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Liu et al. [Phys. Rev. B 98, 241109 (2018)] used Monte Carlo sampling of the physical degrees of freedom
of a Projected Entangled Pair State (PEPS) type wave function for the S = 1/2 frustrated J1-J2 Heisenberg
model on the square lattice and found a non-magnetic state argued to be a gapless spin liquid when the coupling
ratio g = J2/J1 is in the range g ∈ [0.42, 0.6]. Here we show that their definition of the order parameter for
another candidate ground state within this coupling window—a spontaneously dimerized state—is problematic.
The order parameter as defined will not detect dimer order when lattice symmeties are broken due to open
boundaries or asymmetries originating from the calculation itself. Thus, a dimerized phase for some range of g
cannot be excluded (and is likely based on several other recent works).

I. OVERVIEW

In a recent Rapid Communication [1], Liu et. al. argued
that there is a gapless spin liquid phase in the ground state
of the S = 1/2 frustrated square-lattice J1-J2 Heisenberg
model for g = J2/J1 ∈ [0.42, 0.6]. At variance with other
recent works [2–5], they found no spontaneously dimerized
valence-bond-solid (VBS) phase within this range of coupling
ratios (where other works have roughly placed the VBS at g ∈
[0.52 − 0.61]). They reached their conclusions based on the
method of Monte Carlo sampling of gradient-optimized tensor
network states [6–8], which they have further refined for the
specific case of a tensor network of the Projected Entangled
Pair State (PEPS) type. Open-boundary lattices with up to
16 × 16 spins were used, and, taken at face value, the results
appear to be well converged and reliable.

In this Comment we point out that the definition of the VBS
order parameter used by Liu et al. has a potential flaw and may
not capture long-range order correctly on the open-boundary
lattices considered. The squared columnar VBS order param-
eters for x and y oriented dimers, m2

dx and m2
dy , were defined

in Eq. (2) of [1] as follows (up to typographical errors):

m2
dα =

1

N2
b

∑
rr′

eiqα·(r−r′)(〈Bαr Bαr′〉 − 〈Bαr 〉〈Bαr′〉), (1)

where α = x, y, Bαr = S(r) · S(r+ α̂) is the bond oper-
ator along the α direction, and Nb is the number of bonds
summed over. The wave-vector corresponding to columnar
order is qα = (π, 0) and (0, π) for α = x and α = y, re-
spectively. We can rewrite this squared order parameter in the
equivalent form:

m2
dα = 〈D2

α〉 − 〈Dα〉2, (2)

where

Dα =
1

Nb

∑
r

eiqα·rS(r) · S(r+ α̂). (3)
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The problem with the definitions is the subtraction of the non-
uniform 〈Bαr 〉〈Bαr′〉 in Eq. (1) or 〈Dα〉2 in Eq. (2) when long-
range order is induced by some symmetry-breaking mecha-
nism, e.g., with certain open lattice boundaries or some im-
perfection in the method used. In essence, the baby is then
thrown out with the bath water. The problem does not appear
with periodic boundary conditions, as long as the method used
does not break the lattice symmetries [9].

We will demonstrate this problem by considering a colum-
nar VBS state which is four-fold degenerate on periodic L×L
lattices with even L. The ground state is uniform in the ab-
sence of some symmetry-breaking mechanism, and the sub-
tracted term 〈Dα〉2 in Eq. (2) vanishes. However, on rectan-
gular lattices with Lx×Ly spins (even Lx and Ly) the ground
state is unique and hosts a specific dimer pattern. The two
terms then cancel each other in the limit of large system size,
thus rendering the definitions Eq. (1) and Eq. (2) unsuitable
for detecting the dimer order. On square L × L lattices there
is a two-fold symmetry left, and the definitions can in princi-
ple detect the dimerization (albeit with a reduced value of the
order parameter). However, in practice the calculation itself
may break the 90◦ lattice rotation symmetry, and then again
the definition is not suitable. With a possible symmetry break-
ing of the PEPS calculations in Ref. [1], a VBS phase in the
J1-J2 Heisenberg model cannot be ruled out based on the re-
sults presented.

In the following we will use a specific example of a quan-
tum spin model with a well established columnar VBS phase
to illustrate our arguments; the S = 1/2 square-lattice J-Q3

model [10, 11] defined by the Hamiltonian

H = −J
∑
〈ij〉

Pij −Q3

∑
〈ijklmn〉

PijPklPmn. (4)

Here Pij = 1/4 − Si · Sj is a singlet projector and the first
term in Eq. (4) is the standard antiferromagnetic Heisenberg
exchange between nearest neighbor spins. In the second term,
the three index pairs ij, kl, and mn correspond to parallel
links forming columns on 3×2 and 2×3 lattice cells. This cor-
related singlet interaction leads to the formation of a four-fold
degenerate columnar VBS with a spontaneous Z4 symmetry-
breaking transition at a critical value of Q3/J . Here we will
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Figure 1. Bond strengths on a 32× 16 system. The line thickness is
proportional to |〈Sz

i S
z
j 〉| = −〈Si · Sj〉/3 on each link ij, obtained

with QMC simulations of the Q3 model [J = 0 in Eq. (4)].

consider the case J = 0 and focus on the detection of the
columnar order on open lattices, using a ground-state valence-
bond projector quantum Monte Carlo (QMC) method [12]
with which the spin-rotation invariant bond correlations in
Eqs. (1) and (2) can be evaluated easily. Though we use a dif-
ferent model and a different method for obtaining the ground
state, the order parameter is the same as in Ref. [1], and the
problem of subtracting off a boundary-induced expectation
value when the symmetry is broken is exactly the same. In a
previous work by one of us [11], related issues were discussed
in the context of cylindrical lattices (often used in DMRG cal-
culations [2, 4]) with periodic and open boundaries in the x
and y direction, respectively. Here we focus specifically on
the problems with the order parameter definitions in Eqs. (1)
and (2) both boundaries open, as is more practical in PEPS
calculations.

In Sec. II we first consider Lx×Ly lattices with Lx = 2Ly ,
for which the VBS pattern is unique (for Ly an even number)
and our arguments can be illustrated most clearly. In Sec. III
we consider the slightly more subtle case of L × L lattices
(again with L even), on which the columnar VBS pattern is
two-fold degenerate. We summarize our conclusions and dis-
cuss implications in Sec. IV.

II. RECTANGULAR LATTICES

As mentioned above, on an open 2L × L lattice with even
L there is a unique columnar VBS pattern in the ground state.
In the case of the Q3 model, J = 0, Q3 = 1 in Eq. (4), the
boundaries favor dimers (bonds with a higher singlet density)
perpendicular to the edges, as illustrated for a 32× 16 system
in Fig. 1. The dimer orientation favored by the longer edge
survives in the center of the system, and it is possible to use the
dimer order parameter Dy defined in Eq. (3) without squaring
(as noted previously, e.g., in Ref. [13]).

To demonstrate that correct results are obtained with Dy

in the thermodynamic limit, in Fig. 2 we compare results for
〈Dy〉2 computed on the central L × L/2 bonds of 2L × L
lattices (to eliminate some of the boundary enhancements
of the order, though this is not necessary) with results for
〈D2〉 = 〈D2

x〉 + 〈D2
y〉 calculated on periodic L × L lattices.

We have fitted both data sets using exponentially convergent
forms, as expected for VBS order [11], but details of the fits
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Figure 2. Inverse system size dependence of different definitions of
the columnar VBS order parameter, computed by QMC simulations
on the central L× L/2 part of 2L× L lattices with L up to 40. The
curves are fits to the form a + be−cL, with adjustable parameters
a, b, c. Note that 〈Dx〉2 is very close to 0.

are not important here. The extrapolated, clearly non-zero val-
ues are compatible with each other. In contrast, using the def-
inition m2

dy by Liu et al., Eq. (1), gives results approaching
zero with increasing system size (we only show rough fits, but
the trend is clear), as expected when the symmetry-broken or-
der parameter has been subtracted off. The x-oriented order
parameters should of course vanish, on account of the rect-
angular lattice shape inducing only y columnar order in the
thermodynamic limit.

III. SQUARE LATTICES

As an example more closely corresponding to the calcula-
tions in Ref. [1], we next consider the Q3 model on L×L lat-
tices (even L), again with all open boundaries. Since now the
x and y directions are equivalent, the true ground state does
not have a unique locked-in dimer pattern, but is two-fold de-
generate with fluctuations between x- and y-oriented order.
On a small lattice, these fluctuations are fully sampled in our
QMC simulations running for reasonable times, and when av-
eraged the bond patterns look more like a plaquette VBS state.
This is shown in Fig. 3(a) for a 32× 32 lattice. Here it should
be noted that the dimers at the boundaries do not fluctuate
much, and the central part of the system can be regarded as a
kind of domain-wall state with de-facto plaquette order. For
system sizes larger than the domain wall thickness, the bonds
in the center of the system fluctuate collectively between ac-
tual long-range ordered horizontal and vertical bond patterns.
For very large lattices, the time scale of these fluctuations be-
tween the two different bond order realizations becomes too
long to observe in simulations, and the system may in practice
become completely trapped in one of the sectors. This is seen
in Fig. 3(b) for an 80 × 80 system, where the central part of
the system only exhibits strong y dimers.

To further illustrate this symmetry breaking occurring in
the simulations, in Fig. 4 we show the probability distribution
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(a)

(b)

Figure 3. Bond strengths for (a) 32×32 and (b) 80×80 (b) systems.
The plaquette pattern for the L = 32 case reflects averaging over
x- and y bond order. In the L = 80 case, the simulation was not
long enough to sample equally the two degenerate sectors, and an
y-oriented pattern is apparent at the center of the system.

P (Dx, Dy) of the dimer order parameter as collected in the
QMC process. For the smallest system, L = 32, the peak in
the distribution corresponds to equalDx andDy , i.e., resonat-
ing plaquette order or equal amounts of static x and y dimers.
For a slightly larger system, L = 48, we observe the peak
splitting into two, indicating a state that is now fluctuating be-
tween x and y oriented bond order. The splitting between the
peaks grows with increasing system size as the two patterns
become more dominated by the majority order, and the tun-
neling probability decreases (reflected in smaller weight close
to the line Dx = Dy). For L = 64, the two peaks have un-
equal density, due to the long time scale of fluctuation for this
system size, and for the largest system, L = 80, the simu-
lation was completely trapped in the y sector. As is typical
in systems with a discrete symmetry of the order parameter,
the time scale of tunneling between sectors should grow ex-
ponentially with increasing L, and in practice it is not possible
to sample equally both sectors for large systems.

The method-related symmetry breaking is not a problem in
practice, as long as computed quantities are insensitive to the
symmetry breaking, e.g., with the definition 〈D2

x〉 + 〈D2
y〉 of

the VBS order parameter. As shown in Fig. 5, results based
on this definition for the open system agrees with those for
periodic boundary conditions in the limit L → ∞, though
the extrapolation to infinite size is easier for the periodic sys-
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Figure 4. Distribution P (Dx, Dy) of the VBS order parameter, with
the components Dx and Dy evaluated on the central L/2×L/2 part
of lattices of size L = 32 (a), 48 (b), 64 (c) and 80 (d).

tems. On the open systems the behavior is non-monotonic.
We also show results for m2

dx+m2
dy , based on the definitions

by Liu et al. in Eq. (1). In this case we see a sharp change in
the behavior at a system size corresponding the the de-facto
symmetry breaking of the QMC simulations for system sizes
above L = 64. For the smaller systems, the results appear
to extrapolate to a non-zero value, but for the larger sizes the
values drop rapidly toward zero. The latter behavior reflects
the cancellation of the terms in the order-parameter definition,
Eq. (1), when the ground state is unique (in practice, due to
the broken symmetry). For the smaller sizes the cancellation
is not complete because of the two-fold degeneracy. A sim-
ilar discontinuous behavior arising from symmetry breaking
is seen in a symmetric definition based on the induced order
parameter (i.e., squaring the components after the mean value
has been computed), 〈Dx〉2+ 〈Dy〉2, where the results for the
larger systems exhibit a jump up toward the results for peri-
odic boundary conditions when the symmetry breaking takes
place. Before symmetry breaking we have 〈Dx〉 = 〈Dy〉, and,
because the squares are taken, a value 1/2 of 〈D2

x〉+〈D2
y〉 ob-

tains (in the limit L→∞ without symmetry breaking).
A properly symmetrized version of the definition (1), in its

equivalent form (2), is 〈D2
x〉+ 〈D2

y〉 − 1
2 (〈Dx〉+ 〈Dy〉)2. In

Fig. 5 it can be seen that the results for this quantity coincide
with m2

dx +m2
dy when there is no symmetry breaking, while

after symmetry breaking the two definitions diverge sharply.
The properly symmetrized definition should be 3/4 of the
standard squared VBS order parameter for periodic bound-
aries in the thermodynamic limit.

IV. CONCLUSION

We have discussed why the quantities m2
dx and m2

dy
[Eq. (1)] used in Ref. [1] may not capture long-range VBS
order properly. It is clear that, in a system where the VBS or-
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Figure 5. Dependence on the inverse system size of different defini-
tions of the squared VBS order parameter. The quantities indicated
by red and blue circles (the data sets with the smallest values) coin-
cide almost exactly for system size up to L = 48 and therefore only
the blue symbols are clearly visible.

der parameter symmetry is fully broken, the terms subtracted
in Eq (1) correspond to the actual order parameter of interest,
and what is left vanishes for large distances (large systems). In
calculations with tensor network states, such as the PEPS used
in Ref. [1], symmetry breaking can take place due to unequal
treatment of the x and y directions or imperfect optimization
(even on periodic lattices). As in Monte Carlo simulations,
which may be trapped in one out of two or more sectors of the
order parameter, this kind of “artificial” symmetry breaking
may not be a problem in practice, as long as the consequences

are understood and taken into account properly.
A VBS phase in the J1-J2 Heisenberg model cannot be ex-

cluded by the results presented in Ref. [1]. Judging from other
recent calculations with a variety of methods [2–5], we expect
VBS order in a narrow range of coupling ratios g = J2/J1
(roughly for g ∈ [0.52, 0.61]). According to the same cal-
culations, a gapless spin liquid may exist for slightly smaller
values of g (roughly for g ∈ [0.45, 0.52]). It would be very in-
teresting to see the VBS order parameter from the calculations
in Ref. [1] without the subtraction of the crucial boundary in-
duced contributions, as well as the boundary-induced order
parameter itself. We also point out that it may be advanta-
geous to use rectangular lattices in PEPS calculations, as is
evident from the behavior of 〈Dy〉 in Fig. 2.

Aside from the use of a potentially flawed VBS order pa-
rameter, the calculations in Ref. [1] are impressive and suggest
that the method of Monte Carlo sampling of the physical de-
grees of freedom and gradient-based optimization [6–8] may
indeed be one of the most powerful ways to compute with
tensor-netweok states. Very recently, further progress along
these lines were reported in the context of the same J1-J2
Heisenberg model up to system size 24 × 24 [14]. The VBS
order was not discussed, however.
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