seen in Fig. 6 (the strongest coupling
modes are ∼0.19 eV). A similar splitting has also been
observed theoretically and experimentally in pentacene
and rubrene crystals [35, 36, 88] as well as non-organic
systems [50, 89].

Finally, we evaluate the mobilities from the evSC self-
energy at 300 K using Ω295K lattice parameters, taking
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To highlight the renormalized band structure, the highest
peak for each state nk, i.e., the solution to Eq. (17) with the
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one-shot spectral function displays a continuous quasiparticle
band-structure, the self-consistent result shows discontinuities.

into account the renormalized electronic eigenvalues and
velocities. The results are listed in Table III in com-
parison with the values for the one-shot calculation and
experiment. The evSC approach lowers the hole mobili-
ties, bringing µa and µb to even better agreement with
experiment. In contrast, evSC electron mobilities increase
slightly compared to the one-shot calculation. By looking
at the decomposition of the mobility via Eq. (12), we
can attribute the decrease of the hole mobility to lower

TABLE III. Mobilities calculated at 300 K with experimen-
tal lattice parameters (Ω295K), using the one-shot and self-
consistent (evSC) method, in comparison with experimental
values. All values in cm2/Vs.

hole electron
µa µb µc∗ µa µb µc∗

one-shot 1.20 2.73 0.24 0.67 0.31 0.21
evSC 0.90 2.19 0.18 1.18 0.59 0.31
Exp. 0.79 1.34 0.31 0.58 0.63 0.39

lifetimes, and the increase of the electron mobilities to
higher lifetimes and velocities (see supplemental material
[42] for the decomposition).

III. CONCLUSION

In summary, we used comprehensive ab initio calcu-
lations based on DFT to study the effect of electron-
phonon interactions on the electronic structure of naph-
thalene crystals, as well as its electrical mobility. Both the
temperature-dependent renormalization of the gap, and
the hole and electron mobilities are in good agreement
with experimental values, if the lattice expansion is taken
into account. Because of the limited dependence of the
self-energy on k and n of the two occupied and unoccupied
band-edge bands, we can visualize the contributions to
the mobility at each band energy in terms of the density
of states, average scattering time, and average velocity
squared. This facilitates a useful energy-resolved analysis
of the mobility, and provides an efficient way to model
charge carrier transport in organic systems.

Furthermore, we indirectly and approximately investi-
gated the effect of higher-order electron-phonon coupling
terms by calculating the self-energy self-consistently. The
band gap renormalization and mobilities show only mod-
erate differences between the one-shot and self-consistent
calculations, as long as the on-the-mass-shell approxima-
tion is used. Both these properties depend mainly on the
electronic states close to the band gap, which are only
weakly affected by the evSC treatment. However, the
electronic states further away from the band edges are
strongly affected by the self-consistent treatment of the
self-energy. The spectral function reveals a band splitting
and band widening comparable to what has been observed
experimentally in other molecular crystals.

Most of the qualitative results discussed in this work
result directly from the weak interactions between con-
stituent monomers, a common feature of molecular crys-
tals. This includes the k-independence of the self-energy,
and the band widths being on the same order of mag-
nitude as the phonon frequencies. The methods and
conclusions presented here likely apply to several other
molecular crystals, and provide an efficient approach for
the ab initio calculation of the electron-phonon self-energy
and electrical mobility.



10

ACKNOWLEDGMENTS

This work was supported by the Theory FWP at the
Lawrence Berkeley National Laboratory, which is funded
by the US Department of Energy (DOE), Office of Science,
Basic Energy Sciences, Materials Sciences and Engineer-
ing Division under Contract DE-AC0205CH11231, and by

the Fonds de la Recherche Scientifique (F.R.S.-FNRS Bel-
gium) through the PdR Grants No. T.0238.13 - AIXPHO
(X.G., M.G.), and No. T.0103.19 - ALPS (X.G., M.G.).
Computational resources were provided by the National
Energy Research Scientific Computing Center, which is
supported by the Office of Science. CD acknowledges
support by the Deutsche Forschungsgemeinschaft (DFG)
- Projektnummer 182087777 - SFB 951.

[1] O. D. Jurchescu, J. Baas, and T. T. M. Palstra, Effect
of impurities on the mobility of single crystal pentacene,
Appl. Phys. Lett. 84, 3061 (2004).

[2] J. Takeya, M. Yamagishi, Y. Tominari, R. Hirahara,
Y. Nakazawa, T. Nishikawa, T. Kawase, T. Shimoda, and
S. Ogawa, Very high-mobility organic single-crystal tran-
sistors with in-crystal conduction channels, Appl. Phys.
Lett. 90, 102120 (2007).

[3] H. Minemawari, T. Yamada, H. Matsui, J. Tsutsumi,
S. Haas, R. Chiba, R. Kumai, and T. Hasegawa, Inkjet
printing of single-crystal films, Nature 475, 364 (2011).

[4] S. Fratini, S. Ciuchi, D. Mayou, G. T. de Laissardière,
and A. Troisi, A map of high-mobility molecular semicon-
ductors, Nat. Mater. 16, 998 (2017).

[5] V. A. Dediu, L. E. Hueso, I. Bergenti, and C. Taliani,
Spin routes in organic semiconductors, Nat. Mater. 8, 707
(2009).

[6] F. Ortmann, F. Bechstedt, and K. Hannewald, Charge
transport in organic crystals: Interplay of band transport,
hopping and electron-phonon scattering, New J. Phys. 12,
023011 (2010).

[7] X. Gao and Z. Zhao, High mobility organic semiconduc-
tors for field-effect transistors, Sci. China Chem. 58, 947
(2015).

[8] C. Wang, H. Dong, L. Jiang, and W. Hu, Organic semi-
conductor crystals, Chem. Soc. Rev. 47, 422 (2018).

[9] K. Hannewald, V. M. Stojanović, J. M. T. Schellekens,
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Temperature dependence of electronic eigenenergies in
the adiabatic harmonic approximation, Phys. Rev. B 90,
214304 (2014).
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straete, G. Zérah, and J. W. Zwanziger, The Abinitproject:
Impact, environment and recent developments, Comput.
Phys. Commun. 248, 107042 (2020).

[54] M. Fuchs and M. Scheffler, Ab initio pseudopotentials for
electronic structure calculations of poly-atomic systems
using density-functional theory, Comput. Phys. Commun.
119, 67 (1999).

[55] S. Grimme, J. Antony, S. Ehrlich, and H. Krieg, A con-
sistent and accurate ab initio parametrization of density
functional dispersion correction (DFT-D) for the 94 ele-
ments H-Pu, J. Chem. Phys. 132, 154104 (2010).

[56] S. Grimme, S. Ehrlich, and L. Goerigk, Effect of the
damping function in dispersion corrected density func-
tional theory, J. Comput. Chem. 32, 1456 (2011).

[57] X. Gonze and C. Lee, Dynamical matrices, Born effective
charges, dielectric permittivity tensors, and interatomic
force constants from density-functional perturbation the-
ory, Physical Review B - Condensed Matter and Materials
Physics 55, 10355 (1997).

[58] S. Baroni, S. de Gironcoli, A. Dal Corso, and P. Gi-
annozzi, Phonons and related crystal properties from
density-functional perturbation theory, Rev. Mod. Phys.
73, 515 (2001).

[59] X. Gonze, G. M. Rignanese, and R. Caracas, First-
principle studies of the lattice dynamics of crystals, and
related properties, Zeitschrift fur Kristallographie 220,
458 (2005).

[60] B. Van Troeye, M. Torrent, and X. Gonze, Interatomic
force constants including the DFT-D dispersion contribu-
tion, Phys. Rev. B 93, 144304 (2016).

[61] F. Brown-Altvater, T. Rangel, and J. B. Neaton, Ab initio
phonon dispersion in crystalline naphthalene using van
der Waals density functionals, Phys. Rev. B 93, 195206
(2016).

[62] T. Rangel, K. Berland, S. Sharifzadeh, F. Brown-Altvater,
K. Lee, P. Hyldgaard, L. Kronik, and J. B. Neaton, Struc-
tural and excited-state properties of oligoacene crystals
from first principles, Phys. Rev. B 93, 115206 (2016).

[63] I. R. Thomas, I. J. Bruno, J. C. Cole, C. F. Macrae,
E. Pidcock, and P. a. Wood, WebCSD: the online portal to
the Cambridge Structural Database, J. Appl. Crystallogr.
43, 362 (2010); Cambridge Structural Database, http:
//webcsd.ccdc.cam.ac.uk/.

[64] S. C. Capelli, A. Albinati, S. a. Mason, and B. T. M. Willis,
Molecular motion in crystalline naphthalene: Analysis of
multi-temperature X-ray and neutron diffraction data, J.
Phys. Chem. A 110, 11695 (2006).

[65] A. S. Davydov, The theory of molecular excitons, Sov.
Phys. Uspekhi 7, 145 (1964).

[66] E. F. Sheka, Davydov splitting in the absorption spectra
of molecular crystals, Mol. Cryst. Liq. Cryst. 29, 323
(1975).

[67] I. Natkaniec, E. L. Bokhenkov, B. Dorner, J. Kalus, G. A.
Mackenzie, G. S. Pawley, U. Schmelzer, and E. F. Sheka,
Phonon dispersion in d8-naphthalene crystal at 6K, J.
Phys. C Solid State Phys. 13, 4265 (1980).

[68] M. Suzuki, T. Yokoyama, and M. Ito, Polarized Raman
spectra of naphthalene and anthracene single crystals,
Spectrochim. Acta Part Mol. Spectrosc. 24, 1091 (1968).

[69] A. Troisi and G. Orlandi, Charge-transport regime of
crystalline organic semiconductors: Diffusion limited by
thermal off-diagonal electronic disorder, Phys. Rev. Lett.
96, 086601 (2006).

[70] V. Coropceanu, R. S. Sánchez-Carrera, P. Paramonov,
G. M. Day, and J.-L. Brédas, Interaction of charge carriers
with lattice vibrations in organic molecular semiconduc-
tors: Naphthalene as a case study, J. Phys. Chem. C 113,
4679 (2009).

[71] L. Wang and D. Beljonne, Flexible surface hopping ap-
proach to model the crossover from hopping to band-like
transport in organic crystals, J. Phys. Chem. Lett. 4, 1888
(2013).

[72] X. Xie, A. Santana-Bonilla, and A. Troisi, Nonlocal
electron-phonon coupling in prototypical molecular semi-
conductors from first principles, J. Chem. Theory Comput.
14, 3752 (2018).

[73] E. Cannuccia and A. Marini, Zero point motion effect on
the electronic properties of diamond, trans-polyacetylene
and polyethylene, Eur. Phys. J. B 85, 320 (2012).

[74] C. L. Braun and G. M. Dobbs, Intrinsic photoconductivity
in naphthalene single crystals, J. Chem. Phys. 53, 2718
(1970).

[75] C. Faber, I. Duchemin, T. Deutsch, C. Attaccalite,
V. Olevano, and X. Blase, Electron-phonon coupling and
charge-transfer excitations in organic systems from many-
body perturbation theory: The Fiesta code, an efficient
Gaussian-basis implementation of the GW and Bethe-
Salpeter formalisms, J. Mater. Sci. 47, 7472 (2012).

[76] B. Monserrat, Correlation effects on electron-phonon cou-
pling in semiconductors: Many-body theory along thermal
lines, Phys. Rev. B 93, 100301 (2016).

[77] Z. Li, G. Antonius, M. Wu, F. H. da Jornada, and
S. G. Louie, Electron-phonon coupling from ab ini-
tio linear-response theory within the GW method:
Correlation-enhanced interactions and superconductivity
in Ba1−xKxBiO3, Phys. Rev. Lett. 122, 186402 (2019).

[78] M. Bernardi, D. Vigil-Fowler, J. Lischner, J. B. Neaton,
and S. G. Louie, Ab initio study of hot carriers in the
first picosecond after sunlight absorption in silicon, Phys
Rev Lett 112, 1 (2014).
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