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One obstacle that has slowed the development of electrically gated metal-oxide-semiconductor
(MOS) singlet-triplet qubits is the frequent lack of observed spin blockade, even in samples with
large singlet-triplet energy splittings. We present theoretical and experimental evidence that this
problem in MOS double quantum dots can be caused by stray positive charges in the oxide inducing
accidental localized levels near the device’s active region that lead to the lifting of the spin blockade.
We also present evidence that these effects can be mitigated by device design modifications, such as
overlapping gates.

I. INTRODUCTION

Silicon metal-oxide-semiconductor (Si-MOS) devices
form the foundation of current electronics, and the man-
ufacturability, reliability, and scalability of MOS tech-
nology are attractive reasons to develop MOS devices
for quantum information processing1,2. Spin coherence
times in silicon can be quite long3, enabling the demon-
stration of high-fidelity quantum dot spin qubits in MOS
devices4–6. Given these successes, MOS is a natural archi-
tecture for further development of electrically controlled
spin qubits, such as singlet-triplet qubits7,8, which have
recently been demonstrated6.

Pauli spin blockade arises as a consequence of spin
conservation in electron tunneling9,10: when the singlet-
triplet splitting is large in a quantum dot, a (1, 1) spin
triplet cannot transition to the (2, 0) configuration while
a (1, 1) singlet can10,11 (here, (m,n) denotes m electrons
in the left quantum dot and n electrons in the right dot).
Because of spin blockade, the electron spin and charge
configurations are correlated, which can be used to ini-
tialize and detect the state of a spin qubit, particularly
the singlet-triplet qubit8,12–14. As such, spin blockade is
a crucial ingredient for spin-based quantum computing
architectures.

Spin blockade requires a large singlet-triplet splitting
in the detection dot and a non-magnetic environment so
that singlet and triplet electron spin states have long life-
times. A Si-MOS quantum dot typically has a large con-
duction band valley splitting and a large singlet-triplet
splitting, and isotopic enrichment helps suppress mag-
netic noise from nuclear spins. One would therefore ex-
pect that a Si-MOS double quantum dot should provide
a favorable environment for spin blockade, and indeed
spin blockade has been observed experimentally11,14–17.

However, despite massive efforts within the research com-
munity to remove blockade-lifting mechanisms such as
low valley splitting and nuclear spins, many samples with
large and positive singlet-triplet splittings (hundreds of
µeV, as measured using excited-state spectroscopy) fail
to exhibit spin blockade. In the experiments reported
here, nine out of ten samples, all with large singlet-triplet
splittings, failed to exhibit spin blockade.

Here we show that the absence of spin blockade in a
MOS device can be explained via the presence of an unin-
tentional level in the system containing an electron that
is exchange coupled to the gate-defined dots. We present
calculations demonstrating that these levels are likely in-
duced by charges present within the oxide layer in typical
samples. Specifically, we show that the known concentra-
tion of charged defects in typical oxides yields a high
probability that unintentional levels will be present, and
that one or more electrons in the impurity-induced level
are likely to be coupled to a lithographically defined dot
with sufficient strength to lift the spin blockade. We also
report the experimental observation of a magnetic field-
independent chemical potential along one charge transi-
tion in one device studied. While other mechanisms such
as coupling to nuclear spins and spin-flip co-tunneling can
lead to the lifting of spin blockade, these other mecha-
nisms do not provide a natural explanation of a field-
independent charging transition. In addition, our cal-
culations show that modifying the device geometry to
increase screening of charges in the oxide layer (for in-
stance, by placing metal gates directly above the quan-
tum dots, as in Refs. 4, 5, and 18) reduces the likeli-
hood that impurity-induced levels affect these devices for
a given density of defects in the oxide.

The paper is organized as follows. Section II presents
both the experimental methods (in Subsection II A) and
the theoretical methods (in Subsection II B). Section III
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presents the main results. Subsection III A presents the
measurements representative of the 9 out of 10 devices
in which large singlet-triplet splittings are observed but
there is no evidence of spin blockade. Anomalous mag-
netospectroscopy data measured on one such sample are
also presented, supporting the hypothesis that there are
electrons occupying unintended electron levels. Subsec-
tion III B presents the theoretical results that demon-
strate that impurity-induced levels provide a reasonable
explanation of the experimental observations. The re-
sults are discussed and summarized in Section IV. Ap-
pendix A presents additional details of the finite element
calculations. Appendix B provides the gate voltages used
in our simulations. Appendix C shows the results from
the one device measured that exhibited spin blockade.
Appendix D presents a more detailed discussion of the
anomalous magnetospectroscopy results where a mag-
netic field-independent chemical potential is observed.
Appendix E presents details of the calculations made us-
ing different gate geometries.

II. METHODS

This section presents the methods used both for the
experiments and for the theoretical calculations.

A. Experimental Methods

Ten nominally identical devices were fabricated and
measured, each with a 20 nm layer of SiO2. The Ti/Au
electrostatic gates were created using electron-beam
lithography, evaporation, and liftoff techniques. A con-
formal layer of aluminum oxide was then applied, fol-
lowed by deposition of a global top gate. A scanning elec-
tron micrograph (SEM) of the essential part of a device,
similar to those measured, is shown in Fig. 1(a). In this
device architecture, the global top gate is used to accu-
mulate electrons at the Si/SiO2 interface, and a double
quantum dot (DQD) system is defined by applying ap-
propriate voltages to seven of the confinement gates. A
schematic of a device cross-section is shown in Fig. 1(b).

The devices are operated and measured in a dilution
refrigerator operating at a base temperature of approx-
imately 60 mK. The dots are characterized by measur-
ing the differential conductance through the quantum
point contact (QPC); peaks in the differential conduc-
tance occur at voltages at which the occupation in a dot
changes. Pulsed gate experiments are performed in mag-
netic fields, to further characterize the behavior of the
samples, as described in Section III.

B. Theoretical Methods

Our theoretical calculations address the question of
whether impurities in the oxide layer of these devices

Figure 1. Experimental devices. (a) Scanning electron micro-
graph of a device with a design identical to the ones measured,
with the gates QPC, WL, WR, BL, L, M, R, BR labeled. The
approximate location of the quantum dots are indicated with
red ellipses. (b) Side-view schematic of the device structure.

can induce unintentional levels that are not easily dis-
cernible in stability diagrams but which can cause spin
blockade to be lifted. In our calculations we assume that
all conduction band valley splittings are large and include
only electrons in the lowest valley; this is consistent with
experiment, since all devices studied here are confirmed
to have valley splittings of at least 100 µeV (see Sub-
section III A) – values that are consistent with Si-MOS
devices reported in the literature11.

For impurity-induced levels to be a reasonable explana-
tion for the experimental measurements, they must have
large energy spacings, so that changes in occupation are
not apparent in typical stability diagrams because the
occupancy of the level does not change over the range
of voltages investigated. This requirement implies that
the electron wavefunctions in the impurity-induced level
must be highly localized. At the same time, the elec-
tron in the impurity-induced level must have reasonably
strong tunnel coupling to an electron in one of the litho-
graphically defined dots, so that spin blockade is lifted via
the process shown in Fig. 2(a). In this process, the elec-
tron in one of the lithographic dots can go into a singlet
state in the already-occupied other dot while conserv-
ing all the spin quantum numbers of the three-electron
system because the spin on the lithographic dot can flip
due to exchange with an electron in the impurity-induced
level. This behavior is closely related to processes that
occur in other three-electron systems19–21, including the
quantum dot hybrid qubit22,23.

A crucial ingredient of our theoretical investigation
is to estimate the likelihood that a given device has
an impurity-induced accidental level that is sufficiently
strongly coupled to lift spin blockade. We note that for
tunnel couplings t that are small compared to the energy
level detunings ε between the gate-defined dot and the
impurity-induced level, the rate of virtual transfer of an
electron into a singlet state in which one dot is doubly
occupied is of order J/h, where J is the exchange cou-
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pling between the two levels. The exchange can be ap-
proximated as J ≈ t2/ε, as appropriate when |ε| is large
compared to the charging energy of the dot. ε < 0 cor-
responds to a (1,1) ground state, where (m,n) denotes
m electrons in the lithographic dot and n electrons in
the levels induced by the impurity. We compute this rate
and compare it to the frequency of the square wave pulses
used in the experiment to characterize spin blockade. To
lift spin blockade, the electron occupying the impurity
level need only be coupled to one of the intentional dots
in the system.

The full theoretical approach, described below, in-
volves performing simulations of the electrostatics and
quantum confinement of electrons in the experimental
device, both in the absence and presence of a charged
impurity. The results of the simulations are used to deter-
mine under what conditions the impurity-induced levels
are expected to be occupied. We also calculate the tunnel
coupling of an electron between a lithographic dot and
an impurity-induced level.

The theoretical method is summarized as follows. We
first calculate the screened electrostatic potential and
self-consistent charge distribution using Thomas-Fermi
simulations, while adjusting the gate voltages to obtain
single electron occupancy in each dot, once excluding
and then including an impurity potential. The lowest two
eigenstates of the single-particle 2D Schrödinger equation
are then obtained for both cases. Section II B 1 shows how
the exchange coupling between an electron in a litho-
graphic quantum dot and an electron in an impurity-
induced state is extracted from these calculations. We
perform the calculations at different possible impurity
locations to be able to estimate the probability that an
impurity is at a position that would lead to the lifting of
spin blockade.

1. Calculation of Exchange Couplings

In this subsection we present our method for estimat-
ing t and ε and thus obtaining J ∼ t2/ε, the exchange
coupling J between an electron in a lithographic dot and
an electron in an impurity-induced level.

We first determine the amount of hybridization
between the lithographic dot ground state and the
impurity-induced level ground state in the combined con-
finement potential. Let |ψdot,0〉 be the unperturbed litho-
graphic dot ground state, |ψimpurity,0〉 be the impurity
level ground state, and |φcomb,0〉 be the hybridized ground
eigenstate of the combined system. Assuming |φcomb,0〉
can be decomposed in terms of |ψdot,0〉 and |ψimpurity,0〉,
we apply a Hubbard model to estimate the detuning
and tunnel couplings using the energy difference between
the total system ground state and the lithographic-dot
ground state, ∆E = Ecomb,1 − Ecomb,0 where Ecomb,i

is the energy of the i-th eigenstate of the combined
dot-impurity system. These parameters are depicted in
Fig. 2(b).

A general form for the Hamiltonian of a two level sys-
tem defined by the {|ψdot,0〉 , |ψimpurity,0〉} basis is given
by the two-by-two matrix:

H =

(
−ε/2 t
t ε/2

)
(1)

with ε the energy detuning between the two states of
the system and t the tunnel coupling between them. The
eigenenergies of this system are E = ± 1

2

√
4t2 + ε2 and

the general forms for real eigenvectors are

|φcomb,0〉 = cos

(
θ

2

)
|ψdot,0〉

+ sin

(
θ

2

)
|ψimpurity,0〉

(2)

|φcomb,1〉 = − sin

(
θ

2

)
|ψdot,0〉

+ cos

(
θ

2

)
|ψimpurity,0〉 ,

(3)

with θ the mixing angle between the lithographic dot and
the impurity dot.

Using this model, we can compute the energy differ-
ence ∆E =

√
4t2 + ε2 and the overlap integral S =

cos (θ/2) = 〈ψdot,0| φcomb,0〉. Inverting Eq. (1) trans-
formed into the basis defined by Eqs. (2)-(3) for t and
ε using these variables yields

t = ∆E
√
S2 (1− S2) (4)

and

ε = ∆E
(
1− 2S2

)
. (5)

In general, it is possible that the ground state and
the first excited state of the total perturbed system are
not well described as combinations of the unperturbed
ground states of the lithographic dot and the occupied
impurity-induced level. The most common of these sce-
narios is when the impurity potential is weak enough that
the combined system is almost identical to that of the
unperturbed lithographic dot. These ill-defined scenarios
have no impact in our estimations because we only take
into account impurity configurations meeting certain cri-
teria regarding the total electron energy and exchange
coupling, as discussed later in Subsec. II B 3.

2. Finite-Element Simulation Methods

To determine whether typical Si-MOS devices possess
large enough charge impurity densities to support the cre-
ation of spurious levels containing an electron capable of
suppressing blockade, we perform numerical simulations.
In addition to a simulation with no impurities present, we
perform a series of calculations in which a singly-charged
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Figure 2. (a) Cartoons depicting the exchange process that lifts Pauli spin blockade. The top cartoon depicts an electron in an
impurity-induced level that is not exchange-coupled and therefore does not lift Pauli blockade. The bottom cartoon illustrates
how exchange enables spins to switch between the lithographic dot and the impurity-induced level, allowing spin blockade to
be lifted. (b) Cartoon depicting parameters used for the calculations of the exchange coupling between the impurity level and a
lithographic dot. The dashed lines indicate unperturbed basis wavefunctions |ψdot,0〉 and |ψimpurity,0〉 used for the charge qubit
Hubbard model. The solid blue line depicts the ground eigenstate of the combined dot-impurity potential, indicated by the
solid orange line. The overlap S used to calculate the exchange coupling is indicated by the shaded green region.

impurity is introduced near the active region of the device
within the oxide layer above the interface (see Fig. 3(a)).
Note that the simulations do not include an additional
uniform oxide charge density, since it contributes only
an overall shift to the device potentials. For each impu-
rity location, we calculate the electron charge density and
then estimate the exchange coupling that would exist be-
tween the lithographically-defined quantum dot and the
induced spurious level.

We solve for the screened electrostatic potential and
self-consistent charge distribution of a two-dimensional
electron gas (2DEG) located at the Si/SiO2 interface
using the Thomas-Fermi approximation24, which is de-
scribed in Appendix A. The simulations are performed
within COMSOL Multiphysics25, a finite element simula-
tion suite. The simulations are repeated, while adjusting
the gate voltages, until we obtain device tunings with
approximately one electron in each dot. Such calcula-
tional methods been used successfully to model nanode-
vices; see, e.g., Refs. 19 and 26. Figure 3(b) depicts the
Thomas-Fermi electron density for a typical double-dot
tuning including an impurity.

Exploiting the reflection symmetry of the device, we
now focus on just the right quantum dot, where we calcu-
late the two-dimensional (2D) electrostatic potential ex-
perienced by a single electron, in the plane of the 2DEG,
Vdot. We introduce this confinement potential in a 2D
Schrödinger equation for the right dot,(

− ~2

2m∗
e
∇2 + Vdot

)
|ψdot,i〉 = Edot,i |ψdot,i〉 , (6)

and solve to obtain the lowest two orbital eigenstates,
i = 0, 1. Here, m∗e is the transverse effective mass of a z-

valley in silicon. We further adjust the gate voltages such
that the orbital energy splitting, Edot,1−Edot,0, takes the
experimentally reasonable value 0.5 meV, while still satis-
fying the requirement of having one electron in each dot.
The final gate voltages obtained through this procedure
are listed in Appendix B. We also solve the Schrödinger
equation for an electrostatic potential Vcomb(x, y) that
includes a single point impurity with charge ±|e|, in addi-
tion to the potentials from lithographically defined gates:

(
− ~2

2m∗
e
∇2 + Vcomb

)
|φcomb,i〉 = Ecomb,i |φcomb,i〉 . (7)

Here, |φcomb,0〉 and |φcomb,1〉 are the single-electron
ground and excited states respectively of the combined
dot-impurity system. Both Vdot and Vcomb are computed
in the Thomas-Fermi approximation for a realistic gate
geometry, which simultaneously accounts for the image
charges associated with the electrons in the lithographic
dots, the 2DEG, the impurity potentials, and the non-
linear redistribution of charge density in the 2DEG, in
response to changes in gate voltages and the position of
the impurity.

Finally, we use the methods of Sec. II B 1 to calcu-
late the exchange coupling between an electron in a
lithographically defined dot and in the impurity-induced
level. In the current section, we obtain the inputs to
this theory, including the orbital energy spacing, ∆E =
Ecomb,1 − Ecomb,0, and the overlap integral between the
combined system ground state and the dot ground state
(in the absence of an impurity), S = 〈φcomb,0| ψdot,0〉.
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Figure 3. Method for examining locations at which a pos-
itively charged defect induces a strongly coupled impurity
level in the experimental devices. (a) Cross-section schematic
of device, depicting the region of oxide where charged impu-
rities were placed (red box). (b) Electron density within a
two-dimensional electron gas (2DEG) under the influence of
an impurity potential calculated using a self-consistent elec-
trostatics model with the 2DEG charge obtained using the
Thomas-Fermi approximation.

3. Calculation of “Dangerous” Impurity Locations

To map out “dangerous” regions, i.e., the possible lo-
cations at which impurities result in levels that lead to
the lifting of spin blockade, we perform the calculations
described in Secs. II B 1 and II B 2 on a grid of 5600 possi-
ble impurity locations throughout the active region of the
device, above the 2DEG, amounting to a box of dimen-
sion 250 nm× 170 nm× 45 nm (see Figure 3(a)), and we
sort each location based on whether or not an impurity
at that location would lead to the spin blockade lifting
effects detailed above. The method used to estimate J is
only accurate when the electron in the spurious level is
strongly bound, with a large energy level splitting to the
excited state. Moreover, a weakly bound spurious level
would be apparent in the experimentally measured sta-
bility diagram. Since such cases can be identified and
corrected experimentally, by retuning the device, we in-
clude as one of our requirements for a “dangerous” im-
purity that ∆E > 1 meV. Additionally, since the square
pulse frequencies in our experiments are approximately
10 MHz, we require a “dangerous” impurity to act faster
than this, corresponding to a lower limit on J of 10 MHz
or 4.0× 10−2 µeV. We then map out the impurity loca-
tions within the testing box shown in Figure 3(a) that
meet these two requirements. In this way, we determine
the lower limit of the impurity density that causes lifting
of spin blockade with probability greater than 50 %.

III. RESULTS

In this section we discuss the experimental and theo-
retical results.

A. Experimental Results

Figure 4(a) shows a stability diagram27 in the few-
electron regime with source-drain bias of VSD = 0.5 mV,
demonstrating the characteristic features of a double
quantum dot: charging lines with two different slopes,
that occur at voltages at which an electron is added to
one of the dots.

For each of the ten devices examined, the voltages were
tuned to create a double dot configuration and then de-
pleted to low electron occupations, as shown in Fig. 4(b).
Efforts were made to fully deplete the quantum dots;
for example, all experiments testing for Pauli blockade
were performed over multiple anti-crossings28. Using the
voltage differences between the transition lines together
with the relevant lever arms to estimate the dot capac-
itances29, we find values consistent with single electron
occupation. While we cannot definitely rule out the pos-
sibility of closed shells of electrons at the nominal (0,0)
occupation, the presence of closed shells does not pre-
clude the measurement of Pauli spin blockade, as has
been demonstrated in Refs. 14, 30–34.

Excited state spectroscopy measurements12,16,35,
shown in Fig. 4(c), were carried out to read the singlet-
triplet splitting in each dot of every device. In these
experiments, a square pulse with frequency approx-
imately equal to the tunneling rate (a few hundred
Hz) was applied in combination with an average (DC)
voltage shift on gate L, to populate the excited states
of the quantum dot. The energy difference between
the ground and first excited states, corresponding to
the singlet-triplet splitting ∆S−T , was consistently
found to be between 100 and 300 µeV, using lever arms
determined in the magnetospectroscopy experiments, as
described below. (A lever arm describes the conversion
factor between a gate voltage and a relevant dot energy.)
Despite these large singlet-triplet splittings, spin block-
ade was not observed in nine out of ten devices. Results
from the tenth device, which did exhibit spin blockade,
are presented in Appendix C.

Magnetospectroscopy experiments were conducted
with the magnetic field B oriented parallel to the dot axis
on three devices. Figure 4(d) shows magnetospectroscopy
data used to determine gate lever arms in one device;
these data also demonstrate that the singlet-triplet split-
ting in the device is substantial, because increasing the
magnetic field makes it energetically less favorable to add
a new electron to form a singlet state; this allows us to
unambiguously identify the ground two-electron state as
a singlet29.

While typical magnetospectroscopy data are shown in
Fig. 4(d), one region of the stability diagram of one sam-
ple exhibited anomalous behavior, as shown in Fig. 5(a),
where the B-dependent line segments normally corre-
spond to a charging transition from 1-to-2 electrons (see
Fig 5(b)). In this case, the transition has an unexpected
segment that is independent of magnetic field. Includ-
ing the presence of an occupied impurity-induced level



6

Figure 4. Experimental measurements. (a) Representative stability diagram (differential conductance through the quantum
point contact (QPC) as a function of gate voltages VL and VR) for devices being considered, showing typical double dot
behavior. (b) Representative stability diagram showing depletion of the double dot device to low electron occupations. The
(0,0)? indicates that the occupations are consistent with being zero, but the presence of a filled shell cannot be ruled out
definitively. (c) Representative differential conductance through the QPC measured as a function of the baseline voltage applied
to gate L, VL, when a square wave pulse is added to the dc baseline applied to gate L. This excited state spectroscopy is used
to measure the singlet-triplet splitting in a dot, which is extracted from the difference in voltage of the lines indicated by the
two arrows. For these measurements, VL is attenuated by a factor of 10, and the pulse height is attenuated by a factor of
33. (d) A representative magnetospectroscopy plot demonstrating Zeeman splitting of an effectively single-electron quantum
dot via differential conductance through the quantum point contact (QPC) as a function of the applied magnetic field B and
the voltage on gate L, VL. The gate lever arms were determined using the relation that the Zeeman energy is equivalent to
0.12 meV T−1. Adding a second electron to the quantum dot becomes less energetically favorable as the magnetic field increases,
over the entire range measured, providing strong evidence that the singlet-triplet splitting in the dot is large.

provides a natural explanation for this behavior: the ver-
tical line would correspond to a 1-to-3 electron transition
with ∆Sz = 0. This simultaneous change of occupation
of a lithographic dot and impurity level is rare because
the voltage range in a typical experimental sweep is not
sufficient to change the occupation of the impurity level.

Figure 5(b) shows possible energy orderings of states
with 1, 2, and 3 electrons, as pictured in the insets, for
a system with one dot and an impurity level. The fig-
ure contains shaded regions that correspond to different
energy orderings, which are discussed in detail in Ap-
pendix D. Charging transitions to states with more elec-
trons occur as the gate voltage VR becomes less negative.
In magnetospectroscopy experiments, we would normally
expect the transition to the three-electron configuration
to occur on the far-right-hand side of the diagram, al-
though its exact location depends on the relative sizes of
the Zeeman, orbital and charging energy terms. In par-
ticular, if the quantum dot confinement potential is weak
and an extra level is present, then the charging energy
for adding two electrons can be small, bringing the 1-to-
3 electron transition into the measurement window, as
indicated in Fig. 5(b). While we do not measure the indi-
vidual energy terms here, Appendix D demonstrates that
reasonable values of the system parameters are consistent
with the transitions observed in Fig. 5(a). [The parame-
ters listed in Appendix D are used to plot Fig. 5(b).] The
pattern of the transition line is reproduced if one assumes
that the 1-to-2 transition rate becomes unobservably slow
when the voltage VR is made more negative and the 1-
to-3 transition rate also becomes slower as the magnetic

field is increased. Such dependencies are not unexpected,
because tunnel rates typically decrease as depletion gate
voltages are made more negative, and a decrease in wave
function overlap between the dot and the impurity level
is expected due to magnetic confinement.

Figure 5. Additional evidence for the presence of unintentional
levels. (a) Magnetospectroscopy data showing the differential
conductance through the quantum point contact as a func-
tion of magnetic field, B, and the voltage, VR, on gate R.
The vertical field-independent portion of the transition line
is unexpected when a single electron is added. The change in
behavior is evidence of 1-to-2 and 1-to-3 electron transitions.
(b) Cartoon of a scenario consistent with the structure ob-
served in (a). µ(N) denotes the energy to load N electrons
into the system consisting of a lithographically defined dot
and an impurity-induced level. Regions with different energy
orderings are color-coded, as shown. Slow tunnel rates (dashed
lines) make certain transitions invisible, as discussed in the
main text.



7

Figure 6. Characterization of the propensity for a positively
charged defect to induce a strongly coupled impurity level
that would lift spin blockade in the experimental devices. The
color scale corresponds to the height above the 2DEG of the
dangerous regime for positively charged impurities. An im-
purity with charge +e occurring anywhere below this height
and within the colored region will induce a dot capable of lift-
ing spin blockade; we consider this the dangerous region for
impurities. The total volume of this region is approximately
1.2× 106 nm3 corresponding to a minimum impurity density
of 8.6× 1014 cm−3 above which spin blockade is expected to
be lifted.

B. Theoretical Results

Our simulations reveal some trends of interest. First,
negative charges rarely induce unintentional levels, ex-
cept when the impurity is within 5 nm of the 2DEG and
close to the center of a lithographically defined dot. In
contrast, positively charged impurities in many different
locations in the oxide induce impurity levels that can lift
spin blockade, as shown in Fig. 6. There is a large region
directly over the 2DEG where placement of a positively
charged impurity induces an occupied impurity level with
a tightly bound state that also has a strong enough ex-
change coupling that spin exchange occurs on a timescale
less than 1 µs with a nearby gate-defined dot. If we as-
sume one electron within this volume, we find that a uni-
form impurity density of 8.6× 1014 cm−3 causes lifting
of spin blockade with high probability. The Si/SiO2 in-
terface is a region of concern for MOS-based spin qubits
and if we consider the sampled locations nearest to this
interface, we find a uniform surface impurity density of
1.1× 109 cm−2 would likely result in an impurity occur-
ring within the spin-blockade lifting area. This density
is on the low end of the expected impurity densities for
these devices36 – approximately 1010 cm−2 in high qual-
ity thermal oxides37. Comparing the calculated threshold
and the expected value suggests a high likelihood of spin
blockade being absent from these devices.

We stress that the analysis presented here focuses on
fixed oxide charges, which are only one particular class
of Si/SiO2 interface traps. A direct comparison between

this charge density threshold and typical values of densi-
ties of interface traps (as measured in cm−2 eV−1 by CV
methods, for instance) may not be direct, requiring fur-
ther identification of the physical mechanism behind the
different traps. Other trapping mechanisms, such as fast
interface states and chemical bonding faults right at the
Si/SiO2 interface are also likely to affect the spin state
of qubits, but are out of the scope of the current work.

Modifying the gate geometry to increase the screen-
ing of the oxide layer reduces the likelihood that spin-
blockade lifting occurs via this mechanism. To demon-
strate this, we examine two modifications to the gate
structure: moving the global top gate from 100 nm above
the 2DEG to 50 nm, and altering the gate layout to an
overlapping gate design similar in layout to that used in a
Si-MOS device4,5. The details of the gate layout we con-
sider are adapted from a device fabricated on Si/SiGe18.
(Further details on gate geometries studied here are pro-
vided in Appendices B and E.) Generally, we find that us-
ing an overlapping gate design has the largest impact on
our results, due to the compact coverage of metallic gates
directly above the 2DEG and the overall tighter confine-
ment of the lithographically defined dots compared to
the original device considered. The likelihood that spin
blockade is lifted is found to decrease, as quantified by the
impurity density threshold increasing by a factor of eigh-
teen, while the interface impurity density threshold in-
creases by a factor of three. Increasing accumulation gate
voltages could also increase the likelihood of observing
spin blockade because this increases confinement within
a dot, which in turn reduces the wavefunction overlap
between the lithographic dot and an occupied impurity-
induced level. Another route for increasing the device
yield is to improve the quality of the oxide, particularly
at the Si/SiO2 interface, since this reduces the number of
charges in close proximity to the lithographically-defined
quantum dots. Finally, moving the active region of the de-
vice further away from the impurities, by using a Si/SiGe
heterostructure for example, also reduces the likelihood
of forming dangerous impurity dots.

IV. DISCUSSION

Our measurements and calculations indicate that fail-
ure to observe spin blockade in a substantial fraction of
Si-MOS double quantum dot devices with large singlet-
triplet splittings could arise because of additional energy
levels induced by impurities in the oxide of the devices.
We show that in the samples we investigated, there is a
reasonable probability that unintentional levels produced
by trapped positive charges in the oxide layer have large
enough binding energies that they would not typically
be apparent in charge stability diagrams, and yet their
exchange coupling to one of the lithographically defined
dots is large enough to cause suppression of spin block-
ade. Typical densities of defects in these devices are con-
sistent with the observations.
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This problem can be mitigated not only by altering
fabrication methods to reduce the number of charged de-
fects in the device oxide. Our calculations indicate that
employing device designs in which metal gates are posi-
tioned directly over the dots, which enhances the screen-
ing of the impurity levels, also can mitigate the problem
substantially.
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Appendix A: Details of Thomas-Fermi Simulations

In this appendix, we present additional details of the
Thomas-Fermi simulations.

As described in the main text, we performed simu-
lations of either two electrons in a lithographically de-
fined double quantum dot, or three electrons in a double
dot system, with an additional impurity-induced level.
To begin, we treat the double dot two-electron system
semi-classically as described below.

The three-dimensional (3D) finite element simulations
are conducted on a 2 µm by 2 µm section of the active re-
gion of the device. The device stack consists of 200 nm of
silicon, 20 nm of SiO2 and 100 nm of Al2O3. The bound-
ary conditions used in all 3D models are as follows. The
bottom surface of the device is set to V = 0; for all other
boundaries, we apply the conditions D · n = 0, where D
is the electric displacement field and n the unit normal
at the surface. In all cases, the simulation cell boundary
was chosen large enough that the exact position of the
boundaries had no effect on our results.

We first determine a set of gate voltages, as listed in
Appendix B, which cause approximately one electron to
accumulate in each dot. (Since this is a semi-classical

Figure 7. Potential landscape and wavefunctions used in the
simulations. Solid gray lines indicate the gate structure, and
the dashed gray line demarcates the simulation regime used
for the 2D Schrödinger simulations. (a) Potential landscape
for the right quantum dot, Vdot (b) Ground eigenstate of the
right quantum dot, |ψdot,0〉. (c) Representative potential land-
scape of right dot plus an impurity, Vcomb. (d) Surface plot
showing the ground eigenstate of Vcomb, |φcomb,0〉.

calculation, electron quantization must be enforced by
hand.) The 2DEG for this system is assumed to form
at the Si/SiO2 interface and the charge density is cal-
culated self-consistently by applying the Thomas-Fermi
approximation24 to model the areal charge density σ, us-
ing the following definition:

σTF =

{
− em

∗
e

π~2 (eV ), V > 0
0, (otherwise)

, (A1)

where m∗e is the 2D transverse effective mass of a z-valley
electron in silicon and V (x, y) is the spatially varying
electrostatic potential at the position of the 2DEG. Here,
we assume the valley splitting is large enough that we
only need to consider one valley state. In Eq. (A1), we
define the electron Fermi level to occur at V = 0.

As described in the main text, the results of the
Thomas-Fermi electrostatics simulations are evaluated in
the plane of the 2DEG, and input into two-dimensional
(2D) Schrödinger equations. The full procedure is re-
peated, with and without introducing an impurity into
the device, and considering a 3D grid of impurity loca-
tions. Some typical electrostatic and quantum simulation
results are shown in Fig. 7, for the right-hand dot.
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Appendix B: Gate Voltage Tables

In this appendix, we list the gate voltages used in our
simulations, which were chosen to accumulate one elec-
tron in each dot, while maintaining an orbital excitation
energy in the right dot corresponding to 0.5 meV. The
three tables provide the voltages used for the gate geome-
try used in the experiment, for a geometry similar to that
used in the experiment except that the global top gate is
moved 50 nm closer to the 2DEG, and for an overlapping
gate design similar to the one used in Ref. 18.

Gate Voltage (mV)
VTop 98
VQPC -250
VWL -14.4
VWR -14.4
VBL -8
VL -10
VM -10.4
VR -10
VBR -8

Table I. Gate voltages that yield single electron occupation
with ≈ 0.5 meV orbital splitting in the quantum dot, for the
gate geometry used in the experiments.

Gate Voltage (mV)
VTop 45
VQPC -150
VWL -30
VWR -30
VBL -34
VL -5
VM -40
VR -5
VBR -32

Table II. Gate voltages that yield single electron occupation
with ≈ 0.5 meV orbital splitting in the quantum dots for the
design modification in which the top gate is moved closer to
the quantum dots.

Gate Voltage (mV)
VS1 0
VSL -60
VSR -60
VSD,1 400
VSD,2 400
VBL -12
VL 235
VM -7
VR 235
VBR -12

Table III. Gate voltages for the overlapping gate design that
yield single electron occupation with ≈ 3.5 meV orbital split-
ting in the quantum dots.

Appendix C: Experimental Evidence for Spin
Blockade in One Device

A search for Pauli blockade via a three-pulse se-
quence28 was conducted for ten devices. This appendix
reports the data demonstrating the presence of Pauli spin
blockade in one device. Fig. 8(a) shows a portion of a
stability diagram taken in the presence of a pulse pat-
tern consisting of three sequences generated on an arbi-
trary waveform generator with two channels controlling
the voltage on gate L and R; the details of the sequence
are shown in Fig. 8(a). The splitting of the polarization
line shown in Fig. 8(a) demonstrates that there are two
different voltages at which an electron transfers between
the dots, which arises because Pauli spin blockade im-
plies that a portion of the time the two-electron state
is a triplet, which has a higher energy than the singlet.
Moreover, a spin funnel is also observed (see Fig. 8(b)8),
which arises because of the change of electron transfer
between the dots at the anticrossing between the singlet
and polarized triplet, the visibility of which relies on spin
blockade.

Figure 8. Evidence of Pauli spin blockade in one device of a
batch of ten. (a) Search procedure for spin blockade. Shown is
the differential conductance through the QPC as a function of
the voltages on gates L and R, VL and VR. The (m,n) notation
indicates the number of electrons (possibly over closed shells),
with m the number of electrons on the left dot and n the
number of electrons on the right dot. The cycle is: (1) wait
at A for 500 ns, (2) pulse to B and mix in (1,1) for 1 µs, and
(3) pulse to C and measure for 20 µs. This device exhibits
two split transition lines, which is a signature of Pauli spin
blockade. However, the other nine devices that were measured
did not. (b) A spin funnel experiment also provides indication
of Pauli spin blockade in this device. Enhanced conduction
occurs near the anti-crossing between the singlet and the spin-
polarized triplet at different magnetic fields (along the green
dashed line, which is a guide to the eye); this enhancement in
the conduction requires spin blockade. In this experiment, the
arbitrary waveform generator was gate-modulated to enhance
the signal.

Appendix D: Additional Discussion of Anomalous
Magnetospectroscopy Results

In this appendix we provide a detailed discussion of our
interpretation of the anomalous magnetospectroscopy
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data presented in Fig. 5 using our model that includes an
impurity-induced level. We do this by relating the slopes
of the transition lines in the stability diagram to the en-
ergetics of the system with up to three electrons. The
intuition behind the argument is that the most straight-
forward way to obtain a magnetic-field-independent volt-
age at which the charge in the system changes is to have
the charge occupation change by two electrons, and such
a change can occur if there is a significant exchange in-
teraction between the two electrons that are added.

We use a simple Hubbard model to calculate the chem-
ical potential for up to three electrons occupying a sys-
tem consisting of a lithographic quantum dot and an
impurity-induced level. Let µ(N) be the chemical poten-
tial of N electrons in the combined system. These chemi-
cal potentials have several dominant contributions, given
by

µ(1) = −αDVg − 1
2gµBB, (D1)

µ(2) = Eoffset,1 − 2αDVg, (D2)

µ(3) = Eoffset,2 − (2αD + αI)Vg − 1
2gµBB − J, (D3)

where Eoffset,i is the effect of Coulomb repulsion on the
total system due to the previous i electrons, αD is the
lever arm of the dot, αI is the lever arm of the impurity,
J is the exchange energy that between the dot and the
impurity for the three electron state, Vg is the voltage
on the gate, g is the Landé g-factor for silicon, and µB
is the Bohr magneton. We assume that the one electron
state is initialized in the spin down (up) state for positive
(negative) applied magnetic field, the two electron state
corresponds to a singlet in a single dot for the range of
fields studied, and that the three electron state initializes
in the manifold with total spin 1/2 and z-component spin
down (up) based on positive (negative) applied field. Us-
ing the parameter values in Table IV, we find the energy
regions shown in Fig. 5(b). The value of αD was set by the
slope of the data in Fig. 5(a). The remaining parameters
were tuned to values that reproduce the magnetospec-
troscopy in Fig. 4(d) of the main text. Visually similar
behavior can be found for different parameter choices.
As a note, for this set of parameters, we also observe a
small region where µ(2) < µ(3) < µ(1), which outside the
voltage range plotted in Fig. 4(d). We assume that the
same slow tunnel rate that makes the 1-to-2 transition
invisible, as discussed in the main text, also suppresses
transitions to this two-electron ground state.

Appendix E: Calculations for Modified Gate Designs

Here we investigate gate designs that differ from the
one used for the samples studied in the main text. We
find that changing the gate geometry can change sub-
stantially the size and shape of the region where place-
ment of an impurity is likely to induce a level containing
a spin blockade lifting electron.

Parameter Value
g 2.1
αD 0.035 meV/mV
αI 0.1 meV/mV
Eoffset,1 0.45 meV
Eoffset,2 2.42 meV
J 0.3 meV

Table IV. Parameters used for calculating chemical potentials
for 1, 2, and 3 electrons in a lithographic dot plus impurity-
induced level system, used to interpret anomalous magne-
tospectroscopy results shown in Fig. 5.

We examined two modifications to the device design:
(i) one in which the top gate was moved closer to the
2DEG, reducing the separation between the global top
gate from 100 nm to 50 nm, and (ii) the other consisted
of replacing the stadium style gates by an overlapping
gate design similar to that used in Ref. 18. This style
of design consists of three layers of gates: the first is a
screening layer that defines the dot channels, the sec-
ond layer consists of depletion gates, and the third layer
consists of accumulation gates. Separating the layers is
a 5 nm conformal layer of Al2O3. The devices we sim-
ulate are shown in Fig. 9. Both changes would increase
screening of charged impurities in the oxide and are ex-
pected to increase the minimum impurity density to lift
spin blockade.

For the close-proximity top gate simulation, we consid-
ered charged impurities in the same region as for the cal-
culations summarized by Fig. 3 of the main text. For the
analysis of the overlapping gate geometry, we considered
a box with dimensions, 110 nm×170 nm×20 nm centered
under the right accumulation gate starting at the 2DEG
interface and going up into the oxide, with a total of 1120
charge locations, as indicated in Fig. 9(c). The overlap-
ping gate design defines smaller dots and typically has a
larger orbital energy splitting than the stadium style de-
signs. The energy cutoff for this design was chosen to be
7 meV, approximately twice the orbital energy splitting
measured in Ref. 18. Gate voltages that yield dots with
single occupancy for the different designs are tabulated
in Appendix B.

In the following, we consider an impurity location dan-
gerous if an impurity at that location leads to the spin
blockade lifting effects discussed in the main text. In the
closer top gate design modification, the lateral features
of the dangerous region are largely unchanged, but the
maximum height of that region is reduced by a factor
of two. The volume of dangerous impurity locations is
7.1× 105 nm3, as shown in Fig. 9(b), which represents
a slight improvement on the original device, and a uni-
form impurity density of 1.4× 1015 cm−3 would yield a
high probability of finding one impurity within this spin-
blockade lifting volume. Considering only the charges
at the interface, the area of dangerous impurity loca-
tions is 8.7× 104 nm2. With a single charge within this
area, the dangerous impurity density at the interface is



11

Figure 9. Gate geometry modifications to reduce the effects
of charged impurities on double quantum dot systems. (a)
Schematic illustrating reduced top gate to two-dimensional
electron gas (2DEG) distance. Approximate dot locations in-
dicated by red rectangles. (b) Map of height above the 2DEG
of the dangerous region to place a positively charged impurity.
The overall features are roughly similar to Fig. 6, but the max-
imum dangerous height is reduced by half. (c) Schematic top
view of an overlapping gate design. The device heterostruc-
ture is the same as prior simulations. Red gates are screening
gates (SL, SR, S1), green gates are operated in accumulation
mode to define the dots and reservoirs (SD,1; SD,2; L; R), and
yellow gates are operated in depletion mode to create barriers
(BL, M, BR). The dashed black rectangle indicates the lat-
eral region used for the impurity studies. (d) Map of height
above the 2DEG for dangerous positively charged impurity
locations for an overlapping gate design device. This design
exhibits both a sharply decreased spread of dangerous impu-
rity sites as well as a maximum dangerous height one-sixth of
that shown in Fig. 6.

1.15× 109 cm−2. This increase in surface density repre-
sents a slight improvement on the original device.

The overlapping gate design greatly reduced the dan-
gerous region. This can be attributed to the increased
screening as well as the more tightly confined dots in-
herent to this closely packed gate design, as this close
confinement reduces the wavefunction overlap between
the lithographic dot and the impurity level. The vol-
ume of spin-blockade lifting impurity locations, shown
in Fig. 9(d), is 6.3× 104 nm3, and the impurity number
density corresponding to one impurity within this volume
is 1.6× 1016 cm−3. This increase in density represents a
factor of eighteen improvement in densities at which we
would expect to start seeing spin blockade lifting effects.
Considering only charges at the interface, the danger-
ous impurity area is 3.2× 104 nm2 and the corresponding
dangerous surface density is 3.1× 109 cm−2. This limit on
the interface impurity density, while improved from the
devices described in Fig. 3 of the main text, is still lower
than the expected impurity density36,37 indicating that
we would still expect to see spin blockade lifting effects
in these devices.
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