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Abstract

We investigate ’t Hooft anomalies in the CPN−1 model in spacetime dimensions higher than two

and identify two types of anomalies: One is a mixed anomaly between the PSU(N) flavor-rotation

and magnetic symmetries, and the other is between the reflection and magnetic symmetries. The

latter indicates that even in the absence of the flavor symmetry, the model cannot have a unique

gapped ground state as long as the reflection and magnetic symmetries are respected. We also

clarified the condition for the ’t Hooft anomalies to survive under monopole deformations, which

explicitly break the magnetic symmetry down to its discrete subgroup. Besides, we explicitly show

how the identified ’t Hooft anomalies match in the low-energy effective description of symmetry

broken phases—the Néel, U(1) spin liquid, and the valence bond solid phases. An application to

the finite-temperature phase diagram of the four-dimensional CPN−1 model is also discussed.
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I. INTRODUCTION

Symmetry provides fundamental tools to understand the non-perturbative aspects of

quantum many-body systems. An ’t Hooft anomaly, an obstruction to gauge global sym-

metry, is such a symmetry-based theoretical approach beyond perturbative analysis. If the
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quantum system under consideration has an ’t Hooft anomaly, it constrains possible low-

energy dynamics due to the ’t Hooft anomaly matching [1–3]. Recently, new ’t Hooft anoma-

lies involving generalized global symmetries such as discrete symmetries [4] and higher-form

symmetries [5] are found and applied to a large variety of systems both in condensed mat-

ter physics [4, 6–22] and high-energy physics [23–38]. In these applications, the global

anomaly induced by a large gauge transformation and a discrete symmetry transformation

often plays a central role rather than the perturbative anomaly (such as the chiral anomaly)

induced by an infinitesimal transformation (see Refs. [39, 40] for the classic examples of

the global anomaly and also Refs. [41, 42] for a review on a fermionic global anomaly).

Furthermore, recent developments also reveal the relation between ’t Hooft anomalies and

boundary physics of novel states of matter known as the symmetry-protected topological

(SPT) phases [4, 6, 8, 10].

Quantum field theoretical approach to low-dimensional spin systems provides one repre-

sentative ground where ’t Hooft anomalies play a pivotal role in understanding their possible

low-energy behaviors such as properties of their ground states and energy spectra [11, 16–

21]. One can see this because the ’t Hooft anomaly can be regarded as an avatar of the

Lieb-Shultz-Mattis (LSM) theorem for the lattice model [43–46] in the continuum field the-

ory [15, 17] (see also Refs. [47–49] for recent developments on the LSM theorem). Indeed,

the (1 + 1)-dimensional CP1 model with the θ term is shown to have an ’t Hooft anomaly

between the PSU(2)(≡ SU(2)/Z2) flavor symmetry (or the SO(3) spin-rotation symmetry

in the condensed-matter terminology) and the charge conjugation symmetry at θ = π [20],

which corresponds to the original LSM theorem for the (1 + 1)d half-integer spin chain [17].

Furthermore, the (2+1)d CP1 model also contains the ’t Hooft anomaly between the PSU(2)

flavor symmetry and the U(1) magnetic symmetry (or its discrete subgroup such as the Z4

magnetic symmetry) [16, 17, 20]. This mixed ’t Hooft anomaly accounts for competition

between the Néel and valence bond solid (VBS) phases with an unconventional quantum

critical point known as the deconfined quantum critical point in (2 + 1)d quantum antifer-

romagnets [50–52]1.

While the above anomalies ensure that the (1+1)d ((2+1)d) CP1 model shows nontrivial

low-energy spectra as long as the PSU(2) flavor symmetry and charge conjugation symmetry

1 The CP1 model has been also attracting attentions in the context of (2 + 1)-dimensional dualities [53]

(see e.g., Ref. [54] for a review).
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(magnetic symmetry) are respected, it is interesting to ask whether breaking the flavor

symmetry can allow the model to have a unique gapped ground state. If one finds another

anomaly without the flavor symmetry, the anomaly ensures its ground state is still nontrivial.

In Ref. [17], such ’t Hooft anomalies in (1 + 1) and (2 + 1) dimensions are studied from the

bulk SPT perspective. Constructing bulk SPT actions, they found anomalies involving only

discrete internal symmetries in the CP1 model which are identified as lattice symmetries in

the underlying lattice model (e.g., the translation and site-centered rotation symmetries).

On the other hand, Ref. [18] directly computes an anomaly in the (1 + 1)d CPN−1 model by

putting the model on a nonorientable manifold and reveals that the (1 + 1)d CPN−1 model

has an ’t Hooft anomaly involving a spacetime symmetry: the one between the reflection and

charge conjugation symmetries. However, since the latter work discusses only the (1 + 1)-

dimensional case, it is worthwhile to generalize their discussion to higher dimensions and

explore a possible ’t Hooft anomaly with a spacetime symmetry.

In this paper, we investigate ’t Hooft anomalies and their matching in the CPN−1 model

(or N -flavor abelian Higgs model) living on D-dimensional spacetime with D ≥ 3, which

captures the long-wavelength behaviors of SU(N) spin systems. We start our discussion

with an ’t Hooft anomaly between the PSU(N)(≡ SU(N)/ZN) flavor symmetry and the

magnetic symmetry. Then, putting the model on a nonorientable manifold in a similar

manner to Ref. [18], we obtain an ’t Hooft anomaly involving the reflection symmetry, i.e., a

mixed ’t Hooft anomaly between the reflection symmetry and the magnetic U(1) symmetry.

Thus, the anomaly matching argument forbids the CPN−1 model to possess a unique gapped

ground state as long as the reflection and magnetic symmetries are respected. We also clarify

the condition that the ’t Hooft anomalies survive under monopole deformations to the CPN−1

model, which explicitly break the magnetic U(1) symmetry down to its discrete subgroup.

We further discuss several consequences of the anomaly matching based on the identified

’t Hooft anomalies. In the Néel phase, where the PSU(N) flavor symmetry is spontaneously

broken, the anomalies tell us that a topologically conserved current in this phase, or the so-

called Skyrmion current, has a fractional part in the presence of background gauge fields2.

As the second application, we consider the U(1) spin liquid phase, where the magnetic U(1)

symmetry is spontaneously broken, and find a topological defect carries nontrivial charges

2 A similar phenomenon is discussed in the context of massless QCD, where the discrete chiral symmetry

plays a pivotal role. The anomaly matching argument in the chiral symmetry breaking phase requires the

existence of the topologically conserved current carrying the baryon number [30].
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under the PSU(N) flavor and reflection symmetries. Taking account of the possible charge-n

monopoles, we also discuss the case where the magnetic symmetry is explicitly broken down

to its discrete subgroup Zn. The condensation of monopoles, in this case, leads to the valence

bond solid (VBS) phase, where the discrete magnetic symmetry is broken spontaneously.

The spontaneously broken discrete symmetry leads to the n-fold degeneracy of the ground

state, and thus, the (2+1)d VBS phase can possess domain walls interpolating the degenerate

ground states. In addition to the flavor anomaly matching discussed in Ref. [16], we show

that a domain wall in the (2+1)d VBS phase shares the same anomalies as the (1+1)d CPN−1

model via the anomaly inflow mechanism [55]. Finally, we discuss the finite-temperature

phase diagram of the CPN−1 nonlinear sigma model in (3 + 1) dimension. After showing

persistence of the ’t Hooft anomalies in the finite-temperature (3 + 1)d CPN−1 model, we

discuss how they constrain its phase diagram (see Ref. [23] for an analogous restriction in

the pure Yang-Mills theory at θ = π and Refs. [20, 25, 27, 32] for the discussion on other

gauge theories). We also mention its consistency with the large-N analysis on the CPN−1

nonlinear sigma model.

This paper is organized as follows. In Sec. II, we briefly summarize our setup, global

symmetries of the CPN−1 model, and its relation to quantum antiferromagnets. In Sec. III,

after reviewing the ’t Hooft anomaly matching argument, we elucidate the ’t Hooft anomalies

in the CPN−1 model in general spacetime dimensions higher than two with and without

the flavor symmetry. We also investigate their stability to the monopole deformations.

In Sec. IV, we demonstrate how the ’t Hooft anomalies match in the low-energy effective

theories of the possible symmetry broken phases. Sec. V is devoted to the discussion on the

fate of the anomalies at finite temperature and its consequence for the phase diagram of the

(3 + 1)d CPN−1 model. In the last section VI, we summarize our result together with the

discussion on a possible realization of the mixed anomaly between the reflection symmetry

and the magnetic symmetry in the lattice model.

II. CPN−1 MODEL AND GLOBAL SYMMETRY

In this section, we first explain our setup and the global symmetries of the CPN−1

model (or N -flavor abelian Higgs model) living on a D-dimensional spacetime manifoldMD.

Throughout this paper, we focus on spacetime dimensions higher than two (i.e., D > 2) and
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work in Euclidean signature.

Let us introduce the CPN−1 model. The Lagrangian for the CPN−1 model takes the

following form:

LCPN−1 = |Daz|2 + V (|z|2) +
1

2g2
da ∧ ?da, (1)

where z and z† denote an N -component complex scalar field and its Hermitian conjugate,

respectively. Notice that |z|2 ≡ z†z is not constant in our model3. We also introduced the

dynamical U(1) gauge field a ≡ aµdxµ and the covariant derivative Daz = (d − ia)z. The

Lagrangian is invariant under the following U(1) gauge transformation:

z(x)→ eiθ(x)z(x),

a(x)→ a(x) + dθ(x),
(2)

with a gauge transformation parameter θ(x). The field strength for a is given by da, and

the last term in Eq. (1) represents the ordinary Maxwell term.

We then describe the global symmetries of the CPN−1 model. The three symmetries,

PSU(N)F , U(1)
[D−3]
M , and R, which we respectively call the flavor, magnetic, and reflection

symmetries, play essential roles in our discussion. First of all, PSU(N)F is a continuous

flavor symmetry. The PSU(N) group represents the quotient group SU(N)/ZN , which is

obtained by dividing the SU(N) group by its center:

ZN = {e2πik/NIN |k = 0, · · · , N − 1} ⊂ SU(N), (3)

where IN is the N ×N identity matrix. The flavor symmetry acts on the fields asz(x)→ Uz(x),

a(x)→ a(x),
(4)

where U ∈ SU(N). At first glance, one may näıvely think the global symmetry group is

SU(N). However, because of the U(1) gauge invariance (2), elements in the center group

don’t act on any physical operators, and the faithful flavor symmetry is PSU(N)F rather

than SU(N)F .

3 In that sense, this model is different from the CPN−1 nonlinear sigma model and the one often called the

SU(N) abelian Higgs model giving a linear realization of the nonlinear sigma model. Nevertheless, only

the symmetry property plays a fundamental role in our discussion, and both of the linear and nonlinear

models share all the results on the ’t Hooft anomalies.
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The model also enjoys another continuous symmetry called the (D − 3)-form U(1) mag-

netic symmetry denoted as U(1)
[D−3]
M . The conserved current is given by

JM =
1

2π
? da, (5)

and its conservation is ensured by the Bianchi identity for the gauge field [5]. This sym-

metry is sometimes called a topological symmetry in the literature because the current is

automatically conserved without using the equation of motion. The generator is defined on

the two-dimensional submanifold Σ2 as

QM(Σ2) =

∫
Σ2

?JM =
1

2π

∫
Σ2

da. (6)

This quantity is nothing but the magnetic flux penetrating the surface Σ2 and acts on (D−3)-

dimensional magnetically charged objects such as monopole instantons in three dimensions

and ’t Hooft lines in four dimensions.

Besides, we shall also consider a situation where the magnetic symmetry is broken to

its discrete subgroup Zn because of the presence of a magnetic object with a magnetic

charge n in Sec. III C. In three dimensions, this happens when we perform the path integral

over configurations with n-multiple monopoles. On the other hand, in four dimensions, we

can introduce magnetic monopoles in the Maxwell theory using a 2-form U(1) gauge field

b = 1
2
bµνdx

µ ∧ dxν , whose Lagrangian reads

LEM+mon =
1

2g2
(da− nb) ∧ ?(da− nb) +

1

8π2ρ2
M

db ∧ ?db, (7)

where ρM denotes the stiffness of the monopole condensate. This theory represents a gauge

theory coupled to charge-n magnetic monopoles because it is equivalent to the charge-n

scalar η coupled to the dual vector potential ã via the S-duality (see the discussion in

Sec. IV D):

LEM+mon ↔
ρ2
M

2
(dη − nã) ∧ ?(dη − nã) +

g2

8π2
dã ∧ ?dã. (8)

We thus can interpret the scalar field η dual to the 2-form gauge field b represents the

monopole field. The Zn shift symmetry for η and ã is translated into the magnetic symme-

try in the original model defined by LEM+mon. In the following, we will consider the U(1)
[D−3]
M

symmetry or the (Zn)
[D−3]
M symmetry depending on whether we consider monopole deforma-

tions or not.
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Third, we shall explain the reflection symmetries Rµ (µ = 1, · · · , D), which act on the

fields as follows: z(x)→ Ωz∗(Rµx),

a(x)→ −(Rµ · a)(Rµx).
(9)

Here, we introduced the D × D matrices Rµ = diag(1, · · · , 1,
µ︷︸︸︷
−1 , 1, · · · , 1) and a certain

element Ω ∈ SU(N). Note that R1 represents the time-reversal transformation.

Using the fact that Rµ generates a Z2 transformation, one can show that Ω and its

transpose Ωt satisfy (see Ref. [18] and Appendix. A for a derivation)

Ω = +Ωt for odd N,

Ω = +Ωt or− Ωt for even N.
(10)

For example, Ω = −Ωt for even N can be explicitly realized by the following choice:

Ω = diag(

N/2︷ ︸︸ ︷
iσy, · · · , iσy), (11)

where we used the Pauli matrix σα (α = x, y, z). The sign in front of Ωt in Eq. (10)

is essential in our following discussion because it determines the presence and absence of

the mixed anomaly between the reflection and magnetic symmetries. Since these reflection

symmetries are related to each other through Lorentz transformations, we will refer to the

reflection symmetry just as R in the next section.

Before closing this section, we comment on a relationship between the CPN−1 model (1)

and spin systems in condensed matter physics. When N = 2, the CP1 model enjoys the

PSU(2) flavor symmetry, which can be identified as the SO(3) spin-rotation symmetry of

antiferromagnets because of PSU(2) ' SO(3). The model is thus reduced to the O(3) sigma

model describing quantum antiferromagnets in the Néel phase after imposing the constraint

|z|2 = ρ2 and neglecting the Maxwell term. Note that the gauge-invariant combinations,

z†σαz with the Pauli matrices σα (α = x, y, z), are identified as the normalized Néel order

parameter nα = ρ−1z†σαz with nαnα = 1.

On the other hand, a lattice model counterpart of the magnetic symmetry is more indirect.

In (2+1) dimension, the magnetic symmetry is regarded as the spatial rotation symmetry in

the lattice models, which is sensitive to their lattice structures. For instance, the rectangular,

honeycomb, and square lattices possess the Z2, Z3, and Z4 rotation symmetries, respectively,
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and they are identified as discrete magnetic symmetries in the presence of charge-n magnetic

monopoles. This identification means that magnetic symmetry-broken phases in the CP1

model with the monopole deformations describe the VBS phases in lattice models [51, 56,

57]. Therefore, for applications to condensed matter physics, it is meaningful to consider

the possible appearance of monopole having magnetic charge n, which breaks the U(1)
[D−3]
M

magnetic symmetry down to the (Zn)
[D−3]
M symmetry.

Let us finally identify the reflectionsRµ in the antiferromagnet on, e.g., the square lattice,

setting the spacetime dimension D = 3. In the N = 2 flavor case, one can simply use Ω = iσy

satisfying Ω = −Ωt, and the reflection Rµ acts on the Néel order parameter as

Rµ : nα(x)→ −nα(Rµx). (12)

This equation indicates that R1 represents the time-reversal, and R2 (R3) does the link-

centered parity in the x2 (x3) direction at the lattice scale (see Fig. 1).

xi
<latexit sha1_base64="Ecl9fZb4/v0KOwS0YDvQQQN6iKU="></latexit>

xj
<latexit sha1_base64="Xn83N9cGkZjglWaWRGxzjm5hGZY=">AAAChHichVG7SgNBFD1ZXzE+ErURbIJBsZAwGxXFQoI2lnmYKPgIu+skru6L3U0whvyAYGsKKwULsfcHbPwBi3yCWEawsfBmsyAqxjvMzJkz99w5w5UtTXVcxpoBoae3r38gOBgaGh4ZDUfGxvOOWbYVnlNMzbR3ZMnhmmrwnKu6Gt+xbC7pssa35ZON9v12hduOahpbbtXi+7pUMtSiqkguUdnTg+NCJMbizIvobyD6IAY/UmbkAXs4hAkFZejgMOAS1iDBobELEQwWcfuoEWcTUr17jjpCpC1TFqcMidgTWkt02vVZg87tmo6nVugVjaZNyihm2DO7Yy32xO7ZC/v4s1bNq9H2UqVd7mi5VQifT2bf/1XptLs4+lJ19eyiiBXPq0reLY9p/0Lp6CtnjVZ2NTNTm2U37JX8X7Mme6QfGJU35TbNM1dd/MjkpU7tEX824zfIJ+LiQjyRXowl1/1GBTGFacxRN5aRxCZSyFH1Ei5wiYbQL8wLC8JSJ1UI+JoJfAth7RO+qZC6</latexit>
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FIG. 1: The reflection Ri as the link-centered parity transformation along the xi direction.

III. ’T HOOFT ANOMALY

In this section, we show that the CPN−1 model (1) exhibits two ’t Hooft anomalies:

the one between the PSU(N) flavor and magnetic symmetries, and the other between the

magnetic and reflection symmetries. Before proceeding to it, we shall quickly review an ’t

Hooft anomaly and its consequence, the anomaly matching [1–3].

Suppose that our system living on the spacetime manifold MD has a global symmetry

G, such as the flavor, magnetic, and reflection symmetries in the CPN−1 model. One can

generally couple a background gauge field A associated with the symmetry G and define the
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generating functional for the system Z[A] as

Z[A] =

∫
Dϕ exp(−Sgauged[ϕ;A]), (13)

where ϕ is a set of dynamical fields—e.g., ϕ = {z, a} in the CPN−1 model—and Sgauged[ϕ;A]

denotes the action equipped with the background G-gauge field A. The background gauge

field promotes the global symmetry to a local one. We näıvely expect that the generating

functional is invariant under the local transformation, A(x)→ A(x) + δθA(x), where δθA(x)

represents the gauge variation with a possible gauge parameter θ(x). However, contrary

to our näıve expectation, this is not always the case. The generating functional sometimes

obtains a phase factor:

Z[A+ δθA] = Z[A]eiA[θ,A], (14)

and the gauge invariance is broken up to this phase. A[θ, A] is a local functional of θ(x) and

A(x). The system is defined to have an ’t Hooft anomaly when the anomalous phase shift

A[θ, A] cannot be canceled out by a variation of any gauge-invariant local counterterm in

D dimensions (i.e., A[θ, A] 6= δθS
D
local[A]). Instead, it is usually saturated by a variation of a

local action living on ND+1, a (D + 1)d open manifold whose boundary is MD:

δθS
D+1
SPT [A] = iA[θ, A]. (15)

Here SD+1
SPT [A] represents the local action and describes an SPT phase protected by the

symmetry G on the (D + 1)-dimensional spacetime. We emphasize that the combination

Z[A]e−S
D+1
SPT [A] is gauge invariant thanks to the SPT action.

If we find the ’t Hooft anomaly, it inevitably constrains the low-energy behaviors of

the model. Consider the renormalization group (RG) transformation of the gauge-invariant

combination Z[A]e−S
D+1
SPT [A]. While the RG on the D-dimensional boundary results in a

certain low-energy effective theory of the edge system, the RG in the (D + 1)d bulk is

trivial because the SPT action has no dynamical degrees of freedom. Thus, the low-energy

effective action on the boundary must reproduce the same anomalous phase factor canceling

the variation in the bulk because the RG preserves the gauge invariance of the total system.

As a result, since the effective action for any non-degenerate (unique) gapped ground

state cannot reproduce the phase shift iA[θ, A], it is impossible to gap out the system

without ground state degeneracy. Therefore, possible scenarios for the low-energy behaviors

of systems (such as ground state) are restricted to show
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• spontaneous symmetry breaking of G,

• topological order, or

• conformal behavior,

where a unique gapped ground state is ruled out. This consistency condition on the infrared

(IR) behaviors of the system is known as the ’t Hooft anomaly matching.

In order to detect the ’t Hooft anomaly, we thus need to gauge global symmetries in the

CPN−1 model: the flavor, magnetic, and reflection symmetries. Since gauging the flavor and

reflection symmetries requires some effort, we first explain a straightforward part, gauging

the U(1)
[D−3]
M magnetic symmetry4. It is accomplished by introducing a background (D−2)-

form gauge field K through the minimal coupling to the magnetic current JM defined in

Eq. (5). Then, the action for the CPN−1 model takes the following form:

S[z, a;K] =

∫ [
|Daz|2 + V (|z|2) +

1

2g2
da ∧ ?da

]
+

i

2π

∫
K ∧ da, (16)

where the last term results from gauging the U(1)
[D−3]
M symmetry. As a result, the action

(16) becomes invariant under the U(1)
[D−3]
M local transformation given by

z(x)→ z(x),

a(x)→ a(x),

K(x)→ K(x) + dθ(x),

(17)

with a (D − 3)-form local parameter θ(x). Under this transformation, the generating func-

tional is invariant because the action changes only by

i

2π

∫
dθ ∧ da ∈ 2πiZ, (18)

which doesn’t affect the generating functional. Note that this gauge field K doesn’t trans-

form under the flavor symmetry but changes under Rµ as

K(x)→ (Rµ ·K)(Rµx). (19)

We demand this transformation to keep i
2π

∫
K ∧ da invariant under the reflection Rµ.

4 See Sec. III C for an extension to the case with charge-n monopoles, where the magnetic symmetry is

broken to be (Zn)
[D−3]
M .
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At this stage, we do not encounter any obstruction to gauge the magnetic symmetry, but

the situation will be changed when we try to gauge other symmetries. In the following, we

study the PSU(N)F × U(1)
[D−3]
M and R × U(1)

[D−3]
M anomalies in Sec. III A and Sec. III B,

respectively. We will observe that turning on background gauge fields for PSU(N)F and

R spoils the U(1)
[D−3]
M invariance (18), which implies the existence of the mixed ’t Hooft

anomalies. In Sec. III C, we also discuss whether the ’t Hooft anomalies exist or not when

U(1)
[D−3]
M is broken down to its discrete subgroup by the monopole deformation of the model.

A. PSU(N)F ×U(1)
[D−3]
M anomaly

Let us begin with coupling the system to a background gauge field for the PSU(N)F

symmetry [5, 58]. The PSU(N) gauge field is realized as a pair of a U(N) gauge field A and

a 2-form U(1) gauge field B satisfying the following constraint:

NB = trF [A], (20)

where F [A] = dA− iA∧A is the field strength for A. This constraint allows us to regard B

as a 2-form ZN gauge field, whose surface integration is fractionally quantized:∫
Σ2

B ∈ 2π

N
Z, (21)

where an arbitrary two-dimensional closed manifold Σ2. The U(N) gauge field acts on the

fields in the ordinary manner:

z(x)→ U(x)z(x),

a(x)→ a(x),

K(x)→ K(x),

A(x)→ U(x)A(x)U †(x)− idU(x)U †(x),

B(x)→ B(x),

(22)

with a gauge transformation parameter U(x) ∈ U(N). Nevertheless, since the U(N) gauge

field contains the undesired U(1) component, we eliminate this by imposing the 1-form gauge
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invariance: 

z(x)→ z(x),

a(x)→ a(x)− λ(x),

K(x)→ K(x),

A(x)→ A(x) + λ(x)IN ,

B(x)→ B(x) + dλ(x),

(23)

where λ(x) is a 1-form U(1) field. Note that one needs to transform the 2-form gauge field B

to keep the constraint (20). This 1-form gauge invariance removes the redundant diagonal

part in U(N), which acts on no gauge-invariant operators as discussed in Sec. II, and allows

us to realize the U(N)/U(1) ' PSU(N) gauge field. It may be also helpful to recall a relation

U(N) ' U(1)× SU(N)/ZN , where the center of SU(N) is divided to avoid double counting

with the U(1) part.

After introducing the PSU(N)F gauge field, the resulting action of the CPN−1 model

takes the form:

S[z, a;A,B,K] =

∫ [
|Da+Az|2 + V (|z|2) +

1

2g2
(da+B) ∧ ?(da+B) +

i

2π
K ∧ (da+B)

]
.

(24)

The covariant derivative for z is now replaced by Da+Az = (d − ia − iA)z. This completes

gauging the quotient group symmetry PSU(N)F .

We then show gauging PSU(N)F indeed spoils the large gauge invariance for U(1)
[D−3]
M .

The generating functional similarly acquires an anomalous phase factor under the local

U(1)
[D−3]
M transformation, K(x)→ K(x) + dθ(x) as

Z[K + dθ, A,B] = Z[K,A,B] exp

(
− i

2π

∫
MD

dθ ∧B
)
. (25)

Thus, a nontrivial phase shift under the large gauge transformation remains because the

fractional quantization (21) yields i
2π

∫
MD

dθ ∧B ∈ 2πi
N
Z.

We must confirm no local counterterm cancels the phase shift. A possible local action

canceling the variation takes the form: ∫
MD

K ∧B. (26)

Nevertheless, it is not invariant under the ZN 1-form gauge transformation, and we have

no local counterterm to cancel the phase shift. Therefore we find the PSU(N)F ×U(1)
[D−3]
M
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anomaly in the D-dimensional CPN−1 model. Furthermore, one can show this anomaly is

saturated by attaching the CPN−1 model on the boundary of an SPT phase living on a

(D + 1)-dimensional manifold ND+1:

SSPT[K,A,B] = (−1)D+1 i

2π

∫
ND+1

K ∧ dB. (27)

One can readily show the combination Z[K,A,B]e−SSPT[K,A,B] is invariant under both

Eq. (17) and Eq. (23).

B. R×U(1)
[D−3]
M anomaly

We next study the mixed anomaly between the reflection symmetry R and the magnetic

symmetry U(1)
[D−3]
M .

To detect the anomaly, we need to introduce a gauge field for R. A flux for such a

discrete symmetry is introduced by imposing a twisted boundary condition associated with

the symmetry. In the case of the reflection symmetry, it is equivalent to putting the theory

on a nonorientable manifold (see Refs. [13, 18] and also related work [7, 9]).

For simplicity, we first consider the CPN−1 model living on a three-dimensional cube

whose side length is L. We choose the periodic boundary condition along the x1 direction

but impose the twisted boundary conditions on the other (x2 and x3) directions by using

the R3 and R2 transformations. The boundary condition along the x2 direction is explicitly

given by

z(x1, L/2, x3) = eiθ2(x1,x3)Ωz∗(x1,−L/2,−x3), (28a)

a(x1, L/2, x3) = −(R3 · a)(x1,−L/2,−x3) + dθ2(x1, x3), (28b)

K(x1, L/2, x3) = −(R3 ·K)(x1,−L/2,−x3), (28c)

and that along the x3 directions is

z(x1, x2, L/2) = eiθ3(x1,x2)Ωz∗(x1,−x2,−L/2), (29a)

a(x1, x2, L/2) = −(R2 · a)(x1,−x2,−L/2) + dθ3(x1, x2), (29b)

K(x1, x2, L/2) = −(R2 ·K)(x1,−x2,−L/2), (29c)

where we introduced possible U(1) phases θ2 and θ3 allowed by the gauge invariance (2). We

will specify the condition imposed on these phases resulting from consistency of the twisted
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boundary conditions. Note that imposing these boundary conditions is equivalent to putting

the theory on the S1 × RP2 manifold.

Let us specify a condition which the U(1) phases θ1 and θ2 satisfy. Recalling that we

have two ways to patch the scalar field on the line (x1, L/2, L/2) = (x1,−L/2,−L/2) as

z(x1, L/2, L/2) = eiθ2(x1,L/2)Ωz∗(x1,−L/2,−L/2)

= eiθ3(x1,L/2)Ωz∗(x1,−L/2,−L/2),
(30)

we find that θ2(x1, L/2) is equal to θ3(x1, L/2) modulo 2π. In a similar way, the consistency

on the line (x1, L/2,−L/2) = (x1,−L/2, L/2) gives us

z(x1, L/2,−L/2) = eiθ2(x1,−L/2)Ωz∗(x1,−L/2, L/2)

= eiθ3(x1,−L/2)Ωtz∗(x1,−L/2, L/2).
(31)

Eq. (31) indicates the U(1) phases satisfy

θ2(x1,−L/2)− θ3(x1,−L/2) ∈

2πZ for ΩΩ∗ = +1,

π + 2πZ for ΩΩ∗ = −1,
(32)

which plays a pivotal role in finding the R× U(1)
[D−3]
M anomaly.

We then calculate the Dirac quantization condition for the dynamical gauge field a on

the RP2 plane and show the R×U(1)
[D−3]
M anomaly. With the help of Stokes’ theorem and

the twisted boundary conditions, the magnetic flux threading the plane is directly evaluated

as ∫
x2,x3

da =−
∫ L/2

−L/2
dx2
[
a2(x1, x2, L/2)− a2(x1,−x2,−L/2)

]
+

∫ L/2

−L/2
dx3
[
a3(x1, L/2, x3)− a3(x1,−L/2,−x3)

]
=−

[
θ2(x1,−L/2)− θ3(x1,−L/2)

]
+
[
θ2(x1, L/2)− θ3(x1, L/2)

]
.

Thus, the choice ΩΩ∗ = +1 results in the standard Dirac quantization condition, while

ΩΩ∗ = −1 brings about a nontrivial one:∫
x2,x3

da ∈ 2πZ, for ΩΩ∗ = +1, (33)∫
x2,x3

da ∈ 2πZ + π, for ΩΩ∗ = −1. (34)
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Here, the latter result indicates∫
x2,x3

da =

∫
x2,x3

πw2 (mod 2π), (35)

where w2 denotes the second Stiefel-Whitney class for the tangent bundle on our spacetime

manifold [59] (see also [7, 9]). It is defined modulo 2 and takes zero and one on spin and

non-spin manifolds, respectively. In that sense, it does not directly measure the orientability

of the manifold, which is instead detected by the first Stiefel-Whitney class. However, since

we introduce the twisted boundary conditions just in the two directions, the second Stiefel-

Whitney class is related to the first Stiefel-Whitney class via w2 = w2
1 (see the appendix

of Ref. [9]), and the nontrivial second Stiefel-Whitney class means nonorientablity of the

manifold. As will be discussed shortly, it is worth emphasizing that πw2 plays a similar role

to the 2-form gauge field B in Sec. III A.

The modified Dirac quantization condition might imply the CPN−1 model has an ’t Hooft

anomaly. Under the twisted boundary conditions with ΩΩ∗ = −1, performing the large

U(1)M gauge transformation K(x)→ K(x) + dθ(x) with θ(x) = 2πnx1/L (n ∈ Z) gives us

Z[K + dθ, w2] = Z[K,w2] exp

(
−in

∫
x2,x3

πw2

)
. (36)

Thus, the choice ΩΩ∗ = −1 could yield a mixed ’t Hooft anomaly between the R and U(1)M

symmetries while one does not find such an anomaly in the other case ΩΩ∗ = +1.

A possible local term which cancels the anomalous phase (36) is just

− i

2π

∫
M3

K ∧ πw2. (37)

However, one finds that this term is ill-defined as follows. For example, when we substitute

a specific configuration K = ηdx1/L with η ∈ [0, 2π] into Eq. (37) and put the theory on

the manifold S1 × RP2, this term (37) reduces to

− iη

2π

∫
x2,x3

πw2, (38)

which is not consistent for a generic value of η ∈ [0, 2π] because
∫
x2,x3

w2 is only defined

modulo 2. Therefore, we cannot remove the anomalous phase shift (36) by adding any local

counterterms, which proves that the CPN−1 model possesses the R × U(1)M anomaly. In

addition, the SPT action corresponding to this anomaly is identified as

SSPT[K,w2] =
i

2π

∫
N4

K ∧ πdw2. (39)
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Likewise, N4 is a four-dimensional bulk whose boundary is given by M3 = S1 × RP2.

Generalizing the above discussion to higher dimensions is straightforward. We impose

the twisted boundary conditions on two directions, or put the model on a manifold MD =

MD−2 × RP2. When one chooses ΩΩ∗ = −1, the generating functional similarly picks up

the following phase factor under the local U(1)
[D−3]
M transformation:

Z[K + dθ, w2] = Z[K,w2] exp

(
− i

2π

∫
dθ ∧ πw2

)
. (40)

No local counterterms saturate this phase factor, but the following SPT action living on a

(D + 1)-dimensional manifold ND+1 with ∂ND+1 =MD cancels it:

SSPT[K,w2] = (−1)D+1 i

2π

∫
ND+1

K ∧ πdw2. (41)

Thus, we find the R×U(1)
[D−3]
M anomaly in general dimensions. Note that ΩΩ∗ = +1 gives

no anomaly again.

Here, we mention a relation to the previous work. Up to a total derivative term, the SPT

action (39) is rewritten as

SSPT[K,w2] = − i

2π

∫
N4

dK ∧ πw2. (42)

This SPT action coincides with one of the topological actions for topological paramagnets

protected by the U(1) × T symmetry [7]. Since the transformation law of K given in

Eq. (19) under R ∼ R1 ∼ T is different from that of the ordinary U(1) gauge field by a

charge conjugation, it obeys the classification of topological paramagnets. We note that our

SPT action (41) also describes its higher-form generalizations.

In summary, we find the R×U(1)
[D−3]
M anomaly in the CPN−1 model when the number of

flavor N is even, and we further choose ΩΩ∗ = −1. The R× U(1)
[D−3]
M is obtained without

using the PSU(N)F symmetry. Therefore, the R × U(1)
[D−3]
M anomaly survives even if we

allow the model to have any potential for the scalar field breaking the flavor symmetry

but respecting the reflection symmetry. This indicates that even when the model explicitly

breaks the flavor symmetry, it cannot show a unique gapped ground state as long as the

reflection and magnetic symmetries are respected. Furthermore, we also emphasize that the

R×U(1)
[D−3]
M anomaly is present even without the Lorentz or rotation symmetries but only

with the magnetic symmetry and two of the Rµ (µ = 1, · · · , D) symmetries.

17



C. Stability to monopole deformation

In this subsection, we investigate stability of the above anomalies under the monopole

deformation, which explicitly breaks the magnetic symmetry. When the model couples to

a charge-n magnetic object, the magnetic symmetry is broken down to its Zn subgroup

referred to as (Zn)
[D−3]
M . In this case, the background gauge field is replaced by a (D − 2)-

form Zn gauge field Kn, which is realized as a (D − 2)-form U(1) gauge field satisfying the

constraint nKn = dH with (D − 3)-form U(1) gauge field H. Due to this constraint, the

local (Zn)
[D−3]
M transformation acts on both Kn and H asKn → Kn + dθ,

H → H + nθ,
(43)

where θ denotes a (D − 3)-form local function. Although the gauged action itself takes the

same form up to the replacement of K with Kn (and an action for a magnetic object), this

deformation allows us to have additional local counterterms, which may cancel the anomalous

phases, Eqs. (25) and (40). If they cancel the anomalous phase shifts, the anomalies are

not stable to the explicit breaking of U(1)
[D−3]
M , and such a deformation results in a unique

gapped ground state. In the following, we clarify conditions for the anomalies to survive

by investigating whether we can remove the anomalous phase shifts with the new local

counterterms or not.

First, we begin with the PSU(N)F × (Zn)
[D−3]
M anomaly. Thanks to the (D − 3)-form

gauge field H, we also have the local counterterm:

Sk[H,B] =
ik

2π

∫
dH ∧B, (44)

which possibly cancels the anomalous phase shift in Eq. (25). Here, note that the coefficient

k is an integer running from 0 to N − 1 because B denotes a ZN gauge field. Then, let

Z[Kn, H,A,B] be the generating functional for the CPN−1 model with the monopole defor-

mation, which acquires the same phase factor as the original one (25) under the (Zn)
[D−3]
M

transformation (43). With the help of the new local counterterm, we redefine the generating

functional as Z̃[Kn, H,A,B] = Z[Kn, H,A,B]e−Sk[H,B], which results in

Z̃[Kn + dθ,H + nθ,A,B]

= Z̃[Kn, H,A,B] exp

(
− i(kn+ 1)

2π

∫
dθ ∧B

)
.

(45)
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This equation means Sk[H,B] can saturate the anomaly if and only if (kn + 1) ∈ NZ.

In other words, such Sk[H,B] exists when GCD(n,N) = 1. We thus conclude the flavor

anomaly vanishes in this case, but otherwise it is still present, which reproduces the previous

result in Ref. [20] for D = 3.

Let us next clarify the condition under which the R × (Zn)
[D−3]
M anomaly survives. A

parallel discussion allows the additional local counterterm:

Sk[H,w2] =
ik

2π

∫
dH ∧ πw2, (46)

where k = 0, 1 resulting from the property of the second Stiefel-Whitney class. We then

modify the generating functional for the deformed model Z[Kn, H, w2] by adding this local

counterterm as Z̃[Kn, H,w2] = Z[Kn, H, w2]e−Sk[H,w2], whose large (Zn)
[D−3]
M gauge transfor-

mation results in

Z̃[Kn + dθ,H + nθ, w2]

= Z̃[Kn, H,w2] exp

(
− i(kn+ 1)

2π

∫
dθ ∧ w2

)
.

(47)

This shows the R× (Zn)
[D−3]
M anomaly exists for even n, while it is a fake for odd n.

IV. ANOMALY MATCHING IN LOW-ENERGY EFFECTIVE THEORIES

In this section, we investigate the ’t Hooft anomaly matching of the CPN−1 model (1)

in the low-energy effective theory showing spontaneous symmetry breaking. In Sec. IV A,

we first demonstrate possible scenarios with spontaneous symmetry breaking which satu-

rates the specified ’t Hooft anomalies. Then, we heuristically show how the low-energy

effective theories in the symmetry-breaking phases— the Néel, U(1) spin liquid, and VBS

phases—consistently match the specified ’t Hooft anomalies in Secs. IV B, IV C, and IV D,

respectively.

A. Possible symmetry breaking scenarios

Let us first constrain possible ground states with spontaneous symmetry breaking for

the CPN−1 model in the absence of monopoles. The model without monopoles enjoys the

topological U(1)
[D−3]
M symmetry, and Table I demonstrates a short summary on the ’t Hooft
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PSU(N)F ×U(1)
[D−3]
M R×U(1)

[D−3]
M

Ω = +Ωt © ×

Ω = −Ωt © ©

TABLE I: ’t Hooft anomalies for the CPN−1 model with U(1)
[D−3]
M (© and × indicate the

presence and absence of an anomaly).

anomalies obtained in the previous section. Recall that theR×U(1)
[D−3]
M anomaly is sensitive

to whether the number of the flavors N is even or odd and how R is represented in contrast

to the PSU(N)F × U(1)
[D−3]
M anomaly.

In this case, the ’t Hooft anomaly matching tells us that we have the following two typical

symmetry breaking scenarios:

• spontaneous PSU(N)F symmetry breaking (Néel phase) and

• spontaneous U(1)
[D−3]
M symmetry breaking (U(1) spin liquid phase).

We call the PSU(N) symmetry-broken phase as the Néel phase—indeed, the case with

N = 2 represents the Néel phase for the antiferromagnet—and the U(1)
[D−3]
M symmetry

broken phase as the U(1) spin liquid phase.

These phases can be realized by tuning the potential term in the action (1). For example,

suppose that the potential be V (|z|2) = m|z|2 + λ|z|4 with λ > 0. Then, for m < 0,

the complex scalars can condense, and an order parameter Ξab = zaz
∗
b acquires non-zero

expectation value. The nonvanishing order parameter Ξab breaks the PSU(N)F symmetry

as well as the reflection symmetry. On the other hand, for m > 0, the complex scalars are

expected to be gapped, and thus, we can integrate out them. In this case, the dynamical

gauge field a remains massless, which means the spontaneous breaking of the U(1)
[D−3]
M

symmetry. This is why we refer to this U(1)
[D−3]
M symmetry broken phase as the U(1) spin

liquid phase.

We next consider the charge-n monopole deformation, which explicitly breaks the

U(1)
[D−3]
M symmetry down to its discrete subgroup (Zn)

[D−3]
M . Table II shows the CPN−1

model in the presence of charge-n monopoles has a little complicated anomaly structure

depending on the value of the monopole charge n. The Néel phase and U(1) spin liquid
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monopole charge n PSU(N)F × (Zn)
[D−3]
M R× (Zn)

[D−3]
M

Ω = +Ωt
GCD(N,n) = 1 × ×

GCD(N,n) > 1 © ×

Ω = −Ωt

GCD(N,n) = 1, GCD(2, n) = 1 × ×

GCD(N,n) > 1, GCD(2, n) = 1 © ×

GCD(N,n) > 1, GCD(2, n) > 1 © ©

TABLE II: ’t Hooft anomalies for the CPN−1 model in the presence of charge-n monopoles

(© and × indicate the presence and absence of an anomaly).

phases also saturate the PSU(N)F × (Zn)
[D−3]
M and R× (Zn)

[D−3]
M anomalies since (Zn)

[D−3]
M

is included in U(1)
[D−3]
M . Besides, the model can have a spontaneous (Zn)

[D−3]
M symmetry-

broken phase. We call the (Zn)
[D−3]
M symmetry broken phase as a valence bond solid (VBS)

phase following a terminology often used in D = 3. It is worth to emphasize that this phase

describes topological order in D ≥ 4 since the broken symmetry is a higher-form discrete

one [5, 22]. The model allows the additional symmetry breaking scenario:

• spontaneous symmetry breaking of (Zn)
[D−3]
M (valence bond solid (VBS) phase).

The ’t Hooft anomaly matching states the low-energy effective action associated with the

above symmetry broken phases must reproduce the anomalous phase shifts. Although all the

above scenarios with spontaneous symmetry breaking could saturate the ’t Hooft anomaly,

it is quite nontrivial how the ’t Hooft anomalies are saturated in the low-energy effective

theory. In the rest of this section, we directly examine how the saturation of the anomaly

is realized in the low-energy effective action describing the symmetry-broken phases.

B. Néel phase

In this subsection, we demonstrate the anomaly matching in the low-energy effective

field theory of the Néel phase, where PSU(N)F is spontaneously broken to the U(N − 1)F

symmetry.

As we explained in the previous subsection, the potential V (|z|2) = m|z|2 + λ|z|4 with

m < 0 may result in the condensation of zi in its ground state. We then assume this
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condensation indeed occurs and then, parametrize the ground state expectation value as

e.g., 〈za〉 = fπδ
1
a with a real constant fπ (classically given by fπ =

√
−m/λ) and the

Kronecker delta δab . This ground state expectation remains invariant under the act of the

subgroup U(N − 1)F . Further taking account of the U(1) gauge invariance, we see that

the actual broken symmetry forms CPN−1 ' U(N)/[U(1)× U(N − 1)]. Then, the resulting

Nambu-Goldstone mode is introduced as

z(x) = U(x) 〈z〉 with U(x) ∈ U(N)/[U(1)× U(N − 1)], (48)

where the coset U(x) contains the Nambu-Goldstone mode. Note that we took account of

the fact that 〈z〉 is invariant under the unbroken symmetry U(N−1)F and chose the unitary

gauge. Substituting this into the original Lagrangian (1), we obtain

L = f 2
πtr
[
Ξ0
(
dU † ∧ ?dU + ia ∧ ?(U †dU − dU †U)

)]
+

1

2g2
da ∧ ?da+ f 2

πa ∧ ?a, (49)

where we introduced the matrix Ξ0, whose component is given by Ξ0
ab ≡ δ1

aδ
1
b in our gauge.

Here we neglected the constant term V (f 2
π) resulting from the potential. The condensation

of z giving a mass to the dynamical U(1) gauge field a via the Higgs mechanism. Then, we

can safely perform the integration over a by using the equation of motion:

a = −itr(Ξ0U †dU) +O(d3). (50)

As a consequence, we derive the effective Lagrangian for the Néel phase as

LNéel = f 2
π

[
tr(Ξ0dU † ∧ ?dU) + tr(Ξ0U †dU) ∧ ?tr(Ξ0U †dU)

]
=
f 2
π

2
tr(dΞ ∧ ?dΞ),

(51)

where, in the second line, we introduced the matrix field Ξ(x) = U(x)Ξ0U †(x). Eq. (51)

gives an effective Lagrangian for the Néel phase describing the dynamics of the Nambu-

Goldstone mode (see e.g., Ref. [60]). Since the flavor symmetry g ∈ PSU(N)F acts on Ξ as

Ξ→ gΞg−1, the effective Lagrangian (51) respects the PSU(N)F symmetry manifestly.

Based on the constructed effective theory, we then confirm the ’t Hooft anomaly matching

in the Néel phase. A key question arising from the bottom-up view of the low-energy effective

theory (51) is whether we have a symmetry corresponding to U(1)D−3
M within its framework.

At first glance, the answer seems negative since there is no corresponding symmetry in the
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effective Lagrangian (51). However, the crucial observation is the second homotopy group

of the coset is nontrivial:

π2

(
U(N)

U(1)× U(N − 1)

)
= π2(CPN−1) = Z. (52)

This topological number allows the Néel phase to possess topologically stable configurations.

As a result, we have the topologically conserved (D − 2)-form current:

?JS = − i

2π
tr(Ξ0dU−1 ∧ dU) = − i

2π
tr(ΞdΞ ∧ dΞ), (53)

whose coefficient is chosen so that
∫
S2 JS ∈ Z with a spatial 2-sphere S2. This (D− 2)-form

current is referred to as the Skyrmion current since the associated charge in the (2 + 1)d

case indeed counts a number of the magnetic (or baby) Skyrmions. We then identify the

Skyrmion current as the (D−2)-form magnetic current in the original CPN−1 model. On the

other hand, from the top-down viewpoint, this identification is naturally justified because

we can rewrite the magnetic current using Eq. (50) as

?JM =
1

2π
da = − i

2π
tr(Ξ0dU−1 ∧ dU) = ?JS. (54)

We thus find that the low-energy effective theory of the Néel phase realizes the U(1)
[D−3]
M

symmetry as the topological symmetry. By inserting the background (D − 2)-form gauge

field K, the effective action acquires the additional coupling as

SNéel[Ξ;K] =
f 2
π

2

∫
tr(dΞ ∧ ?dΞ) + i

∫
K ∧ ?JS. (55)

In the following, we will show that the additional term actually saturates both the PSU(N)F×
U(1)

[D−3]
M and R× U(1)

[D−3]
M anomalies.

a. PSU(N)F × U(1)
[D−3]
M anomaly matching. Let us first turn on the PSU(N)F back-

ground gauge field. This just replaces the partial derivatives in the effective Lagrangian

with the covariant ones. However, this näıve replacement violates the conservation of the

Skyrmion current. The violation is canceled if one modifies the Skyrmion current by adding

the gauge-invariant term:

?JS = − i

2π
tr(Ξ0DAU

−1 ∧DAU)− 1

2π
tr(Ξ0U

−1F [A]U) = − i

2π
tr(Ξ0d[U−1DAU ]), (56)

where we defined the covariant derivative of the coset DAU ≡ (d − iA)U . The modified

current (56) is the so-called Goldstone-Wilczek current [60–62] (see also Ref. [63] for a
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related early work). Although the second term fixes the conservation law or the U(1)
[D−3]
M

symmetry, it, instead, spoils the ZN 1-form gauge invariance.

On the other hand, we can recover the ZN 1-form gauge invariance by adding B/2π with

the 2-form ZN gauge field B, which yields another definition of the Skyrmion current:

?JS = − i

2π
tr(Ξ0DAU

−1 ∧DAU)− 1

2π
tr(Ξ0U

−1F [A]U) +
B

2π

= − i

2π
tr(ΞDAΞ ∧DAΞ)− 1

2π
tr(ΞF [A]) +

B

2π
.

(57)

Nevertheless, this modified current now spoils the U(1)
[D−3]
M large gauge invariance due to

the fractional quantization coming from the last term. This competing behavior precisely

reflects the mixed PSU(N)F×U(1)
[D−3]
M anomaly. Therefore, we have shown the PSU(N)F×

U(1)
[D−3]
M anomaly in the Néel phase.

b. R×U(1)
[D−3]
M anomaly matching. We next investigate the R×U(1)

[D−3]
M anomaly in

the Néel phase by putting the model on a nonorientable manifold, sayMD =MD−2×RP2.

Recall Eq. (40), where the magnetic current takes the half-integer value on the manifold.

The equation of motion (50) tells us∫
w2 =

1

2π

∫
da = − i

2π

∫
tr(ΞdΞ ∧ dΞ). (58)

In other words, a half Skyrmion shows up on the nonorientable manifold and again breaks

the U(1)
[D−3]
M large gauge invariance. Therefore, thanks to the topological current, the Néel

phase is shown to be consistent with the R× U(1)
[D−3]
M anomaly matching.

C. U(1) spin liquid phase

In this subsection, we examine the anomaly matching in the U(1) spin liquid phase,

where the U(1)
[D−3]
M magnetic symmetry is spontaneously broken. The discussion in this

subsection also serves as a basis to discuss the anomaly matching in the VBS phase.

In the U(1) spin liquid phase, the N -component complex scalar field is massive, and we

can simply integrate out it in the original CPN−1 Lagrangian (1). As a result, the system

only contains the dynamical U(1) gauge field a in the low-energy limit, which results in the

simple effective Lagrangian

LU(1)SL =
1

2g2
da ∧ ?da. (59)

24



This rather trivial effective Lagrangian is, of course, consistent with a general symmetry-

based argument. Besides, the S-duality maps the Maxwell theory onto

L̃U(1)SL =
1

2g̃2
dã ∧ ?dã, (60)

where gg̃ = 2π and ã is a (D − 3)-form U(1) gauge field which is dual to a.

In general, when a continuous p-form symmetry is spontaneously broken, an associated

Nambu-Goldstone boson is described by a p-form gauge field [5, 64]. Since U(1)
[D−3]
M is

broken in the U(1) spin liquid phase, we can identify ã as the Nambu-Goldstone boson

associated with the U(1)
[D−3]
M symmetry breaking. In the following, we will mainly use the

dual gauge field to examine its symmetries and anomaly matching.

Let us take a closer look at the symmetry structure of the above low-energy effective

theory. In addition to the U(1)
[D−3]
M symmetry generating the shift of the Nambu-Goldstone

boson ã as ã → ã + θ, one easily finds the low-energy effective Maxwell theory enjoys the

emergent 1-form shift symmetry for the original gauge field a, which we call the U(1)
[1]
E

symmetry. The Noether current for the U(1)
[1]
E symmetry is simply given by

? JE =
1

2π
dã, (61)

which is conserved due to the absence of electrically charged objects in the spin liquid phase.

The current ?JE characterizes line-like defects in this phase (e.g., a vortex in D = 3).

The vital point for the subsequent discussion is that the Maxwell theory suffers from the

mixed anomaly between the U(1)
[D−3]
M and U(1)

[1]
E symmetries. This observation motivates

us to identify a discrete counterpart of the U(1)
[1]
E symmetry, or the (Z[1]

N )E symmetry, as a

remnant of the PSU(N)F symmetry (recall that the original 1-form gauge transformation in

Eq. (23) is consistent with the above identification). We first note that gauging the U(1)
[D−3]
M

symmetry is accomplished by replacing dã with dã−K, an invariant combination under the

local U(1)
[D−3]
M transformation:

ã(x)→ ã(x) + θ(x), K(x)→ K(x) + dθ(x). (62)

Furthermore, one can introduce the 2-form ZN gauge field B through the minimal coupling

to the current in Eq. (61). We eventually find gauging the U(1)
[D−3]
M and (Z[1]

N )E symmetries

leads to the following effective action:

S̃U(1)SL[ã;K,B] =

∫
1

2g̃2
(dã−K) ∧ ?(dã−K) +

i

2π

∫
B ∧ dã, (63)
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where B obeys the fractional quantization (21).

The second term in Eq. (63) enables us to confirm that the ’t Hooft anomaly is consistently

matched in the U(1) spin liquid phase. In fact, this term respects the ZN 1-form gauge

invariance, but spoils the U(1)
[D−3]
M gauge invariance under Eq. (62) as

δθS̃U(1)SL[ã;K,B] =
i

2π

∫
B ∧ dθ. (64)

This violation is exactly the same as Eq. (25) and properly reproduces the phase shift

attached to the PSU(N)F × U(1)
[D−3]
M anomaly. Moreover, the same discussion works for

the R×U(1)
[D−3]
M anomaly. On the nonorientable manifold, the effective action is shown to

take the following form:

S̃U(1)SL[ã;K,w2] =

∫
1

2g̃2
(dã−K) ∧ ?(dã−K) +

i

2π

∫
πw2 ∧ dã, (65)

which consistently matches the R×U(1)
[D−3]
M anomaly. In both cases, the ’t Hooft anomalies

are saturated by the discrete counterparts of the U(1)
[1]
E symmetry and the current (61)

carrying nontrivial charge under the PSU(N)F and R symmetry.

D. Valence bond solid (VBS) phase

Based on the discussion in the previous subsection, we consider the effect of the charge-n

monopole deformation of the theory and discuss the anomaly matching in the VBS phase.

The valence bond solid phase appears when the charge-n monopole condenses so that the

(Z[D−3]
n )M symmetry is spontaneously broken. As discussed above, identifying the discrete

subgroup of the electric 1-form symmetry, or the (Z[1]
N )E symmetry, as a remnant of the

PSU(N)F symmetry, we can apply the same discussion as the U(1) spin liquid phase; the

effective Lagrangian in the VBS phase also contains the followings:

SVBS
anom[ã;B,w2] =

i

2π

∫
B ∧ dã+

i

2π

∫
πw2 ∧ dã (66)

in the presence of the background gauge fields for the PSU(N)F and R symmetries. We thus

again see these terms possibly spoil the (Z[D−3]
n )M gauge invariance depending on the value

of the monopole charge (see Table. II), saturating our ’t Hooft anomalies. In the remaining

of this subsection, we will show the consequence of the anomaly matching in the VBS phase:

deconfined excitations localized on a domain wall in D = 3 and topological order in D = 4.
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a. Anomaly inflow for 3d VBS domain wall. Let us first consider the 3d VBS phase,

where the dual gauge field ã denotes a scalar field [16]. We find that the effective theory

equipped with the (Zn)M shift symmetry of the dual scalar ã is given by the sine-Gordon

model with a potential V (ã) = ρ2
M(1 − cosnã). The cosine potential typically drives the

system to break the (Zn)M symmetry spontaneously, resulting in the VBS phase. Turning

on the (Zn)M gauge fields Kn and H, we obtain the gauged effective action of the VBS phase

as

S3D
VBS[ã;Kn, H] =

1

2g̃2
(dã−Kn) ∧ ?(dã−Kn) + ρ2

M

[
1− cos(nã−H)

]
. (67)

Compared with the U(1) spin liquid phase, the 3d VBS phase can have the domain-wall

solution due to a n-fold degeneracy of the classical vacua at ã ≡ 2πk/n (k = 0, 1, · · · , n−1).

As discussed in Ref. [16], a nontrivial excitation is localized on a domain wall in the VBS

phase with the PSU(N)× (Zn)M anomaly due to the anomaly inflow. Let us confirm their

discussion also respects the R× (Zn)M anomaly.

For simplicity, let us consider the n = 2 case, but generalization with arbitrary n is

straightforward. The cosine potential pins the scalar field ã to ã = 0, π leading to 2-fold

degeneracy of the classical vacua. Let us then consider a domain-wall solution interpolating

two vacua along e.g., the x3-direction by imposing the boundary condition5: ã(x) = 0 at

x3 = −∞ and ã(x) = π at x3 = ∞. Neglecting a thickness of the realized domain wall,

we simply put such a solution as ã(x) = πΘ(x3) with a Heaviside step function Θ(x).

Substituting this solution into the anomalous part of the effective action (66), we obtain the

following result nonvanishing on the wall:

Sano
VBS[ã;B,w2]

∣∣
ã=πΘ(x3)

=
i

2

∫
x1,x2

B(x1, x2, 0) +
i

2

∫
x1,x2

πw2(x1, x2, 0). (68)

Because of their coefficients, they don’t satisfy the Z2 1-form gauge invariance for B and

the 2π periodicity for πw2 on the wall and seem ill-defined itself.

This apparent contradiction is resolved by letting the theory on the wall have two-

dimensional anomalies so that the total system is consistent. Such an anomalous system

which cancels both the anomalous terms in Eq. (68) is the two-dimensional CPN−1 model

with a θ term at θ = π. At this θ angle, this 2d model has the charge-conjugation symmetry

5 Employing this boundary condition could be also regarded as an insertion of a nontrivial flux H with∫
x3 dH ∈ 2πZ for the background Z2 gauge field on a three-dimensional torus.
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C and also possesses the PSU(N)F × C [16, 20] and R × C anomalies [18]. In Ref. [16], it

is discussed that PSU(N)F × C anomaly saturates the first anomalous term on the wall in

Eq. (68). It is also pointed out the existence of an excitation carrying a PSU(N)F quantum

number, which is deconfined on the wall but confined in the bulk. Here, we find that the

R×C anomaly in the 2d CPN−1 model also saturates the second anomalous term in Eq. (68).

Therefore, in the presence of the R× (Zn)M anomaly, the deconfined excitation on the wall

must transform as in Eq. (9) under the reflection symmetry.

b. Topological order in 4d (or higher-dimensional) VBS phase. In D ≥ 4, a charge-

n Higgs field plays a role analogous to the cosine potential in D = 3, which breaks the

U(1)
[D−3]
M symmetry down to (Z[D−3]

n )M (recall the discussion on the monopole deformation

of the theory given in Sec. II). The gauged effective action is thus identified as

SD≥4
VBS [ã, η;Kn, H] =

∫
1

2g̃2
(dã−Kn) ∧ ?(dã−Kn) +

ρ2
M

2
(dη − nã+H) ∧ ?(dη − nã+H),

(69)

where η is a (D − 4)-form U(1) gauge field. In the spacetime dimension higher than 3 (or

D ≥ 4), the (Z[D−3]
n )M symmetry is spontaneously broken when ρ2

M is relevant. In that

case, we can show that the low-energy dynamics is governed by a topological quantum field

theory, known as the BF theory [65–70]. To show this, we first rewrite the effective action

(69) with the help of an auxiliary 3-form field h as

SD≥4
VBS [ã, η;Kn, H] =

∫
1

2g̃2
(dã−Kn)∧?(dã−Kn)+

1

8π2ρ2
M

h∧?h− i

2π
h∧(dη−nã+H). (70)

Instead of integrating out h, which reproduces the original effective Lagrangian (69), we now

integrate out η by using its equation of motion dh = 0, which can be solved as h = db with

a 2-form field b. As a consequence, we obtain the low-energy effective action for the VBS

phase in D ≥ 4 given by

Stop[ã, b;Kn, H] = − in

2π

∫
b ∧ (dã−Kn), (71)

where we neglected the higher derivative terms. The BF theory defined by the effective

action (71) describes a Z[D−3]
n topological order such as a BCS superconductor [66]. In

addition to the original Z[D−3]
n magnetic symmetry, the BF theory possesses an emergent

Z[2]
n symmetry acting on b as

b→ b+
1

n
dλ with

∫
Σ2

dλ ∈ 2πZ. (72)
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Nevertheless, one finds that the introduction of the (Z[D−3]
n )M background gauge field spoils

this emergent symmetry as

δλStop = −i

∫
dλ

2π
∧ dã+ i

∫
dλ

2π
∧Kn ∈

2πiZ
n

, (73)

where we used a constraint nKn = dH associated with the (Z[D−3]
n )M gauge field. This

shows the presence of the mixed anomaly between the (Z[D−3]
n )M and Z[2]

n symmetries, and

implies spontaneous (Z[D−3]
n )M symmetry breaking in the VBS phase. One can directly show

the ground state degeneracy of the BF theory (71) depends on the topology of the spatial

manifold (see e.g., Refs. [65–70] for a detailed discussion).

V. APPLICATION: 4D ANOMALY AT FINITE TEMPERATURE

As an application of the anomaly matching, we shall discuss the fate of the PSU(N)F ×
U(1)

[1]
M and R×U(1)

[1]
M anomalies of the four-dimensional CPN−1 model at finite temperature

and apply it to constrain its possible phase diagram.

1. Persistence of the anomaly at finite temperature

A usual symmetry, or a 0-form symmetry, acts on the point-like local operator, and

the associated ’t Hooft anomaly usually disappears when we consider a finite-temperature

situation (see, however, Ref. [71] for a way to make a 0-form anomaly to survive under circle

compactification). Nevertheless, since the anomalies for the 4d CPN−1 model involve the 1-

form magnetic symmetry, which acts on the line operator, they survive and forbid the model

from being a trivial phase even at finite temperature. In this subsection, after demonstrating

the persistence of the PSU(N)F × U(1)
[1]
M and R× U(1)

[1]
M anomalies at finite temperature,

we will show the consequence of anomaly matching. We also explicitly show the large-N

phase diagram of the CPN−1 nonlinear sigma model is consistent with the anomalies.

First of all, we explain that the anomalies in the 4d CPN−1 model indeed survive at finite

temperature. Suppose that our system lives onM4 = S1×M3 and regard the circumstance

in the x1 direction as the inverse temperature 1/T . Then, the magnetic symmetry in four

dimensions splits into 1-form and 0-form symmetries, which act on the spacial magnetic loop

and the point-like object, respectively. In the four-dimensional language, this can be seen
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as the following decomposition of the U(1)
[1]
M gauge field K:

K = K(2) + Tdx1 ∧K(1), (74)

where K(2) and K(1) are 2-form and 1-form gauge fields on the three-dimensional spacial

manifoldM3. Note that we can always introduce this specific configuration at any temper-

ature. In this finite-temperature setup, the magnetic U(1)
[1]
M gauge transformation given by

K → K + dθ can be decomposed into

dθ = dθ(2) + Tdx1 ∧ dθ(1), (75)

where θ(2) and θ(1) are the gauge parameters for the 1-form and 0-form magnetic symmetries,

respectively. Note that this decomposition is equivalent to the separate gauge transforma-

tions K(2) → K(2) +dθ(2), K(1) → K(1) +dθ(1). On the other hand, the 2-form gauge field B

just reduces B(2), a 2-form gauge field onM3
6. Substituting the above decomposition of K

and the reduced expression of B into Eq. (25) and performing the imaginary-time integral,

we find the partition function for the 4d CPN−1 model acquires the anomalous phase as

Z[K + dθ, A,B] = Z[K,A,B] exp

(
− i

2π

∫
M3

dθ(1) ∧B(2)

)
. (76)

The first takes exactly the same form as the PSU(N)F × U(1)M anomaly in the 3d CPN−1

model.In addition, when the spatial manifold is given byM3 = S1×RP2, Eq. (40) with the

decomposition (75) results in the anomalous phase factor of the partition function:

Z[K + dθ, w2] = Z[K,w2] exp

(
− i

2π

∫
M3

dθ(1) ∧ πw2

)
. (77)

This matches the R × U(1)M anomaly in the 3d CPN−1 model. The same discussion also

works in the presence of the monopole deformation, and the finite-temperature CPN−1 model

possesses the PSU(N)F × (Zn)M and R× (Zn)M anomalies as the zero-temperature one.

It is worthwhile emphasizing that both the PSU(N)F × U(1)
[1]
M and R × U(1)

[1]
M mixed

anomalies survive at any temperature. This indicates that the system still stays in the

nontrivial phase even in the high-temperature limit, where the imaginary-time direction is

6 This is because this gauge field is associated with the quotient part of the 0-form symmetry PSU(N)F .

However, if we take a twisted boundary condition by PSU(N)F in the x1 direction, this yields a new ZN

symmetry and allows us to introduce a ZN 1-form gauge field B(1)analogous to K(1) [71]. However, we

don’t consider the special boundary condition here and focus on the compactification with the periodic

one.
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not visible, and the spacetime manifold effectively reduces to the 3d one. However, it is also

important to note that the CPN−1 model is a cutoff theory with an ultraviolet cutoff —in

particular, one can manifestly see the nonlinear one as a cutoff theory. As a result, at higher

temperature than the ultraviolet cutoff, the field theoretical description will break down,

and we do not know the fate of the ’t Hooft anomalies. This property directly affects our

subsequent discussion on the finite-temperature phase diagram of the CPN−1 model.

2. Possible phase structure

Based on the persistence of the ’t Hooft anomalies in the finite-temperature CPN−1 model,

we discuss its consequence to the phase diagram and thermal phase transition. Here we

present possible simple phase structures consistent with the anomalies by restricting our-

selves to the symmetry breaking scenarios discussed in Sec. IV.

While the system cannot reside in the trivial phase in the regime where the CPN−1 model

description is applicable, we need to take care of the fact the 4d CPN−1 model is a field

theory formulated with a UV cutoff denoted by Λcutoff (e.g., the inverse lattice constant of

spin systems). Above the cutoff, the CPN−1 model fails to describe underlying quantum

many-body systems, and our anomalies and anomaly matching argument could break down

(see also the discussion given in Sec. VI).

In the simplest scenarios, the Néel and U(1) spin liquid/VBS phases persist up to the

temperature T ∼ Λcutoff as shown in Figs. 2a and 2b. When T > Λcutoff , the system could

undergo a transition to a trivial gapped phase because the description by the CPN−1 model

is no longer valid above the cutoff scale.

We shall consider a more nontrivial scenario. First, suppose the model be in the Néel

phase at zero temperature and the Néel order be destroyed at some temperature below the

cutoff. We define that temperature as TNéel. After the transition, the model must be in

the U(1) spin liquid/VBS phase because the anomalies forbid a trivial gapped phase. We

introduce the temperature TMag, at which the model becomes the U(1) spin liquid/VBS

phase7. In general, TMag can be different from TNéel, but the anomalies yield the important

7 Note that TNéel and TMag are analogous to the temperatures for CP symmetry breaking and deconfinement

in the pure Yang-Mills theory at θ = π, respectively [23]. See also similar discussions for other gauge

theories [20, 25, 27, 32].
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TNèel = TMag

U(1)SL/VBS

Nèel
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FIG. 2: Possible scenarios for the finite temperature phase diagram consistent with the

anomalies In the first two examples, the Néel and U(1) spin liquid (SL)/VBS phases

persist up to T ∼ Λcutoff , while the last two show the cases with TNéel = TMag and

TNéel > TMag, respectively.

constraint for the transition temperatures:

TNéel ≥ TMag. (78)

This is because our simplified assumption on the possible phases does not allow a tem-

perature window TNéel < T < TMag, between which a trivial phase could appear8. This

scenario is schematically shown in Fig. 2d. In a special case where the equality in Eq. (78)

holds, the system may develop a critical behavior analogous to the deconfined quantum

criticality [50–52], or show a first-order phase transition (see Fig. 2c).

3. Large-N phase diagram of CPN−1 nonlinear sigma model

In order to demonstrate the actual realization of the ’t Hooft anomaly, we here consider

the finite-temperature CPN−1 nonlinear sigma model. The genuine CPN−1 nonlinear sigma

model is defined by the following Lagrangian

L = |Daz|2 + λ(|z|2 −N/g2), (79)

8 Nevertheless, it should be emphasized that the anomaly matching itself does allow TNéel < TU(1)SL

if the system shows an exotic phase matching all the ’t Hooft anomalies in the temperature window

TNéel < T < TU(1)SL. It is interesting to investigate such an exotic scenario but beyond the scope of this

paper.
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where z ≡ (z1, · · · , zN)t denotes a normalized N -component complex scalar field, whose

normalization constraint |z|2 = N/g2 is imposed by the auxiliary field (Lagrange multiplier)

λ. Note that the dimensionful coupling g2 is fixed in the large-N limit. Though we do not

put the Maxwell term, the model enjoys the same symmetries as our CPN−1 linear model

and also suffers from the same ’t Hooft anomalies. Thus, the anomaly matching argument

presented above can also be applied to this model.

Let us then show that the large-N phase diagram indeed realizes the plausible scenarios

given in the previous subsection. For that purpose, we use the effective action in the leading

large-N expansion given by

Γ[z, λ, a] =

∫ β

0

d4x
[
|Daz|2 + λ(|z|2 −N/g2)

]
+NTr log(−D2

a − λ). (80)

Then, assuming the homogeneous values for λ(x) = λ0, z(x) = z0 = (
√
Nv0, 0, · · · , 0) and

a = 0, we obtain the simplified expression for the effective potential V (v0, λ0) ≡ Γ[z0, λ0, a =

0]/(NβV ) as

V (v0, λ0) = λ0(v2
0 − 1/g2) +

∫ Λ d3k

(2π)3

[
ω(k)

2
+ T log(1− e−ω(k)/T )

]
, (81)

with ω(k) ≡
√
k2 + λ0. Note that we employed a 3-momentum cutoff regularization so that

the momentum integral is performed within |k| < Λ ≡ Λcutoff . In the following, we rescale

all the dimensionful quantities by the cutoff scale Λ such that ḡ ≡ gΛ, v̄0 ≡ v0/Λ
2, λ̄0 =

λ0/Λ
2, T̄ ≡ T/Λ.

The resulting large-N phase diagram from the effective potential (81) is shown in Fig. 3.

When we consider the zero-temperature limit, we find the critical coupling ḡcr ≡ 4π sep-

arating the Néel and U(1) spin liquid phases. When g > gcr, λ acquires a nonvanishing

expectation value showing the U(1) spin liquid phase, and nonvanishing condensate 〈z〉 for

g < gcr indicates the Néel order. When one increases temperature, the value of the critical

coupling decreases. We emphasize that its phase structure fits in the scenarios discussed

previously at any coupling g, which shows the consistency with the anomaly matching at

finite temperature9.

9 In the U(1) spin liquid phase, we have an emergent gapless photon even though the original action does

not contain the Maxwell term (see e.g., Ref. [72] for an interpretation of this emergent photon as a hidden

local gauge boson).
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FIG. 3: A large-N phase diagram of the CPN−1 nonlinear sigma model. The Néel and

U(1) spin liquid phases are separated by the critical line.

VI. SUMMARY AND DISCUSSION

In this paper, we have specified the ’t Hooft anomalies in the CPN−1 model (or N -flavor

abelian Higgs model) in D spacetime dimensions with D ≥ 3 and applied them to constrain

its low-energy dynamics. Our investigation has revealed that the CPN−1 model possesses

the two mixed ’t Hooft anomalies: one between the PSU(N)F flavor and U(1)
[D−3]
M magnetic

symmetries, and the other between the U(1)
[D−3]
M magnetic and R reflection symmetries. We

have also clarified the condition for these anomalies to survive in the presence of the charge-

n monopole object, which breaks the U(1)
[D−3]
M symmetry down to its discrete subgroup

(Z[D−3]
n )M (see Tables. I and II for a summary). Thanks to the ’t Hooft anomaly matching,

the latter indicates that the CPN−1 model cannot have a unique gapped ground state even

if one considers any PSU(N)F -breaking perturbations preserving the R and U(1)
[D−3]
M sym-

metries. For the case of N = 2, typical perturbations are the staggered Zeeman magnetic

field, the easy-axis (easy-plane) potential, and the Dzyaloshinskii-Moriya interaction:

V (nα) =
∑
α

Hαnα +
∑
α

µαnαnα +
∑
α,β,γ

καi ε
αβγnβ(∂in

γ + (κi × n)γ). (82)

We list up the perturbations in Table III according to symmetry breaking patterns. All the

terms except the staggered Zeeman field preserve the magnetic symmetry and two of the

reflection symmetries, and thus cannot result in a unique gapped ground state. Furthermore,
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PSU(2)F R1(∼ T ) R2 R3 · · · RD U(1)
[D−3]
M

Hα=x → SO(2)x × × × · · · × ©

µα=x → O(2)x © © © · · · © ©

κα=x
i=2 → O(2)x © × © · · · © ©

TABLE III: Symmetry properties of PSU(2)-breaking perturbations for the CP1 model in

the D spacetime dimension. Here © (×) represents the perturbation preserves (completely

breaks) the symmetry, and “→ SO(2)x” (“→ O(2)x”) means the flavor symmetry is broken

to its SO(2)x (O(2)x) subgroup generated by σx.

considering possible symmetry breaking scenarios, we have explicitly shown how our ’t Hooft

anomalies are saturated in the low-energy effective theories in the Néel, U(1) spin liquid, and

valence bond solid phases. As an application of the anomaly matching, we have discussed

the finite-temperature phase diagram of the (3 + 1)d CPN−1 model, where the anomalies

involving 1-form magnetic symmetry survives under the circle (thermal) compactification.

While we have specified the ’t Hooft anomaly in the CPN−1 model—an effective field

theoretical model of the SU(N) spin systems—it is an interesting issue to investigate its

possible realization in the lattice model. One may näıvely expect that it could still survive in

the underlying lattice model as an intrinsic (or a Lieb-Shultz-Mattis type) anomaly showing

a projective representation of the corresponding symmetries. If this is the case, the specified

’t Hooft anomaly could restrict possible low-energy dynamics of the underlying lattice model

beyond the regime where the field-theoretical description breaks down. Nevertheless, this is

not always the case, as shown in Ref. [17]; a so-called emergent anomaly is present only in

the field-theoretical model in sharp contrast to an intrinsic (Lieb-Shultz-Mattis type) one

present even at the lattice scale. This discrepancy is possible because we cannot trace the

field-theoretical RG flow back to the UV lattice scale. From the practical viewpoint to study

the lattice model, the intrinsic anomaly is more robust and gives stronger constraints than

the emergent anomaly. Therefore, it is quite important to figure out a field theoretical ’t

Hooft anomaly belongs to which class of them, intrinsic or emergent.

We here discuss whether the R × (Zn)M anomaly in the (2 + 1)d model is still present

or not in an underlying spin model. Since our R× (Zn)M anomaly is its higher-dimensional

generalization of the intrinsicR×C anomaly in the 2d CPN−1 model studied in Ref. [18], it is
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natural to expect ours also belongs to the intrinsic one. To clarify this, considering a lattice

model with half-integer spins, we shall ask whether it is possible to place the spin on each site

without spoiling the symmetries. Note that a half-integer spin has the doubly-degenerated

ground state when the time-reversal symmetry is respected (i.e., the Kramers degeneracy)

due to the time-reversal anomaly. To respect the time-reversal symmetry—corresponding

to the reflection symmetry in our setup—we employ a construction using the Haldane spin

chain: a (1 + 1)d SPT phase composed of integer spins and possessing the spin-1/2 at its

edge. Thanks to the cancellation between the bulk and edge contributions, the Haldane spin

chain is free from the time-reversal anomaly. The edge spin-1/2 degrees of freedom enable us

to formulate a problem whether we can put the Haldane spin chains on (2 + 1)d lattice links

appropriately without spoiling the (Zn)M lattice rotation symmetry. In this construction,

the system has no time-reversal anomaly because the contributions from the links saturate

the time-reversal anomalies on the sites. However, corresponding to the R×(Zn)M anomaly,

the above time-reversal-respecting construction may not work if we impose the site-centered

rotational symmetry10.

Let us consider a system on the rectangular lattice as a simple example. In this case,

we have to place the Haldane chains so that the system is invariant under π rotation. As

shown in Fig. 4a, an isolated spin 1/2 necessarily appears at the rotation center. Thus, we

never construct the spin 1/2 system on the rectangular lattice by placing the Haldane chains

respecting the rotational symmetry. Likewise, such an isolated spin 1/2 must exist, and the

system is anomalous on the square lattice (see Fig. 4b). On the other hand, the Haldane

chains completely saturate it, and no anomaly exists on the honeycomb lattice, as shown in

Fig. 4c. This is because the time-reversal anomaly is a Z2 anomaly, and an odd number of

one-half spins are anomalous. This observation is also consistent with the construction of a

trivial gapped ground state in a spin-1/2 system on the honeycomb lattice [74, 75]. All these

results are consistent with Table. II, implying the presence of the R× (Zn)M anomaly at the

lattice scale. We thus conclude that our R × (Zn)M anomaly is not an emergent anomaly

but an intrinsic one.

Although we restrict ourselves to the R× (Zn)M anomaly in the (2 + 1)d model above,

it is also interesting to ask whether and how ’t Hooft anomalies in the (3 + 1)d model are

10 This type of argument appears in Ref. [47, 48] as a generalization of the LSM theorem. See also Ref. [73]

for related work.
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(a) (b)

(c)

FIG. 4: Construction of spin models on the (a) rectangular, (b) square, and (c) honeycomb

lattices. A blue thick line represents the Haldane chain hosting a spin 1/2 (a red arrow) at

each edge. We never realize the spin at the rotation center (a red disk) as an edge of the

Haldane chain on the first two lattices, while we can on the last lattice.

present in the corresponding lattice model. Since the magnetic symmetry in the (3 + 1)d

CPN−1 model is a 1-form symmetry, there could be such a discrete 1-form symmetry even in

the lattice model, and a related Lieb-Shultz-Mattis type anomaly. Its identification can yield

a further constraint on the finite-temperature phase diagram because the intrinsic anomaly

prohibits the lattice model from being trivial beyond the cutoff Λcutoff . Furthermore, taking

account of the persistence of (3 + 1)d ’t Hooft anomalies at finite temperature, one can

also ask whether there is an associated transport phenomenon or not. Recent developments
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of quantum field theory in local thermal equilibrium enable us to investigate this [76–83],

and it is interesting to pursue possible manifestation of the ’t Hooft anomaly in transport

phenomena. These are left for future work.
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Appendix A: Derivation of Eq. (10)

We here provide a derivation of Eq. (10) as is discussed in Ref. [18]. For that purpose,

let us look for a condition imposed on Ω. Applying the above transformation twice, we get

z(x)→ ΩΩ∗z(x), (A1)

z†(x)→ z†(x)(ΩΩ∗)†, (A2)

a(x)→ a(x). (A3)

Since Rµ is a Z2 symmetry, ΩΩ∗ must be an element of the SU(N) center and thus ΩΩ∗ =

e2πik/NIN (k = 0, · · · , N − 1)11. This condition leads to Ω = e2πik/NΩt. As a result of this

11 Note that we can choose Ω ∈ U(N) more generally. Then, ΩΩ∗ is allowed to be an element of the U(N)

center, ΩΩ∗ = eiθ with θ ∈ [0, 2π). However, taking its determinant yields eiNθ = 1, coming back to the

SU(N) case.
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equation and its transpose, we obtain Ω = (e2πik/N)2Ω, which leads to e2πik/N = ±1. We

thus have only Ω = +Ωt for odd N but Ω = ±Ωt for even N .
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[35] Clay Córdova and Kantaro Ohmori, “Anomaly Obstructions to Symmetry Preserving Gapped

Phases,” (2019), arXiv:1910.04962 [hep-th].

41

http://dx.doi.org/ 10.1007/JHEP05(2017)091
http://arxiv.org/abs/1703.00501
http://dx.doi.org/10.1007/JHEP06(2017)102
http://arxiv.org/abs/1705.01949
http://dx.doi.org/10.1103/PhysRevD.97.105011
http://arxiv.org/abs/1706.06104
http://dx.doi.org/10.1007/JHEP10(2018)172
http://arxiv.org/abs/1711.04360
http://dx.doi.org/ 10.1103/PhysRevD.97.054012
http://arxiv.org/abs/1711.10487
http://arxiv.org/abs/1711.10487
http://dx.doi.org/10.1016/j.aop.2018.04.025
http://arxiv.org/abs/1711.11587
http://dx.doi.org/ 10.21468/SciPostPhys.5.1.006
http://arxiv.org/abs/1712.08639
http://dx.doi.org/10.1007/JHEP08(2018)171
http://arxiv.org/abs/1807.07666
http://arxiv.org/abs/1812.11968
http://dx.doi.org/ 10.1007/JHEP05(2019)062
http://dx.doi.org/ 10.1007/JHEP05(2019)062
http://arxiv.org/abs/1901.08188
http://dx.doi.org/ 10.21468/SciPostPhys.8.1.001
http://arxiv.org/abs/1905.09315
http://dx.doi.org/ 10.21468/SciPostPhys.8.1.002
http://arxiv.org/abs/1905.13361
http://arxiv.org/abs/1910.04962


[36] Itamar Hason, Zohar Komargodski, and Ryan Thorngren, “Anomaly Matching in the

Symmetry Broken Phase: Domain Walls, CPT, and the Smith Isomorphism,” (2019),

arXiv:1910.14039 [hep-th].
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