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Quantum Hall stripe (QHS) phases, predicted by the Hartree-Fock theory, are manifested in GaAs-based

two-dimensional electron gases as giant resistance anisotropies. Here, we predict a “hidden” QHS phase which

exhibits isotropic resistivity whose value, determined by the density of states of QHS, is independent of the

Landau index N and is inversely proportional to the Drude conductivity at zero magnetic field. At high enough

N , this phase yields to an Ando-Unemura/Coleridge-Zawadski-Sachrajda phases in which the resistivity is

proportional to 1/N and to the ratio of quantum and transport lifetimes. Experimental observation of this

border can provide a new way to obtain quantum relaxation time.

Quantum Hall stripe (QHS) phases in spin-resolved Lan-

dau levels (LLs) near half-integer filling factors ν =
9/2, 11/2, 13/2, ..., were predicted by the Hartree-Fock (HF)

theory [1–3]. These phases consist of alternating stripes with

filling factors ν ± 1/2, which, at exactly half-filling, both

have the width Λ/2 ≃ 1.42Rc [1, 2, 4, 5], where Rc is

the cyclotron radius (see Figure 1). QHSs are formed due to

a repulsive box-like interaction of electrons having ring-like

wave functions. Such an unusual interaction leads to an en-

ergy gain when electrons occupy the nearest states within the

same stripe and avoid interacting with electrons in neighbor-

ing stripes. The self-consistent HF theory is valid at LL in-

dices N ≫ 1, when Rc = lB(2N + 1)1/2 ≫ lB , where

lB = (c~/eB)1/2 is the magnetic length, a measure of quan-

tum fluctuations of an electron’s cyclotron orbit center, and

B is the magnetic field. These fluctuations play a minor role

even at N = 2, and QHSs determine the ground state for all

ν ≥ 9/2 [2, 4, 5].

QHSs were confirmed by the discovery of dramatic re-

sistance anisotropies in two-dimensional electron gases in

GaAs/AlGaAs heterostructures [6, 7]. These anisotropies

emerge because the diffusion mechanisms along and perpen-

dicular to the stripes are different [8]. In the stripe direction

(ŷ) electrons drift along the stripe edge in the internal electric

field E until they are scattered to an adjacent stripe edge by im-

purities. If such scattering is weak, this mechanism leads to a

large diffusion coefficient in the ŷ direction (large conductiv-

ity σyy , large resistivity ρxx) and a small diffusion coefficient

in the orthogonal (x̂) direction (small σxx, small ρyy). As a

result [9], if N is not too large,

ρxx
ρyy

≃
(

σ̃0
8γα2N2

)2

≫ 1 , (1)

where σ̃0 = nehτ/m
⋆ is the Drude conductivity at B = 0 in

units of e2/h, ne is the electron density, τ is the momentum

relaxation time, m⋆ is the electron effective mass, and γ is a

discussed below numerical factor depending on the nature of

scattering. To derive Eq. (1) we used the HF potential, shown

in Figure 1(a), with the amplitude Γs ≃ 0.4 ~ωc/α, where ωc

is the cyclotron frequency, and α ≃ 18 is the ratio of the den-

sity of states (DOS) in the middle of a spin split LL to that

without magnetic field, but per spin [10]. In Ref. 9 we showed

that Eq. (1) agrees well with the data from high mobility sam-

ples.

At large enough N , Eq. (1) predicts that the anisotropy of

resistivity vanishes. In this Rapid Communication we theo-

retically study ρ(N, σ̃0) at half-integer ν in emerging at such

N isotropic phase. Our results are summarized in the “phase

diagram” of ρ̃ ≡ (e2/h)ρ(N, σ̃0) depicted in Figure 2. In

the top-left corner it shows the anisotropic QHS phase, dis-

cussed above. The remaining three phases are isotropic. The

Ando-Unemura (AU) phase [11] and the Coleridge-Zawadzki-

Figure 1. (a) HF potential energy V (x) responsible for QHS forma-

tion [2] at half-integer ν. The slope of V (x) determines the internal

electric field E. States shown by thick (cyan) lines are populated by

electrons. Λ is the V (x) period and Γs is its amplitude. (b) Impurity

scattering dominated hopping transport in hidden QHS phase in the

quasi-classical (N ≫ 1) limit. An electron with the guiding center

(black dot) at the lower left edge of the central electron stripe is scat-

tered off an impurity (red dot) at the distance x from its edge. Three

possible hops of the guiding center are shown by red arrows.
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Figure 2. Phase diagram for ρ̃ in the (N, σ̃0)-plane. In the QHS

phase ρ̃xx ≫ ρ̃yy, while in the hQHS, AU, and CZS phases ρ̃xx =
ρ̃yy. Numbers in parentheses label equations for ρ̃ in corresponding

phases. Thick boundaries mark destruction of stripe phases where

Γi ∼ Γs. Nq and σ̃q are given by Eqs. (13) and (14), respectively

[13].

Sachrajda (CZS) phase [12] correspond to a regime in which

the LL width due to impurity scattering Γi dwarfs the ampli-

tude of the HF potential of stripes Γs so that stripes are de-

stroyed by disorder and, as a result, in both phases ρ̃ ∝ 1/N .

However, ρ̃ in these two phases differ by the ratio τ/τq of mo-

mentum and quantum relaxation times; the AU phase occurs

in low-mobility samples, in which the short range scattering

determines both scattering times (τ/τq = 1), while the CZS

phase corresponds to high mobility samples in which scatter-

ing on Coulomb impurities leads to τ/τq ≫ 1.

On the other hand, to the best of our knowledge, the third

isotropic phase, located between the QHS and the AU/CZS

phases, has not been discussed in the literature. In this phase

Γs ≫ Γi and electrons still form stripes, but there is no sig-

nificant anisotropy of the resistivity. This happens because

the drift along ŷ direction gives smaller contribution to the

conductivity than the impurity scattering, which leads to hops

of the cyclotron center in all directions at the distance of the

order of Rc, see Figure 1 (b). Although, generally speaking,

this is not enough to make conductivity of an anisotropic sys-

tem isotropic we will show below that for QHS with period

Λ = 2.84Rc and large N resistivity anisotropy does not ex-

ceed a few percents. Therefore, in a semi-quantitative theory,

we treat this phase as an isotropic one and call it the “hidden

QHS” (hQHS) phase. Like in the QHS phase, the density of

states in the hQHS phase is determined by the HF potential

V (x) and, as a result, ρ̃(N, σ̃0) in the hQHS phase is indepen-

dent of N .

Let us now derive the borders of all four phases and the ex-

pressions for ρ̃(N, σ̃0) for a series of samples with the roughly

the same density (ne ≃ 3 × 1011 cm−2) and widely varying

(from ∼ 106 to ∼ 107 cm2V−1s−1) mobility, which are made

of high mobility GaAs quantum wells by replacing a small

fraction x of Ga atoms with Al [14]. In these samples, the

short-range Al impurities significantly affect the momentum

relaxation rate τ−1 which increases linearly with x [14]. We

further assume that the quantum scattering rate τ−1
q is deter-

mined by scattering on Coulomb background impurities and

remote donors at small x (large σ̃0), and therefore is indepen-

dent on x, but eventually approaches τ−1 at larger x (small

σ̃0). We show below that for such samples γ ≃ 0.5.

QHS phase. Combining Eq. (1) with γ ≃ 0.5 and Eq. (36)

of Ref. 8, (ρ̃xxρ̃yy)
1/2 ≃ 1/8N2, we find

ρ̃xx ≃ σ̃0
32α2N4

, (2)

ρ̃yy ≃ α2

2σ̃0
. (3)

For a given σ̃0 the “hard” ρ̃xx scales with N−4 whereas the

“easy” ρ̃yy is N -independent. The border between the QHS

and hQHS phases in Figure 2 is determined by the condition

ρ̃xx ≈ ρ̃yy or

σ̃0 ≈ 4α2N2 . (4)

hQHS phase. We show below that the hQHS phase resides

between its upper border, Eq. (4), and its lower border σ̃0 ≈
3.5α2N , i.e., when

3.5α2N . σ̃0 . 4α2N2 . (5)

To find ρ̃(N, σ̃0), we start with Eqs. (38-39) of Ref. 15 [16],

σ̃ =
hv2F gBτB

2(1 + ω2
cτ

2
B)

=
σ̃0

2(1 + ω2
cτ

2
B)

, (6)

where

1

τB
≃ 1

τ

gB
g0

. (7)

Here, τB and gB are the scattering time and the DOS at the

center of the LL at B 6= 0, while vF and g0 = m⋆/2π~2 are

the Fermi velocity and the DOS per spin at B = 0. [17]. Per

Eq. (5), ωcτB = ωcτ/α = σ̃0/2αN ≫ 1 and Eq. (6) yields

σ̃ ≃ 2α2N2

σ̃0
. (8)

Equation (5) also implies that σ̃ ≪ σ̃xy ≃ 2N and we find

ρ̃ ≃ σ̃

σ̃2
xy

≃ α2

2σ̃0
, (9)

which coincides with Eq. (3). The independence of ρ̃ on N
and its inverse proportionality to σ̃0 are the hallmarks of the

hQHS phase. At the end of this Rapid Communication we

confirm this finding by calculating impurity scattering domi-

nated σxx and σyy using a Kubo formula and being guided by

Ref. 18.
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AU phase. Using σ̃ = 2N/π calculated in Ref. 11 for low

mobility samples with τ = τq and σ̃xy ≃ 2N we find

ρ̃ =
σ̃

σ̃2 + σ̃2
xy

≃ 0.14

N
. (10)

This parameter-free result matches Eq. (9) at the upper border

of the AU phase, σ̃0 = 3.5α2N , mentioned above and shown

in Figure 2. This border can also be estimated by equating Γs

and Γi = ~
√

2ωc/πτ .

CZS phase. Using Eq. (6) with gB = g0
√
ωcτq ≫ 1 [12,

19, 20], we find ωcτB =
√

ωcτ2/τq ≫ 1 and Eq. (6) gives

σ̃ ≃ τq
τ
N , (11)

which has an extra factor of πτq/2τ compared to σ̃ = 2N/π
in the AU phase [11]. For τq/τ ≪ 1, we have σ̃ ≪ σ̃xy and

ρ̃ ≃ σ̃

σ̃2
xy

=
1

4

τq
τ

1

N
, (12)

which agrees with Eq. (6) of Ref. 12. Equation (12) matches

ρ̃ in the AU phase, Eq. (10), at τ ≈ 1.7 τq or at

σ̃0 ≈ 1.7 σ̃q , σ̃q ≡ hneτq
m⋆

. (13)

Equation (12) also matches ρ̃ in the hQHS phase, Eq. (9), at

N ≈ Nq ≡ σ̃q
2α2

=
hneτq
2α2m⋆

. (14)

Let us now discuss predictions of our phase diagram (Fig-

ure 2) for ρ̃(N) of three hypothetical samples with σ̃0 =
2 × 103, 5 × 103 and 1 × 104, shown in Figure 3. The first

sample resides in the AU phase at all N and obeys Eq. (10).

The second one is in the hQHS phase at N < 4 and, there-

fore, its ρ̃(N) is given by Eq. (9) and is independent on N .

This plateau ends at N ≥ 4, at which ρ̃(N) starts declining as

1/N as prescribed by Eq. (10). Finally, the third sample shows

anisotropic ρ̃(N) at N = 2, then a plateau between N = 3
and N = Nq = 7, and eventually follows Eq. (12) of the CZS

phase at N > 7. If such a plateau is observed, one should be

able to find τq from experimentalNq.

Above we considered a smectic phase pinned by disorder

[8, 9]. If the disorder is able to create dislocations leading to

a nematic phase, the conductivity of the hQHS phase will not

be affected as it is sensitive only to the density of states. In

the highest mobility sample of Figure 3, the anisotropic QHS

phase happens at Γi ≪ Γs when dislocations are very sparse

and, as a result, their effect on the electron drift along the

stripe edges is negligible.

So far we dealt with very low temperatures T at which long-

range stripe order is preserved. It is known, however, that at

T & 0.1 K the resistivity anisotropy vanishes while the local

stripe order is believed to persist [21]. One can imagine this

emerging phase as an ensemble of randomly oriented stripe

domains [22–24]. The resistivity of such a 2D polycrystal

Figure 3. Predicted low-temperature ρ̃ for three hypothetical samples

with σ̃0 = 2× 103, 4× 103 and 1× 104 (full lines). The resistivity

of the conjectured polycrystal phase is shown by the dashed line.

is known [25] to be ρ = (ρxxρyy)
1/2. This means that the

hQHS phase should not be affected, while in the QHS phase

one expects isotropic ρ̃ ∝ N−2 (see dashed line in Figure 3).

We next justify our use of the above semi-quantitative ap-

proach of Eq. (6). For a σxx due to short range impurity scat-

tering the Kubo formula yields

σxx =
π~e2

LxLy

∑

i,j

〈

∣

∣

∣
Ẋij

∣

∣

∣

2
〉

δ(EF − ǫi)δ(EF − ǫj) , (15)

where Lx and Ly are sample dimensions, EF is the Fermi

energy, i and j run over states with energies ǫi and ǫj , X =
−l2Bpy/~ and U(r) = U0a

3
∑

l δ
(3)(r − rl) is the impurity

potential with range of the lattice constant a. The electron

wavefunction in the Landau gauge is given by

ψi(r) = φ(z) exp

(−iyXi

l2B

)

χN (x −Xi)
√

Ly

, (16)

χN (x) =
exp

(

−x2/2l2B
)

HN (x/lB)

π1/4
√

2NN !lB
, (17)

φ(z) = (2/w)1/2 sin(πz/w) , (18)

wherew is the width of the quantum well. The velocity matrix

element can be written as Ẋij = (i/~)(Xj −Xi)Uij and

σxx =
πe2

~LxLy

∑

i,j

〈

|Uij |2
〉

(Xi −Xj)
2

× δ(EF − ǫi)δ(EF − ǫj) .

(19)

For short range impurities with the 3D concentration N3 and

the correlator 〈U(r)U(r′)〉 = N3(U0a
3)2δ(3)(r−r

′), we have

〈

|Uij |2
〉

=

∫

drdr′ ψ∗

i (r)ψj(r)ψi(r
′)ψ∗

j (r
′) 〈U(r)U(r′)〉

=
3N3(U0a

3)2

2wLy

∫

dxχ2
N (x−Xi)χ

2
N (x−Xj) . (20)
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Using δ(Ef − ǫi) =
∑

m δ(Xi−x(m))/eE where x(m) is the

m-th solution of ǫ(x) = V (x) = EF , eE = |dǫ/dx |x=x(m) ,

and
∑

i = (Ly/2πl
2
B)

∫

dXi, we arrive at

σxx =
e2g2BR

2
c

2g0τ
ηx . (21)

Here we have ignored all terms in the summation with |Xi −
Xj | > Λ/2, as these terms are exponentially suppressed by

the overlap of the wave functions in Uij . Additionally, we

have introduced the transport relaxation rate in zero magnetic

field

1

τ
=

2π

~
g0

3N3(U0a
3)2

2w
, (22)

and a dimensionless coefficient

ηx =

(

Λ

2Rc

)2

Λ

∫

dxχ2
N (x)χ2

N (x− Λ/2) , (23)

which oscillates with N and tends to 1.07 at N → ∞. For

Λ = 2.84Rc and N > 2, ηx(N) = 1.07± 0.15. By equating

σxx/gBe
2 in Eq. (21) and Dxx given by Eqs. (2) and (7) of

Ref. 9, we can now conclude that the coefficient γ entering

Eq. (1), and used in Eqs. (2), (3), (4), is γ ≃ ηx/2 ≃ 0.53.

Similar to σxx, we can compute σyy as

σyy =
π~e2

LxLy

∑

i,j

〈

∣

∣

∣
Ẏij

∣

∣

∣

2
〉

δ(EF − ǫi)δ(EF − ǫj) . (24)

The velocity operator along ŷ can be written as

Ẏ =
i

~
[H,Y ] = − l

2
B

~

∂U

∂x
, (25)

where we have ignored the drift in internal electric field E

and used Y = l2Bpx/~. The matrix element Ẏij can then be

evaluated via integration by parts,

Ẏij =
l2B
~

∫

drU(r)
∂

∂x
[ψ∗

i (r)ψj(r)] . (26)

After averaging over impurities positions,

〈

∣

∣

∣
Ẏij

∣

∣

∣

2
〉

=
l4B
~2

3N3(U0a
3)2

2wLy

×
∫

dx

{

d

dx
[χN (x−Xi)χN (x−Xj)]

}2

,

(27)

we obtain

σyy =
πe2

~Lx

l4B
(2πl2BeE)2

∫

dXi dXj
3N3(U0a

3)2

2w

×
∫

dx

{

d

dx
[χN (x−Xi)χN (x−Xj)]

}2

×
∑

m,n

δ(Xi − x(m))δ(Xj − x(n)) =
e2g2BR

2
c

2g0τ
ηy ,

(28)

where the summation of the product of delta functions can be

evaluated separately for m = n and for m 6= n. If m = n,

then there are 2Lx/Λ terms withXi = Xj . On the other hand,

if m 6= n, there are 4Lx/Λ terms with |Xi −Xj| = Λ/2 (all

other terms are negligible). This leads to ηy in Eq. (28),

ηy =
Λl4B
2R2

c

∫

dx

{

[

d

dx

(

χ2
N (x)

)

]2

+ 2

[

d

dx
(χN (x)χN (x− Λ/2))

]2
}

.

(29)

For Λ = 2.84Rc and N > 2, ηy(N) = 1.06± 0.01.

Using Eqs. (21), (28) we finally obtain dimensionless con-

ductivities in the HQHS phase,

σ̃xx =
2ηxα

2N2

σ̃0
, σ̃yy =

2ηyα
2N2

σ̃0
, (30)

confirming that the conductivity agrees with Eq. (8) within

15 %, thus justifying a semi-quantitative isotropic approach

based on Eq. (6). Such a weak anisotropy is directly related to

the period Λ = 2.84Rc. We have found by varying Λ that at

N → ∞ the anisotropy vanishes when Λ = 2.82Rc. Thus, it

is indeed expected to be small at Λ = 2.84Rc.

In summary, we have predicted the existence of an isotrop-

ically conducting (hidden) quantum Hall stripe phase. This

phase is expected to reside in a finite range of nearly half-

filled LLs, between the anisotropic quantum Hall stripe and

isotropic liquid phases. The hallmarks of this new phase are

the independence of the resistivity on the LL index and its in-

verse proportionality to the Drude resistivity at zero magnetic

field. Although we focused on 2DEG in GaAs, the conjec-

tured hQHS phase might be relevant to other realizations of

2DEG, such as, e.g., graphene, which might not exhibit con-

ventional QHSs due to the lack of intrinsic orienting mecha-

nism.
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