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We present a general quantum kinetic theory that accounts for the interplay between a temperature gradient,

momentum-space Berry curvatures of Bloch electrons, and Bloch-state scattering. Using a theory that

incorporates the presence of a temperature gradient by introducing a “thermal vector potential”, we derive

a quantum kinetic equation for Bloch electrons in the presence of disorder and a temperature gradient. In

contrast to the semiclassical Boltzmann formalism in which a temperature gradient is introduced by setting

ṙ · ∂
∂r
→ ṙ · ∂T

∂r

∂

∂T
in the Boltzmann equation, the presence of a temperature gradient in our formalism is

described as a driving force just as in the case of an electric field (i.e., comes from k̇ in the language of the

semiclassical Boltzmann formalism). Taking also into account the presence of electric and magnetic fields,

the quantum kinetic equation we derive makes it possible to compute transport coefficients at arbitrary orders

of electric-field E, magnetic-field B, and temperature-gradient ∇T strengths |E|a|B|b|∇T |c. Our theory

enables a systematic calculation of magnetothermoelectric and magnetothermal conductivities of systems with

momentum-space Berry curvatures. As an illustration, we derive from a general microscopic electron model a

general expression for the rate of pumping of electrons between valleys in parallel temperature gradient and

magnetic field. From this expression we find a relation, which is analogous to the Mott relation, between

the rate of pumping due to a temperature gradient and that due to an electric field. We also apply our theory

to a two-band model for Weyl semimetals to study thermoelectric and thermal transport in a magnetic field.

We show that the Mott relation is satisfied in the chiral-anomaly induced thermoelectric conductivity, and

that the Wiedemann-Franz law is violated in the chiral-anomaly induced thermal conductivity, which are both

consistent with the results obtained by invoking semiclassical wave-packet dynamics.

I. INTRODUCTION

Momentum-space Berry curvatures of Bloch electrons,

which can be nonzero in systems with broken time-reversal

symmetry and/or broken inversion symmetry [1], have been

revealed to play important roles in electronic transport phe-

nomena. An important and well recognized example is the

anomalous Hall effect [2], the Hall effect at zero magnetic

field in systems with broken time-reversal symmetry. The

anomalous Hall conductivity of massive Dirac fermions on the

surface of three-dimensional (3D) topological insulators is in-

dependent of disorder scattering and characterized completely

by the momentum-space Berry curvature which gives rise to

a nonzero Chern number, when the Fermi level is inside the

gap [3–7]. More recently, it was found that nonlinear (second-

order) anomalous Hall effect can be realized due to the Berry

curvature dipole even in systems with time-reversal symmetry

[8–13]. Another example is the negative magnetoresistance

in 3D Weyl and Dirac semimetals [14–19], which arises as

a consequence of a condensed-matter realization of the chi-

ral anomaly, i.e., the pumping of electrons between valleys in

parallel electric and magnetic fields. The effects of nontriv-

ial band structures giving rise to nonzero Berry curvatures on

electronic properties are often referred to as the Berry phase

effects [1], and have been studied intensively and extensively

in condensed matter physics.

As well as an electric field, a temperature gradient can also
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drive electrons into non-equilibrium states, resulting in a gen-

eration of currents such as electric current. Studies of trans-

port induced by a temperature gradient have a long history and

are one of the important subjects in condensed matter physics.

Among them, spin transport phenomena induced by a tem-

perature gradient, often called the spin caloritonics [20], is an

emerging field in this decade, triggered by the discovery of the

spin Seebeck effect [21]. The Berry phase effects on transport

induced by a temperature gradient are often taken into account

by combining semiclassical wave-packet dynamics with semi-

classical Boltzmann theory [1], as in the case of transport in-

duced by an electric field. In this phenomenological method,

the calculation becomes complicated when a magnetic field is

present [22–25]: the form of the correction to the distribution

function is assumed and then its solution is obtained by sub-

stituting the assumed form into the Boltzmann equation. This

study is motivated by the need for a more straightforward and

practical theory that is applicable to realistic models.

In this paper, we develop a quantum kinetic theory for

electronic transport induced by a temperature gradient in

a magnetic field in weakly disordered systems with large

momentum-space Berry curvatures, which fully accounts for

the interplay between the presence of temperature gradient

and electric and magnetic fields, momentum-space Berry cur-

vatures, and Bloch-state scattering. We employ a recent the-

ory [26] that proposes that a temperature gradient can be de-

scribed by a “thermal vector potential” in analogy with elec-

tromagnetic vector potential. We take the effect of magnetic

fields into account using a semiclassical approximation that

we expect to be accurate when the magnetic field is weak

enough that Landau quantization can be neglected. We also
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take the effect of disorder into account within the Born ap-

proximation. Our theory enables a systematic calculation of

the density matrix induced by a temperature gradient in pow-

ers of the magnetic field strength, from which physical observ-

ables such as thermoelectric and thermal conductivities can be

obtained.

This paper is organized as follows. In Sec. II we derive a

quantum kinetic equation for Bloch electrons in the presence

of a temperature gradient, disorder, and electric and magnetic

fields by applying a Wigner transformation to the quantum

Liouville equation. In Sec. III we obtain the solution of the

density matrix induced by a temperature gradient in the ab-

sence of electric and magnetic fields, and then obtain a general

expression for the density matrix in a magnetic field by per-

forming a low-magnetic-field expansion. In Sec. IV, to check

the validity of our theory, we derive general expressions for

the intrinsic (i.e., Berry phase) contribution to the Nernst ef-

fect at zero magnetic field and its reciprocal effect, for which

we find that the Onsager reciprocal relation is indeed satis-

fied. In Sec. V we apply our theory to a genetic microscopic

electron model and derive a general expression for the rate of

pumping of electrons between valleys (i.e., the thermal chiral

anomaly) in parallel temperature gradient and magnetic field.

In Sec. VI we apply our theory to a simple two-band model

of Weyl semimetals and demonstrate that the Mott relation is

satisfied for the chiral-anomaly induced magnetothermoelec-

tric conductivity, while the Wiedemann-Franz law is violated

for the chiral-anomaly induced magnetothermal conductivity.

In Sec. VII we discuss our theory in connection with possible

applications of our theory. Finally, in Sec. VIII we summarize

this study.

II. QUANTUM KINETIC EQUATION

In this section, we derive a quantum kinetic equation for

Bloch electrons in the presence of disorder, a temperature gra-

dient, and electric and magnetic fields. Throughout this paper,

we work in the basis of the disorder-free Hamiltonian eigen-

states, which we refer to as the eigenstate basis:

H0|m,k〉 = εm
k |m,k〉, (1)

where H0 is the crystal Hamiltonian, εm
k

is an eigenvalue of

H0, k is a momentum in the crystal’s Brillouin zone, and m

is a band index. We consider a generic single-particle D-

dimensional Bloch Hamiltonian H0(p) with momentum op-

erator p = −i~∇. In the presence of an electromagnetic vector

potential A(r, t), minimal coupling results in p → p + eA.

Throughout this paper, we adopt the notation e > 0 which is

the magnitude of the electron charge.

A. Introducing disorder

In the absence of external fields, the total Hamiltonian of

the system is H = H0 + U where U is the disorder potential.

We treat disorder effects on transport coefficients within the

Born approximation. Our starting point is the quantum kinetic

equation in the presence of disorder [27]

∂〈ρ〉
∂t
+

i

~
[H0, 〈ρ〉] + K(〈ρ〉) = 0, (2)

where 〈ρ〉 is the disorder-averaged density-matrix operator of

the system and the scattering term K(〈ρ〉) is given by

K(〈ρ〉) = 1

~2

∫ ∞

0

dt′
〈[

U, [e−iH0t′/~UeiH0t′/~, 〈ρ(t)〉]
]〉

, (3)

where 〈ρ(t)〉 = e−iH0 t/~〈ρ〉eiH0t/~. The full expression for

K(〈ρ〉) can be found in Ref. [27]. We separate the den-

sity matrix 〈ρ〉 in the eigenstate basis into the band-diagonal

part 〈n〉 and the band-off-diagonal part 〈S 〉 using the nota-

tion 〈ρ〉 = 〈n〉 + 〈S 〉. Then, the scattering term K(〈ρ〉) can

be separated into four parts which map 〈n〉 and 〈S 〉 to band-

diagonal and band off-diagonal contributions to ∂〈ρ(t)〉/∂t in

Eq. (2). To leading order in disorder strength, the contribution

from 〈n〉, i.e., K(〈n〉), becomes dominant in many cases. In

the case of elastic scattering the band-diagonal part of K(〈n〉)
[≡ I(〈n〉)] is given by [27]

[I(〈n〉)]mm
k
=

2π

~

∑

m′ ,k′

〈Umm′

kk′ U
m′m
k′k 〉(n

m
k
− nm′

k′ )δ(ε
m
k
− εm′

k′ ), (4)

with m and m′ being band indices. This is exactly Fermi’s

golden rule. Similarly, the band-off-diagonal part of K(〈n〉)
[≡ J(〈n〉)] is given by [27]

[J(〈n〉)]mm′′

k =
π

~

∑

m′ ,k′

〈Umm′

kk′ U
m′m′′

k′k 〉
[

(nm
k − nm′

k′ )

× δ(εm
k − εm′

k′ ) + (nm′′

k − nm′

k′ )δ(ε
m′′

k − εm′

k′ )
]

, (5)

where m , m′′. The contribution from this term corresponds

to the vertex correction in the ladder-diagram approximation

of perturbation theory [19, 27]. See also Ref. [28] for the

semiclassical derivation of the term corresponding to Eq. (5).

Equivalently, in the context of the anomalous Hall effect [2,

29–31], the contribution from Eq. (5) describes the side-jump

velocity contribution [32]. However, in the case of 2D massive

Dirac model [32, 33], the contribution from Eq. (5) gives rise

to only one half of the total side-jump contribution defined in

Ref. [29].

Here, we note that the contribution from the band off-

diagonal part of the density matrix 〈S 〉 to the scattering term,

i.e., K(〈S 〉), was studied recently in detail in the second-order

nonlinear Hall effect [32], and it was shown that the contri-

bution from the diagonal part of K(〈S 〉) [≡ I(〈S 〉)], which is

given by

[I(〈S 〉)]mm
k =

π

~

∑

m′ ,m′′,k′

[

〈Umm′

kk′ U
m′m′′

k′k 〉〈S 〉
m′′m
k δ(εm′

k′ − ε
m′′

k )

+ 〈Um′m′′

kk′ Um′′m
k′k 〉〈S 〉

mm′

k δ(ε
m′

k − ε
m′′

k′ )

− 〈Umm′

kk′ U
m′′m
k′k 〉〈S 〉

m′m′′

k′ δ(ε
m′′

k′ − ε
m
k

)

− 〈Umm′

kk′ U
m′′m
k′k 〉〈S 〉m

′m′′

k′ δ(ε
m
k − εm′

k′ )
]

, (6)
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describes the skew scattering contribution to the Hall conduc-

tivity [32]. On the other hand, it was also pointed out recently

that there exists a contribution arising from the interband-

coherence effect of dc electric fields during scattering, which

is specific to nonlinear response, i.e., has no counterpart in

linear response [33].

B. Introducing a temperature gradient

Now, we take the effects of a temperature gradient into ac-

count. According to the famous Luttinger’s proposal [34], a

temperature gradient can be described by a scalar potential Ψ

satisfying −∇Ψ = −∇T/T . In a similar context, Tatara re-

cently introduced a “thermal vector potential” AT that satis-

fies [26]

−∂AT

∂t
= −∇T

T
≡ ET . (7)

In analogy with electromagnetism, a temperature gradient is

also termed a “gravitoelectric field” ET [35–39]. In Ref. [26]

it was suggested that, in single-band systems such as parabolic

band system with the energy εp = ~
2p2/2m, the thermal vec-

tor potential is incorporated via minimal coupling form

p→ p − εpAT . (8)

However, it is not trivial to generalize this incorporation of the

thermal vector potential in the case of multiband systems.

To resolve this difficulty, we here propose to generalize the

Wigner distribution function in the presence of an electromag-

netic vector potential [19, 40] to the form containing a thermal

vector potential AT as

〈ρ〉mn
p (r) =

1

2

∫

dDR 〈m, r+|
{

e−(i/~)PT ·R, ρ
}

|n, r−〉, (9)

where { , } is the anticommutator for operators, PT = p +

H0AT , r± = r ± R/2, and |n, r〉 = ∑

m,k |m,k〉〈m,k|n, r〉 =
∑

k eik·r |n,k〉 is the Fourier transform of |n,k〉. Note that the

sign in front of H0AT in PT is different from the one in the

minimal coupling (8), as in the case of electromagnetic vector

potential [19, 40]. We perform the generalized Wigner trans-

formation (9) on the first two terms in Eq. (2) (i.e., the usual

quantum Liouville equation ∂ρ/∂t + i
~
[H0, ρ] = 0) as

∫

dDR 〈m, r+|
{

e−(i/~)PT ·R,

(

∂ρ

∂t
+

i

~
[H0, ρ]

)}

|n, r−〉 = 0.

(10)

Note that the scattering term K(〈ρ〉) is not changed after the

Wigner transformation. We use the identities

e−(i/~)PT ·R ∂ρ

∂t
=
∂

∂t

(

e−(i/~)PT ·R ρ
)

+
i

~

∇T

T
·RH0e−(i/~)PT ·R ρ,

∂ρ

∂t
e−(i/~)PT ·R =

∂

∂t

(

ρ e−(i/~)PT ·R
)

+
i

~
ρ e−(i/~)PT ·R∇T

T
·RH0,

(11)

where −∂AT/∂t = −∇T/T is the temperature gradient. Note

that the positions of R on the right-hand sides of Eq. (11) are

arbitrary, since R is just a number before it is sandwiched

by the eigenstate basis. Inserting the completeness relation
∑

n

∫

dr |n, r〉〈n, r| = 1, using the Fourier transform |n, r〉 =
∑

k eik·r |n,k〉, and noting that R = i~∇p from the definition

of the Wigner distribution function (9), we obtain one of the

matrix elements in Eq. (10) as

∫

dDR 〈m, r+|RH0e−(i/~)PT ·Rρ|n, r−〉 =
∑

n′,n′′

〈m,p|i~∇p|n′,p〉〈n′,p|H0|n′′,p〉〈ρ〉n
′′n

1p

= i~
[

Hmn′′

0p ∇p〈ρ〉n
′′n

1p + 〈um
p |∇pun′

p 〉Hn′n′′

0p 〈ρ〉n
′′n

1p −Hmn′

0p 〈ρ〉n
′n′′

1p 〈un′′

p |∇pun
p〉

]

, (12)

where 〈ρ〉n′′n
1p
=

∫

dDR 〈m, r+|e−(i/~)PT ·Rρ|n, r−〉, Hn′n′′

0p
=

〈n′,p|H0|n′′,p〉 = δn′n′′ε
n′
p , and the third term on the right-

hand side comes from the Hermiticity of the equation and

consistency with the single-band limit [19]. Note that ∇p in

the first term on the right-hand side acts only on the distribu-

tion function, since our formalism recovers the semiclassical

Boltzmann equation in the single-band limit [19]. Other possi-

ble terms can be obtained in a similar way as Eq. (12). Finally,

after a calculation we arrive at the quantum kinetic equation in

the presence of disorder and a temperature gradient −∇T/T :

∂〈ρ〉
∂t
+

i

~
[H0, 〈ρ〉] + K(〈ρ〉) = DT (〈ρ〉), (13)

where k = p/~ is the crystal wave vector and DT (〈ρ〉) is the

thermal driving term given by

DT (〈ρ〉) = 1

2~

∇T

T

D({H0, 〈ρ〉})
Dk

, (14)

with { , } being an anticommutator. Here, D/Dk is the covari-

ant derivative acting on matrices defined by

DX

Dk
= ∇kX − i[Rk, X], (15)

where X is a matrix, [ , ] is a commutator, and Rk =
∑

a=x,y,zRa
k
ea with [Ra

k
]mn = i〈um

k
|∂ka

un
k
〉 being the general-

ized Berry connection. Note that, the usual derivative ∇k in

Eq. (14) acts only on 〈ρ〉, although we have introduced a co-

variant derivative notation in Eq. (14) to make the notation

consistent with the electric and magnetic driving terms.
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C. Including electric and magnetic fields

Next, we take the effects of electric and magnetic fields into

account using a semiclassical approximation that we expect to

be accurate when the weak magnetic field condition ωcτ ≪ 1

is satisfied and Landau quantization can be neglected. Here,

ωc is the cyclotron frequency and τ is the transport relaxation

time. Note that there is no limitation of the strength of the

electric field. Inclusion of electric and magnetic fields into

the kinetic equation (13) is easily done by adding an electro-

magnetic vector potential A to PT in Eq. (9). Namely, we

set PT = p + H0AT − eA, where e > 0 is the magnitude of

the electron charge. The resulting electric and magnetic fields

reads E = −∂A/∂t and B = ∇×A, respectively. The electric-

and magnetic-field dependent terms come respectively from

the Wigner transformation on ∂ρ/∂t and [H0, ρ] [19], which

means that we can obtain such terms separately from the ther-

mal driving term (14). Then, combining Eq. (13) and the re-

sult obtained in Ref. [19], we arrive at the quantum kinetic

equation in the presence of disorder, an electric field E, a

magnetic field B, and a temperature gradient −∇T/T :

∂〈ρ〉
∂t
+

i

~
[H0, 〈ρ〉] +

1

2~

{

DH0

Dk
· ∇〈ρ〉

}

+ K(〈ρ〉)

= DE(〈ρ〉) + DB(〈ρ〉) + DT (〈ρ〉). (16)

Here and below {a·b} ≡ a·b+b·a (with a and b being vectors)

denotes a symmetrized operator product. In Eq. (16) DE(〈ρ〉)
and DB(〈ρ〉) are the electric and magnetic driving terms given

by [19]

DE(〈ρ〉) = eE

~
· D〈ρ〉

Dk
, (17)

DB(〈ρ〉) = e

2~2

{(

DH0

Dk
×B

)

· D〈ρ〉
Dk

}

, (18)

where is D/Dk the covariant derivative defined in Eq. (15).

The covariant derivatives reduce to simple derivatives in

a spin-independent single-band system, for example in a

parabolic band system with H0(k) = ~2k2/2m (≡ εk). Ac-

cordingly, the quantum kinetic equation (16) reduces to
[

∂

∂t
+ vk · ∇ −

e

~
(E + vk ×B) · ∇k −

εk − µ
~T

∇T · ∇k
]

fk

= −I( fk), (19)

where we have defined the velocity vk = (1/~)∇kεk and

I( fk) is the single-band version of Eq. (4). Here, note that

in the semiclassical Boltzmann equation the temperature gra-

dient dependent term comes from the ṙ · ∇ f term, which

becomes − εk−µ
~T
∇T · ∇k f in Eq. (19) by using ṙ = vk and

∂ f

∂T
= − εk−µ

T

∂ f

∂εk
. The quantum kinetic equation (16) we have

derived can therefore be understood as a generalization of the

simple Boltzmann equation (19) in which the velocity and dis-

tribution function scalars are replaced by matrices, the simple

derivatives ∇k are replaced by covariant derivatives D/Dk,

and scalar products are replaced by symmetrized matrix prod-

ucts 1
2
{ · }. Equations (13) and (16) are the principal result of

this paper.

III. SOLUTION OF THE DENSITY MATRIX

In this section, by solving the quantum kinetic equation

(16), we give general expressions for the density matrix in

the presence of electric and magnetic fields and a temperature

gradient. Especially, we obtain the linear response of the den-

sity matrix to a temperature gradient in a low magnetic field

by performing the low-magnetic-field expansion.

A. Density matrix at zero electric and magnetic fields

Here, we consider electron transport induced solely by a

temperature gradient, i.e., we set E = B = 0 in Eq. (16).

We can follow the procedure that was done for the case of

transport induced solely by an electric field [19, 27]. In

linear response, we write the electron density matrix 〈ρ〉 as

〈ρ〉 = 〈ρ0〉 + 〈ρT 〉, where 〈ρ0〉 is the equilibrium density ma-

trix and 〈ρT 〉 is the correction to 〈ρ0〉 which is linear in the

temperature gradient −∇T/T . With this notation we need to

solve the kinetic equation in the form

∂〈ρT 〉
∂t
+

i

~
[H0, 〈ρT 〉] + K(〈ρT 〉) = DT (〈ρ0〉), (20)

where we have used that fact that K(〈ρ0〉) = 0. We divide the

electron density matrix response 〈ρT 〉 into the diagonal part

〈nT 〉 and the off-diagonal part 〈S T 〉, writing 〈ρT 〉 = 〈nT 〉 +
〈S T 〉. Note that the equilibrium density matrix 〈ρ0〉 is diagonal

in the band index.

When only band-diagonal to band-diagonal terms are in-

cluded in the scattering kernel, it is easy to solve for the

steady-state value of 〈nT 〉. The kinetic equation (20) in this

limit is

[I(〈nT 〉)]mm
k = [DT (〈ρ0〉)]mm

k =
∇T

T
· vm

k

(

εm
k − µ

) ∂ f0(εm
k

)

∂εm
k

,

(21)

where m is a band index, vm
k
= (1/~)∇kεm

k
, and 〈ρ0〉mm

k
=

f0(εm
k

) is the Fermi-Dirac distribution function. Here, εm
k

is

an eigenvalue of the Bloch HamiltonianH0. The equation for

〈nT 〉 is therefore a familiar linear integral equation and yields

〈nT 〉mk = τm
trk

∇T

T
· vm

k

(

εm
k − µ

) ∂ f0(εm
k

)

∂εm
k

, (22)

where τm
trk

is the transport lifetime which is often nearly con-

stant across the Fermi surface.

Next we consider the solution for the off-diagonal part of

the density matrix 〈S T 〉, which is independent of weak dis-

order. From Eq. (20) the kinetic equation for 〈S T 〉 is given

by

∂〈S T 〉
∂t
+

i

~
[H0, 〈S T 〉] = Dod

T (〈ρ0〉) − J(〈nT 〉), (23)

where Dod
T

(〈ρ0〉) is the off-diagonal part of the intrinsic driving

term:

[DT (〈ρ0〉)]mm′

k =
i

~

∇T

T
·Rmm′

k

[

εm
k f0(εm

k) − εm′

k f0(εm′

k )
]

(24)
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with m , m′. As one can see from its form, the off-diagonal

part of the thermal driving term is responsible for the Berry

phase contribution to transport coefficients such as the Nernst

conductivity of systems with broken time-reversal symmetry

in the absence of a magnetic field. The solution to this equa-

tion is [27]

〈S T 〉 =
∫ ∞

0

dt′ e−iH0t′/~[DT (〈ρ0〉) − J(〈nT 〉)]eiH0t′/~, (25)

where we have not explicitly exhibited the time dependences

of 〈ρ0(t− t′)〉 and 〈nT (t− t′)〉. It can be further expanded in the

eigenstate basis by inserting an infinitesimal e−ηt
′

and taking

the limit η→ 0 to obtain

〈S T 〉mm′

k = −i~
[DT (〈ρ0〉)]mm′

k
− [J(〈nT 〉)]mm′

k

εm
k
− εm′

k

. (26)

Here, we have written only the principal value part and omit-

ted δ-function terms. The δ-function terms might become im-

portant when bands touch as in the case of electric field [27].

In the case of electric field, such a term gives rise for example

to the Zitterbewegung contribution to the minimum conduc-

tivity in graphene. We note that, as shown in Ref. [27], the

contribution from J(〈nT 〉) corresponds to the vertex correction

in the ladder-diagram approximation of perturbation theory.

B. General expression for the field-induced density matrix

Now, we consider the general expression for the density

matrix in the presence of electric and magnetic fields and a

temperature gradient. We write the electron density matrix

as 〈ρ〉 = 〈ρ0〉 + 〈ρ〉F , where 〈ρ0〉 is the density matrix in the

absence of fields, and 〈ρ〉F is the field-induced density matrix.

Then we can rewrite the steady-state uniform limit of Eq. (16)

at a given wave vector in the form

(L − DE − DB − DT )〈ρ〉F = (DE + DB + DT )〈ρ0〉, (27)

where we have defined an operator L ≡ P + K. We have also

used the fact that L〈ρ0〉 = 0, since 〈ρ0〉 in the eigenstate rep-

resentation is a diagonal matrix and disorder scattering does

not occur in the absence of fields. Here, P acts on an arbitrary

density matrix 〈ρ〉 and is defined by

P〈ρ〉 ≡ i

~
[H0, 〈ρ〉]. (28)

Note that, in the eigenstate representation, the matrix P is

purely diagonal both in wave vector and in density-matrix el-

ement at a given wave vector, and that it is nonzero only for

off-diagonal density-matrix elements [19]. It follows that

〈ρ〉F =
[

1 − L−1(DE + DB + DT )
]−1L−1(DE + DB + DT )〈ρ0〉

=
∑

N≥0

[L−1(DE + DB + DT )
]NL−1(DE + DB + DT )〈ρ0〉.

(29)

We can view the five terms P, K, DE , DB, and DT as matri-

ces that act on vectors formed by all eigenstate-representation

density-matrix components at a given wave vector. It should

be mentioned that Eq. (29) describes a density-matrix expan-

sion in powers of the field strengths Ei, B j, and −∂kT/T :

〈ρ〉F =
∑

α,β,γ

MαβγEαi B
β

j
(−∂kT/T )γ, (30)

where i, j, k denote the spatial direction, α, β, γ are integers

satisfying α + β + γ ≥ 1, and Mαβγ is a matrix determined

from the electronic structure of a system. Here, note that the

angles between the fields are arbitrary in our formalism. In

other words, we can in principle calculate arbitrary-order (lin-

ear and nonlinear) responses of a physical observable to the

fields from the definition

〈Ô〉 = Tr
[

Ô〈ρ〉F
]

, (31)

where Ô the operator of a physical observable and Tr indicates

the summation over the wave numbers in the Brillouin zone

and over the matrix components.

To be more specific, let us consider the linear response to

a temperature gradient −∇T/T in the presence of a low mag-

netic field B. From Eq. (29) we have

〈ρT 〉 =
∑

N,N′≥0

(L−1DB)NL−1DT (L−1DB)N′〈ρ0〉

≡
∑

N≥0

(L−1DB)NL−1DT (〈ρ0〉 + 〈ρB〉), (32)

Here, the N = N′ = 0 term is given by Eqs. (22) and (26),

and 〈ρB〉 is the density matrix induced solely by the magnetic

field 〈ρB〉 ≡
∑

N≥1(L−1DB)N〈ρ0〉 [19]. At each order in the

magnetic field strength, contributions to 〈ρT 〉 can quite gener-

ally be organized by their order in an expansion in powers of

scattering strength λ by letting K → λK and identifying terms

with a particular power of λ. The various low-field expansion

terms are generated by repeated action of DB and L−1. Since

we are assuming that the magnetic field B is very weak, we

may set 〈ρB〉 = L−1DB〈ρ0〉 ≡ 〈ξB〉 in Eq. (32). In the eigen-

state representation 〈ξB〉 is given by [19]

〈ξB〉mm
k =

e

~
f0(εm

k)B ·Ωm
k, (33)

where 〈ρ0〉mm
k
= f0(εm

k
) is the Fermi-Dirac distribution func-

tion of band m, Ωm
k,a
= ǫabc i〈∂kb

um
k
|∂kc

um
k
〉 is the Berry curva-

ture. This means that the correction to the Fermi-Dirac distri-

bution function 〈ρ0〉 due to magnetic field in Eq. (32) is given

by the Berry phase correction.

IV. TRANSPORT AT ZERO MAGNETIC FIELD

At zero magnetic field, an electric current J and a heat cur-

rent JQ in the presence of an electric field E and a tempera-

ture gradient −∇T/T are generally given by

J = σ̂E − α̂∇T (34a)

JQ = T α̂E − κ̂∇T, (34b)
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where σ̂, α̂, and κ̂ are the electrical conductivity tensor, ther-

moelectric conductivity tensor, and thermal conductivity ten-

sor, respectively. The relation between the electric current in-

duced by a temperature gradient (J = −α̂∇T ) and the heat

current induced by an electric field (JQ = T α̂E) is known as

the Onsager reciprocal relation.

In this section, we derive general expressions for the elec-

tric current induced by a temperature gradient and the heat

current induced by an electric field at zero magnetic field, fo-

cusing on the intrinsic (i.e., Berry phase) contribution to the

currents. We consider a general microscopic model with the

Hamiltonian H0 =
∑

m,k(εm
k
− µ)|m,k〉〈m,k| and the equilib-

rium density matrix 〈ρ0〉 =
∑

m,k f0(εm
k

)|m,k〉〈m,k|, where εm
k

is an energy eigenvalue of band m with momentum k and

f0(εm
k

) = {exp[(εm
k
− µ)/T ] + 1}−1 is the unperturbed Fermi-

Dirac distribution function. In this case, the thermal driving

term (14) reduces to a little simpler form:

DT (〈ρ0〉) =
1

~

∇T

T
· D(H0〈ρ0〉)

Dk
, (35)

sinceH0 and 〈ρ0〉 are both band-diagonal matrices.

A. Electric current induced by temperature gradient

Let us compute the intrinsic contribution to the electric cur-

rent induced by a temperature gradient, J = −α̂∇T . As an

example we calculate the intrinsic anomalous Nernst conduc-

tivity, which arises as a Berry phase effect. Without loss of

generality, we may consider the case of a temperature gradi-

ent along the y direction −∇T/T = −∂yT/Tey, and the current

generated along the x direction Jx.

First, we compute the following contribution:

Tr[(−e)vx〈ρT 〉], (36)

where vx is the velocity in the x direction, and 〈ρT 〉 is the

density matrix linear in the temperature gradient −∇T/T =

−∂yT/Tey. As we have seen in Sec. III A, the intrinsic con-

tribution that is independent of disorder originates from the

off-diagonal component of the thermal driving term. An off-

diagonal component of the thermal driving term (35) reads

〈n|DT (〈ρ0〉)|n′〉

=
1

~

∂yT

T

∑

m′

εm′ f0m′〈n|
[

|∂ym
′〉〈m′| + |m′〉〈∂ym

′|
]

|n′〉

=
1

~

∂yT

T
(εn′ f0n′ − εn f0n)〈n|∂yn

′〉, (37)

where n , n′, ∂a ≡ ∂/∂ka, εm = ε
m
k
− µ, and we have omitted

the k dependences to simplify the notation. Using Eq. (26)

we obtain the off-diagonal part of the density matrix induced

by the temperature gradient,

〈S T 〉 = −i
∂yT

T

∑

nn′

εn′ f0n′ − εn f0n

εn − εn′
|n〉〈n|∂yn

′〉〈n′|, (38)

where n , n′. We also have the intrinsic contribution to the

velocity operator in the eigenstate basis,

vx ≡
1

~

DH0

Dkx

=
1

~

∑

m′

(εm′ − εn′ )
[|∂xm

′〉〈m′| + |m′〉〈∂xm′|] ,

(39)

where we have used the fact that εn′∂x(
∑

m′ |m′〉〈m′|) = 0.

Note that the terms proportional to ∂xε in DH0/Dkx do not

contribute to the final expression for the current resulting from

〈S T 〉 due to the traceless nature. From Eqs. (38) and (39) we

obtain

〈m|vx〈S T 〉|m〉

= − i

~

∂yT

T

∑

nn′

∑

m′

(εm′ − εn′ )
εn′ f0n′ − εn f0n

εn − εn′
δn′m

×
[

δm′n〈m|∂xn〉〈n|∂ym〉 + δmm′〈∂xm|n〉〈n|∂ym〉
]

=
i

~

∂yT

T















εm f0m〈∂xm|∂ym〉 +
∑

n

εn f0n〈m|∂xn〉〈n|∂ym〉














.

(40)

Finally, we obtain the electronic contribution to the electric

current induced by a temperature gradient,

Tr[(−e)vx〈S T 〉] = −
e

~

∂yT

T

∑

m

∫

[dk]Ωm
k,z(ε

m
k − µ) f0(εm

k),

(41)

where
∫

[dk] =
∫

ddk/(2π)d and Ωm
a = ǫabci〈∂ka

m|∂kb
m〉 is the

Berry curvature of band m. Note that the contribution from

the diagonal density matrix 〈nT 〉 to Eq. (41) is zero, because

the integrand is an odd function of the wave vector k.

Next, we need to calculate the contribution from the mag-

netization, −ET × M , which is analogous to that in case

of electric field, −E ×M . We calculate the intrinsic mag-

netization (i.e., orbital magnetization) M using the identity

M = −∂F/∂B|B→0 with F and B being the grand canonical

potential of the system and a magnetic field, respectively. In

our quantum kinetic formalism, it is the equilibrium electron

density matrix that is modified by a magnetic field in systems

with momentum-space Berry curvatures [see Eq, (33)], while

the momentum-space density of states remains unchanged

[19]. Then, the total number of electrons of the system in a

magnetic field reads [19]

N = Tr[(〈ρ0〉 + 〈ξB〉)] =
∑

m

∫

[dk]

(

1 +
e

~
B ·Ωm

k

)

f0(εm
k

),

(42)

where 〈ξB〉 = (e/~) f0(εm
k

)B · Ωm
k

[Eq. (33)]. The thermody-

namic relation N = −∂F/∂µ with µ being the chemical poten-

tial can be rewritten as F = −
∫

dµN. Then, we obtain

F = −
∫

dµ
∑

m

∫

[dk]

(

1 +
e

~
B ·Ωm

k

)

f0(εm
k)

= −1

β

∑

m

∫

[dk]

(

1 +
e

~
B ·Ωm

k

)

ln
[

1 + e−β(ε
m
k
−µ)

]

, (43)
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where we have used that
∫

dµ f0(εm
k

) = (1/β) ln[1 + e−β(ε
m
k
−µ)]

with β = 1/T , because the well-known thermodynamic iden-

tity F = (1/β)
∑

m

∫

[dk] ln[1 + e−β(ε
m
k
−µ)] holds in the limit

B → 0. Finally, we get

M =
e

~

1

β

∑

m

∫

[dk]Ωm
k

ln
[

1 + e−β(ε
m
k
−µ)

]

, (44)

which is in complete agreement with the expression obtained

by invoking semiclassical wave-packet dynamics [41].

In order to obtain the “transport” current, the contribution

from the orbital magnetization must be subtracted, since it

flows even in equilibrium. Finally, from Eqs. (41) and (44),

the “transport” electric current is obtained as

Jx = Tr[(−e)vx〈S T 〉] − (−ET ×M )

= − e

~

∂yT

T

∑

m

∫

[dk]Ωm
k,z

×
{

(εm
k − µ) f0(εm

k) + T ln
[

1 + e−β(ε
m
k
−µ)

]}

, (45)

which is in complete agreement with the expression obtained

by invoking semiclassical wave-packet dynamics [41]. Note

that we have not included the correction to the Bloch-state

energy due to the orbital magnetic momentmm
k

[i.e., the mod-

ification such that εm
k
→ εm

k
−mm

k
·B in Eq. (43)], which adds

the contribution
∑

m

∫

[dk] f0(εm
k

)mm
k

to the total orbital mag-

netization in Eq. (44). This is because the contribution from

the orbital magnetic moment does not appear explicitly in the

final expression for the “transport” current at zero magnetic

field. In other words, this contribution is cancelled out by

the “local” current −ET ×
∑

m

∫

[dk] f0(εm
k

)mm
k

which should

be added to the right-hand side of Eq. (45) [see Eq. (11) of

Ref. [41]].

B. Heat current induced by electric field

Let us compute the intrinsic contribution to the heat current

induced by an electric field, JQ = T α̂E. To see whether our

theory correctly describes the Onsager reciprocal relation in

Eq. (34), we consider the reciprocal effect of the anomalous

Nernst effect, i.e., a heat current generation along the x direc-

tion J
Q
x by an electric field along the y direction E = Eyey.

First, we compute the following contribution:

Tr
[

1
2
{H0, vx}〈ρE〉

]

, (46)

where 1
2
{H0, vx} is the energy current operator in the x direc-

tion, and 〈ρE〉 is the density matrix linear in the electric field

E = Eyey. By comparing the thermal driving term (14) [or

Eq. (35) in the present case] and the electric driving term (17),

we see that these driving terms have a very similar structure.

Then, from Eq. (38) we find that the off-diagonal part of the

density matrix induced by the electric field is given by

〈S E〉 = −ieEy

∑

n,n′

f0n′ − f0n

εn − εn′
|n〉〈n|∂yn

′〉〈n′|, (47)

where n , n′. From Eqs. (39) and (47) we obtain

〈m|H0vx〈S E〉|m〉 = i
eEy

~

∑

n

εm ( f0n − f0m) 〈m|∂xn〉〈n|∂ym〉.

(48)

Similarly, we can calculate 〈m|vxH0〈S E〉|m〉. Then, combin-

ing these things, we have the following general expression:

Tr
[

1
2
{H0, vx}〈S E〉

]

= i
eEy

2~

∑

m,n

(εm + εn) ( f0n − f0m) 〈m|∂xn〉〈n|∂ym〉

=
eEy

2~

















∑

m

εmΩ
m
z f0m + i

∑

m,n

(εm f0n − εn f0m) 〈m|∂xn〉〈n|∂ym〉
















.

(49)

Here, let us introduce the orbital magnetic moment of an elec-

tron in band n defined by [1]

m
n
k = −i

e

2~
〈∇kn| × [H0 − εn]|∇kn〉

= i
e

2~

∑

m′

(εm′ − εn)〈n|∇km′〉 × 〈m′|∇kn〉, (50)

where we have used that ∇k(〈n|m′〉) = 0. Using Eq. (50) and

the identities εm = (εm−εn)+εn and εn = (εn−εm)+εm in the

second term in the right-hand side of Eq. (49), we can rewrite

Eq. (49) as

Tr
[

1
2
{H0, vx}〈S E〉

]

=
eEy

~

∑

m

∫

[dk]Ωm
k,z(ε

m
k − µ) f0(εm

k)

+ Ey

∑

n

∫

[dk]mn
k,z f0(εn

k), (51)

which indicates that the contribution from the orbital mag-

netic moment, −Tr[(E × m)x〈ρ0〉], is already subtracted in

the definition of Tr[ 1
2
{H0, v}〈S E〉]. Then, it turns out that the

electronic part of the energy current in our formalism should

be defined as Tr[ 1
2
{H0, v}〈S E〉] − Tr[(E ×m)〈ρ0〉]. This form

corresponds to the energy current carried by a wave packet,

〈W | 1
2
{Ĥ, ˆ̇r}|W〉 = εṙ −E × m, in the language of semiclassi-

cal wave-packet dynamics [41].

In order to obtain the “transport” current, the contribution

from the orbital magnetization, −E ×M (i.e., an energy flow

due to the Poynting vector), must be subtracted, since it flows

even in equilibrium [41]. The orbital magnetization M has

already been calculated in Eq. (44). Finally, we obtain the

“transport” heat current as

JQ
x = Tr

[

1
2
{H0, vx}〈S E〉

]

− Tr
[

(E ×m)x〈ρ0〉
]

+E ×M

=
eEy

~

∑

m

∫

[dk]Ωm
k,z

×
{

(εm
k − µ) f0(εm

k) + T ln
[

1 + e−β(ε
m
k
−µ)

]}

. (52)

Comparing Eqs. (45) and (52), we confirm the Onsager recip-

rocal relation αxy = Jx/(−∂yT ) = J
Q
x /(T Ey), as expected in

Eq. (34). We show a schematic comparison of our formalism

with semiclassical wave-packet dynamics in the presence of a

temperature gradient−∇T/T and an electric field E in Table I.
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TABLE I. Schematic comparison of our formalism with semiclassical wave-packet dynamics in the presence of a temperature gradient ET =

−∇T/T and an electric field E. The orbital magnetization M is given by Eq. (44). Note that in this table the contributions from the orbital

magnetic momentm are already canceled out and not shown in the expressions for the currents obtained by invoking semiclassical wave-packet

dynamics.

Formalism Electric current (J = −α̂∇T ) Heat current (JQ = T α̂E)

Semiclassical wave-packet dynamics [41] ∇ ×M
∫

[dk](ε − µ)ṙ f0 +E ×M

Our quantum kinetic formalism Tr[(−e)v〈S T 〉] +ET ×M Tr
[

1
2
{H0,v}〈S E〉

]

− Tr
[

(E ×m)〈ρ0〉
]

+E ×M

C. Heat current induced by temperature gradient

Let us consider the intrinsic contribution to the heat current

induced by a temperature gradient, JQ = −κ̂∇T . As an exam-

ple, we consider the anomalous thermal Hall effect. Without

loss of generality, we may consider the case of a temperature

gradient along the y direction −∇T/T = −∂yT/Tey, and the

heat current generated along the x direction J
Q
x .

First, there is the contribution from the usual energy current

operator ĵ
Q
x =

1
2
{H0, vx}, which is given by Tr[ 1

2
{H0, vx}〈S T 〉],

where 〈S T 〉 is the intrinsic density matrix linear in the tem-

perature gradient −∇T/T = −∂yT/Tey. Comparing 〈S T 〉
[Eq. (38)] and 〈S E〉 [Eq. (47)], we can see that a replacement

such that Ey → ∂yT/T and f0n → εn f0n in 〈S E〉 gives rise to

〈S T 〉. Then, from Eq. (51) we find that

Tr
[

1
2
{H0, vx}〈S T 〉

]

=
e

~

∂yT

T

∑

m

∫

[dk]Ωm
k,z(ε

m
k − µ)2 f0(εm

k)

+
∂yT

T

∑

n

∫

[dk]mn
k,z(ε

n
k − µ) f0(εn

k),

(53)

where it is indicated that the energy flow due to the orbital

magnetic moment has already been subtracted. As in the case

of the heat current induced by an electric field [Eq. (52)],

the contribution from the orbital magnetic moment should

not appear in the transport current. Thus, the electronic part

of the energy current in our formalism should be defined as

−Tr[ 1
2
{H0, v}〈S T 〉] − Tr[(ET ×m)xH0〈ρ0〉].

In addition to Eq. (53), it has been shown that there is the

contribution from the energy magnetizationME to the anoma-

lous thermal Hall effect [42–46]. From the calculation of the

anomalous Nernst effect in Sec. IV A, we expect that such a

contribution from the energy magnetization should take the

form −ET ×ME . Finally, the anomalous thermal Hall effect

in our formalism is expected to be given by

JQ
x = − Tr

[

1
2
{H0, vx}〈S T 〉

]

− Tr
[

(ET ×m)xH0〈ρ0〉
]

− (−ET ×ME). (54)

However, it has been suggested that the calculation of the en-

ergy magnetization ME is complicated [42–46], and is be-

yond the scope of this paper since we are focusing on the

thermoelectric and thermal trasnport in a magnetic field.

V. THERMAL CHIRAL ANOMALY IN GENERIC

THREE-DIMENSIONAL SEMIMETALS

So far we have considered intrinsic transport in systems

with momentum-space Berry curvatures in the absence of a

magnetic field. Now, we take into account the presence of a

magnetic field in transport phenomena induced by a temper-

ature gradient. We take the chiral anomaly in Weyl semimet-

als as a representative example. The chiral anomaly in Weyl

semimetals is usually referred to as the non-conservation of

the total number of electrons in a given valley (Weyl cone)

in the presence of parallel electric and magnetic fields. In

semiclassical wave-packet dynamics, it has been shown that

such a non-conservation of the total number of electrons in a

given valley also happens in the presence of parallel temper-

ature gradient and magnetic field [47]. Namely, the thermal

chiral anomaly can occur in 3D semimetals. In this section,

we explicitly calculate the rate of the change of the total elec-

tron number in a given valley (the rate of pumping of electrons

between valley) in a generic model of 3D semimetals. We set

~ = 1 in the rest of this paper.

We study a general model with the Hamiltonian H0 =
∑

m,k ε
m
k
|m,k〉〈m,k| and the equilibrium density matrix 〈ρ0〉 =

∑

m,k f0(εm
k

)|m,k〉〈m,k|, where εm
k

is an energy eigenvalue of

band m with momentum k and f0(εm
k

) is the Fermi-Dirac dis-

tribution function. For concreteness and without loss of gener-

ality, we may choose ET = (0, 0,−∂zT/T ) and B = (0, 0, Bz).

Let us consider the following quantity that is linear in both

temperature gradient and magnetic field,

∂N

∂t
≡ Tr[L〈ρT B〉] = Tr

[

DBL−1DT (〈ρ0〉) + DTL−1DB(〈ρ0〉)
]

(55)

evaluated for the Fermi surface associated with a particu-

lar valley. Here, the density matrix 〈ρT B〉 is obtained from

Eq. (32). Note that L = P + K is an operator introduced in

Sec. III B, which has the dimension of [time]−1.

Let us consider the first term in the right-hand side of

Eq. (55), i.e., Tr[DBL−1DT (〈ρ0〉)]. The density matrix lin-

ear in the temperature gradient, 〈ρT 〉 = L−1DT (〈ρ0〉), con-

tains both band-diagonal 〈nT 〉 and band off-diagonal 〈S T 〉
contributions as 〈ρT 〉 = 〈nT 〉 + 〈S T 〉. Then, it follows that

Tr[DBL−1DT (〈ρ0〉)] = Tr[DB(〈nT 〉)]+Tr[DB(〈S T 〉)], since DB

is linear in the density matrix. First we evaluate the diago-

nal element [DB(〈nT 〉)]mm
k

. From Eq. (22) we have 〈nT 〉 =
−ET,z

∑

m,k τ
m
tr [∂kz

f0(εm
k

)]|m,k〉〈m,k|. It can be shown that for
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arbitrary diagonal density matrix 〈F 〉 the diagonal component

of the magnetic driving term [DB(〈F 〉)] is (see Appendix A)

[DB(〈F 〉)]mm
k = eBz

(

∂εm
k

∂ky

∂

∂kx

−
∂εm

k

∂kx

∂

∂ky

)

F m
k , (56)

where 〈F 〉mm
k
= F m

k
. In the present case we can set F m

k
=

−ET,zτ
m
tr∂kz

f0(εm
k

). Then, it is obvious that [DB(〈nT 〉)]mm
k

is an odd function of kx, ky, and kz, which means that

Tr [DB(〈nT 〉)] = 0. Therefore, it turns out that one of the two

contributions to the rate of the change of the total electron

number in a given valley due to the thermal chiral anomaly

[Eq. (55)] is given by (see Appendix B)

Tr
[

DBL−1DT (〈ρ0〉)
]

=

∫

FS

d3k

(2π)3

∑

m

[DB(〈S T 〉)]mm
k

=
eBz∂zT

4π2

∫

d3k

2π

εm
k
− µ

T

∂ f0(εm
k

)

∂εm
k

[

vm
k,xΩ

m
k,x + vm

k,yΩ
m
k,y

]

,

(57)

where FS represents the integration on the Fermi surface of

the valley, Ωm
k,a
= ǫabc i〈∂kb

um
k
|∂kc

um
k
〉 is the Berry curvature of

band m, and vm
k

is the Bloch state group velocity. In Eq. (57)

we have assumed that only the band m intersects the Fermi

surface, i.e., ∂ f0(εn
k

)/∂εn
k
= δmn∂ f0(εm

k
)/∂εm

k
, which can in

general apply to multi-valley systems.

Next let us consider the second term in the right-hand

side of Eq. (55), i.e., Tr[DTL−1DB(〈ρ0〉)]. As has been ex-

plained in Sec. III B, the linear-response density matrix to a

low magnetic field in the absence of a temperature gradient,

〈ρB〉 = L−1DB(〈ρ0〉), contains only band-diagonal contribu-

tion as 〈ρB〉 = 〈ξB〉. In this case the calculation is much easier

than that of Tr[DB(〈ρT 〉)]. After a calculation we find that

Tr
[

DTL−1DB(〈ρ0〉)
]

=

∫

FS

d3k

(2π)3

∑

m

[

DT (〈ξB〉)
]mm
k

=
eBz∂zT

4π2

∫

d3k

2π

εm
k
− µ

T

∂ f0(εm
k

)

∂εm
k

vm
k,zΩ

m
k,z,

(58)

where we have assumed again that only the band m intersects

the Fermi surface.

Combining Eqs. (57) and (58) we arrive at the final expres-

sion for the rate of pumping of electrons between valleys due

to the thermal chiral anomaly:

∂N

∂t
= Tr [DB(〈S T 〉)] + Tr

[

DT (〈ξB〉)
]

=
eBz∂zT

4π2

∫

d3k

2π

εm
k
− µ

T

∂ f0(εm
k

)

∂εm
k

vm
k ·Ωm

k, (59)

which can be regarded as the generalization of the expression

obtained by disorder-free semiclassical wave-packet dynam-

ics [47]. To the best of our knowledge, a microscopic deriva-

tion of the rate of pumping, Eq. (59), has not yet been done

in a general quantum model. We see that Eq. (59) resembles

the expression for the rate of pumping in parallel electric and

magnetic fields due to the chiral anomaly [19]:

∂N

∂t
=

e2EzBz

4π2

∫

d3k

2π

∂ f0(εm
k

)

∂εm
k

vm
k ·Ωm

k. (60)

However, a big difference is the presence of the factor (εm
k
−

µ)/T due to which Eq. (59) approaches zero in the zero tem-

perature limit T/µ → 0, while Eq. (60) can be finite even at

zero temperature.

Let us take a closer look at the relation between the rate

of pumping induced by a temperature gradient [Eq. (59)] and

that by an electric field [Eq. (60)]. To this end, we rewrite

Eqs. (59) and (60) in a unified fashion as

∂N

∂t
= NEBEz − NT B∂zT, (61)

which can be viewed as an analogy to an electric current in

the presence of an electric field and a temperature gradient,

J = σ̂E − α̂∇T . Using the Sommerfeld expansion, we have

at low temperatures T ≪ µ

NT B = −
eBz

4π2

∫

dεQ(ε)
ε − µ

T

∂ f0(ε)

∂ε

=
eBz

4π2

π2

3
T
∂Q(µ)

∂µ

∣

∣

∣

∣

∣

T=0

=
π2

3e
T
∂NEB

∂µ

∣

∣

∣

∣

∣

T=0

, (62)

where Q(µ) =
∫

d3k/(2π) δ(µ − εm
k

)vm
k
· Ωm

k
. From Eq. (62)

we find that the “Mott relation” between NT B and NEB is sat-

isfied. Note, however, that the rate of pumping itself is not

a physical observable. Namely, the integrand in Eq. (59) ap-

pears at intermediate steps of calculation processes of physi-

cal observables such as thermoelectric and thermal conductiv-

ities, as we shall see in Sec. VI C.

In closing, it is informative to consider a simple 3D Weyl

Hamiltonian, H(k) = vF (kxσx + kyσy + kzσz), for which we

obtain the energy eigenvalues ε±
k
= ±εk = ±vF

√

k2
x + k2

y + k2
z

and the Berry curvature Ω±
k,a
= ∓v3

F
ka/2ε

3
k

(a = x, y, z) (see

Sec. VI A for details). In this model, Q(µ) is independent of

µ for each valley (Weyl cone), and therefore ∂Q(µ)/∂µ = 0.

This means that NT B = 0 at the lowest order in the Som-

merfeld expansion. Actually, NT B behaves as ∼ e−µ/T and

rapidly approaches zero at low temperatures T ≪ µ. How-

ever, ∂Q(µ)/∂µ can be nonzero in more realistic models whose

dispersions have the higher-order terms in ka.

VI. APPLICATION TO WEYL SEMIMETALS

In this section, as an application of our theory, we study

longitudinal thermoelectric and thermal transport in Weyl

semimetals in a magnetic field. In order to investigate the

relations of thermoelectric and heat currents to electric cur-

rent (i.e., the Mott relation and the Wiedemann-Franz law, re-

spectively), we focus on the longitudinal thermoelectric and
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thermal conductivities quadratic in magnetic field which are

induced by the thermal chiral anomaly. Namely, we investi-

gate the relations of thermoelectric and heat currents to the

positive quadratic magnetoconductivity arising from the chi-

ral anomaly [14, 15, 19]

σCA
zz =

e2

8π2

(eBz)
2v3

F

µ2
τ, (63)

where vF is the Fermi velocity, µ is the chiral potential, and τ

is the intervalley scattering time. As we have seen in Sec. IV,

the magnetic-field dependent contributions to the electric and

heat currents are respectively calculated from

Ji = Tr[(−e)vi〈ρT B2〉], (64a)

J
Q

i
= Tr

[

1
2
{H0, vi}〈ρT B2〉

]

, (64b)

where 〈ρT B2〉 is the density matrix that is linear in temper-

ature gradient and quadratic in magnetic field. Here, note

that the contributions from the orbital magnetic moment m

(i.e., Tr[(E ×m)〈ρ0〉]) and the orbital magnetization M (i.e.,

ET ×M and E ×M ) to the electric and heat currents are

present only in the transverse currents, as is readily under-

stood from their vector form. Hence, only the contribu-

tions that include the velocity operator, which are shown in

Eq. (64), are relevant to longitudinal thermoelectric and ther-

mal transport in a magnetic field.

A. Theoretical model

We consider the continuum 3D Weyl Hamiltonian

H(k) = vF(kxσx + kyσy) + m(kz)σz, (65)

where vF is the Fermi velocity and σi are the Pauli matri-

ces. For the simplest case (isotropic Weyl cone), we can set

m(kz) = QvFkz with Q being the chirality of a given Weyl

node. For a two-node Weyl semimetal with broken time-

reversal symmetry (which can be regarded as a system of

a 3D topological insulator doped with magnetic impurities)

[19, 48–51], we can set m(kz) = b −
√

v2
F

k2
z + ∆

2, where ∆ is

the mass of 3D Dirac fermions describing the 3D topological

insulator, and b is the strength of a magnetic interaction such

as s-d coupling. In this case, the two Weyl nodes are located

on the kz axis as W± = (0, 0,±k0) with k0 =
√

b2 − ∆2/vF .

The eigenvectors of the Hamiltonian (65) with eigenvalues

ε±
k
= ±εk = ±

√

v2
F

(k2
x + k2

y) + m2 are given by

|u±k〉 =
1
√

2





















√

1 ± m(kz)

εk

±eiθ

√

1 ∓ m(kz)

εk





















, (66)

where eiθ = (kx+iky)/k⊥ with k⊥ =
√

k2
x + k2

y . The generalized

Berry connection in the eigenstate representation is given by

[Rk,α]mn = i〈um
k
|∂kαu

n
k
〉 with α = x, y, z and m, n = ±. The

individual components are given explicitly by

Rk,x =
1

2k⊥
sin θ − σ̃z

1

2k⊥

m

εk
sin θ − σ̃y

vFm

2ε2
k

cos θ

− σ̃x

vF

2εk
sin θ,

Rk,y = −
1

2k⊥
cos θ + σ̃z

1

2k⊥

m

εk
cos θ − σ̃y

vFm

2ε2
k

sin θ

+ σ̃x

vF

2εk
cos θ,

Rk,z = σ̃y

vFk⊥

2ε2
k

∂m

∂kz

, (67)

where σ̃α are the Pauli matrices in the eigenstate basis of
[

++ +−
−+ −−

]

. Also, the individual components of the Berry cur-

vature, Ω±
k,a
= ǫabc i〈∂kb

u±
k
|∂kc

u±
k
〉, are given by

Ω±k,x = ∓
∂m

∂kz

v2
F

kx

2ε3
k

, Ω±k,y = ∓
∂m

∂kz

v2
F

ky

2ε3
k

, Ω±k,z = ∓
v2

F
m

2ε3
k

.

(68)

Notice that the Berry curvature in Weyl semimetals has all the

three (x, y, z) components, whereas the Berry curvature in 2D

systems such as monolayer MoS2 has only the out-of-plane

component.

B. Calculation of the density matrix

Here, we briefly summarize our calculation of the den-

sity matrix 〈ρT B2〉 that is linear in temperature gradient and

quadratic in magnetic field. In our theory, the formal expres-

sion for the density matrix 〈ρT B2〉 in the low-field expansion is

written from Eq. (32) in the form

〈ρT B2〉 = (L−1DB)2L−1DT (〈ρ0〉) +L−1DBL−1DT (〈ξB〉),
(69)

where 〈ρ0〉 is the Fermi-Dirac distribution function and 〈ξB〉
given by Eq. (33). Here, note that the angle between the tem-

perature gradient and magnetic field is arbitrary in this for-

malism. Since the purpose of this section is to investigate the

relations of thermoelectric and heat currents to electric current

(i.e., the Mott relation and the Wiedemann-Franz law, respec-

tively), we follow the procedure for calculating the magneto-

conductivity quadratic in magnetic field induced by the chiral

anomaly [19] in order to obtain the thermoelectric and thermal

conductivities quadratic in magnetic field.

We divide the calculation of the matrices

(L−1DB)2L−1DT (〈ρ0〉) and L−1DBL−1DT (〈ξB〉) in Eq. (69)

into four steps as follows. First, we calculate the off-diagonal

part (i.e., independent of disorder) of the density matrix

induced by the temperature gradient,

〈S T 〉 = L−1DT (〈ρ0〉) = [DT (〈ρ0〉)]mm′

k /i(ε
m
k − εm′

k )

∝ ∂zT, (70)
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FIG. 1. Schematic illustration of the procedure for calculating the density matrix that is linear in temperature gradient and quadratic in magnetic

field in a parallel configuration such that ET = (0, 0,−∂zT/T ) and B = (0, 0, Bz) for a Weyl semimetal described by the Hamiltonian (65).

〈n〉 and 〈ξ〉 indicates band-diagonal density matrix components, and 〈S 〉 indicates band-off-diagonal density matrix components. Prime marks

indicate different contributions at each order of Bz. Bold red arrows indicate the processes that contribute to the longitudinal thermoelectric

and thermal conductivities induced by the thermal chiral anomaly. The rightmost process that results in 〈nT B2 〉 is purely extrinsic, i.e., indicates

the contribution from the Lorentz force. τ and τintra indicate the intervalley and intravalley scattering times, respectively. As in the case of

the electric conductivity [19], the other contributions to the longitudinal thermoelectric and thermal conductivities quadratic in magnetic field

vanish.

where 〈ρ0〉 = diag[ f0(ε+
k

), f0(ε−
k

)] with f0(ε±
k

) =

1/[e(±εk−µ)/T + 1] being the Fermi-Dirac distribution function.

Second, we calculate the diagonal part of the density matrix

that is linear in both temperature gradient and magnetic field,

which results from 〈S T 〉 obtained in Eq. (70) and 〈ξB〉,

〈nT B〉 = L−1 [

DB(〈S T 〉) + DT (〈ξB〉)
]

= τ
[

DB(〈S E〉) + DE(〈ξB〉)
]mm
k

∝ e∂zT Bzτ, (71)

where τ is the intervalley scattering time. As we have seen

in Eq. (59), the appearance of the intervalley scattering time

τ is due to that the driving terms DB(〈S T 〉) and DT (〈ξB〉) have

nonzero values when integrated over a given valley (Weyl

cone). In other words, this 〈nT B〉 indeed arises as a conse-

quence of the thermal chiral anomaly. Third, we calculate the

off-diagonal part of the density matrix that is linear in temper-

ature gradient and quadratic in magnetic field, which results

from 〈nT B〉 obtained in Eq. (71),

〈S T B2〉 = L−1DB(〈nT B〉) = [DB(〈nT B〉)]mm′

k /i(ε
m
k − εm′

k )

∝ e2∂zT B2
zτ. (72)

Fourth, we calculate the intrinsic contribution to the diagonal

part of the density matrix that is linear in temperature gradi-

ent and quadratic in magnetic field, which results from 〈nT B〉
obtained in Eq. (71),

〈ξT B2〉 = P−1DB(〈nT B〉) = e 〈nT B〉mm
k B ·Ωm

k

∝ e2∂zT B2
zτ. (73)

Figure. 1 shows a schematic illustration of the procedure for

calculating the density matrix that is linear in temperature gra-

dient and quadratic in magnetic field.

In the following, we consider the low-temperature case

where T ≪ µ, with T and µ > 0 being the temperature and

chemical potential of the system, respectively. For the sake

of clarity, we also consider the case of Weyl semimetals with

isotropic Weyl cones, i.e., we set m(kz) = QvFkz.

C. Thermoelectric conductivity

Let us consider the case of a temperature gradient and a

magnetic field in a parallel configuration such that ET =

(0, 0,−∂zT/T ) and B = (0, 0, Bz). We start by obtaining the

off-diagonal part of the density matrix induced solely by the

temperature gradient, 〈S T 〉 [Eq. (70)]. Using the expressions

for the thermal driving term DT (〈ρ0〉) [Eq. (24)] and the Berry

connectionRk [Eq. (67)], we get

〈S T 〉 = σ̃y

∂zT

T
[(ε+k − µ) f0(ε+k) − (ε−k − µ) f0(ε−k)]

vFk⊥

4ε3
k

∂m

∂kz

.

(74)

Here, note that we have not written down the contribution

from J(〈nT 〉) in Eq. (26). Such a contribution was shown to

be zero for the magnetoconductivity in the case of short-range

(on-site) disorder potential [19]. Because the thermal driv-

ing term DT (〈ρ0〉) is quite similar to the electric driving term

DE(〈ρ0〉) except for the factor (ε±
k
− µ) in front of f0(ε±

k
), it

turns out that the contribution from J(〈nT 〉) is also zero in the

present case due to the fact that the factor (ε±
k
− µ) is an even

function of k.

Second, we compute the diagonal density matrix 〈nT B〉 pro-

portional to ∂zT Bz [Eq. (71)]. This 〈nT B〉 is the most im-

portant quantity in our formalism, since it directly reflects

the electron-number nonconservation due to the thermal chi-

ral anomaly, as shall be shown just below. As described in
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Ref. [19], the magnetic driving term obtained from an off-

diagonal matrix is purely diagonal for the Weyl Hamiltonian

(65). Following Ref. [19] and using Eq. (74), we have

DB(〈S T 〉) =
eBz

2

[{

DH
Dky

,
D〈S T 〉

Dkx

}

−
{

DH
Dkx

,
D〈S T 〉

Dky

}]

= e
∂zT

T
BzFk1, (75)

where { , } indicates a matrix anticommutator. Here,

Fk = −
v3

F
k⊥

ε2
k

ck −
vFm2

ε2
k

k⊥
ck − vF cos θ

∂ck

∂kx

− vF sin θ
∂ck

∂ky

=
∑

a=x,y

[

1

2
Ω+k,a

∂

∂ka

+ 3k (Ω+k,a)2

]

×
[

(ε+k − µ) f0(ε+k) − (ε−k − µ) f0(ε−k)
]

, (76)

where 1 is the 2 × 2 identity matrix, ck = [(ε+
k
− µ) f0(ε+

k
) −

(ε−
k
− µ) f0(ε−

k
)](vFk⊥/4ε

3
k

)∂m/∂kz, and k =
√

k2
x + k2

y + k2
z .

Also, using the expression for 〈ξB〉 [Eq. (33)], we have

DT (〈ξB〉) = e
∂zT

T
Bz



















(ε+
k
− µ) ∂ f0(ε+

k
)Ω+

k,z

∂kz
0

0 (ε−
k
− µ) ∂ f0(ε−

k
)Ω−

k,z

∂kz



















.

(77)

Now, we show that these DB(〈S T 〉) and DT (〈ξB〉) have

a special property. We see that Fk and ∂[ f0(ε±
k

)Ω±
k,z

]/∂kz

are both even functions of kx, ky, and kz. Accordingly, we

find that the integral of DB(〈S T 〉) + DT (〈ξB〉) over the Fermi

surface of a given valley (Weyl cone) has a nonzero value:
∫

FS

d3k
(2π)3

∑

m[DB(〈S T 〉) + DT (〈ξB〉)]mm
k
, 0. As has been dis-

cussed in Sec. V, this is a consequence of the total electron

number nonconservation in a given valley. Namely, we obtain

the rate of pumping of electrons between valleys

∂N

∂t
=

eBz

4π2

∂zT

T

∫

FS

d3k

2π















2F ′k +
∑

m=±
(εm

k − µ)
∂ f0(εm

k
)

∂kz

Ωm
k,z















=
eBz

4π2
∂zT

∑

m=±

∫

d3k

2π

εm
k
− µ

T

∂ f0(εm
k

)

∂εm
k

vm
k ·Ωm

k, (78)

which is indeed consistent with the general expression (59).

Here, F ′
k

is the component that represents the Fermi surface

response, i.e., is proportional to ∂ f0(εm
k

)/∂ka (a = x, y) in

Eq. (76).

Let us consider the consequence of the action of the scat-

tering operator L−1 on DB(〈S T 〉) and DT (〈ξB〉). In multi-

valley systems, the intervalley scattering time τ is in gen-

eral much larger than the intravalley scattering time τintra (i.e.,

τintra/τ≪ 1), since the intervalley scattering processes require

large momentum transfers, i.e., the number of intervalley scat-

tering processes that can occur is much smaller than that of in-

travalley scattering processes. Therefore, it follows that the in-

tervalley scattering time τ appears as the largest eigenvalue of

the matrix representation of L−1, when L−1 acts on DB(〈S T 〉)
and DT (〈ξB〉). (See Ref. [19] for the detailed description of the

properties of L−1.) Then, the diagonal density matrix 〈nEB〉 is

obtained as

〈nT B〉 = L−1 [

DB(〈S T 〉) + DT (〈ξB〉)
]

= e2EzBzτ

[

F̃ ++
k

0

0 F̃ −−
k

]

, (79)

where

F̃ mm
k =

1

2

∑

m′=±
(εm′

k − µ)












∂ f0(εm′

k
)

∂kx

Ωm′

k,x +
∂ f0(εm′

k
)

∂ky

Ωm′

k,y













+ (εm
k − µ)

∂ f0(εm
k

)

∂kz

Ωm
k,z (80)

is the component which represents the Fermi surface response

in Eqs. (75) and (77). Note that we have neglected the Fermi

sea response in Eqs. (75) and (77).

Third, we compute the off-diagonal density matrix 〈S T B2〉
proportional to ∂zT B2

z [Eq. (72)]. The off-diagonal part of the

density matrix obtained from magnetic driving term acting on

an arbitrary density matrix 〈ρ〉 is given by [19]

〈S B〉mm′

k = −i
[DB(〈ρ〉)]mm′

k
− [J(〈n〉)]mm′

k

εm
k
− εm′

k

, (81)

where m , m′ and 〈n〉 is the off-diagonal part of 〈ρ〉. Substi-

tuting 〈ρ〉 = 〈nT B〉 into Eq. (81), we obtain the relevant off-

diagonal density matrix as

〈S T B2〉 =
e2B2

zτ

2

∂zT

T

×














∂(F̃ ++
k
+ F̃ −−

k
)

∂kx













σ̃x

vF

2εk
cos θ − σ̃y

vFm

2ε2
k

sin θ













+
∂(F̃ ++

k
+ F̃ −−

k
)

∂ky













σ̃x

vF

2εk
sin θ + σ̃y

vFm

2ε2
k

cos θ



























.

(82)

Here, note that we have not written down the contribution

from J(〈nT B〉) in Eq. (81), since it vanishes as in the case of

the magnetoconductivity [19].

Fourth, we compute the diagonal density matrix 〈ξT B2〉 pro-

portional to ∂zT B2
z [Eq. (73)]. Notice that, in the presence of a

magnetic field, there always exists the intrinsic Berry phase

contribution to the diagonal part of a density matrix when

DB acts on any band-diagonal density matrix [19] [see also

Eq. (33)]:

〈ξB〉mm
k = [P−1DB(〈n〉)]mm

k = eGm
k B ·Ωm

k , (83)

where 〈n〉mm′

k
= δmm′Gm

k
. Substituting 〈n〉 = 〈nT B〉 into

Eq. (83), we readily obtain

〈ξT B2〉 = −e2 ∂zT

T
B2

zτ
v2

F
m

2ε3
k

[

F̃ ++
k

0

0 −F̃ −−
k

]

, (84)

where we have used the explicit form of Ω±
z,k

[Eq. (68)].
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We are now in a position to evaluate the zz-component of

the chiral-anomaly induced thermoelectric conductivity pro-

portional to B2
z , which is given by αCA

zz = Tr{(−e)vz[〈S T B2〉 +
〈ξT B2〉]}/(−∂zT ). Here, the velocity operator is written in the

eigenstate basis as

vz =
∂m

∂kz

(

m

εk
σ̃z +

vFk⊥
εk
σ̃x

)

. (85)

From Eqs. (82), (84), and (85), an explicit expression for αCA
zz

at low temperatures such that T ≪ µ is obtained as

αCA
zz =

e3B2
zτ

2T

∫

d3k

(2π)3

∂m

∂kz

v2
F

ε2
k

∑

a=x,y

ka

∂(F̃ ++
k
+ F̃ −−

k
)

∂ka

−
e3B2

zτ

2T

∫

d3k

(2π)3

∂m

∂kz

v2
F

m2

ε4
k

(F̃ ++k + F̃ −−k )

= − e

12
T

(eBz)
2v3

F

µ3
τ, (86)

where we have used m(kz) = QvFkz. Note that Eq. (86) is the

contribution from a given Weyl cone and it is independent of

the chirality Q. Therefore, the thermoelectric conductivity of

a Weyl semimetal withNv nodes is given by − e
12
NvT

(eBz)
2v3

F

µ3 τ.

We numerically find that αCA
zz is proportional to T , 1/µ3, and

v3
F

. We also find that the Mott relation is satisfied as expected:

αCA
zz =

π2

3e
T
∂σCA

zz

∂µ

∣

∣

∣

∣

∣

∣

T=0

, (87)

where σCA
zz =

e2

8π2

(eBz)
2v3

F

µ2 τ is the chiral-anomaly induced mag-

netoconductivity contributed from a given Weyl cone at zero

temperature (T = 0) [14, 15, 19].

D. Thermal conductivity

Next, let us evaluate the zz-component of the chiral-

anomaly induced thermal conductivity proportional to

B2
z , which is given by κCA

zz = Tr{ 1
2
{H0, vz}[〈S T B2〉 +

〈ξT B2〉]}/(−∂zT ). Here, the energy current operator is written

in the eigenstate basis as

1

2
{H0, vz} =

∂m

∂kz













(ε+
k
− µ) m

εk
−µ vF k⊥

εk

−µ vF k⊥
εk

−(ε−
k
− µ) m

εk













. (88)

Note that we have incorporated the chemical potential as

(H0)mn = δmn(εm
k
− µ). From Eqs. (82), (84), and (88), an ex-

plicit expression for κCA
zz at low temperatures such that T ≪ µ

is obtained as

κCA
zz = −

e2B2
zτ

2T

∫

d3k

(2π)3

∂m

∂kz

v2
F

ε2
k

(−µ)
∑

a=x,y

ka

∂(F̃ ++
k
+ F̃ −−

k
)

∂ka

+
e2B2

zτ

2T

∫

d3k

(2π)3

∂m

∂kz

v2
F

m2

ε4
k

∑

n=±
(εn

k − µ)F̃ nn
k

=
1

24
TD

(eBz)
2v3

F

µ2
τ, (89)

where we have used m(kz) = QvFkz and D ≈ 1.8 is a dimen-

sionless factor. Note that Eq. (89) is the contribution from

a given Weyl cone and it is independent of the chirality Q.

Therefore, the thermal conductivity of a Weyl semimetal with

Nv nodes is given by 1
24
NvTD (eBz)

2v3
F

µ2 τ. We numerically find

that κCA
zz is proportional to T , 1/µ2, and v3

F
. We also find that

the Wiedemann-Franz law is violated due to the factorD as

κCA
zz =

π2

3e2
TσCA

zz × D. (90)

The violation of the Wiedemann-Franz law for the chiral-

anomaly induced thermal conductivity has also been reported

in recent theoretical studies [24, 25, 52, 53].

It has been shown that the Wiedemann-Franz law should be

retained in the presence of a quantizing magnetic field with

ωcτ > 1 (ωc is the cyclotron frequency and τ is the transport

relaxation time) and if the condition ωcτ ≫ kBT is satisfied

[54]. However, this is not the case in our study because we

are focusing on the low magnetic field case with ωcτ ≪ 1

(i.e., when the Landau quantization can be neglected). We

expect that the Wiedemann-Franz law may be violated in sys-

tems with nontrivial Bloch bands in a low magnetic field, and

that the violation of the Wiedemann-Franz law in a low mag-

netic field is due to a “Berry phase effect”.

An experimentally observable value is the Lorenz number,

which is defined by

L(Bz) ≡
κzz

Tσzz

≈ 1

T

κ0zz + κ
CA
zz

σ0
zz + σ

CA
zz

, (91)

where σzz and κzz are the total electric and thermal conduc-

tivities, respectively. σ0
zz and κ0zz are the electric and thermal

conductivities at zero magnetic field, respectively. In Eq. (91)

we have used the result that the contributions that are linear

in magnetic field to σzz and κzz vanish in the configuration of

∇T ‖ B and E ‖ B [19], and assumed that the contribu-

tions from the Lorentz force to σzz and κzz are small. Since

σCA
zz ≪ σ0

zz when the magnetic field is weak, we have

∆L(Bz)

L0

≡ L(Bz) − L0

L0

≈ (D− 1)
σCA

zz

σ0
zz

> 0, (92)

which is proportional to B2
z . Here, L0 = π

2/3e2. The enhance-

ment of the Lorenz number has also been reported in a study

invoking semiclassical wave-packet dynamics [24]. It should

be noted that the value of D depends on the detailed band

structure of a system.

VII. DISCUSSION

So far we have developed a theory that describes the Berry

phase effects on magnetotransport phenomena induced by a

temperature gradient, utilizing a “thermal vector potential”

theory [26]. One may think that introducing a temperature

gradient in the usual real-space partial derivative of a density

matrix in Eq. (16) such that

1

2~

{

DH0

Dk
· ∇〈ρ〉

}

→ 1

2~

{

DH0

Dk
· ∇T
∂〈ρ〉
∂T

}

(93)
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works well instead of our formalism, i.e., without introducing

the thermal driving term (14). However, we have checked that

this way of introducing a temperature gradient does not cor-

rectly reproduce the anomalous Nernst effect [Eq. (45)] and its

counterpart due to the Onsager reciprocal relation [Eq. (52)].

Our study implies that a temperature gradient should be re-

garded as a “field” that is described by a potential, as Lut-

tinger originally proposed [34]. Although we expect that the

same quantum kinetic equation as Eq. (16) can also be derived

using the Luttinger’s gravitational potential, it is not clear at

present how to do it.

The Berry phase effects on electronic transport induced by

a temperature gradient have usually been studied by combin-

ing semiclassical Boltzmann theory with semiclassical wave-

packet dynamics, as in the case of the transport induced by

an electric field. In this semiclassical Boltzmann formalism, a

temperature gradient is introduced by setting ṙ · ∂
∂r
→ ṙ · ∂T

∂r
∂
∂T

in the Boltzmann equation. The calculation for obtaining

physical observables becomes not straightforward when a

magnetic field is present [22–25]: the form of the correction

to the distribution function is assumed and then its solution is

obtained by substituting the assumed form into the Boltzmann

equation. In contrast, the presence of a temperature gradient

in our formalism is described as a driving force just as in the

case of an electric field (i.e., comes from k̇ in the language of

the semiclassical Boltzmann formalism). Such an equivalence

to an electric field makes it possible to systematically calcu-

late the response of electron density matrices to a temperature

gradient in powers of magnetic field. This is an advantage of

using our quantum kinetic formalism. On the other hand, we

note that our formalism is valid when the electron mean-free

path is much longer than the electron wavelength, i.e., when

electrons are weakly interacting, as in the case of the semiclas-

sical Boltzmann theory. Indeed, our quantum kinetic equation

(16) reduces to the semiclassical Boltzmann equation (19) in

single-band systems without Berry curvatures.

The magnetic-field induced corrections in systems with

nontrivial Bloch bands implied by semiclassical wave-packet

dynamics are mainly divided into two: (1) the correction to

the momentum-space density of states due to the Berry curva-

ture, (e/~)B ·Ωn
k

[1, 55], and (2) the correction to the Bloch

electron energy due to the orbital magnetic moment, −mn
k
·B

[1, 56]. Here, Ωn
k

andmn
k

are respectively the Berry curvature

and orbital magnetic moment of a Bloch electron with mo-

mentum k in band n, and B is a magnetic field. It has been

shown that the correction to the momentum-space density of

states due to the Berry curvature corresponds to a magnetic-

field induced correction to the equilibrium single-particle den-

sity matrix in our quantum kinetic formalism [19, 57]. How-

ever, it remains an important unresolved problem to derive the

orbital magnetic moment itself and the resulting correction to

the Bloch electron energy due to the orbital magnetic moment

using our quantum kinetic formalism.

Our theory is applicable in principle to the calculation of the

response of any single-particle observables to arbitrary order

of the field strengths Ei, B j, and −∂kT for arbitrary field direc-

tions, as described in Eq. (30). All single-particle observables

O maintain their crystal periodicity when they respond to spa-

tially constant fields and therefore have expectation values of

the form

〈O〉 = Tr
[O〈ρ〉] , (94)

where 〈ρ〉 is a density matrix we have derived in Eq. (30).

The evaluation of field-induced spin currents and spin densi-

ties, which are related to the current-induced torques in spin-

tronics, will be one of the practically important problems to

which our quantum kinetic theory can be applied. We an-

ticipate, for example, that our theory will have interesting

implications for the thermoelectric and thermal properties of

2D multivalley systems such as graphene and transition metal

dichalcogenides, as well as 3D multivalley systems such as

Weyl semimetals which we have studied in this paper.

VIII. SUMMARY

In summary, we have developed a general quantum kinetic

theory of thermoelectric and thermal transport in a low mag-

netic field that accounts for the interplay between momentum-

space Berry curvatures, external electromagnetic fields and

temperature gradient, and Bloch-state scattering. The ob-

tained quantum kinetic equation for Bloch states in the pres-

ence of disorder, electric and magnetic fields, and temperature

gradient [Eq. (16)], which is the principal result of this study,

can be regarded as a matrix generalization of the usual semi-

classical Boltzmann equation. Our theory enables a system-

atic calculation of the linear and nonlinear responses of phys-

ical observables to temperature gradient in powers of mag-

netic field. We have derived from a general Bloch Hamilto-

nian general expressions for the anomalous Nernst effect and

its counterpart due to the Onsager reciprocal relation, which

are in complete agreement with the expressions obtained by

invoking semiclassical wave-packet dynamics. However, the

derivation of the anomalous thermal Hall effect remains a

future subject. We have also derived from a general Bloch

Hamiltonian a general expression for the rate of pumping of

electrons between valleys (i.e., the electron number noncon-

servation in a given valley due to the thermal chiral anomaly)

in parallel temperature gradient and magnetic field. From this

expression we have found a relation, which is analogous to the

Mott relation, between the rate of pumping due to a tempera-

ture gradient and that due to an electric field. We have applied

our theory to a simple two-band model for Weyl semimetals

to study thermoelectric and thermal transport in a magnetic

field. We have shown that the Mott relation is satisfied in the

chiral-anomaly induced thermoelectric conductivity, and that

the Wiedemann-Franz law is violated in the chiral-anomaly

induced thermal conductivity, which are both consistent with

the results obtained by invoking semiclassical wave-packet

dynamics. In our derivation of the thermoelectric and ther-

mal conductivities quadratic in magnetic field, the intervalley

scattering time naturally appears as the eigenvalue of the scat-

tering operator acting on the driving terms that are even func-

tions of the momentum around a valley.
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Appendix A: General properties of the magnetic driving term DB

In this Appendix, we consider general properties of the magnetic driving term (18). We write the Hamiltonian of a system as

H0 =
∑

m εm|m〉〈m|, where εm is an energy eigenvalue of band m. Note that we have omitted the wave vector k dependence to

simplify the notation. Without loss of generality we can set B = (0, 0, Bz). Let us consider the magnetic driving term acting on

an arbitrary diagonal density matrix 〈F 〉 = ∑

m Fm|m〉〈m| with m a band index. The magnetic driving term (18) is written as

DB(〈F 〉) = e

2~2

{(

DH0

Dk
×B

)

· D〈F 〉
Dk

}

=
eBz

2~2

[{

DH0

Dky

,
D〈F 〉
Dkx

}

−
{

DH0

Dkx

,
D〈F 〉
Dky

}]

. (A1)

First, we consider the diagonal component of DB(〈F 〉), i.e., 〈m|DB(〈F 〉)|m〉. We immediately get

DH0

Dky

=
∑

m′

∂yεm′ |m′〉〈m′| +
∑

m′

εm′
[|∂ym

′〉〈m′| + |m′〉〈∂ym
′|],

D〈F 〉
Dkx

=
∑

n′

∂xFn′ |n′〉〈n′| +
∑

n′

Fn′
[|∂xn

′〉〈n′| + |n′〉〈∂xn′|], (A2)

where ∂a = ∂/∂ka. Then we have

DH0

Dky

D〈F 〉
Dkx

=
∑

m′

∂yεm′∂xFm′ |m′〉〈m′| +
∑

m′n′

∂yεm′Fn′ |m′〉〈m′|∂xn
′〉〈n′| +

∑

m′

∂yεm′Fm′ |m′〉〈∂xm′|

+
∑

m′

εm′∂xFm′ |∂ym
′〉〈m′| +

∑

m′n′

εm′Fn′ |∂ym
′〉〈m′|∂xn

′〉〈n′| +
∑

m′

εm′Fm′ |∂ym′〉〈∂xm′|

+
∑

m′n′

εm′∂xFn′ |m′〉〈∂ym′|n′〉〈n′| +
∑

m′n′

εm′Fn′ |m′〉〈∂ym′|∂xn
′〉〈n′| +

∑

m′n′

εm′Fn′ |m′〉〈∂ym′|n′〉〈∂xn
′|, (A3)

from which the diagonal component is obtained as

〈m|DH0

Dky

D〈F 〉
Dkx

|m〉 = ∂yεm∂xFm +
∑

m′

εm′Fm〈m|∂ym
′〉〈m′|∂xm〉 +

∑

m′

εm′Fm′〈m|∂ym
′〉〈∂xm

′|m〉

+ εmFm〈∂ym|∂xm〉 +
∑

n′

εmFn′〈∂ym|n′〉〈∂xn′|m〉, (A4)

where we have used that 〈m′|∂an′〉 + 〈∂am′|n′〉 = ∂a(δm′n′ ) = 0. Similarly, we have

〈m|D〈F 〉
Dkx

DH0

Dky

|m〉 = ∂yεm∂xFm +
∑

n′

Fn′εm〈m|∂xn
′〉〈n′|∂ym〉 +

∑

n′

Fn′εn′〈m|∂xn
′〉〈∂yn′|m〉

+ Fmεm〈∂xm|∂ym〉 +
∑

m′

Fmεm′〈∂xm|m′〉〈∂ym′|m〉. (A5)

FInally, we see that

〈m|DB(〈F 〉)|m〉 = eBz

~2
(∂yεm∂xFm − ∂xεm∂yFm). (A6)

Appendix B: General expression for the rate of pumping ∂N/∂t in parallel temperature gradient and magnetic field

In this Appendix, we derive a general expression for the rate of pumping of electrons between valleys from a general mi-

croscopic electron model with the Hamiltonian H0 =
∑

m εm|m〉〈m| and the equilibrium density matrix 〈ρ0〉 =
∑

m f0m |m〉〈m|,
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where εm is an energy eigenvalue of band m and f0m is the Fermi-Dirac distribution function of band m. Note that we have

omitted the wave vector k dependences in these equations to simplify the notation. For concreteness, we consider the case of

ET = (0, 0,−∂zT/T ) and B = (0, 0, Bz). In Eq. (38) the off-diagonal part of the density matrix induced by the temperature

gradient has been obtained as

〈S T 〉 = −i
∂zT

T

∑

nn′

εn′ f0n′ − εn f0n

εn − εn′
|n〉〈n|∂zn

′〉〈n′|, (B1)

where n , n′. On the other hand, the magnetic driving term (18) acting on 〈S T 〉 is written as

DB(〈S T 〉) =
e

2~2

{(

DH0

Dk
×B

)

· D〈S T 〉
Dk

}

=
eBz

2~2

[{

DH0

Dky

,
D〈S T 〉

Dkx

}

−
{

DH0

Dkx

,
D〈S T 〉

Dky

}]

. (B2)

Since we are focusing on the Fermi surface response, we consider only the terms proportional to ∂x f0 in D〈S T 〉/Dkx:

D〈S T 〉
Dkx

= −i
∂zT

T

∑

nn′

εn′∂x f0n′ − εn∂x f0n

εn − εn′
|n〉〈n|∂zn

′〉〈n′|. (B3)

We also have the relevant term

DH0

Dky

=
1

~

∑

m′

(εm′ − εn′ )
[|∂ym

′〉〈m′| + |m′〉〈∂ym′|], (B4)

where we have used ∂a(
∑

m′ |m′〉〈m′|) = 0. Note that the terms proportional to ∂yε in DH0/Dky do not contribute to the diagonal

part of DB(〈S T 〉). Then, we obtain

〈m|DH0

Dky

D〈S T 〉
Dkx

|m〉 = − i

~

∂zT

T

∑

nn′

∑

m′

(εm′ − εn′ )
εn′∂x f0n′ − εn∂x f0n

εn − εn′
δn′m

[

δm′n〈m|∂yn〉〈n|∂zm〉 + δmm′〈∂ym|n〉〈n|∂zm〉
]

= − i

~

∂zT

T

∑

n

(εm∂x f0m − εn∂x f0n)〈m|∂yn〉〈n|∂zm〉

=
i

~

∂zT

T
εm∂x f0m〈∂ym|∂zm〉 −

i

~

∂zT

T

∑

n

εn∂x f0n〈∂zn|m〉〈m|∂yn〉. (B5)

Similarly, we have

〈m|D〈S T 〉
Dkx

DH0

Dky

|m〉 = − i

~

∂zT

T
εm∂x f0m〈∂zm|∂ym〉 +

i

~

∂zT

T

∑

n

εn∂x f0n〈∂yn|m〉〈m|∂zn〉. (B6)

Finally, we arrive at a general expression for the rate of pumping from the Fermi surface contribution:

Tr [DB(〈S T 〉)] =
eBz

~3

∂zT

T

∑

m,k

εm

[

∂x f0mΩ
m
x + ∂y f0mΩ

m
y

]

, (B7)

where Ωm
a = ǫ

abc i〈∂bm|∂cm〉 is the Berry curvature of band m.
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