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Abstract 

Nano-size confinement induces many intriguing non-Fourier heat conduction phenomena 

such as nonlinear temperature gradients, temperature jumps near the contacts, and 

size-dependent thermal conductivity. Over the past decades, these effects have been studied 

and interpreted by non-equilibrium molecular dynamics (NEMD) and phonon Boltzmann 

transport equation (BTE) simulations separately, but no theory that unifies these two methods 

has ever been established. In this work, we unify these methods using a quantitative mode-level 

comparison and demonstrate that they are equivalent for various thermostats. We show that 

different thermostats result in different non-Fourier thermal transport characteristics due to the 

different mode-level phonon excitations inside the thermostats, which explains the different 

size-dependent thermal conductivities calculated using different reservoirs, even though they 

give the same bulk thermal conductivity. Specifically, the Langevin thermostat behaves like a 

thermalizing boundary in phonon BTE and provides mode-level thermal-equilibrium phonon 
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outlets, while the Nose-Hoover chain thermostat and velocity rescaling method behave like 

biased reservoirs, which provide a spatially uniform heat generation and mode-level 

non-equilibrium phonon outlets. These findings explain why different experimental 

measurement methods can yield different size-dependent thermal conductivity. They also 

indicate that the thermal conductivity of materials can be tuned for various applications by 

specifically designing thermostats. The unification of NEMD and phonon BTE will largely 

facilitate the study of thermal transport in complex systems in the future by, e.g., replacing 

computationally unaffordable first-principles NEMD simulations with computationally less 

expensive spectral BTE simulations.  

I. Introduction 

Nanoscale heat transport is critical for the thermal management of electronics and 

thermoelectric energy harvesting1–7. When system sizes are comparable with or smaller than the 

phonon mean free path, phonons can move ballistically through the systems and induce many 

intriguing non-Fourier heat conduction phenomena such as nonlinear temperature gradients, 

temperature jumps near the contacts, and size-dependent thermal conductivity8–11. Therefore, 

nanoengineering has been used extensively to tune the thermal conductivity of nanomaterials 

for various applications1,9,12.  

Significant advances in understanding nanoscale heat conduction phenomena have been 

made in the past two decades by using the phonon Boltzmann transport equation (BTE) 

theory9,13–16 and molecular dynamics (MD) simulations14,17–19. The phonon BTE uses the 

phonon gas model and explains the non-Fourier thermal transport by the size confinement of 

the ballistic phonons, which have mean free paths comparable with or longer than the system 

size. Compared with the gray phonon BTE16, which often assumes that all phonons share the 

same velocity, mean free path, and specific heat, non-equilibrium MD (NEMD) simulations are 

more accurate because they naturally include all the mode-resolved properties and all the orders 

of anharmonicity. However, the use of NEMD simulations has been limited to the real-space 

interpretation without physical insights into the mode-resolved phonon transport for a long 

time14,20–31. Very recently, Zhou et al.32 and Feng et al.33 developed methods to map the 

real-space atomic vibration in NEMD to the reciprocal-space phonon properties, e.g., phonon 

heat flux and temperature, and give direct physical insights into the non-Fourier phonon 

transport. However, whether these phonon mode-resolved properties, e.g., mean free paths, 

temperature gradients, and heat fluxes, extracted from NEMD simulations are equivalent to 

those obtained from the BTE simulations remains a question. The equivalence of NEMD and 

phonon BTE simulations is of great importance to establishing the fundamental theory of 

phonon transport as well as the use of one method to replace the other in certain situations. For 
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example, if equivalence can be proven, one can run computationally less expensive BTE 

simulations to replace the computationally unaffordable NEMD simulations such as the 

large-scale or first-principles NEMD simulations. Another unanswered question is whether the 

reservoir-dependent thermal conductivity observed in NEMD simulations can be reproduced 

by phonon BTE theory. This question is critical to helping experimentalists understand the 

dependence of measured thermal conductivity on measurement methods, as well as the 

tunability of thermal conductivity by tuning thermal reservoirs.  

A quantitative comparison of NEMD and phonon BTE is performed in this study using 

silicon as the testing material. However, there are several key differences between this 

comparison and those that were done previously19,34–36. First, the input parameters of phonon 

BTE (phonon specific heat, group velocity, and relaxation time) are extracted from the same 

interatomic potential as those used in NEMD. Second, the same method of thermal excitations 

(i.e., thermal reservoirs) in NEMD and phonon BTE is used. Third, non-gray (mode-resolved) 

phonon BTE is solved with the only assumption being the relaxation time approximation, 

which should be valid for silicon. Last, instead of comparing thermal conductivity values, the 

temperature profiles, heat flux profiles, and phonon modal temperature of NEMD and BTE 

were compared directly.  

As will be shown, a quantitative agreement between NEMD and phonon BTE can be 

achieved. Such agreement allows us to unify the phonon interpretation of the non-Fourier heat 

conduction effects in the two methods. Moreover, we clarify why different thermal reservoirs in 

NEMD simulations give different results, which has been a subject of debate for a long 

time19,21,37,38. 

This manuscript is organized as follows. In Sec. II, NEMD simulations with sufficiently 

large thermal reservoirs are described, and we revisit the difference among the Langevin 

thermostat, the Nose-Hoover chain (NHC) thermostat, and the velocity rescaling (VR) method. 

Especially, we study the heat flux profiles and phonon modal temperature inside sufficiently 

large reservoirs, which are not considered in previous works21,33,37. In Sec. III, we provide a 

quantitative comparison and a mode-to-mode correspondence between NEMD and the 

mode-resolved phonon BTE, from which a unified phonon interpretation of the non-Fourier 

heat conduction can be obtained. In Sec. IV, some important issues in the phonon interpretation 

are further proved by NEMD simulations. In Sec. V, we discuss the above phenomena 

according to the unified phonon interpretation as well as the relationship between the 

interpretation and experimental measurement. In Sec.VI, we give a summary and conclusions. 

II. NEMD simulations 



 

 

Fig. 1. Schematic illustration of the simulation cell used in NEMD simulations. The simulation 

cell is a piece of atomic structure. Two thermal reservoirs (one heat source and one heat sink) 

each with a length of thL  are established. The region between two thermal reservoirs is 

defined as the sample region with a length of L . A few layers of atoms at the two ends of the 

transport direction are fixed. Periodic boundary conditions are set in the directions 

perpendicular to the transport direction.  

NEMD simulations are an effective method to study nanoscale heat conduction3–6,20,24–27,39. 

The implementation of NEMD simulations is analogous to the experimental steady-state 

thermal conductivity measurements in which two reservoirs (one heat source and one heat sink) 

are added to the system to generate a 1D steady-state heat transfer profile in the sample region. 

In NEMD simulations, one can either apply a constant heat flux by the VR method40,41 or a 

temperature difference by some thermostats such as the Langevin thermostat42 and the NHC 

thermostat43–45. By measuring the ratio of the heat flux to the temperature gradient, the thermal 

conductivity of the sample can be obtained according to the Fourier law. The NEMD setup is 

shown in Fig. 1. The reservoirs and sample lengths are thL  and L , respectively. To study the 

device size effects, = 13 and 56 nm are simulated. To prevent the atoms in the thermal 

reservoirs from sublimating, a few layers of atoms at the two ends are fixed. Periodic boundary 

conditions are applied in the lateral directions.  

We chose silicon modeled by the Tersoff potential46 as the testing material throughout this 

work. All the NEMD simulations were performed using the Large-scale Atomic/Molecular 

Massively Parallel Simulator (LAMMPS) package47. The cross-sectional area is set as 8×8 unit 

cells, which is large enough to eliminate the finite-size effects in the lateral directions. The time 

step is set as 1 fs, which is short enough to resolve all the phonon frequencies. The whole 

system is first relaxed under the NPT (constant mass, pressure, and temperature) ensemble for 5 

ns and then switched to the NVE (constant mass, volume, and energy) ensemble with the heat 

source and heat sink being applied. The simulations are then run for 20 ns, with the data taken 

within the last 10 ns being used to extract the heat transport properties, e.g., the temperature and 

heat flux. Although it has recently been shown that LAMMPS might incorrectly implement the 

heat flux formula in some cases48,49, it is accurate for crystalline silicon50. The heat flux values 

L



 

in the sample are also close to those obtained by energy conservation30 in our cases. The phonon 

modal temperatures are extracted from the NEMD simulations by using the spectral phonon 

temperature (SPT) method developed by Feng et al.33,51 (see Appendix A for a brief explanation 

of SPT method). Here the temperature of a phonon mode is defined as a convenient 

representation of the carrier energy density, which is equal to the energy density of a phonon 

mode at the Boltzmann distribution, as is commonly done for both experimental and theoretical 

studies, as described in the literature52,53. For the cases that used the SPT method, the systems 

are run for 40 ns under the NVE ensemble and the data taken within the last 20 ns are used in the 

SPT method. 

Because thermal transport depends on thermal reservoirs, in this work, three 

representative thermal reservoirs, i.e., the VR method40,41, the Langevin thermostat42, and the 

NHC thermostat43,44, are studied. The former fixes heat fluxes, and the latter two fix 

temperatures. The length of the thermal reservoir is first set at a relatively large value of 25 nm, 

and the effect of its size will be discussed later. In both the Langevin and NHC thermostats, the 

target temperatures of the heat source and sink are set as 310 and 290 K, respectively, with a 

rescaling time constant of 0.1 ps, as recommended by a previous work37. In the VR method, the 

amount of heat added for every time step depends on the size of the device: in this study, 2.50 

meV is used for the 13 nm device and 1.66 meV is used for the 56 nm device. 

The temperature and heat flux profiles are shown in Fig. 2. For both lengths, the 

temperature profiles using the Langevin thermostat are different from those of the other two 

thermostats. The Langevin thermostat maintains a constant temperature inside the reservoirs 

(except for a small region near the sample), while the other two reservoirs do not. The Langevin 

thermostat produces temperature jumps at the contact regions, while the other two reservoirs do 

not. For all the cases, nonlinearity exists inside the sample region. The Langevin thermostat 

appears to give a smaller slope than the NHC thermostat and the VR method. These phenomena 

are also discovered in previous works21,37. 

 



 

 

Fig. 2. Temperature and heat flux profiles for silicon with different lengths: (a) 13 nm, (b) 56 

nm by using the Langevin thermostat (Langevin), the NHC thermostat, and the VR method. 

The shaded regions represent the heat source (red) and heat sink (blue), and the region in 

between represents the sample. 

The heat fluxes are plotted in the bottom of Fig. 2 (a) and (b). For the Langevin thermostat, 

the value of the heat flux is zero inside the thermal reservoirs except for a small region near the 

sample. In contrast, in the NHC and VR reservoirs, the heat flux increases linearly while 

approaching the device. According to energy balance ( QdV dA= ⋅∫ ∫q n& , where Q&  is the 

volumetric heat generation rate, q  is the heat flux and n  is the surface normal), the heat 

generation rate inside the Langevin reservoirs is zero, while that inside the NHC and VR 

reservoirs is nearly uniform and non-zero. As such, at steady state, the Langevin thermostat 

only deposits heat in a small region of the reservoir near the sample and maintains a constant 

temperature inside the thermal reservoirs.  

To further examine the temperatures of different phonon modes, the SPT method33,51 is 

applied to analyze the simulation data. For simplicity, it is only applied for the case of L = 13 

nm. We calculate the modal temperature for 204 phonon modes and plot the average value for 

six different phonon branches in Fig. 3.  

 



 

 

 

 

Fig. 3. Averaged temperature profiles for phonon modes in six different branches from NEMD 

simulation with (a) the Langevin thermostat, (b) the NHC thermostat, and (c) the VR method.  

Again, we observe distinct behavior for the Langevin thermostat, while the NHC 

thermostat and the VR method behave similarly. For the Langevin thermostat, the modal 

temperatures are out of equilibrium in the sample region but are almost at equilibrium inside 

the thermal reservoirs except for a small region near the sample. This phenomenon is also 

discovered in previous work by Feng et al.33. For the NHC thermostat and the VR method, the 
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modal temperatures are strongly out of equilibrium not only in the sample region but also 

inside the thermal reservoirs.  

From these results, we can distinguish the nanoscale phonon transport behaviors of 

different thermal reservoirs. The Langevin thermostat behaves differently, while the NHC 

thermostat and the VR method are similar to each other. As such, in the subsequent discussions, 

only the Langevin and the NHC thermostats are considered. The conclusions of the NHC 

thermostat should be applicable to the VR method as well. 

III. Phonon BTE analysis 

Based on the NEMD results from Sec. II, the NEMD simulations exhibit different 

behaviors with different reservoirs. In this section, we use the mode-resolved phonon BTE to 

model the systems studied in the NEMD simulations. The thermal excitations need to be the 

same in phonon BTE and NEMD. From Fig. 2, we note that for the Langevin thermostat, the 

temperature is uniform inside the thermal reservoir, which is similar to an infinitely large 

constant temperature thermal reservoir. Therefore, we consider the thermalizing boundary 

condition in the BTE calculations, as shown in Fig. 4(a). For the NHC thermostat, because the 

heat generation inside the thermal reservoir is spatially uniform, we use a uniform heat 

generation, as shown in Fig. 4(b). There is no heat flux in the fixed layers; thus, the fixed layers 

constitute an adiabatic boundary. In the framework of phonon BTE, the adiabatic boundary can 

be specular or diffuse, or a mixture of both54. Here we briefly consider specular boundary and 

will discuss this effect in detail later.  

 

 

Fig. 4. The 1D simulation domain of phonon BTE with (a) thermalizing boundary condition 

and (b) spatially uniform heat generation and adiabatic boundary conduction. 

The thermalizing boundary condition in phonon BTE behaves like a black surface with the 

target temperature in which we set 310 K for hotT  and 290 K for coldT , to be consistent with the 

NEMD simulations. This surface emits outgoing phonons with an energy corresponding to 

equilibrium distribution at the target temperature into the sample region, while all incoming 



 

9 

phonons into the surface are absorbed. For spatially uniform heat generation in Fig. 4(b), 

uniform thermal energy is added to the heat source and the same amount is extracted from the 

heat sink. Our BTE simulation is mode resolved55, so we need to determine the amount of heat 

added to every phonon mode. Because it is difficult to obtain the amount of energy added to 

each phonon mode in the NEMD simulations, the same added energy is selected for each 

phonon mode. The lengths of the thermal reservoirs and the sample are set to the same as those 

in the NEMD simulations. Temperature is defined as the ratio of the total energy over the total 

heat capacity, which is consistent with that in NEMD33,47,56. Note that this definition is different 

from the lattice temperature in phonon BTE55. 

We adopted the finite volume method10 to numerically solve the mode-resolved phonon 

BTE under the relaxation time approximation57. To solve the mode-resolved phonon BTE, the 

group velocity , pωv , the relaxation time , pωτ , and the heat capacity , pCω  for every phonon 

mode are needed as the input information. We emphasize that the input information is extracted 

from the same system as NEMD: silicon crystal with Tersoff potential at 300 K. These 

parameters are obtained using the standard anharmonic lattice dynamics approach58,59 in which 

the harmonic and anharmonic interatomic force constants are first extracted by fitting the 

relation between atomic forces, F , and the displacements, u : 

1 ...
2!i ij j ijk j

j jk
F u uα αβ β αβγ β

β βγ
φ ψ= − −∑∑ ∑∑ , where ( ),i α  means the α  direction of atom i  and 

φ  and ψ  are the harmonic and third-order anharmonic force constants. The phonon 

dispersion is obtained by diagonalizing the dynamical matrix produced by the harmonic force 

constants. With the dispersion relation ( ), sω q , the group velocity and heat capacity of the 

mode ( ), sq  are simply calculated by ( ) ( ), , /s sω= ∂ ∂v q q q  and 

( ) ( ) ( )0, , , /c s n s Tω= ∂ ∂q q s qh with the phonon population function being ( )0 ,n sq . In order to 

make a fair comparison of the NEMD and phonon BTE results, the phonon population function 

used in this work has the same form as the standard Bose-Einstein distribution, 

, but with a modified Planck’s constant, which is 1/100 of 

the original value34. This treatment could reproduce the classical distribution in MD 

simulations. We compute the phonon relaxation time through the lowest-order perturbation 

theory, in which three-phonon processes are regarded as the only source for phonon-phonon 

scatterings. Computation of the three-phonon relaxation times requires the third-order 

anharmonic force constants, and the expression can be found in previous publications60,61. With 

these phonon properties, the thermal conductivity of silicon is calculated based on the 

single-mode relaxation time approximation method. We use 10×10×10 q-points to sample the 

Brillouin zone. The obtained classical thermal conductivity is 245 W/mK at 300 K, which is 

( ) ( )( )( )0 , 1 / exp , / 1Bn s s k Tω= −q qh



 

very close to the previous equilibrium MD result for Tersoff silicon11. In the BTE solver, we 

cannot consider as many phonon modes as are in the system due to the huge computational cost, 

so we use the information from 600 phonon bands obtained by averaging over the different 

modes. The details of averaging can be found in the previous publications55,62.  

 

 

 

Fig. 5. Comparisons of temperature profiles and heat flux profiles between the NEMD 

simulations with the Langevin thermostat and the BTE calculations with the thermalizing 

boundary condition for two different sample lengths of (a) 13.0 nm and (b) 56.0 nm. 



 

 

 

Fig. 6. Comparisons of temperature profiles and heat flux profiles between NEMD simulations 

with the NHC thermostat and the BTE calculations with spatially and modally uniform heat 

generation for two different sample lengths of (a) 13 nm and (b) 56 nm.  

First, we compare NEMD simulations with the Langevin thermostat and BTE simulations 

with a thermalizing boundary. We find that the results obtained from these two methods agree 

well with each other, as shown in Fig. 5, not only in the linear region in the sample but also in 

the nonlinear region near the reservoir. This agreement is good for various sample lengths. The 

heat flux values obtained by NEMD are 19.4 GWm-2 and 15.4 GWm-2 for 13.0 nm and 56.0 nm, 

respectively. The corresponding heat flux values by BTE are 19.9 GWm-2 and 16.0 GWm-2. 

The differences between the two methods are less than 5%. The differences in the temperature 

profiles are less than 0.5 K, which is the same magnitude as the statistical error in NEMD 

simulations. The apparent thermal conductivity is defined as / ( / )k q T L= Δ 16,33, where q  is 

the heat flux value inside the sample, TΔ  is the average temperature difference between two 

reservoirs, and L  is the sample length. The results are shown in Table 1. Compared with the 

qualitative agreement obtained by the gray BTE by Dunn et al.19, our mode-resolved BTE gives 

a quantitative agreement with NEMD results.  
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Table 1. The apparent thermal conductivity results 

Sample length 

(nm) 

Apparent thermal conductivity 

(W/mK) 

BTE with 

Thermalizing 

boundary 

NEMD with 

Langevin 

reservoir 

BTE with 

Uniform heat 

generation 

NEMD with 

NHC 

reservoir 

13.0 12.9 12.6 12.3 12.0 

56.0 44.8 43.1 37.8 39.2 

 

Second, we compare NEMD simulations with the NHC thermostat and BTE simulations. 

We find that the results are the same only when the BTE simulations use uniform heat 

generation reservoirs. The temperature and heat flux profiles at different sample lengths are 

shown in Fig. 6. The apparent thermal conductivity results also agree well, as shown in Table 1. 

From the quantitatively good agreement between the NEMD and BTE results, we can make 

two important conclusions. 

1. NEMD simulations can match the mode-resolved phonon BTE quantitatively with the 

proper choice of thermal excitations. The Langevin thermostat is similar to a thermalizing 

boundary condition in BTE. The NHC thermostat with fixed layers is similar to a uniform heat 

generation in the thermal reservoir with adiabatic boundaries.   

2. The non-Fourier behaviors observed in NEMD simulations, including the non-linear 

temperature profile, temperature jumps, and size effect, can be reproduced by the 

mode-resolved phonon BTE and pose a clear explanation of phonon transport.  

Although the NEMD and BTE simulations are all conducted by using full phonon spectra, 

the comparisons discussed above are still based on an “averaged” temperature and heat flux. To 

further confirm our conclusions about the equivalence of NEMD and phonon BTE, we compare 

their mode-resolved phonon temperatures. For the case of L = 13 nm, temperature profiles for 

the six phonon branches of silicon are compared in Fig. 7. We find that the branch-resolved 

temperatures obtained from BTE with the thermalizing boundary condition agree well with 

those obtained from NEMD with the Langevin thermostat throughout the whole system, 

strongly supporting our conclusion about their equivalence. Regarding the comparison of 

NEMD with the NHC thermostat and BTE with spatially uniform heat generation, to 

reproduce exactly the mode-resolved temperatures inside the NHC reservoirs using BTE, 

careful assignment of heat generation rate to each individual phonon mode in BTE is required, 

which is difficult. Here, for simplicity, we assign a uniform heat generation rate to each phonon 



 

mode, and we find that the branch-resolved temperatures obtained from the two methods share 

the same characteristics (Fig. 7 b). (1) Different branches are out-of-equilibrium inside the 

thermostats. (2) The phonons with shorter mean free path (TO and LO branches) become more 

excited in the hot reservoir and cool more in the cold reservoir, compared with the phonons 

with longer mean free path (TA and LA branches). These characteristics are different from the 

BTE with a thermalizing boundary condition or NEMD with the Langevin thermostat. By 

carefully assigning the heat generation rate to each individual phonon mode in the BTE 

reservoirs, we believe the mode-resolved phonon temperatures can match exactly those 

obtained from NEMD with NHC thermostat. 

 

 

 

Fig. 7. (a) Comparison of temperature profiles for six different phonon branches between the 

NEMD simulations with the Langevin thermostat and the BTE calculations with the 

thermalizing boundary condition. (b) Comparison of temperature profiles for six different 

phonon branches between the NEMD simulations with the NHC thermostat and the BTE 

calculations with the uniform heat generation.  
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With the agreement between NEMD simulations and phonon BTE, we can unify the two 

methods based on one unified phonon interpretation of the non-Fourier heat conduction. As 

shown in Fig. 8 (a), by using the Langevin thermostat, the thermal reservoir behaves like an 

infinitely large equilibrium thermal reservoir, which is similar to a thermalizing boundary 

condition in phonon BTE. The phonons are only emitted from the boundary of the reservoir, a 

small region in the reservoir near the sample, with the same temperature. Here the “phonon 

temperature” is a representation of the phonon energy density, with the population following 

the Boltzmann distribution33. All phonons entering through the boundary to the reservoirs are 

absorbed. In contrast, as shown in Fig. 8 (b), the NHC thermostat or VR method in NEMD 

simulations excite phonons by generating uniform heat to all phonon modes throughout the 

whole reservoirs, which corresponds to the uniform heat generation in the phonon BTE. The 

phonons with shorter mean free path (TO and LO) have more scattering inside the reservoirs, 

and therefore, they are more easily heated in the hot reservoir and cooled in the cold reservoir, 

compared with other phonons with smaller scattering rates (TA and LA). This explains why the 

TO and LO show higher temperatures in the hot reservoir and lower temperatures in the cold 

reservoir, compared with TA and LA phonons, using the NHC or VR thermostat. In this case, 

the heat-nonconductive phonons (TO and LO) are excited more than the heat-conductive ones 

(TA and LA), reducing the overall thermal conductivity of the sample, compared with the case 

in which all phonons are excited equally, as seen in the Langevin thermostat. This finding 

explains why the size-dependent thermal conductivity obtained by the NHC thermostat is 

smaller than that by Langevin thermostat observed in the literature19. Furthermore, if we 

construct a reservoir that can excite the TA and LA phonons more than the TO and LO phonons, 

the calculated size-dependent thermal conductivity can be even higher than that by the 

Langevin thermostat. This principle also applies to experimentation: If the contacts excite more 

acoustic phonons than optical phonons, the measured thermal conductivity of the sample can be 

larger than its intrinsic value, and vice versa. Therefore, we can tune the thermal conductivity of 

nano devices by tuning the contacts in practical applications. However, when the length of the 

system is long enough, much longer than the phonon mean free paths, the thermal conductivity 

calculated or measured by all the methods reaches the same value since all the phonons can 

reach equilibrium inside the sample due to the diffusive scattering. That is to say, reservoirs do 

not affect the measured bulk thermal conductivity value. 
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Fig. 8. Schematic illustration of the phonon interpretation of the non-Fourier heat conduction 

by NEMD simulations with (a) the Langevin thermostat and (b) the NHC thermostat. (a) The 

temperature inside thermal reservoirs remains constant (Thot in the heat source and Tcold in the 

heat sink). The phonons are only emitted from the boundary of the reservoir (the small region in 

the reservoir near the sample region), and all have an energy density corresponding to 

equilibrium distribution at the same temperature. All phonons entering the boundary are 

absorbed. (b) Uniform heat generation occurs in the whole thermal reservoir (Q&  in the heat 

source and Q− &  in the heat sink). The phonons are emitted into the sample region from the 

whole volume and continue moving inside the entire simulation domain until they scatter with 

each other or the adiabatic boundary. 

IV. The effects of thermal reservoir size and boundary 

Based on the above findings, several deductions can be made. The first one is about the 

length of the thermal reservoirs. For the Langevin thermostat, because only the boundary (the 

small region in the reservoir near the sample) affects the thermal transport, the length of the 

thermal reservoirs should not influence the results when it exceeds the length of the small 

region. For the NHC thermostat, the whole volume affects the thermal transport, so the length 

of the thermal reservoirs should affect the results significantly. To prove this, the temperature 

profiles and heat flux values in the sample region for different lengths of thermal reservoirs 

using the Langevin and the NHC thermostats are shown in Fig. 9. From Fig. 9(a), we see that 

for the Langevin thermostat, when the lengths of thermal reservoirs are longer than 0.5 nm, the 

length essentially does not influence the temperature profile and heat flux. Therefore, only the 

small region near the sample affects the simulation results. This phenomenon is consistent with 

the findings in previous studies in which the length of the thermal reservoirs did not influence 

the results when it exceeded a critical value, which depended on the time parameter of the 

thermostat24,32,37. In contrast, for the NHC thermostat in Fig. 9(b), the temperature profile and 

heat flux value change with the length of the thermostat. Therefore, the Langevin thermostat 



 

behaves like an infinitely large thermal reservoir while the NHC thermostat is a finite-length 

reservoir with uniform heat generation. 

 

 

Fig. 9. Temperature profiles and heat flux values obtained by using different lengths for the 

thermal reservoirs: (a) the Langevin thermostat, (b) the NHC thermostat.  

The second deduction that can be made is about boundary scattering. For the infinitely 

large thermal reservoir, the phonons that enter are absorbed, and there is no boundary scattering. 

For the finite-length reservoir with uniform heat generation, the phonons can continue moving 

inside the thermal reservoirs, so the boundary scattering should be important to the results. 

Thus, we set three configurations, as shown in Fig. 10, to test the boundary scattering.  
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Fig. 10. Three configurations used to test boundary scattering: (a) 2.2 nm crystalline silicon was 

added between the thermal reservoirs and fixed layers, (b) 2.2 nm amorphous silicon was added 

between the thermal reservoirs and fixed layers, (c) the origin configuration used in NEMD 

simulation. 

In the first configuration (Fig. 10(a)), we add 2.2 nm crystal silicon between the thermal 

reservoirs and the fixed layers. In the second configuration (Fig. 10(b)), we add 2.2 nm 

amorphous silicon between the thermal reservoirs and the fixed layers to generate diffuse 

phonon scattering. Recent wave packet simulations have clearly shown that a flat crystalline 

surface specularly scatters phonons while amorphous silicon induces strong diffuse scattering63. 

The third configuration is the same as in the previous cases (Fig. 10(c)). We set the length of 

thermal reservoirs as 8.2 nm and the length of the sample as 13 nm. The temperature and heat 

flux profiles are shown in Fig. 11.  

 

 



 

 

 

Fig. 11. Temperature profiles of (a) Langevin thermostat, (b) NHC thermostat, and (c) heat flux 

profiles of NHC thermostat for different simulation configurations. (None) No space between 

fixed layers and thermal reservoirs. (Crystalline) 2.2 nm crystal silicon is added between the 

fixed layers and thermal reservoirs. (Amorphous) 2.2 nm amorphous silicon is added between 

the fixed layers and thermal reservoirs.  

As shown in Fig. 11(a), the temperature profiles of these three configurations for the 

Langevin thermostat are very close to each other. The values of the heat flux in the sample 

region are also the same but are not shown here for simplicity. This result proves that the 

phonons entering the thermal reservoirs cannot reach the boundary when we use the Langevin 

thermostat. The temperature profiles of the three configurations in Fig. 11(b) are quite different 

for the NHC thermostat. The values of the heat flux in the sample region are also not the same, 

as shown in Fig. 11(c). This result proves that the phonons entering the thermal reservoirs will 

reach the boundary and will not be completely absorbed in the thermal reservoirs when the 

NHC thermostat is used. It should also be noted that the temperature drop (or increase) near the 

two ends is not a simulation error. The heat flux in these regions was calculated in Fig. 11(c) 

and proved to be zero. Because strong phonon non-equilibrium exists in these regions, the 

obtained temperature value is just some modal average. The drop (or increase) indicates that the 
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modes become more in equilibrium. It does not mean there is heat flow from the heat bath to the 

adiabatic boundary. The origin of this phenomenon is similar to the nonlinearity of temperature 

and will be discussed later. 

In another work by Liang et al., the boundary was made into a “rough” structure to 

intentionally induce diffusive scattering in NEMD simulations for interface thermal 

resistance38. They also observed that boundary roughness matters for the VR method but not for 

the Langevin thermostat. However, they believe that the VR method is more realistic, while the 

Langevin thermostat generates artifacts. In fact, based on our understanding, the difference is 

merely due to the different natures of the VR method and the Langevin thermostat. As the VR 

method involves a volumetric heat generation, phonons can encounter the boundary. In 

comparison, the Langevin thermostat is an equilibrium thermostat in which phonons are 

equilibrated in the reservoir before they encounter the boundary, and thus the boundary atomic 

arrangement does not affect the phonon transport.  

V. Discussion 

Based on the phonon interpretation of non-Fourier heat conduction described previously, 

we can unify the understandings of the non-Fourier phenomena in two methods. The 

nonlinearity of temperature in the sample is a physical phenomenon that is related to 

non-diffusive transport and local non-equilibrium of different phonon modes. In this situation, 

the temperature gradient not only relates to the heat flux but also to the local non-equilibrium of 

different phonon modes. This conclusion can be further proved by the fact that in Fig. 11(b) we 

see a surprising phenomenon in that there is a temperature gradient near the fixed layers even 

though the heat flux is zero. Therefore, in Fig. 3, if the local non-equilibrium occurs in the 

sample for all cases, then the nonlinearity exists for all cases, even though the heat flux is 

constant. The Fourier law fails in this situation because it only describes the relationship 

between the temperature gradient and the heat flux and ignores the effects of the local 

non-equilibrium. The abrupt temperature jump near the thermal reservoirs only appears when 

the Langevin thermostat is used. In the BTE framework, it is a normal phenomenon when a 

constant temperature boundary condition is applied and when ballistic transport appears9. 

Within the thermal reservoir, a fixed temperature is enforced, while in the sample region close 

to the thermal reservoir, the temperature is affected by the emitted phonons from the other 

reservoir. Some of these emitted phonons transport ballistically, and their temperature is close 

to the temperature of the other reservoir. This effect disappears in the diffusive regime because 

the phonons from the other reservoir equilibrate with other phonons during the transport 

process, also resulting in a continuous and linear temperature profile. In contrast, when the 
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NHC thermostat or the VR method is used, the temperature inside the reservoirs is not enforced. 

Thus, the abrupt temperature jump is not obvious. The size effect is a result of ballistic transport, 

which agrees with our previous understanding. However, the Langevin thermostat and the 

NHC thermostat (or the VR method) correspond to different configurations of thermal ballistic 

transport, as discussed above.  

The understandings developed here also help explain the results extracted from NEMD 

simulations. In the non-diffusive transport regime, we recommend using the Langevin 

thermostat to calculate the thermal conductance (or the apparent thermal conductivity) of the 

sample. The conductance should be obtained using /C q T= Δ , where q is the heat flux value 

and ∆T is the temperature difference of the thermal reservoirs. The conductance obtained using 

the Langevin thermostat is similar to when a sample is coupled to two infinite thermal 

reservoirs, which has been widely adopted in the BTE9 or Landauer framework64. By using this 

method, the results obtained from NEMD can be comparable with those of other simulation 

methods, including BTE, atomistic Green’s function65 (AGF), and homogenous 

non-equilibrium molecular dynamics66 (HNEMD) (a method similar to equilibrium molecular 

dynamics)37. The finite-size effect of thermal conductance (or the apparent thermal 

conductivity) can be described by the analytical model derived by BTE67. Moreover, recently, 

Kaiser et al. developed a model that can obtain the same results as those of the gray phonon 

BTE with a thermalizing boundary condition, based on Fourier’s law16. It is interesting to note 

that the key results obtained in the present work by using Langevin thermostat, the temperature 

profiles shown in Fig. 5, can be also approximated by following Kaiser et al.’s approach, which 

uses only the bulk thermal conductivity, specific heat, and sound velocity (see Appendix B). 

The accuracy is not guaranteed though, because their model does not take into account the 

mode-resolved phonon properties. Using the NHC thermostat or the VR method is still 

reasonable if the sample size is much larger than the mean free path. Nevertheless, in the 

non-diffusive regime, the thermal conductance obtained using either the temperature difference 

of the sample boundary or the temperature difference of the thermal reservoir will be dependent 

on the size of the reservoirs and the boundary atom arrangement. Also, because of the 

non-equilibrium of the thermal reservoir, it is difficult to clearly identify the physical meaning 

of the obtained results. In addition, regardless of which thermal reservoir is adopted, taking 

the “linear region” to fit thermal conductivity should not be adopted.  

Our results can also guide the measurement and control of thermal transport in real 

solid-state devices. We have shown that the nanoscale phonon transport characteristics, 

including the temperature profile, heat flux value, and modal temperature, strongly depend on 

the applied thermal reservoirs in NEMD simulations. This is also true for real devices. The 

Langevin thermostat, an infinitely large equilibrium thermal reservoir, can be realized when a 
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dielectric film is sandwiched between two metallic films. Because the electron-phonon mean 

free path in the metals is much smaller than the phonon mean free path in the dielectric film, the 

two interfaces between the dielectric film and the metallic film can be assumed to be 

equilibrium thermal reservoirs at the fixed temperature57. The abrupt temperature jump exists in 

the two interfaces. The apparent thermal conductivity can be defined in the same way as that for 

the Langevin thermostat. In contrast, the NHC thermostat or the VR method, a uniform heat 

generation in the finite thermal reservoir, provides large non-equilibrium outlets. Practical 

heating techniques, such as optical heating or electrical heating, can result in these large 

non-equilibrium reservoirs, which selectively heat the optical phonon modes68,69. By using 

these techniques, the length of the thermal reservoir and the boundary conditions can 

significantly influence the relationship between the response and the perturbation, such as the 

heat flux and the temperature profile. Moreover, when comparing the experimental results in 

nanoscale, we must consider the correspondence of heating techniques. 

VI. Conclusions 

In this study, we have unified NEMD and mode-resolved phonon BTE for nanoscale 

thermal transport simulations using Tersoff silicon as the prototype material. By comparing 

NEMD and phonon BTE, we find that the thermal excitation method in the reservoirs 

significantly affects thermal transport in the nanomaterials. If the same thermal excitation 

method is used, a quantitative agreement between phonon BTE and NEMD can be achieved. 

Specifically, the Langevin thermostat in NEMD behaves like an infinitely large equilibrium 

thermal reservoir, which is similar to the thermalizing boundary condition in phonon BTE. The 

NHC thermostat and the VR method behave like a finite-size non-equilibrium phonon 

source/sink with uniform energy deposition/extraction, which can be realized by uniform 

generation in phonon BTE. This results in the difference in size-dependent thermal 

conductivity measured using different reservoirs in NEMD simulations. Because different 

thermal excitations are also often used in experiments with different heating techniques, our 

work can also explain why different experimental measurement methods produce different 

thermal conductivities at nanoscale. Thus, when comparing any experimental or simulation 

results at nanoscale, we must consider the correspondence of thermal excitations. 

Interpretations of all the non-Fourier behaviors in phonon BTE and NEMD are also unified due 

to the combination of non-diffusive phonon transport and non-equilibrium among different 

phonon modes.  

The unification of NEMD and mode-resolved BTE in this work will facilitate simulations 

in the future. The computationally inexpensive phonon BTE can be used to replace the 

computationally expensive and unaffordable NEMD simulations at large scales or by first 
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principles. We expect our work will provide important guidance on thermal transport 

simulations, experimental thermal conductivity measurement, and practical heat flow 

manipulation. 
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Appendix A: SPT method 

In MD, the equilibrium phonon population is described by the Boltzmann distribution: 

   (A1) 

The total energy of the phonon mode λ at the given temperature  is the per phonon 

energy multiplied by its population: 

   (A2) 

Here, λ is short for (k,υ), with k and υ representing the phonon wave vector and dispersion 

branch, respectively. Base on the energy equipartition theorem, the time-averaged kinetic 

energy  and potential energy are both half of the total energy; i.e., 

   (A3) 

Based on the lattice dynamics, the kinetic energy of the mode λ is 

   (A4) 

where  is the time derivative of normal mode amplitude, which is given by the Fourier 

transform of atomic displacement in real space: 
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   (A5) 

 and b label the indices of the primitive cells and basis atoms with the total numbers 

represented by Nc and n, respectively. m, r and  are the mass, equilibrium position, and 

velocity vector, respectively.  is the complex conjugate of the eigenvector component at 

the basis b for the mode λ. By comparing Eqs. (A4) and (A3), we can get the temperature of the 

phonon mode λ : 

 ,  (A6) 

where  denotes the time average. To eliminate the fluctuation in MD, Eq. (A6) needs to be 

averaged over a sufficiently long time. 

Appendix B: Approach of Kaiser et al. 

Recently, Kaiser et al. examined the use of the unmodified Fourier’s law at the nanoscale 

but with temperature jump boundary conditions at the contacts of reservoirs and the sample16. 

Their results agree well with the gray phonon BTE with thermalizing boundary condition. In 

this section, we follow this approach to reproduce the temperature profiles and heat flux 

profiles in Fig. 5. In Kaiser et al.’s approach, the temperature profile is expressed as 16 

   (B1) 

where  is 310 K and  is 290 K, to be consistent with the NEMD simulations.  is the 

length of the sample.  is the temperature jump at the contacts: 

   (B2) 

where  is the Knudsen number defined as .  is the mean free path 

obtained by 

 
1
3bulk s vk v C= Λ . (B3) 

The values of the bulk thermal conductivity, , sound velocity, , and volumetric specific 

heat, , are all extracted from the MD simulations with classical Boltzmann distribution, 

which are 6000 m/s,  J/m3K, and 245 W/mK, respectively. Thus, the mean free 

path is calculated as 59.2 nm. By using this method, we calculate the temperature profiles for 
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the two sample lengths of 13.0 nm and 56.0 nm, which are shown in Fig. B1 compared with 

NEMD results, gray BTE results, and our mode-resolved BTE results in the main text. 

 

 

Fig. B1. Temperature profiles obtained by the NEMD simulations with the Langevin 

thermostat, mode-resolved BTE, gray BTE, and the approach of Kaiser et al.16 for two 

different sample lengths of (a) 13.0 nm and (b) 56.0 nm. 

Kaiser’s approach is an approximate gray model solution to the Phonon BTE. As shown by 

Kaiser et al.16 as well as in Fig. B1, the solution is consistent with the gray BTE. While 

compared to NEMD, Kaiser’s approach or the gray BTE can overestimate the thermal 

conductivity especially at ballistic limit (not shown in the paper) since they use a single 

acoustic velocity value to represent the whole broad acoustic and optical phonon spectrum. 

This, again, emphasizes the significance of mode-resolved BTE. 
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