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Optically generated electron-hole pairs can probe strongly correlated electronic matter, or, by
forming exciton-polaritons within an optical cavity, give rise to photonic nonlinearities. The present
paper theoretically studies the properties of electron-hole pairs in a two-dimensional electron liquid
in the fractional quantum Hall regime. In particular, we quantify the effective interactions between
optical excitations by numerically evaluating the system’s energy spectrum under the assumption
of full spin and Landau level polarization. Optically most active are those pair excitations which do
not modify the correlations of the electron liquid, also known as multiplicative states. In the case
of spatial separation of electrons and holes, these excitations interact repulsively with each other.
However, when the electron liquid is compressible, other non-multiplicative configurations occur at
lower energies. The interactions of such dark excitations strongly depend on the liquid, and can
also become attractive. For the case of a single excitation, we also study the effect of Landau level
mixing in the valence band which can dramatically change the effective mass of an exciton.

I. INTRODUCTION

Quantized electronic transport is the characteristic fea-
ture of integer and fractional quantum Hall systems':2.
It emerges when a two-dimensional electronic system
is exposed to a strong perpendicular magnetic field.
This intriguing transport behavior manifests the topo-
logical nature of the electrons’ quantum state3, and
the incompressibility of the topological liquid*. To
probe this physics beyond transport different methods
of optical spectroscopy have been applied, including
photoluminescence® !, inelastic light scattering!? 4, or
absorption spectroscopy!®17. Specifically, these tech-
niques have enabled to study the spin physics of quan-
tum Hall materials, including spin-wave excitations and
topological spin textures (“skyrmions”)® 1517 Recent
advances have incorporated a quantum Hall system in an
optical cavity'® 20, The formation of exciton-polaritons
can lead to increased lifetimes of optical excitations,
and optical nonlinearities have been detected using four
wave mixing?®. Strikingly, interactions between exciton-
polaritons were found to be strongly enhanced for some
incompressible liquid phases, making such system a po-
tential source for photonic non-linearities.

A simple theoretic model for optical excitations in a
quantum Hall system restricts electrons and holes to the
lowest Landau level (LLL) of the lowest subband, an as-
sumption which holds for strong layer confinement and
strong magnetic field. This model exhibits a remarkable
“hidden” symmetry?' 23, making the optical excitations
behave as an ideal Bose gas despite the presence of strong
Coulomb interaction. In this scenario, the electron-hole
pair has no explicit correlations with the electron lig-
uid, and these excitonic states are therefore called “mul-
tiplicative states”. They incur the system’s entire oscil-

lator strength, leading to a single emission/absorption
line at a frequency which is independent on the filling
factor. However, this remarkable theoretical result is not
supported by experimental evidences from photolumines-
cence which show a non-trivial spectral structure, as for
instance a doublet peak near filling v = 1/3, cf. Refs. 7
or 11. This demonstrates that in real systems the hidden
symmetry is broken, due to finite electron-hole separa-
tion in asymmetric wells, and/or due to Landau level
mixing. Theoretical attempts to explain the structure of
emission spectra were made!'®11:2425  considering broken
particle-hole symmetry in the interaction term.

However, the existing literature is limited mainly to the
case of a single electron-hole pair (but see Ref. 26 for the
study of a system with multiple charged complexes). In
the present paper, we examine the behavior of a second
pair, and specifically, we investigate how neutral excitons
interact with each other. Interacting states of charge-
neutral excitons are found in systems with finite electron-
hole separation, and some of these states stand out due
to a large overlap with the multiplicative states. We es-
tablish that these “quasi-multiplicative” states are the
most relevant ones for optical experiments, although non-
multiplicative configurations happen to be the ground
state in compressible phases. Specifically, we show that
energy differences between quasi-multiplicative states ap-
pear as the dominant peaks in photoluminescence spec-
tra. Our numerical study of the system demonstrates
that exciton-exciton interactions are repulsive, but in
contrast to the experiment of Ref. 20 no dependence on
the filling factor and/or the compressibility of the elec-
tron liquid is seen in the strength of the nonlinearity.
This mismatch might be due to significant differences in
the carrier density: By invoking the LLL approximation
our theoretical study is valid for the high-density regime,



becoming exact in the limit of infinite magnetic fields. In
contrast, Ref. 20 has been performed at rather low car-
rier densities, at which the lowest Landau level becomes
fractionally filled in magnetic fields of only a few Tesla.

Our study is based on numerical diagonalization of the
electron-hole Hamiltonian in a toroidal geometry?”. In
contrast, the vast majority of the existing numerical work
on electron-hole fluids, cf. Refs.10,11,21-24,28-30 has
been performed on spherical surfaces. Like the sphere,
the torus provides a compact geometry, but it is some-
what more realistic due to its equivalence to a rectangular
plane with periodic boundary conditions. In particular,
the rectangular model naturally allows for particle-hole
symmetry breaking by confining electrons and holes to
two parallel planes separated by a finite distance d.

For the special case of particle-hole symmetry (i.e.
within the lowest Landau level approximation and as-
suming spatially overlapping electron and hole layers),
our study predicts a negative effective mass for the mul-
tiplicative exciton on top of a Laughlin liquid. In other
words, the global ground state of the system occurs at
finite momentum, and the momentum can be assigned
to the electron-hole pair. Earlier numerical work on the
sphere has seen a similar behavior, and has attributed it
to the formation of a charged complex??:3°. By explicitly
constructing trial wave function for the finite-momentum
many-body states, we show that these states can rather
be interpreted as dressed excitons, as in Refs. 23,24,28.
We demonstrate that Landau level mixing as well as a
finite distance between electrons and holes render the ex-
citon mass positive. There, our account of Landau level
mixing has been restricted to the valence band hole, as
it is greatly enhanced due to the heavy mass of the hole.

The paper is organized in the following way: We de-
scribe our model of the system in Sec. II, and present
the results in Sec. III. This section is sub-divided into
three parts: The first part studies a system with a single
pair excitation, the second part considers the system with
two pairs. Both parts assume the lowest Landau level ap-
proximation, whereas in the third part we re-consider the
scenario of a single pair excitation, but allowing for Lan-
dau level mixing in the valence band. A discussion which
summarizes our results is given in Sec. IV. Technical de-
tails related to the numerical treatment of quantum Hall
systems are given in the appendices.

II. SYSTEM AND MODEL

We study electrons in a quantum well exposed to a
strong perpendicular magnetic field B. To make the nu-
merical treatment more tractable, we assume that both
conduction and valence band electrons are spin-polarized,
and the well confinement is strong enough to neglect
subband mixing. The band structure is then given by
flat Landau levels in conduction and valence band. The
energy gap between Landau levels is given by the cy-
clotron frequency w§ =eB /mci{_f, depending on the ef-

fective mass m;tﬁ of the band, with index + referring to
the valence band, and index — referring to the conduc-
tion band. Even for the extraordinarily light conduction
band electrons in GaAs (m_g ~ 0.07m, with m, the elec-
tron rest mass), the cyclotron gap wy = 2.5THz x (B/T)
is orders of magnitude smaller than the optical bandgap
(Ebg/h ~ 2140THz in GaAs). Accounting for the valence
band degrees of freedom in terms of holes, and switching
into a frame which rotates with the bandgap energy, the
single-particle Hamiltonian can be written as

o= B (wpehyons Bt ) (1)

n,j

Apart from a Landau level index n, the creation and
annihilation operators for conduction band electrons
(eiw-, en,j), and valence band holes (hjw‘ hn,j) carry a
second index j. Assuming the absence of disorder, this in-
dex is related to a gauge-dependent geometric symmetry
of the system, e.g. rotational symmetry in the symmet-
ric gauge or translational symmetry in the Landau gauge.
For concreteness, we choose the latter one, in which the
magnetic field is expressed through a vector potential
A = B(0,—x), and thus j is conveniently associated with
2rg
No
with opposite signs for electrons and holes. The spatial
wave functions ¢, ;(z,y) associated with these states are
explicitly given in the appendix for a system with peri-
odic boundary conditions (i.e. a torus), which have been
chosen for this work.

In most parts of the present paper, we will apply the
lowest Landau level (LLL) approximation, in which elec-
trons and holes are restricted to level n = 0. Within
the non-relativistic Landau level Hamiltonian considered
here, the LLL approximation is justified when the mag-
netic field is strong, because the Landau level gap scales
linearly with the magnetic field strength B, whereas the
Coulomb energy scales only with v/B. The latter scal-
ing is due to the distance between electrons which scales
with the magnetic length I = (/A/eB. Within the
LLL approximation, the single-particle Hamiltonian re-
duces to a constant, and the interaction potential be-
comes the crucial Hamiltonian term. We consider a two-
dimensional Coulomb potential for electrons and holes,
but the planes to which different carrier types are con-
fined may be different parallel layers spaced by a distance
d. In Fourier space, the Coulomb potential then becomes
Vig) = %exp(—dq), cf. Ref. 27,31. The divergent term
at ¢ = 0 is excluded from the Fourier sum, which can
be justified by assuming a homogeneous “background”
charge density neutralizing each layer. However, in the
real material charge neutrality applies only to the sys-
tem as a whole, thus we need to add a charging energy
E.(Ny,d) which takes into account that each layer has a
net charge +Nye. Accordingly, the charging term reads

e2d d/lp

H. = 27T€7AN§ = T@(ez/EZB)Nga (2)

invariant momentum along y, p, = hk, = £hj



where A is the area of the system, and Ng = A/(27(%)
is thenumber of magnetic fluxes. As a convenient unit of
energy, we use e?/elp throughout this paper, and Ip as
a unit for length.

The actual interactions are given through the Hamil-
tonian

1
_ - n1,M2;N3,M4 i T ) )
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+ h7l47j4 hn3,j3 h"27]2 hnl’]l) 2leJ2§j3J4 (d) x
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X enl,jl ns,J3 th J26n4,ja |- (3)
The interaction matrix elements V,"':""2"3:"4 () are eval-
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uated in the appendix for the torus geometry. In the
appendix, we also provide further details of our numeri-
cal study, in particular a discussion of the translational
symmetry which leads to conserved many-body pseu-
domomenta. These provide quantum numbers for the
many-body eigenstates3?, which we denote by integers
(K3, Ky), defined modulo Ng and related to the pseudo-
momenta via f(z = KI%” and f(y = Ky%”.

One advantage of periodic boundary conditions is the
immediate and unique connection between particle-to-
flux ratio and filling factor v, which characterizes the
system in the thermodynamic limit. In the absence of
holes, the filling factor is v = N./Ng. Charge-neutral
optical excitations shall not change this value, and there-
fore we generalize the definition of the filling factor in the
presence of Ny, electron-hole pairs to:

 N.— N

v = (4)

In the next section, we will numerically determine
eigenstates and energies of V', in a finite system with
a given numbers of electrons N,, holes Ny, and mag-
netic fluxes Ng. In particular, we are interested how
the states and energies behave when electron-hole pairs
are created, i.e. when both N, and N}, are increased by
one. Some analytical insight in this question can be ob-
tained by defining an operator X (k, k)" which creates
an electron-hole pair at momentum k, and ky:

No—1
X(kx,ky)T - Z 62%]“/1\[@eLod(j-&-ky,N@)h;' (5)
§=0

At d = 0, ie. for systems without spatial sepa-
ration between electrons and holes, the commutator
[V, X(0,0)"] manifests an interesting “hidden” particle-
hole symmetry?!"23: [V, X(0,0)T] = ExX(0,0)". This
relation demands the existence of “free” excitonic
states with binding energy FEx. More precisely,

let EZ(\Q,Nh,N@(Km’Ky)> denote the ith eigenstate of
V at pseudomomenta K = (K,,K,), with energy
E](\Z,z Ny No (Kz, Ky). Then, the hidden symmetry guaran-

tees that XT1(0,0) ’EJ(\ZN]”N(I) (Kw,Ky)> is an eigenstate

of V in a system with NV, + 1 electrons and Ny, + 1 holes,
at energy E](\ZN}“N@ (K;, Ky) + Ex.

To evaluate Ex, we may multiply the commutator
[V, X(0,0)T] by X(0,0) from the left, and taking the ex-
pactation value with respect to the vacuum. We find
that Ex is the binding energy of a single electron-pair:
Ex = N%p Do (vac\hj/ej/Ve;h;Hvac). This implies that
E'x does not depend on the number of electrons and holes
in the system, nor on the filling factor. However, we note
that Ex depends on the number of magnetic fluxes Ng.

When the operator X (0, 0) acts on a many-body state
describing an electron liquid, the created electron-hole
pair lacks any correlations with the liquid (except for
Pauli blocking). Therefore, these states are called “mul-
tiplicative states”. A major goal of our numerics in
the following Section is to determine to which extent
eigenstates at finite d can also be described in terms of
such a multiplicative construction. While it will be seen
that, also at d > 0, some states can be understood as
quasi-multiplicative state, their energy is mot obtained
by adding the energy of an electron-hole pair Ex (Ng, d)
to the energy of the parent states (i.e. the state before
adding the electron-hole pair). This implies that the ex-
citons interact with the liquid and amongst themselves.

The binding energy of a single electron-hole pair,
Ex(Ng,d), at finite electron-hole separation d, is gen-
eralized to:

1 d
Ex(Na,d) = 1~ > (vac|hjre; Velhtvac) + =

® P
35
L 3 V000 (d) + <y (6)
~ Ns — 335953 Ng ’
In this expression, the term N%} accounts for the charg-

ing energy. In the thermodynamic limit, Ny — oo, the
exciton binding energy converges to

Bx(@) = -4 [ G yex [-laP/2]

—\/7/2 expld?/2)erfc[d/v/2]. (7)

III. RESULTS

A. Optical excitation within the LLL
approximation

Within the dipole approximation, the amplitude for
optical interband transitions is proportional to the spa-
tial overlap between the electronic wave functions in the
two bands. This immediately leads to the selection rule
n,m < n,m, that is, conservation of Landau level and
orbital quantum number33, and optical transitions are
described by the operator XT(0,0), introduced in the pre-
vious section. As mentioned there, an optical excitation
obtained by acting with X7(0,0) on an eigenstate of V/
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FIG. 1: Energy spectra with one electron-hole pair. At Landau filling factors v = 1/3 (a,b) and v = 1/5 (c), we plot the
energy spectra in the presence of one electron-hole pair for different system sizes (i.e. different electron numbers Ne). In (a,c),
we have chosen spatially overlapping conduction and valence bands (d = 0), whereas (b) has separated bands. In all plots, the
LLL approximation is assumed. We use the lowest multiplicative state at K = 0 as an energy reference at each system size. In
(a), the multiplicative magnetoroton states, X f (0,0)|Magneto — rotons), are plotted in red. The blue branch is approximately
given by acting with XT(K) on the Laughlin state (see Table I for fidelities of this construction). In panel (b), the dashed lines
between the lowest two states indicate the transition from infinite to finite positive effective exciton mass upon increasing the

distance d.

remains an eigenstates of V' in particle-hole symmetric
systems (i.e. at d = 0).

Therefore, let us start the discussion of our numerical
results by identifying these “multiplicative states”: Fig.
1(a) shows the full energy spectrum of an electron liquid
at filling at ¥ = 1/3 in the presence of one electron-hole
pair, obtained by numerical diagonalization of Eq. (3) in
the lowest Landau level. Within this spectrum, the mul-
tiplicative states are: the state at K = 0 and AE =0
(i.e. this state has been used as an energy offset in the
plot), and at higher energy and finite momenta the states
marked in red. We have verified that the multiplicative
construction has a fidelity equal to 1 for these states,
i.e. these states can be obtained from eigenstates of
the pure electronic liquid by acting with X(0,0) from
Eq. (5). Moreover, the multiplicative states can also be
identified immediately from their energies, which differ
by Ex(Ng,0), given by Eq. (6), from the energy of the
“parent” state, i.e. the eigenstate of the pure liquid with-
out the additional electron-hole pair. The parent state
at K = 0 is the Laughlin state which in the absence
of the electron-hole pair describes a strongly gapped in-
compressible liquid at v = 1/3. The parent states for the
red branch are the magneto-roton states, i.e the lowest
(bulk) excitations of the Laughlin state, which exhibit a
characteristic minimum at |K|lp =~ 7/2.

As the energy of the multiplicative states is given as

the sum of the energy of the pure liquid and the bind-
ing energy of an isolated electron-hole pair, the electron-
hole pair can be interpreted as a charge-neutral compos-
ite object which does not interact with the electrons in
the Laughlin liquid (which may be in its ground state or
exhibit magneto-roton excitations).

While the multiplicative branch in Fig. 1(a) is sur-
rounded by a continuum of other non-multiplicative
states, Fig. 1(a) also exhibits a well-defined excitation
branch, colored in blue and separated from other state.
This branch connects the multiplicative Laughlin state
with the bulk energy levels. Interestingly, this branch is
found to be non-monotonic, with a global minimum at
Klip ~ m/6. In Ref. 29, the states along this branch have
been interpreted as charged complexes, but we note that
the electron-hole correlation function does not show any
accumulation of electrons in the vicinity of the hole, as
compared to the neutral exciton state. Moreover, as seen
from Table I, these states can be modeled with reason-
ably good fidelity F(k = K) by acting with X (k)! from
Eq. (5) onto the Laughlin ground state.

These large fidelities indicate that the electronic corre-
lations of the topological liquid are maintained by the op-
tically excited system, supporting the notion of a dressed
exciton branch. Also, from the electron-hole pair corre-
lation function of these states we find that a single elec-
tronic charge is bound by the hole at both zero and finite



Ne|den| F(0,0)[F(1,0) = F(0, )| F(1,1)[F(2,0) = F(0,2)
15lo| 1 0.8537 0.7656 0.6503
150.5]0.9993 0.8776 0.8051 0.5526
180 1 0.8679 0.7864 0.6368
18 0.5 0.9993 0.8883 0.8242 0.7021
o1l 0| 1 0.8784 0.8036 0.6785
2110.5]0.9992 0.8982 0.8387 0.7328

TABLE I: For different momenta (k., ky), we list the fideli-
ties F(ky, ky) = ‘<E§\}4)r1,1,3N|XT(kwv ky)|E1(\}>03N>| of the mul-
tiplicative construction. The given numbers refer to filling
factor v = 1/3, at zero and at finite separation d between
electron and hole layers. Notably, the fidelity of the construc-
tion increases with system size.

momentum. However, as opposed to the case of a K =0
exciton, the charge distribution around the hole is not
spherical-symmetric at finite momentum. In fact, these
observations suggest to interpret the finite-momentum
ground states as exciton-polarons34 36,

The non-monotonic behavior of this exciton-polaron
branch renders the band’s effective mass negative. This
rather strange behavior is cured when electron and hole
layers are at a finite distance d, as shown in Fig. 1(b). At
d = 0.5lg, the branch becomes monotonic. At this layer
separation, the effective mass is infinite, as indicated by
the horizontal black-dotted line in Fig. 1(b). For larger
d, the effective mass becomes positive, cf. the red-dotted
line in the plot. The (quasi-)multiplicative Laughlin state
is then the true ground state of v = 1/3 liquid in the
presence of one electron-hole pair. Here, we have put
the attribute “quasi” in parenthesis, because the K = 0
state, while not being exactly the multiplicative state
at finite d, stills has extremely large overlap with the
multiplicative state (> 0.999 at d = 0.5, cf. Table I).
Anticipating a result from Sec. IIIC, we note that also
Landau level mixing leads to positive effective exciton
masses for any reasonable magnetic field strength.

In Fig. 1(c), we show the spectrum of a system at
v = 1/5. As seen from Fig. 2(a), at the given system
size the pure electron system at v = 1/5 lacks a gap,
in stark contrast to ¥ = 1/3. In this context, we note
that the v = 1/5 Laughlin state, which is supported by
a strong V3 pseudopotential and which in the thermody-
namic limit of a Coulombic system is known to melt the
surrounding crystallized phase®”, does not appear as a
gapped ground state in finite-size studies®®. The spec-
trum in Fig. 1(c) exhibits a large number of states at
AE < 0 found at all momenta (including K = 0). As
before, energies are measured from an offset defined by
the energy of the multiplicative K = 0 state. This find-
ing demonstrates that in this gapless and /or compressible
scenario the optically generated exciton will energetically
be less favorable than for the incompressible liquid at
v = 1/3. We have checked that this holds true both for
d = 0 (shown in the plot), and at finite d (not shown).

B. Exciton-exciton interactions

We further investigate the effect of compressibility (or
“gaplessness”) of the electron liquid on the behavior of
multiple pair excitations. In recent four-wave mixing
experiments??, a quantum Hall system within an optical
cavity has shown enhanced interactions between exciton-
polaritons at certain filling factors which corresponded to
incompressible liquid phases (in particular at v = 2/5).
However, at other filling factors, including v = 1/3 corre-
sponding to the incompressible Laughlin liquid, no such
effect has been seen. The mechanisms behind the en-
hancement remain unknown, and whether incompress-
ibility generally leads to enhanced nonlinearities is an
open question.

In our numerical approach towards this question, we
first collect a hint for incompressibility of the pure elec-
tron liquid by looking at the weighted energy gap Ag/Aay
at different filling factors. The weighting is over the aver-
age level spacing A,, at the given filling. The results are
shown in Fig. 2(a): For the chosen system size (N, = 15),
incompressible behavior occurs at v = 1/3 and v = 2/5,
in agreement with prominent fractional quantum Hall
plateaux. Next, we analyzed the spectral rank of the
first and the second quasi-multiplicative states, i.e. of
those states which are obtained by acting once or twice
with XT(0,0) on the ground state of the liquid. The re-
sults are also presented in Fig. 2(a): We find that only
for the incompressible liquids (i.e. only at ¥ = 1/3 and
v = 2/5) the ground state with one pair is given by the
quasi-multiplicative state. Only for the Laughlin state
(v = 1/3), this is also true in the presence of a second
pair. On the other hand, for all compressible liquids,
the quasi-multiplicative state are always excited states.
This generalizes our observation already made in the pre-
vious subsection in the context of the energy spectrum
at v = 1/5: Incompressibility of a liquid energetically fa-
vors the multiplicative construction as compared to other
states. On the other hand, compressible liquids are able
to find energetically more favorable ways to accommo-
date for electron-hole pairs than the formation of mul-
tiplicative excitonic complexes, e.g. through enhanced
screening via polaron formation.

In order to determine the binding energy of an opti-
cal excitation, we will follow two different approaches:
In the first approach, we take the quasi-multiplicative
states as the relevant levels of the optically excited sys-
tem, and thus we determine the binding energies from
the energies of the quasi-multiplicative states. In the
second approach, we take the true ground states as the
relevant levels. Interestingly, these two approaches yield
quite different pictures. However, we stress that, for an
understanding of optical phenomena, only the first ap-
proach seems justified due to the large oscillator strength
of the quasimultiplicative states. Explicitly we show that
photoluminescence spectra are dominated by energy dif-
ferences between quasi-multiplicative levels.

Following the first approach, setting d = 0, and ap-
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FIG. 2: Exciton-exciton interactions. (a) In blue: The energy gap Ao of a pure electron liquid (N, = 0), weighted by the
average level spacing Ay, is plotted as a function filling factor, i.e. as a function of N, at fixed Ny = 15. Large gaps at No = 5
and N. = 6 indicate incompressible behavior at fillings v = 1/3 and v = 2/5. In red: The spectral rank (at K = 0) of the
quasi-multiplicative states with one and two electron-hole pairs is plotted. Only at v = 1/3 and v = 2/5, the first multiplicative
state (i.e. the multiplicative state with one pair) is ground state (spectral rank 0). The second multiplicative state for two
pairs is the lowest-energy state only for v = 1/3. (b,c) We plot the binding energy Ex of the exciton in the first and the second
multiplicative state as a function of filling factor (b), or system size (c). At d > 0, different binding energies for the first and
the second exciton indicate effective repulsive exciton-exciton interactions. These interactions turn out to be independent of
the filling factor, and decreasing with system size. Compared to an exciton in the vacuum, see (c), |Ex]| is increased by an
attractive interaction between exciton and the electronic liquid. (d) At different filling factors, we plot the frequency-resolved
photoluminescence signal (measured as distance Aw from the bandgap), assuming decay of the first or the second electron-hole
pair. The distance between the peaks for the first and the second decay corresponds to the exciton-exciton interaction, and
agrees with the values determined in panels (c,d) from the energies of the quasi-multiplicative states. This shows that the

quasi-multiplicative states are the relevant states to determine the optical nonlinearities. The emission spectra are evaluated
62

at an inverse temperature 8 = 100-5—. This roughly corresponds to 2 K, if we choose a magnetic field B = 10 T and dielectric

constant eq = 12.9 as for GaAs.

elp

plying the LLL approximation, we obtain equal binding
energies Ex, given by Eq. (6) for the first and the sec-
ond multiplicative exciton. Moreover, as demanded by
the hidden symmetry, the binding energy is also inde-
pendent from the number of electrons in the system, see
Fig. 2(b). However, at finite d, the binding energy is low-
ered due to the spatial separation between electron and
hole. Since the exciton’s finite dipole moment now allows
for an effective interactions with the liquid, the binding
energy becomes dependent on the filling factor (i.e. the
density of the liquid). This interaction is found to be
attractive, and thus leads to a monotonic increase of the
binding energy with the density. We can quantify this
exciton-liquid interaction by considering the difference to
the binding energy of an exciton in the vacuum, as done

in Fig. 2(c). This plot also shows that the exciton-liquid
interaction is independent from the system size. In both
Fig. 2(b) and Fig. 2(c), we observe a mismatch of the
binding energy for the first and the second exciton. This
is a measure for an effective exciton-exciton interaction.
This interaction is found to be repulsive, which naturally
leads to a decay of interaction shifts with increasing sys-
tem size, see Fig. 2(c). On the other hand we note that
the energy attributed to the exciton-exciton interaction
is independent from the filling factor.

Following the second approach, where binding ener-
gies are calculated based on energy difference between
the true ground states (with 0,1,2 electron-hole pairs),
quite a different picture is obtained. Specifically, the
binding energy difference between the first and second



pair then depends of the filling factor, and it can even
change its sign. While most filling fractions still yield re-
pulsive exciton-exciton interactions, an energy shift cor-
responding to attractive interactions is found at v = 2/5.
This can be understood in the following way: From the
spectral rank of the multiplicative states, plotted in Fig.
1(a), we know that the ground state with one pair is
a multiplicative state, whereas the second electron-hole
pair is able to break the incompressibility of the liquid.
This results in a lowering of energy, as compared to the
energy of a second multiplicative exciton. If this lower-
ing of energy is accounted for as an effective increase of
the binding energy for the second pair, the second pair
appears to be stronger bound than the first one.

Finally, we demonstrate that the energy differences be-
tween multiplicative states are the most relevant one in
the context of optical experiments. To that aim, we have
calculated the photoluminescence signal in small systems.
Our quantitative photoluminescence model, which is fur-
ther described in the appendix B, assumes the decay from
a thermal distribution over all states (including those at
finite momentum), but with the number of optical ex-
citations in the system being fixed. From this, we then
obtain the frequency-resolved photoluminescence inten-
sity shown in Fig. 2(d) at different values for v. In our
calculation, we independently consider two decay pro-
cesses: Ome decay happens from a thermal state with
one electron-hole pair, while the other process assumes
a decay from a thermal state with two pairs. The decay
from the second pair is broadened, particularly at small
filling factors where multiple peaks are exhibited. How-
ever, in all shown cases the strongest peak corresponds
to transitions between (quasi-)multiplicative states. The
relative shift between the peaks for the first and the sec-
ond decay process quantifies the interactions of bright
excitons. This shift yields exactly the same results for
exciton-exciton interactions as obtained in Fig. 2(c,d),
where only the energy of the multiplicative states has
been considered.

We note that the system sizes considered in Fig. 2(d)
are rather small (liquids made of between 4 to 7 electrons
at fixed number of fluxes, Ny = 15). This may result in
significant finite-size effects, in particular for the smallest
filling fraction, and the multiple peaks seen at v = 4/15
might in fact be a consequence of the limited system size.
At v = 1/3, we were able to obtain data for various
system sizes (Ng = 18 and Ng = 21), and all of this
data exhibits very similar peak structure.

As a side remark, we notice that, at d = 0.5 and
v = 1/3, almost no fine structure appears in the photo-
luminescence spectrum of a single decay channel. How-
ever, the combined measurement of different decay chan-
nels should exhibit some fine structure due to excitonic
nonlinearities. Indeed, a splitting of the photolumines-
cence line has been observed in Ref. 10, and has been
attributed to fractionally charged excitons. We note that
the observed doublet splitting of about 0.4 meV is of the
same order of magnitude as the excitonic nonlinearity

within our theoretical model.
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FIG. 3: Landau level mixing. (a) Energy spectrum at
v = 1/3 in the presence of one electron-hole pair, taking into
account Landau level mixing within the valence band. The
chosen mixing parameter T = 2.5 corresponds roughly to
B = 50T in GaAs, a field strength at which Landau level mix-
ing in the conduction band can safely be neglected. (b) En-
ergy difference between the lowest state at (K., Ky) = (1,0)
and (K., Ky) = (0,0) as a function of the mixing parame-
ter k7. For 1/kT < 7 (or B < 13kT in GaAs), the system
enters in a phase with F(K = 1) — E(K = 0) < 0, i.e. the
effective mass meg becomes negative. (c¢) Convergence of the
two lowest eigenvalues at K = 0 and K = 1 as a function
of the number of valence band Landau levels which are taken
into account. For the chosen mixing parameter, ™ = 2.5, the
energy values change by less than one percent when increas-
ing the number of Landau levels from four to seven. For the
results in (a) and (b), we have considered six Landau levels.



C. Optical excitation with Landau level mixing

The accuracy of the Landau level approximation made
so far in this paper is controlled by the Landau level
mixing parameter £+, the ratio of Coulomb energy versus
Landau level spacing:

L e

K™ = M§€ZB7 (8)
with + distinguishing between valence and conduction
band. Since Ig ~ B_l/Q, and w§ ~ B, Landau level
mixing tends to zero for large B, k¥ ~ B2, How-
ever, even under an extremely strong magnetic field, e.g.
B =50 T, the lowest Landau level approximation turns
out to be not well justified for holes in GaAs, k™ = 2.4,
due to the holes’ large effective mass, mjﬁ ~ 0.45 mg. In
contrast, the light effective mass of conduction band elec-
trons, m_g = 0.067 mo, makes the lowest Landau level
approximation quite a safe approximation for electrons,
k= = 0.35. As a function of the magnetic field, we get
k= = 2.5/y/B|T] and kT = 16.7/y/B[T], where B|T]
denotes the magnetic field strength in Tesla.

In the present section we will go beyond the LLL ap-
proximation. Quantitative improvements to a single Lan-
dau level approximation are possible by taking into ac-
count other Landau levels only virtually within a pertur-
bative expansion3?49. However, this approach usually
involves a decomposition of the Coulomb potential into
pseudopotentials, which strongly affects the eigenvalues
(in contrast to the rather weak effect of pseudopotential
decomposition onto eigenstates). Alternatively, it is pos-
sible go beyond the single Landau level approximation by
considering a Hilbert space which is increased by a finite
amount of Landau level excitations*'. The latter strat-
egy is particularly well suited for our system of interest,
as we may assume that Landau level mixing is restricted
to the minority carriers (i.e. the holes). Accordingly, we
will consider the case of N, electrons within the LLL, and
a single hole, N, = 1, for which a finite number > 1 of
Landau levels is admitted. Then, the Hilbert space di-
mension scales linearly with the number of Landau levels
in the valence band, which allows us to take into account
as many levels as needed for convergence.

Qualitatively, the main effect of Landau level mix-
ing is to destroy the hidden symmetry [V, X (0,0)f] =
ExX(0,0)f. It is not surprising that also the quantita-
tive consequences of Landau level mixing are similar to
the ones of a finite electron-hole separation, which breaks
the hidden symmetry as well. Specifically, from the en-
ergy spectrum at v = 1/3 plotted in Fig. 3(a), we see that
the ground state is shifted to K = 0, in contrast to the
finite-momentum ground state of the particle-hole sym-
metric system in Fig. 1(a). As shown in Fig. 3(b), the
transition from the K = 0 ground state into the finite- K
ground state occurs for 1/kT > 7 (i.e. for a gigantic field
strength of B > 13kT in GaAs). Thus, the scenario of
an exciton negative effective masses is irrelevant from the
experimental point of view.

The lowering of energy due to Landau level mixing
in the valence band can be interpreted as an effective
interaction between the exciton and the electron liquid.
In fact, in the absence of a liquid, i.e. for an exciton on
top of the vacuum, the ground state energy is not affect
by Landau level mixing in the valence band. Even for
kT — 00, no Landau level mixing occurs in the excitonic
ground state, as long as k=~ = 0 is kept at zero.

Fig. 3(c) allows to estimate the amount of Landau
levels which need to be taken into account to accurately
describe the system at the given mixing parameter k+ =
2.5. It is seen that the relative error in the eigenenergies
is kept below 0.01 when at least four Landau levels are
taken into account.

IV. SUMMARY

We have studied two-dimensional electron liquids in
the quantum Hall regime in the presence of electron-hole
pairs. Electron-hole pairs can be generated optically, and
can be used as a tool to probe the system, or to engineer
photonic nonlinearities through the formation of exciton-
polaritons. However, as our numerical work shows, mul-
tiplicative exciton states in which the electron-hole pair
does not modify the correlations of the electronic liquid
are not the energetically most favorable configurations at
generic Landau filling factors, in particular those which
correspond to compressible phases. Nevertheless, due to
their large oscillator strength, these multiplicative exci-
ton states are the most relevant states for optical exper-
iments, and we have explicitly shown that the decay of
these multiplicative states dominates the luminescence
spectra. We also note that, if the system is embedded
in an optical cavity, the large oscillator strength of these
states causes a large AC Stark shift, which will make the
exciton-polariton described by these states the ground
state of the system.

From these perspectives, it seems justified to determine
the strength of excitonic nonlinearities from the energy
difference between quasi-multiplicative states with one
and two excitons. In this way, we find a repulsive inter-
action between excitons, but the strength of these inter-
actions shows no dependence on the filling factor. This
result disagrees with recent experimental observations?®
where some incompressible phases exhibit enhanced non-
linearities. This discrepancy may be due to the ide-
alizations of our theoretical model in which we assume
full spin polarization and disregard Landau level mixing.
To be justified, these assumptions would require a very
strong magnetic field.

In this context, let us also emphasize the qualitative
differences which we have obtained at zero layer separa-
tion (d = 0) within and beyond the lowest Landau level
approximation at filling v = 1/3: Within the lowest Lan-
dau level approximation, the system exhibits a ground
state at finite momentum, but Landau level mixing of
the valence band hole leads to a zero momentum ground



state. The finite-momentum ground state corresponds
to an exciton with a negative effective mass. Finally, we
note that excitonic nonlinearities might also be the cause
for the broadening and/or splitting of luminescence line.
In fact, the strength of the non-linearity between quasi-
multiplicative states (obtained within the lowest Landau
level approximation, but assuming a finite layer separa-
tion on the order of a few nm), is of the same order of
magnitude as the splitting of the photoluminescence line
seen experimentally!?.
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Appendix A: Exact diagonalization study

In the following, we append some details regarding our
description of the system and its numerical treatment.
We have considered a truly two-dimensional electron-
hole system in the Landau gauge with periodic bound-
ary conditions. Here, we provide explicit expressions for
the single-particle wave functions and the corresponding
interaction matrix elements. Moreover, we discuss sym-
metries of the system.

1. Single-particle wave functions

In a gauge potential A ~ (0,z), the single-particle
wave functions are plane waves along y-direction, and
eigenstates of a harmonic oscillator along z. The ground
state level of the harmonic oscillator, given by a Gaussian
exp(—%acz), defines the lowest Landau level, while excited
oscillator levels, obtained by multiplying the Gaussian
with Hermite polynomials H,, (x), yield the nth Landau
level. The levels are equidistantly separated by a Landau
level gap hwﬁ = heB/ mfﬁ, with mffff being the effective
masses of the positively and the negatively charged car-
riers. In each Landau level, there are Ng choices of a
guiding center of the harmonic oscillator, X; = J{,—Z, with
j€40,...,Ng —1}. As the gauge potentials couples the

z-coordinate to the momentum in y-direction, the guid-
ing center also fixes the wavenumber of the plane wave.
Periodicity in z-direction is obtained by summing over a
periodic arrangement of guiding centers X; +ka, with the
summation in k£ running from —oo to co. It is convenient
to normalize length scales through the magnetic length,
and account for the geometry of the system by a param-

eter £ = a/b. With this, X; = 27 Ne€ 1 = a, and

the normalized wave functions can be written as*?:

€ 1/4 oo j
on,j(T,y) = (2772N¢> Z exp [iya (N<1> + k)} X
k

=—00

o[ o8]
leoa(0)]

This wavefunction describes an electron in the nth Lan-
dau level. The quantum number j quantifies its momen-

tum in y-direction, ky, = j4/ % (in units lgl).

(A1)

2. Interaction matrix elements

Coulombic interactions occur between electrons and
holes, but also with the nuclei, and, due to our choice
of periodic boundaries, with mirror charges of each car-
rier. The latter can be neglected, since they only lead
to a constant shift of all energy levels at a given torus
ratio and given filling factor. The presence of nuclei
make the system charge-neutral, and provide a homo-
geneous background potential given by N, — Ny positive
charges. For convenience, we consider N, positive back-
ground charges in the electronic layer, and Ny, negative
background charges in the hole layer, such that interac-
tions with the background cancel the q = 0 contribution
of the carriers’ Coulomb potential, which would lead to
divergent terms in the Fourier sums. As mentioned in
the main text, this model does not take into account the
fact that charge neutrality is only present in the system
as a whole, and thus, for electrons and holes, we need
to consider an additional charging energy. This energy
contribution is given by Eq. (2).

In the following, we will evaluate the interaction matrix
elements for the interactions between the carriers. The
Fourier transform of the Coulomb potential reads

27 €2
AL

where q is the in-plane wave vector. For d = 0 and with
the positive sign, the potential describes electron-electron
interactions or hole-hole interactions, i.e repulsive inter-
actions within a layer. For finite d and with negative
sign, the expression describes the electron-hole interac-
tioms, i.e. attractive interactions of opposite charge car-
riers confined to two layers separated by d.

iq-r
Va(r) %ef\qld
q

)



The interaction matrix is given in Eq. (3), with inter-
action matrix elements defined as

2 €2

n1,M25N3,M14 _=n=
Vicigsas (D =7

J1,72573574

1 0 ia .
Z H<n1,j1|€lqr|”4734>x
q#0

(na, jale "9 |ng, js)e~lald,

(A2)
The position operator r = R + dr can be decomposed
into a guiding center R and a Landau orbit dr, cf. Ref.
43. The guiding center is independent from the Landau
level, and the corresponding matrix element can be eval-

uated in the lowest Landau level: (ni, ji|e’®|ny, jq) =
(0, 711e* 40, ja):

o0

Z e~ 1(@2+ay) pims(j1+ia+Ned) o

A=—00

(0, j11€ R0, jis)

Ottjr—ja, NoA- (A3)

Here, s and t parametrize the quantized wavevector
27 2
(9, qy) ( S\ N \/16;)
The contribution from the Landau orbits is

Chi i (Gzs ay) (nq|e?(@=07+5%%)|n,) . To evaluate
this, we note that the Landau orbits are related to the
dynamical momentum P; = ih0; + eA;:

1 1
- p =
Y eB

ox = —
v eB

and dy = P,.

These operators directly yield the Landau level raising
and lowering operators:

St ZlB N —ilp .

a P, +iPy)) and a=——(F;—iPy).
Thus, with ¢ = ¢, — igy, we can write ¢,z +
q,0y = l—\/%(q& + g*a'). Therefore, Cp, n,(qz,qy) =

<n1\eiq&/‘/§eiq*&f/‘/§|n4>. For ni > ny, we get

B iqlp
Cnl,n4(q.’£7Qy) - 77471' < \/5 2

(A4)

For nqy < n4, we use the relation Cy, n,(¢z,qy) =

Cﬂ4,n1 (_qﬂﬂﬂ _qy)*-
The interaction matrix elements are given by

n17n2;n3,n4(d) _ 1 62 Z e_lqld ~
J1,J2:93:Ja Na j1+Jz,J3+J4
® € q#0 d
Cnl,m; (qgm Qy)Cng,ng (_Qwa _Qy) X
/ 2mis(j1—J: -1 q1+q
0TI (A n)(A5)

The primed Kronecker symbols ¢ are to be taken modulo
Ng.

ni—n 2
> ! L <(qz + )%

)
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Within the lowest Landau level approximation, all
Landau level indices n; can be set to zero, and the in-
teraction matrix elements reduce to

2 —|q|d
0,000 (gL le 5 e~ ldl
J1,J2373:Ja - J1+J2,i3+7a 2 :
Ncp € a0 ‘q|
.
0y €2 TI) TR (@A) (AG)

3. Many-body basis and symmetries

In finite-size studies, the full Hilbert space is character-
ized by N, Ny, and Ng. It becomes of finite dimension
by assuming that only a finite number of Landau levels is
relevant, and often, we even assume that the Landau level
degrees of freedom are completely frozen (lowest Landau
level approximation). A many-body state is described
by identifying the occupied single-particle states, i.e. by
(js, - - ,j?ve;j{‘, . ,j]}{,h) under the LLL assumption.

To diagonalize the Hamiltonian, we can greatly benefit
from symmetries of the system. In the Landau gauge, the
Hamiltonian is symmetric under (magnetic) translations.
As seen already for the single-particle solutions, choos-
ing the vector potential to be in the Landau gauge im-
mediately leads to a conserved y-momentum. The Fock
states are eigenstates of translation along y, and their y-
momentum is obtained by summing the quantum num-
bers j of occupied single-particle orbitals:

N, Nu
K, = mod <ij — Zjlh,N¢>> .
i=1 i=1

The finite size of the system leads to equivalence be-
tween values K, differing by Ng, so here we choose
K, € [0,No —1]. We note that K, is defined as an
1nteger -valued quantum number, which corresponds to
momentum Ky =K, 2”

To exploit the full translational symmetry>2, we need
to construct a basis of eigenstates under magnetic trans-
lations also along the z-axis. For a filling factor v = p/q,
with p, ¢ co-prime integers, we may consider the follow-

(A7)

ing set of Fock states: |fo) = (j5,.. ., d%.; 01 Jh,)»
)= GS+ a0 i, + Gt + ¢ dn, + O, [f2) =
(3 + 24, .-, J. +2q;j{1+2q,...,j]k{,h +2q)..., all of

which are at the same momentum K. Invariant mag-
netic translations along x are those which transform
each member of this set into another member of the
same set. Thus, eigenstates of these x-translations
are constructed as a superposition of the |f;), given
by > .exp(i2m/(No/q)|K,r)|fr). The integer K, €
[0, Ng/q — 1] is recognized as a quantum number cor-
responding to pseudomomentum along z, K, = Km%”.
Using this construction, we divide the Hilbert space
into blocks characterized by (K, K,). Additional sym-
metries leads to the equivalence between certain blocks:
Obviously, the system is invariant under center-of-mass
(COM) translations. A COM translation along x shifts



the orbital of each carrier by some integer value A: j —
j+A. This transformation changes the momentum K, of
a many-body state to K, + A(Ne — Nyn) = K, + ANg/q.
Thus, each Fock state at K is related to ¢ —1 other Fock
states at K, + ANg/q, with A =1,...,¢ — 1. Due to
this equivalence between certain K,-sectors, we can re-
strict our study to a reduced Brillouin zone, where both
K, and K, are restricted to [0, No/q — 1]. The Bril-
louin zone can further be reduced due to reflection sym-
metry and, for a square system, C; symmetry. Reflec-
tion symmetries lead to degenerate spectra at K, and
-K, = No— Ny, — K, = NoJ/qg— K,, and K, and
—K, = N3 /q—K,. The Cy-symmetry leads to degenera-
cies between (K, K,) and (K,, K;). For completeness,
let us note that, if Ng/q is even, there are two points
(K4, Ky) = (0,0) and (K, Ky) = (N /2q, No /2q) which
are mapped onto themselves under reflection. We choose
the origin of the Brillouin zone [i.e. the point (K, K,) =
(0,0)] in the sector of lower ground state energy, and, if
needed, accordingly shift all pseudomomenta.

Appendix B: Photoluminescence

The recombination of a |} () heavy hole and a 1 ({)
electron leads to emission of o~ -polarized (o T-polarized)
light. Within the dipole approximation, the envelope
function of the electron/hole remains unchanged during
a transition3, and the luminescence operator is given by
L =73, enhm, cf. Refs. 22,2429, If an electron and a
hole recombine in a system of N, electrons and Ny, holes,
the resulting emission spectrum is given by

In,, N, (Aw) = Z §(hAw + Ej(\i)—l,Nh—l - EJ(\Z,Nh)X

iif
. . 2
P B |(E s e | 2 BN )|
(B1)
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The argument of this function, Aw, is the difference
of the photon frequency wpn to the bandgap frequency
Whg! Wph = Wwpg + Aw. The sum on the right-
hand side of Eq. (Bl) is over all states ¢ in the
initial Hilbert space (i.e. before recombination), and
all states f in the final Hilbert space (i.e. after re-

combination). By Pz(\;e) ~, (B), we denote the ther-
mal occupation of the initial states at an inverse tem-
perature 3: P(ziNh(ﬁ) = exp(—BE](\Z,Z)Nh)/ZNe)Nh(B)

with Zy, v, (8) = D, exp(—ﬁEJ(\;‘z)Nh). We note
that, by assuming translational invariance or, equiva-
lently, by neglecting disorder, transition matrix elements

‘<E](\‘,fe)_1 Nl,—l‘ L EJ(\Z Nh>‘ are zero, if initial and final
state have different pseudomomenta. That is, by ne-

glecting disorder we only account for direct interband
transitions.

The photoluminescence spectrum is trivial if the model
is particle-hole symmetric, that is for zero distance be-
tween electrons and holes, d = 0, and within LLL
approximation®?2, In this limit, [H,L] = ExL, and
only the multiplicative states contribute to the emission
spectrum with a resonance energy given by Ex < 0, in-
dependent from the electronic correlations. The photoe-
mission spectrum reduces to a single line. Non-trivial
structure may only emerge when the hidden symmetry is
broken (finite d or Landau level mixing). As a technical
remark, we note that we have artificially smoothened the
spectral intensity in Fig. 2(d) by replacing the Kronecker-

§ in Eq. (B1) by a Gaussian of width o =5 x 10_3%.
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