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Robust implementation of quantum gates despite always-on exchange coupling in
silicon double quantum dots

Utkan Güngördü∗ and J. P. Kestner
Department of Physics, University of Maryland Baltimore County, Baltimore, MD 21250, USA

Addressability of spin qubits in a silicon double quantum dot setup in the (1,1) charge configu-
ration relies on having a large difference between the Zeeman splittings of the electrons. When the
difference is not sufficiently large, the rotating wave approximation becomes inaccurate. We consider
a device working in this regime, with always-on exchange coupling, and describe how a CZ gate and
arbitrary one-qubit gates which are robust against charge noise can be implemented by smoothly
pulsing the microwave source, while eliminating the crosstalk. We find that the most significant
deviations from the rotating wave approximation, which are analogous to the Bloch-Siegert shift in
a two-level system, can be compensated using local virtual gates.

I. INTRODUCTION

Silicon is a promising platform for practical quantum
computing. Average fidelities reaching 99.93% have re-
cently been reported for one-qubit gates in Si/SiGe [1]
and 99.96% in Si/SiO2 [2, 3]. However, a universal quan-
tum computer requires entangling operations as well [4],
and the infidelities for two-qubit gates remain orders of
magnitude higher [5–9]. Hyperfine coupling with rem-
nant spinful isotopes such as 29Si and 30Si is one source of
errors, but the concentration of these isotopes can be re-
duced down to 800ppm [1, 3, 10] or lower [11], essentially
eliminating it as a concern. Another significant source of
errors is charge noise, which remains a problem [12–17].
Although it can be partially mitigated when operating
at a “sweet spot” where the exchange is insensitive to
the leading order effects of the electrostatic fluctuations
in gate voltages [8], even there the second order fluctua-
tions can still be large, and there can be fluctuations in
the tunnel barrier as well [18]. Thus, schemes to correct
charge noise are of great importance for scalable quantum
computation in semiconductor devices.

Quantum dot setups in which the spin of each electron
is treated as a qubit are particularly attractive. Typi-
cal implementations of one-qubit gates require the abil-
ity to address one of the qubits without affecting the
other one. In setups using electron dipole spin resonance
(EDSR) [7, 8], this is done by placing a micromagnet
such that one of the electrons is closer to the micromag-
net than the other one, providing a strong magnetic field
gradient. The resulting difference between the Zeeman
energy splittings of the electrons, δEz, separates their
resonant frequencies and allows implementation of fast
[19, 20] or dynamically corrected [21] two-qubit gates to
suppress the impact of the charge noise on the exchange.
However, the micromagnet can also couple charge noise
directly to the spins through the effective spin-orbit in-
teraction, opening a new way for gate errors to enter.
In setups with electron spin resonance (ESR) [6, 10], on

∗ utkan@umbc.edu

the other hand, the spins remain largely isolated from
the electrical environment in the absence of coupling. A
difference in resonant frequencies then comes only via a
difference in the g-factors of the electrons. The effective
g-factors of the electrons strongly depend on the inter-
face hosting the 2D electron gas (2DEG) [22–24], which
is an aspect of the fabrication that cannot be controlled
perfectly, and although the resulting δEz can be electri-
cally [16] or magnetically [25] tunable to a certain extent,
the maximum accessible value is typically much less than
that provided by a micromagnet [7].

In a double quantum dot setup, this causes two is-
sues with controllability. First, addressability is dimin-
ished because the resonant frequency of the electrons are
too similar: tuning the frequency of the magnetic control
field into the resonance frequency of one of the electrons
causes unwanted dynamics on the other electron, which
cannot be neglected under a simple rotating wave ap-
proximation when using a reasonable driving strength.
Second, whenever the exchange interaction and the driv-
ing are turned on simultaneously, this further leads to
exchange-induced crosstalk between the two electrons. In
the literature, these issues are also known as classical and
quantum crosstalk [26].

In Ref. [21], we described a robust pulse sequence
which implements a CZ gate in silicon double quantum
dots while correcting charge noise. However, this scheme
relies on having access to high-fidelity one-qubit gates
in the (1, 1) charge stability region while also having
fully controllable exchange coupling. In devices where
addressability is poor, or where exchange cannot be
turned off within (1,1) region [10], implementation of
high-fidelity one-qubit gates is difficult, even in the ab-
sence of any stochastic errors such as charge noise.

In this paper, we simultaneously solve both issues of
charge noise and addressability in the presence of an
always-on exchange coupling and small δEz by deriving
shaped pulses that implement a robust CZ gate, as well
as robust, arbitrary one-qubit gates. Although our work
is motivated by the experiment in Ref. [10] in which the
exchange coupling in always turned on and constant, our
results are applicable to similar devices where the resid-
ual exchange between the electrons is nonnegligible or the
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FIG. 1. (Color online) Illustration of a gate-defined double
quantum dot formed within the 2DEG at the interface of a
Si/SiO2 heterostructure, with metal gates on top (some setups
may lack the middle gate, which can be used to independently
modulate the tunnel barrier to control the energy cost of hop-
ping). Gate voltages are tunable within a range which ensure
one electron is loaded in each dot, and they determine the
effective g-factor of each electron as well as the strength of
the effective exchange coupling. In addition to a global mag-
netic field Bz, an oscillatory magnetic field By(t) is applied
by running a current through a nearby wire (not depicted).

control over exchange coupling is strongly bandwidth-
limited.

This paper is organized as follows. In Section II, we
describe the effective Hamiltonian for the silicon double
quantum dot in the (1,1) charge stability region, and dis-
cuss how it algebraically splits into a pair of independent
two-level systems when the rotating wave approximation
required for addressability holds. In Section III, we show
that although errors from the rotating wave approxima-
tion are significant, they can be compensated for by using
only local Z rotations. In Section IV, we show how the re-
sults from Ref. [27] can be used to suppress charge noise
in the two-qubit system, followed by Section V where
we explicitly construct robust CZ and robust arbitrary
one-qubit gates. Section VI concludes the paper.

II. MODEL

Electrons in a double quantum dot in the (1, 1) charge
stability region can be modeled by the following Hamil-

tonian [28, 29]

H =



Ēz
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in the basis of |↑↑〉 , |↑↓〉 , |↓↑〉 , |↓↓〉 , |S(2, 0)〉 , |S(0, 2)〉,
which includes the possibility of tunneling of one of the
electrons to its neighboring dot and occupying the singlet
states |S(2, 0)〉 and |S(0, 2)〉. Above, Ēz = (E1

z+E2
z )/2 =

[µB(g1B
1
z +g2B

2
z )/2]/2 and δEz = E1

z−E2
z = µB(g1B

1
z−

g2B
2
z )/2 denote the average and difference in Zeeman en-

ergies of the electrons due the strong magnetic field along
z provided by an external static magnet, t0 is tunneling
energy, Ek⊥ is the Zeeman energy iµBgkBy(t) due to os-
cillating magnetic field as seen by the kth electron, Uk is
the on-site charging energy (Coulomb energy due to dou-
ble occupancy), εk is the on-site single occupancy energy
of each dot, and ∆ε = ε2 − ε1 is the “detuning”. In this
setup, both electrons feel the same magnetic field and
Zeeman energies are made different via the electrically-
tunable difference between effective electron g-factors; in
particular, there is no magnetic field gradient (B1

z = B2
z )

due to the lack of a micromagnet.

Ek⊥ is due to the weaker and controllable component
of the magnetic field, commonly referred to as the mi-
crowave field, which is used for performing single-qubit
operations by selectively addressing each spin. To that
end, it is modulated at or near the resonant frequency of
the target qubit: Ek⊥ ∝ cos(ωt) with ω ∼ Ekz . We will
thus write

Ωk cos(ωt) ≡ 1

2
µBgkBy(t), (2)

where Ωk is the slowly varying (compared to the fast
modulation at ω) microwave amplitude and ω is the
microwave frequency. When the fast modulation ~ω is
tuned to one of the Zeeman splittings Ekz , which are the
dominant terms in the effective 4 × 4 spin Hamiltonian
(which will be derived just below Eq. (3)) and are typi-
cally at least three orders of magnitude larger than the
other terms (microwave amplitude Ωk and exchange cou-
pling strength), one can use rotating wave approximation
to effectively rewrite Ek⊥ as Ωke

iωt [30]; and in what fol-
lows, we will always assume that ω is tuned to be near
the resonant frequency of one of the electrons. This par-
ticular rotating wave approximation holds very well ex-
perimentally.

Furthermore, in the typical experimental regime of
Uk ± ∆ε � t0, δEz, one can use a (time-independent)
Schrieffer-Wolff transformation to block-diagonalize H
and obtain the following spin Hamiltonian [10, 19, 21]
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[31]

H ≈
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 , (3)

where J ≡ 2t20/(U1−∆ε)+2t20/(U2 +∆ε) is the tunneling
mediated exchange coupling between the two electrons.
This Heisenberg-type exchange coupling mixes |↑↓〉 and
|↓↑〉 states; however, when it is changed slowly (such

that ~J̇/δEz is negligible compared to other terms,
assuming J � δEz [21]) or held fixed (as is the case we
will focus on), one can instead work in the eigenbasis

of the Hamiltonian (at Ωi = 0), in which all states
become decoupled and the exchange coupling becomes
Ising-like [19, 21, 32]. To this end, let us denote the four
eigenvectors of H|Ωi=0 as |↑↑〉 , |ψ+(t)〉 , |ψ−(t)〉 , |↓↓〉.
We then transform to the logical basis of
{eiφ↑↑(t) |↑↑〉 , eiφ+(t) |ψ+(t)〉 , eiφ−(t) |ψ−(t)〉 , eiφ↓↓(t) |↓↓〉}
using HR = R†HR + i~(∂tR

†)R, where R is the trans-
formation matrix whose rows are given by the logical
basis states and φi(t) are yet undetermined degrees of
freedom, associated with shifts in ZZ, IZ, ZI terms
in the Hamiltonian in this new frame (ZZ denotes the
tensor product of the Pauli matrices σz and σz, IZ
denotes the tensor product of the identity and σz, and
etc.). We thus obtain the rotating frame Hamiltonian

HR =


Ēz + φ̇↑↑

(Ẽ2,+
⊥ )∗

2 e−i(φ↑↑−φ+) (Ẽ1,+
⊥ )∗

2 e−i(φ↑↑−φ−) 0
Ẽ2,+
⊥
2 ei(φ↑↑−φ+) 1

2 (−J + ∆E) + φ̇+ Ṽ
(Ẽ1,−
⊥ )∗

2 ei(φ↓↓−φ+)

Ẽ1,+
⊥
2 ei(φ↑↑−φ−) Ṽ ∗ 1

2 (−J −∆E) + φ̇−
(Ẽ2,−
⊥ )∗

2 ei(φ↓↓−φ−)

0
Ẽ1,−
⊥
2 e−i(φ↓↓−φ+) Ẽ2,−

⊥
2 e−i(φ↓↓−φ−) −Ēz + φ̇↓↓,

 (4)

where ∆E =
√
δE2

z + J2 is the energy splitting between

the adiabatic eigenstates of H with zero net spin, Ṽ is
a diabatic correction which vanishes when J and δEz do
not vary in time [21]. The transverse terms in the logical
adiabatic basis are given by [21]

Ẽ1,±
⊥ = Ω̃±1 e

iωt =
(∆E + δEz)Ω1 ∓ JΩ2√

2∆E(∆E + δEz)
eiωt,

E2,±
⊥ = Ω̃±2 e

iωt =
(∆E + δEz)Ω2 ± JΩ1√

2∆E(∆E + δEz)
eiωt. (5)

This exchange-induced mixing of one-qubit “Rabi fre-
quencies”, which we recognize as a form of crosstalk, is
a result (and the cost) of working in the adiabatic ba-
sis with the simplified Ising-type exchange coupling. We
proceed by fixing the gauge with the choice φ̇± = ∓∆E/2

and φ̇↑↑ = φ̇↓↓ = −Ēz, and tune the microwave frequency
to ~ω = Ēz−∆E/2 such that if the rotating wave approx-
imation held and the “fast” oscillating terms were negli-
gible, we would have addressed only the second qubit (we
can similarly tune into the first qubit by tuning the mi-
crowave as ~ω = Ēz+∆E/2). We can write the resulting
Hamiltonian

HR =


0

Ω̃+
2

2
Ω̃+

1

2 e
i
~ ∆Et 0

Ω̃+
2

2 −J2 0
Ω̃−1
2 e

i
~ ∆Et

Ω̃+
1

2 e−
i
~ ∆Et 0 −J2

Ω̃−2
2

0
Ω̃−1
2 e−

i
~ ∆Et Ω̃−2

2 0

 .

(6)

We note in passing that we will consider modulation of
the envelope function Ωi as a function of time as well in
what follows, but these modulations will be much slower
than ω, so this decomposition of the microwave field into
amplitude and frequency is still meaningful.

In the experiments in Refs. [7, 8], δEz is provided
by an on-chip micromagnet which results in a strong
magnetic field gradient, and thus a ∆E that is much
larger than Ω1 such that a rotating wave approximation
is valid. However, in the setups of Refs. [2, 10], δEz is
due to the differences between g-factors (which can be
modulated by the gate voltages [16] or by changing the
orientation of the external magnet [25]), and leads to a
smaller δEz/h ∼ 10MHz, in which case the rotating wave
approximation no longer holds.

Charge noise causes fluctuations in the exchange cou-
pling J → J̃ = J + δJ . Furthermore, spinful isotopes
cause stochastic fluctuations in Zeeman splittings, ε1 and
ε2, through hyperfine coupling. With these sources of
errors in mind, we can write the overall Hamiltonian
as the sum of a noisy control and an oscillatory term,
H̃R = H̃c +Hosc where

H̃c =
γΩ2

2
IX +

γΩ1

2
ηZX +

J̃

4
ZZ + ε1ZI + ε2IZ,

Hosc =
γΩ1

2
[XI cos(∆Et/~) + Y I sin(∆Et/~)]+

ηΩ2

2
[XZ cos(∆Et/~) + Y Z sin(∆Et/~)] (7)
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and

γ =
(∆E + δEz)√

2∆E(∆E + δEz)
, η =

J√
2∆E(∆E + δEz)

.

(8)

We will limit ourselves to exchange strengths smaller
than the difference in Zeeman splittings, such that
J/δEz, despite being non-negligible [33], can neverthe-
less be treated as smallness parameter allowing a pertur-
bative treatment. Then, to the leading order in J/δEz,
γ ≈ 1 and η ≈ J/2δEz. Moreover, we can neglect the
perturbations in γ and η due to exchange noise, because
the δJ terms are suppressed by the smallness factor of
J/δE2

z and we limit ourselves to J � δEz. Exchange
noise in ∆E can also be neglected where it is suppressed
by the smallness factor J/δEz.

At this point, we note that the control Hamiltonian
Hc fits into the embedding su(2)⊕ su(2)⊕ u(1) ⊂ su(4).
The generators of these commuting su(2) algebras are
X±, Y±, Z± ≡ {(IZ ± ZZ)/2,−(IY ± ZY )/2, (IX ±
ZX)/2} and the u(1) is generated by Q ≡ ZI. Explicitly,
Hc can be split into three commuting parts

Hc = H+ +H− +Hq (9)

where

H± ≡Ω±X± + β±Z± Hq ≡ ε1Q

Ω± ≡
γΩ2

2

(
1± 1

γ

g1

g2
η

)
, β̃± ≡ ε2 ±

J̃

4
, (10)

where we used Eq. (2) to express Ω1 as Ω2g1/g2.
The εi terms can be made negligible by using a purified

silicon with lower concentration of spinful silicon isotopes
[11], which we will assume in what follows [34].

III. BLOCH-SIEGERT SHIFT FOR THE
TWO-QUBIT SYSTEM

In this section, we will apply the rotating wave ap-
proximation and also show how to compensate for the
leading order corrections to the approximation, and in
the following section, we will show how one can obtain a
shaped pulse Ω2(t) which can suppress the leading order
effect of the terms δJ and η from the final time evolution
operator U(tf ).

The validity of the rotating wave approximation hinges
on the value of δEz/h (compared to the driving strength
Ω2/h, as we will detail below). This value is 1.3GHz
in the Si/SiGe device from Ref. [7] and 210MHz in the
Si/SiGe device from Ref. [8], both of which incorporate
micromagnets and operate via EDSR. However, in the
Si/SiO2 device from Ref. [3, 10], operating via ESR, this
value is limited to around 15MHz, for which the rotat-
ing wave approximation to neglect Hosc fails, resulting in
poor gate fidelities (parameter values for this device are
summarized in Table. I). In this section, we will show

that the most significant contribution from the oscilla-
tory terms can nevertheless be easily compensated.

To this end, we treat Hosc as an interaction Hamilto-
nian and obtain the total time evolution operator as a
product of the time evolution operators due to Hc and
Hosc as

Utotal = Uc(tf ;−tf )Uosc(tf ;−tf ) (11)

where Uosc(t;−tf ) is the solution to the Schrödinger
equation

iU̇osc(t;−tf ) = H̄osc(t)Uosc(t;−tf )

H̄osc ≡ U†c (t;−tf )Hosc(t)Uc(t;−tf ) (12)

When ∆E is larger than the microwave amplitude, one
can obtain Uosc in a perturbative manner using Magnus
expansion

Uosc(t;−tf ) = e
∑∞
n=1 Φn , (13)

This allows use to obtain corrections to the rotating wave
approximation perturbatively in powers of the smallness
factor Ω2(t)/∆E, as will be made clear shortly. The first
order term in the Magnus expansion,

Φ1 = − i
~

∫ tf

t0

dt′H̄osc(t′), (14)

is negligible when ∆E is sufficiently larger than the mi-
crowave amplitude. For example, for max|γΩ2| = 1MHz,
we find that a value of ∆E/h ∼ 10MHz, which is readily
attainable in experiments, is sufficiently large. We note
that this condition is also relevant for the convergence of
the Magnus expansion, which requires that ||Φ1|| < π.

The leading order correction to the dynamics, then, is

Φ2 = − 1

2~2

∫ tf

t0

dt′
∫ t′

t0

dt′′[H̄osc(t′), H̄osc(t′′)]. (15)

We now show how this can be reduced to a simple con-
dition with good accuracy.

The first simplification we make is to note that in Hosc,
given explicitly in Eq. (7), the contribution of η is sup-
pressed by the smallness factor J/∆E compared to γ.
Thus, we neglect the terms proportional to η. The “fast”
oscillations in Hosc can be eliminated by (temporarily)
going into a rotating frame defined by the transforma-
tion S = ei∆EtZI , which leads to

HS
osc =

γΩ2(t)

2
XI + ∆E ZI (16)

Since S ∈ U(1) commutes with U(t; t0) ∈ SU(2)×SU(2),
we can change the ordering of these transformations, and
obtain

Uosc(t; t0) = e
i
~ ∆EtZIT e− i

~
∫
dtU†c (t;t0)HSosc(t)Uc(t;t0), (17)

back in the frame of Eq. (7). Although we can use sec-
ond order Magnus expansion given by Φ2 as is to ap-
proximately evaluate the time-ordered integration above
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at this point, we instead notice that ZI term in the inte-
grand above commutes with U(t; t0), and the weak (when
compared to ∆E) term γΩ2(t)U†(t; t0)[XI]U(t; t0)/2 an-
ticommutes with ZI at all times, forming a dynamical
su(2) algebra. Based on this observation, we approx-
imate the leading order correction Φ2 by an averaged
Bloch-Siegert shift and obtain:

Uosc(tf ; t0) ≈ exp

[
−i 1

~∆E

∫ tf

t0

dt

(
γΩ2(t)

2

)2

ZI

]
.

(18)

The inverse of this rotation can then be applied prior to
the actual gate Utotal (cf. Eq. (11)) to compensate for
the unwanted ZI Bloch-Siegert rotation.

An alternative way of obtaining this correction would
be to solve the Schrödinger equation Eq. (12) numeri-
cally. Uosc tends to be a rotation mostly around ZI, so
we can pick up the ZI part of this SU(4) rotation, which
can be corrected for easily, using

U (ZI)
osc = eiΘZI , Θ ≡ tr (−i ln[Uosc(tf ;−tf )]ZI) . (19)

We numerically find that the approximations we made in
this section lead to deviations in trace gate fidelity which
depend on Ω2(t)/∆E, and can be as small as ∼ 10−4 with
a suitable and experimentally attainable choice when us-
ing the parameters from Refs. [3, 10] (summarized in
Table. I). The numerical results for each gate are given
in Section V.

Overall, the results from this section allow us to eas-
ily compensate for the shortcomings of the rotating wave
approximation by applying a (virtual [10, 35–37]) ZI ro-
tation given in Eq.(18) to undo Uosc(tf ; t0) in Eq. (11).
This compensation can be done before, after or during
the gate; the ordering does not matter because ZI is the
u(1) and commutes with the control Hamiltonian. We
thus need not carry Hosc forward in what follows, as it is
now compensated for separately.

IV. ROBUST GATES

In this section, we briefly summarize the results from
[27], and show how they can be adapted to the double
quantum dot system. In the next section, we will present
specific applications for obtaining a robust CZ gate and
robust, arbitrary one-qubit gates.

Consider a time evolution from t = 0 to tf of a two-
level system described by the noisy Hamiltonian

H(t) = [Ω(t) + g(t)εZ ]Z + [β + εX ]X. (20)

where εZ and εX are quasistatic, stochastic noise terms.
The leading order effects of these noise terms from the
time evolution at the final time tf can be eliminated if
Ω(t) is a shaped pulsed obtained from a function Φ(χ(t)),

through the following relation

Ω(t) = Ω̄(χ) ≡− β sin(2χ)× (21)

Φ′′(χ) + 4Φ′(χ) cot(2χ) + [Φ′(χ)]3 sin(4χ)

2
√

1 + [Φ′(χ) sin(2χ)]2
3

where χ = χ(t) is a reparametrization of time determined
by Φ(χ) through the relation

βt = ~
∫ χf

0

dχ
√

1 + [Φ′(χ) sin(2χ)]2, (22)

Φ(χ) is any function which obeys the constraints [27]

sin(4χf ) + 8e−2iΦ(χf )

∫ χf

0

dχ sin2(2χ)e2iΦ(χf ) = 0,

(23a)

∫ χf

0

sin2(2χ)Φ′(χ) = 0, (23b)

∫ χf

0

dχ sin(2χ)ḡ(χ)e2iΦ(χf )
√

1 + [Φ′(χ) sin(2χ)]2 = 0

(23c)

∫ χf

0

dχ cos(2χ)ḡ(χ)
√

1 + [Φ′(χ) sin(2χ)]2 = 0, (23d)

and ḡ(χ) ≡ g(t). The function Φ(χ) must satisfy the
following initial conditions

Φ(0) = 0, Φ′(0) = 0 (24)

to ensure that the initial time evolution operator is the
identity. The resulting gate U(tf ; 0) is determined by the
values of Φ(χf ) and Φ′(χf ) [27].

We focus on the particular case of g(t) = Ω(t) (i.e.,
multiplicative noise in the control field), or equivalently,
ḡ(χ) = Ω̄(χ). If Φ′(χ) is an odd function of χ (which itself
is an odd function of t), the pulse shape Ω̄(χ) becomes
an odd function of time as well. Since this means the
integrand of robustness conditions Eqs. (23b) and (23d)
are odd functions for time, we can consider expanding the
time evolution to the symmetric interval from t = −tf to
t = tf , which ensures that the integrals vanish and both
conditions are satisfied [27]. When the system is pulsed
from t = t0 = −tf to t = tf using a pulse that is odd in
time, the resulting time evolution is given by [27, 38]

U(tf ;−tf ) = ZφXθZ−φ = e−i
θ
2 (cosφX+sinφY ), (25)

φ ≡ sgn [Φ′(χf )] arcsec
√

1 + [Φ′(χf ) sin(2χf )]2, θ ≡ 4χf ,

where Xθ is a θ rotation around the X axis and Zφ is
defined similarly. We refer to the Supplementary Infor-
mation in Ref. [27] for the lengthy derivation of these
results.
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We now show how these results can be used to suppress
the effects of δJ and η in H̃c from the final time evolu-
tion operator U(tf ) in the double quantum dot system.
Although the four-level problem is algebraically split into
a commuting pair of two-level systems and a single-level
system, or su(2) ⊕ su(2) ⊕ u(1), we see from Eq. (10)
that the dynamics of these su(2)s are completely depen-
dent: that is, choosing the pulse shape Ω±(t) and the
(time-independent) “energy splitting” β± for one su(2)
fixes the values Ω∓(t) and β∓ for the other su(2). This
means that when looking for pulse shapes that can cor-
rect for errors, additional care is required when choosing
suitable generating functions Φ±(χ) for each su(2), and
that Φ+(χ) and Φ−(χ) cannot be chosen independently
—in fact, choosing one completely determines the other.

We now show that even under this constraint, we can
still use the results from Ref. [27] to implement a robust
quantum gate in the four-level system when the exchange
is held fixed and the microwave source is smoothly pulsed
in time.

First, from Eq. (10), we observe that in the absence of
the stochastic noise and η terms, we have

β+ = −β−, Ω+(t) = Ω−(t). (26)

Keeping Eq. (21) in mind, we realize that the choice

Φ−(χ) = −Φ+(χ) (27)

would be compatible with these dynamical constraints
between the su(2) subsystems. This motivates us to treat
the entire ηΩ2(t)ZXg1/2γg2 term as “noise”, and not
just the (already neglected) truly stochastic part which
is due to δJ ; this assumption is not strictly necessary,
but it is convenient as it allows us to establish a very
simple relationship between the two generating functions
Φ−(χ) and Φ+(χ).

With this choice, the overall robust time evolution for
the four-level system can thus be obtained as

R(θ, φ) ≡R+(θ, φ)R−(θ, φ),

R±(θ, φ) ≡Z±(φ)X±(±θ)Z±(−φ), (28)

where R± denotes the time evolution for each su(2) sub-
system. The rotation angle θ has alternating signs be-
cause β+ = −β−, corresponding to time-inversion fol-
lowing Eq. (22), which implies a sign flip in the overall
rotation angle in Eq. (25). Combining similar commuting
terms, this simplifies to

R(θ, φ) = IXφZZθIX−φ (29)

The pulse for the opposite sign, φ→ −φ, can be obtained
by the replacement Φ(χ)→ −Φ(χ) which implies Ω(t)→
−Ω(t), following respectively from Eqs. (25) and (21).
We will use this expression when targeting specific gates
in the next section.

Parameter Value

δEz 15MHz

J 1MHz

max|γΩ2(t)| 1MHz or 1.5MHz

γ 0.9994

η 0.0333

TABLE I. Values of parameters used for examples, based on
the Si/SiO2 device from [3, 10].

V. EXAMPLES OF ROBUST GATES

For obtaining numerical results when targeting specific
gates in this section, we will use the following ansatz:

Φ+(χ) = a1χ
2 + sgn(χ)

[
a2χ

3 +

8∑
i=1

bi sin(nπχ/χf )

]
,

(30)

which obeys Φ+(0) = Φ′+(0) = 0 by construction. This
ansatz leads to a smooth pulse shape Ω+(t) that is odd
in time, and readily satisfies the initial conditions given
in Eq. (24). The coefficients ai and bi are free parameters
which will be used to find suitable pulse shapes that im-
plement a specific target unitary in the following sections.
Furthermore, this form allows enforcing the rotation axis
φ in Eq. (25) and the desirable property that the mi-
crowave source is turned off at the end, Ω+(tf ) = 0, in
an analytical manner:

a1 =
tanφ

χf sin(2χf )

(
1 + χf cot (2χf )

[
1 + sec2 φ

])
, (31)

a2 =− tanφ

3χ2
f sin(2χf )

(
1 + 2χf cot (2χf )

[
1 + sec2 φ

])
Finally, this leads to pulse shapes with modest bandwidth
requirements ∆f ∼ 8/tf .

We use the experimentally attainable values of J/h =
1MHz and δEz/h = 15MHz, which yields η ≈ 0.0333 and
γ ≈ 0.9994. For a given φ and θ, we use numerical con-
strained global optimization to solve for the remaining
robustness conditions Eqs. (23a) and (23c), subject to
the constraints [39]

max |γΩ2(t)/h| ≤ 1MHz, T ≡ 2tf ≤ 20µs, (32)

where T is the total gate time. The first constraint is
necessary for improving the accuracy of the Bloch-Siegert
shift compensation, where we assumed that γΩ2(t)/δEz
is a smallness factor whereas the second condition is for
keeping the gate time within reasonable limits.

We are only able to find numerical solutions within
these constraints if we introduce additional windings to
the ZZ rotation as θ → 2πk+θ. For a given target angle
φ, the gate time increases with k, which puts a limit on
how small Ω2(t) can be; we choose k such that the gate
time is minimal.
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FIG. 2. (Color online) (a) Pulse shape γΩ2(t) in units of J =
h×1MHz which implements a CZ gate,R(π/2, 0), in T ≈ 13µs
that is robust against exchange-induced crosstalk ZX term
whose strength is characterized by η, and perturbations in
exchange δJ . The pulse shape is determined by 8 parameters
bi given in Eq. (33). (b) Infidelity of the robust pulse as a
function of perturbation strength, η or δJ/J , compared to
the infidelity of a naive pulse (green curve) with Ω2 = 0 as a
function of δJ/J .

A. Robust CZ gate

A CZ gate exp
(
−iπ4ZZ

)
corresponds to θ = π/2 and

and φ = 0. We take the target angle to be θ = 2πk+π/2
with k = 5, which determines the values of ai through
Eq. (31) as a1 = 0 and a2 = 0, and using numerical
optimization for robustness conditions we find

b ≈ { − 2.63, 0.07,−0.31,−0.52, 0.09, 0.01,−0.03,−0.06}.
(33)

The resulting pulse shape Ω2(t), which takes ≈ 12.7µs is
shown in Fig. 2.

Once the ZI Bloch-Siegert shift Eq. (18) is compen-
sated for using a virtual-Z rotation, the infidelity due to
neglecting Hosc is ≈ 4 × 10−4, whereas using Eq. (19)
yields ≈ 2 × 10−4. From Fig. 2, we see that an in-
fidelity budget of 10−4 is able to tolerate errors up to
δJ/J ≈ 0.075 (i.e., δJ/h ≈ 75kHz) and η ≈ 0.04.

Implementing such a smooth pulse shape exactly may
be challenging. As an example, we numerically checked

2 4 6 8 10
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FIG. 3. (Color online) (a) Pulse shape γΩ2(t) in units of
J = h × 1MHz which implements R(π, π/4), which is IXπ

2

up to local IZ π-pulses, in T ≈ 11µs that is robust against
exchange-induced crosstalk ZX term whose strength is char-
acterized by η, and perturbations in exchange δJ . The pulse
shape is determined by 8 parameters bi given in Eq. (38). (b)
Infidelity as a function of perturbation strength, η or δJ/J .

that at δJ/h ≈ 75kHz exchange error, an imperfect pulse
shape with 0.01 errors in all pulse “amplitudes” bi results
in ≈ 3× 10−4 infidelity instead of ≈ 10−4 with a perfect
pulse shape.

We numerically find that the limit on the maximum
allowed value of γΩ2/h can be raised to 1.5MHz with
similar error characteristics, with a shorter gate time of
T ≈ 9.2µs at k = 3, with parameters

b ≈ {−0.51, 1.62, 0.12,−0.20, 0.05, 0.09, 0.04,−0.01}.
(34)

B. Robust one-qubit gates

For implementing one-qubit gates, we make use of the
availability of virtual local Z rotations [35–37] (imple-
mented by switching the phase of the microwave source
instantaneously [10]) as follows. Any one-qubit gate can
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be expressed in terms of three Euler angles

IZα3
IYα2

IZα1
=IZα3

IXπ
2
IZα2

IX−π2 IZα1
(35)

=− IZα3
IXπ

2
IZα2+πIXπ

2
IZα1+π.

This implies that having access to a single robust one-
qubit gate, IXπ

2
, rather than a set of gates with a con-

tinuous parameter, is sufficient.
Such a robust one-qubit gate can be implemented using

R(θ, φ) given in Eq. (29), since at θ = π it reduces to the
local gate

R(π, φ) = IXφZZπIX−φ = IX2φZZπ = −iIX2φIZπZIπ
(36)

The extra IZ and ZI rotations can be cancelled using
local virtual Z gates which leaves a pure IX rotation. In
the context of Eq. (35), however, this is unnecessary as
they combine and cancel to give the relation

IZα3
IYα2

IZα1
= −IZα3

R
(
π,
π

4

)
IZα2

R
(
π,
π

4

)
IZα1

.

(37)

We can thus implement any arbitrary one-qubit gate ro-
bustly using R(π, π/4) in conjunction with virtual IZ
rotations.

For finding a pulse shape which implements R(π, π/4),
we take θ = 2πk + π with k = 4, and obtain the param-
eters bi

b ≈ { − 2.52, 0.24,−0.24,−0.48, 0.21, 0.04, 0.02,−0.02}.
(38)

The corresponding pulse shape is given in Fig. 3, which
takes ≈ 10.5µs. This implies that arbitrary one-qubit
gates can be implemented robustly in ≈ 21µs.

With the ZI Bloch-Siegert correction from Eq. (18),
the infidelity due to neglecting Hosc is ≈ 3 × 10−4,
whereas using Eq. (19) yields ≈ 2 × 10−4. From Fig. 3,
we see that an infidelity budget of 10−4 allows δJ/h ≈
110kHz and η ≈ 0.06. Fig. 3 does not include an in-
fidelity curve for a naive implementation, because one-
qubit gates with always-on J coupling is a nontrivial
problem even without any robustness requirements [10].
We also observe that at δJ/h ≈ 110kHz exchange error,
an imperfect pulse shape with 0.01 deviations in all bi
increases the infidelity to ≈ 2× 10−4.

As in the case of CZ gate, we find that raising the
limit on the maximum allowed value of γΩ2/h to 1.5MHz
yields an IXπ/2 gate with similar error characteristics,
and takes T ≈ 8.22µs at k = 3, with parameters

b ≈ {−0.66,−0.16,−0.22, 0.32,−0.02, 0.03, 0.00,−0.03}.
(39)

We note that the gate time for one qubit gates can be
improved by making a look up table for b correspond-
ing to R(π, φ) for each 2φ ∈ [−π/2, π/2], and use in-
stead the ZXZ parametrization for one-qubit rotations

as IZα3
IXα2

IZα1
, which would allow faster implementa-

tion of arbitrary one-qubit gates. Such a table with the
granularity of π/64 in φ is given in Table II in Appendix
A.

Our one-qubit gate times for Xθ rotations are similar
to the 8µs duration of robust pulses obtained by GRAPE
in Ref. [3] in the same device, albeit in the (1,0) charge
regime with no exchange or crosstalk.

VI. SUMMARY AND CONCLUSION

Spin qubits in silicon quantum dots are a promising
platform for realization of a fault-tolerant quantum com-
puter due to existing fabrication techniques, spinless na-
ture of the 28Si nuclei and electrical controllability of the
electron wavefunctions. For single quantum dots, single-
qubit fidelities are approaching to fault-tolerance thresh-
olds. However, a useful quantum computer requires mul-
tiple qubits, which introduce new issues such as address-
ability and limited control over inter-dot interactions. Al-
though a slanted micromagnet can be used to enhance the
addressability, not having an on-chip micromagnet has
the advantage of simplifying the device design, which is
especially important in the context of scalability. When
combined with an always-on exchange coupling between
the electrons, implementing high-fidelity quantum gates
even in absence of any noise becomes a nontrivial prob-
lem.

We have shown that despite the addressability and
always-on exchange coupling in a silicon double quantum
dot setup, it is possible to implement robust CZ gate and
robust arbitrary one-qubit gates, which form a universal
set. We estimate that a ≈ 10% error in the exchange cou-
pling at J = 1MHz would lead to ≈ 99.97% fidelity for
the CZ gate and ≈ 99.98% fidelity for one-qubit X gates.
The resulting pulse shapes require a modest bandwidth
around ∼ 1MHz, and can lead to gates with high fidelity
even with systematic errors caused by the signal genera-
tor. We expect these pulses will improve the gate fideli-
ties over their naive non-robust counterparts, despite the
increased gate times. The relevant decoherence timescale
for a naive gate is T ∗2 , whereas for a dynamically cor-
rected pulse it is essentially T2. In silicon quantum dots,
T ∗2 times are several milliseconds [1] whereas T ∗2 times are
several tens of microseconds [1, 3], and an overall rough
estimate for the improvement in gate infidelities can be
made by comparing ∼ (T/T2)2 to ∼ (Tnaive/T

∗
2 )2, which

yields an improvement by a factor of ∼ 25 for the CZ
gate, and ∼ 1000 for one-qubit gates. The speed of the
robust gates are mainly limited by δEz, which prevents
us from using a larger microwave amplitude and exchange
strength typically accessible in these devices. In devices
with weaker δEz, such as [40] with δEz ≈ 9MHz, this
further limits the accessible range of J and Ω2. We note,
however, that a δEz around 40MHz is attainable with
g-factor modulation in Si/SiO2 [2] which would improve
the speed of the gates by a factor of ≈ 2.5.



9

We expect our results can be readily implemented in
existing devices without modifications.
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