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Abstract

We study the stability of the Wilson-Fisher fixed point of the quantum O(2N) vector

model to quenched disorder in the large-N limit. While a random mass is strongly

relevant at the Gaussian fixed point, its effect is screened by the strong interactions of

the Wilson-Fisher fixed point. This enables a perturbative renormalization group study

of the interplay of disorder and interactions about this fixed point. We show that, in

contrast to the spiralling flows obtained in earlier double-ε expansions, the theory flows

directly to a quantum critical point characterized by finite disorder and interactions.

The critical exponents we obtain for this transition are in remarkable agreement with

numerical studies of the superfluid-Mott glass transition. We additionally discuss the

stability of this fixed point to scalar and vector potential disorder and use proposed

boson-fermion dualities to make conjectures regarding the effects of weak disorder on

dual Abelian Higgs and Chern-Simons-Dirac fermion theories when N = 1.
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1 Introduction

Many of the most challenging questions in condensed matter physics involve an interplay

of quenched disorder and strong interactions in two spatial dimensions at zero temperature.

A prominent example is the problem of understanding the nature of the field-tuned super-

conductor to insulator transition in thin films. This transition not only appears to have

the same critical exponents as the famously superuniversal quantum Hall plateau transitions

[1–6], but also broadens into a finite metallic region in cleaner samples [7–11]. Crucially,

the universal data of this quantum phase transition has failed to appear in any theoretical

construction involving disorder or interactions exclusively, indicating that both must play

important roles.

In spite of decades of effort, few organizing principles have been developed for under-

standing quantum critical systems with interactions and disorder, and analytically tractable

models have proven rare. This problem is particularly acute in bosonic systems undergo-

ing superconductor-insulator or superfluid-insulator transitions. While examples of quantum

critical points and phases have been constructed in fermionic systems using perturbative and

non-perturbative techniques [12–15], few analogous examples exist for bosonic systems. At

zero temperature, the only known examples of disordered-interacting fixed points of bosons

in 2d arise in the context of the superfluid-insulator transition of bosons with random mass

disorder and φ4 interactions. These fixed points are obtained using a double-ε expansion

about the free (Gaussian) fixed point in four spatial dimensions, perturbed with classical
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Figure 1: RG flow diagrams of the Gaussian fixed point (yellow square) as a function of the interaction

coupling constant u and running disorder strength ∆̄ = ∆/u2. The clean Wilson-Fisher fixed point is

denoted by a red diamond, while the dirty fixed point is shown with a blue circle. (a) Spiralling RG flows

are obtained in the double-ε expansion for small numbers N of bosons. (b) In the large-N limit, we show

that the Wilson-Fisher fixed point flows directly to a dirty, interacting quantum critical point.

(finite temperature) disorder. This peculiar expansion, taken very far from the physical,

quantum disordered situation of 2+1 spacetime dimensions, was introduced by Dorogovtsev

[16] and by Boyanovsky and Cardy [17], who found a stable fixed point characterized by

finite disorder and interactions (see also Ref. [18]). However, the character of this fixed

point is very strange and is not obviously of direct physical significance: the renormalization

group (RG) flows in its vicinity are spirals. As Fig. 1(a) demonstrates, it therefore takes

a long time to approach this fixed point, and the critical regime may in fact be physically

inaccessible. Fixed points with similar RG flows have been obtained in systems of bosons

with z = 2 [19] as well as in holographic constructions [20, 21].

The view we take in this work is that the unusual character of the double-ε expansion

fixed point may be understood as an artifact of perturbing the free, classical fixed point.

Near such a fixed point, disorder can prematurely take control of the physics, obscuring the

true fate of the strongly interacting, disordered theory. Indeed, the technical reason1 for

the appearance of spiralling flows is that at the free, classical fixed point, the φ4 operator

and the operator associated with the quenched disorder (in the replica formalism) have the

1See Refs. 22 and 23 for a more detailed discussion.
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same scaling dimension. As a result, these operators can immediately mix along the RG flow

in such a way that their scaling dimensions enter the complex plane, leading to the spirals

in Fig. 1(a). In contrast, the appearance of complex scaling dimensions is not expected

to occur near the Wilson-Fisher fixed point, where these operators do not have the same

scaling dimensions. A hint that this is the case comes from studying the double-ε expansion

RG equations in the limit of a large number N of boson species. In this limit, the scaling

dimensions of these operators near the Wilson-Fisher fixed point are far from degenerate,

and there is a crossover into a regime in which complex scaling dimensions no longer occur.

In this article, we demonstrate that the strongly coupled Wilson-Fisher fixed point gives

way to a quantum critical point (QCP) distinguished by both finite disorder and interactions

using a large-N expansion. Instead of simultaneously perturbing the free, classical fixed

point with both disorder and interactions, as in the double-ε expansion, we introduce weak

disorder directly at the quantum2, interacting Wilson-Fisher fixed point. While this fixed

point saturates the Harris criterion in the N →∞ limit (i.e. disorder is marginal), we find

that it is destabilized at O(1/N), resulting in flows of the type shown in Fig. 1(b). This fixed

point is characterized by a correlation length exponent ν and a dynamical scaling exponent

z given at O(1/N) by

ν = 1 , z = 1 +
16

3π2N
· (1.1)

Extrapolation to N = 1 therefore yields a value z ≈ 1.5 for the O(2) model. The associated

operator scaling dimensions are presented alongside the critical exponents of the clean fixed

point in Table 1.

The values these exponents take have several noteworthy implications. The correlation

length exponent ν at the disordered fixed point is the same as at the clean Wilson-Fisher

fixed point in the large-N limit. This absence of 1/N corrections may be interpreted as a

physical consequence of the balancing that occurs between disorder and interaction effects.

On the other hand, the fact that 1 < z < 2 signals that the fixed point is neither clean

nor conventionally diffusive (z = 2), and is a feature common to dirty-interacting quantum

critical states obtained in the literature thus far. A similar physical story occurs in the earlier

studies of disorder in QED3 [12, 13].

The QCP we obtain may be relevant to superfluid-insulator transitions in 4He absorbed

in porous Vycor [24–26], Josephson junction arrays [27, 28], doped quantum magnets [29–

31], and cold atomic systems [32–34]. Superfluid-insulator transitions with similar exponents

2By ‘quantum,’ we mean that that the disorder we introduce is constant as a function of time.
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z
[
φ
] [

φ2
]

disordered WF 1 +
16

3π2N

1

2
+

2

3π2N
2 +

16

3π2N

clean WF 1
1

2
+

2

3π2N
2− 16

3π2N

Table 1: Scaling dimensions at the dirty, interacting QCP obtained in the large-N expansion, compared

with the results the clean Wilson-Fisher fixed point at large-N . Here φ denotes the boson field, and φ2

denotes the mass operator. The correlation length exponent ν is obtained through ν−1 = 2 + z −
[
φ2
]
.

have also been observed numerically [35–41]. Indeed, the values we obtain at O(1/N) for ν,

z, and the correlation function exponent η ≈ −0.47 are strikingly close to those obtained in

the most recent Monte Carlo study of the dirty O(2) model [41]. Moreover, the more germane

RG flows we obtain are consistent with the numerical observation of a direct transition with

universal features, while the spiralling flows of the double-ε expansion would have predicted

the presence of oscillatory, non-universal behavior out to large system sizes. This achievement

is all the more surprising given that it comes from extrapolating the small parameter 1/N to

1, a move which always carries a risk of being problematic. We note that in these numerical

approaches the insulating phase is either a “Mott glass,” which is incompressible [42, 43],

or a “Bose glass,” which has finite compressibility. While it is generally believed that the

superfluid state always gives way to a glassy insulator in 2d [44, 45], assessing whether this

is the case in the theory examined here requires the inclusion of non-perturbative effects,

which are beyond the scope of our discussion here.

Similar large-N approaches to the study of quenched disorder at the Wilson-Fisher fixed

point have been applied in the past by Kim and Wen [46] and by Hastings [47]. In the latter

case, 1/N corrections were not considered, while in the former runaway flows were obtained.

We believe that these runaway flows are the result of a redundant summation of diagrams.

We proceed as follows. In Sec. 2, we present a stability criterion for theories of interacting

bosons to quenched disorder. We next perform the large-N analysis and describe the nature

of the QCP we obtain in Sec. 3. We follow in Sec. 4 with a discussion of the effects of

scale and vector potential disorder. In Sec. 5, the implications our result has for two dual

descriptions of the single species (N = 1) theory, following earlier work coauthored by one

of us [14]. We conclude in Sec. 6.
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2 Stability Criterion for Free and Interacting Bosons

We begin this section by describing the criteria for the stability of theories of relativistic scalar

bosons to quenched disorder at zero temperature, often referred to as quantum disorder.

After presenting our conventions and the global symmetries, we derive a criterion for the free,

Gaussian fixed point. We then generalize this criterion to the strongly interacting, Wilson-

Fisher fixed point, where anomalous scaling dimensions appear. These stability criteria are

quantum bosonic versions of the celebrated Harris criterion [48] and its generalization by

Chayes et al. [49].

2.1 Degrees of Freedom and Global Symmetries

We consider one of the simplest families of quantum field theories: those describing massless,

complex scalar fields transforming in the fundamental representation of U(N). Writing the

bosonic degrees of freedom as N -component complex vectors φφ = (φ1, . . . , φN), this global

symmetry acts as φφ→ Uφφ, U ∈ U(N). Throughout this paper, we restrict our attention to

disorder and interactions that respect the full U(N) symmetry.

For the majority of this work, we also impose two additional discrete, anti-unitary sym-

metries: time reversal, T, and particle-hole symmetry, PH. They act on the fields as

T : φφ 7→ φφ , (2.1)

PH : φφ 7→ φφ† , (2.2)

and both map i 7→ −i. We eventually consider types of disorder that break these within

each realization while preserving them on average in Sec. 4.

When the above global symmetries are imposed, the theory of φφ fields is also invariant

under the larger symmetry group, O(2N). Its action is obtained by defining 2N real fields,

ϕI , from the complex fields: φI = ϕ2I−1 + iϕ2I . The theory we discuss below is found to be

invariant under the action of ϕϕ → Oϕϕ where O ∈ O(2N) and ϕϕ = (ϕ1, . . . , ϕ2N). Actually,

the orthogonal global symmetry need not only arise as an enhanced symmetry, but can exist

as a true global symmetry even away from the critical point. For such cases, there is no

reason to the restrict the number of flavors to be even. Hence, while we primarily discuss

the complex fields φφ, we allow N to take half-integer values.
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2.2 Free Bosons with Disorder

We begin with a free, or Gaussian, theory of N complex bosons,

L0[φφ] = |∂φφ|2 , (2.3)

in d + 1 spacetime dimensions. Throughout this paper, ‘d’ exclusively denotes the spatial

dimension. Dimensional analysis sets the scaling dimension of φφ to [φφ] = (d− 1)/2, and the

scaling of all operators in the free theory follows directly from this relation. The stability

of the Gaussian theory is determined by assessing the relevance of all operators respecting

the global symmetries described above. The most relevant such perturbation is the mass

term, r |φφ|2, since [r] = 2 for all dimensions, and the requirement that the theory be massless

is therefore predicated on the fine-tuning of r to zero. The next-most relevant, symmetry-

preserving operator is the interaction term u |φφ|4 = u
(
|φφ|2
)2

. Because [|φφ|4] = 2(d − 1), we

have [u] = 3 − d, implying that the Gaussian theory becomes unstable to this interaction

when d < 3. In the next section, we discuss the effect of adding this term.

Disorder is introduced by perturbing L0 with an operator whose coefficient is a spatially

varying, static field with values drawn from a probability distribution. Similar to the clean

case, the most relevant, symmetry-preserving perturbation couples to the mass operator |φφ|2:

L0[φφ,R] = |∂φφ|2 +R(x)|φφ|2, (2.4)

where bold face denotes purely spatial coordinates. We define R(x) to have moments,

R(x)R(0) ∼ ∆

|x|χ
, R(x) = 0 . (2.5)

where χ → d corresponds to Gaussian white noise3. As it couples to |φφ|2, the dimension

of R(x) is 2, just like the constant mass coefficient, r. From Eq. (2.5), it follows that the

engineering dimension of the disorder strength ∆ at the Gaussian fixed point is

[∆] = 4− χ . (2.6)

3More precisely, one writes the disorder correlations as a Riesz potential,

R(x)R(0) =
Γ
(
χ
2

)
2d−χπd/2Γ

(
d−χ
2

) ∆

|x|χ
.

It is this function that reproduces Gaussian white noise (delta function) correlations in the limit χ→ d. In

this paper, we will generally suppress the additional gamma functions, as these do not impact scaling.
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For Gaussian white noise disorder, χ → d, implying that the theory is stable to random

mass disorder provided that

d > 4 , (2.7)

which is the Harris criterion for free (relativistic) scalar fields.

Comparing against our brief analysis of the clean theory, we observe that mass disorder

is marginal when d = 4, whereas the |φφ|4 interaction term is marginal when d = 3. This

mismatch between the marginal dimensions associated with the disorder and interactions

has been one of the major sources of difficulty in studying the dirty boson problem in two

dimensions.

We note that while the disorder perturbation R(x) |φφ|2 and interaction term |φφ|4 were

chosen as the most relevant operators preserving the U(N), T, and PH symmetries, they

are also invariant under the O(2N) symmetry discussed in the previous section. When

the discrete symmetries, T and PH, are no longer imposed, additional O(2N)-breaking

perturbations are allowed. We leave this discussion to Sec. 4.

2.3 Wilson-Fisher Bosons with Disorder

When d < 3, the Gaussian fixed point is unstable to both disorder and |φφ|4 interactions. In

the clean limit, this leads to the famous Wilson-Fisher fixed point,

L[φφ] = |∂φφ|2 + rc |φφ|2 +
u

2N
|φφ|4 . (2.8)

Here u = Λ3−d ū, ū ∼ O(1), where Λ is a UV cutoff scale. The mass rc tunes the theory to

criticality. Its exact value is not physically meaningful, and we set it to zero throughout this

work. At the Wilson-Fisher fixed point, the dimension of |φφ|2 differs from its engineering

dimension (i.e. scaling dimension in the free theory) by an anomalous dimension η|φ|2 ,〈
|φφ(x)|2|φφ(0)|2

〉
∼ 1

|x|2(d−1+η|φ|2 )
. (2.9)

That is, the scaling dimension of |φφ|2 is [|φφ|2] = d − 1 + η|φ|2 . Importantly, the anomalous

dimension η|φ|2 is a function of the number of fields (and hence the symmetry of the theory).

We now perturb this fixed point with disorder,

L[φφ,R] = |∂φφ|2 +R(x)|φφ|2 +
u

2N
|φφ|4, (2.10)

where R(x) continues to be defined as in Eq. (2.5). The dimension of R is related to the

scaling dimension of |φφ|2 as follows,[
|φφ|2
]

= d− 1 + η|φ|2 = d+ 1− [R] . (2.11)
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With Eq. (2.5), we can now read off the scaling dimension of the disorder strength:

[∆] = 2[R]− χ = 4− 2η|φ|2 − χ . (2.12)

We conclude that the Wilson-Fisher fixed point is stable to Gaussian white noise disorder

(χ→ d) if

d > 4− 2η|φ|2 . (2.13)

2.4 Large-N Wilson-Fisher in (2 + 1)d

We now adapt this discussion to the particular case of a theory of N → ∞ species of

complex bosons in d = 2 spatial dimensions. In this limit, the stability criterion derived

above becomes,

η|φ|2 − 1 > 0. (2.14)

For a single species of complex boson, it is known from the conformal bootstrap that

η|φ|2 ∼ 0.5 in 2d [50], implying that disorder is a relevant perturbation when N = 1. Con-

versely, in the limit N → ∞, with u held fixed, it turns out that η|φ|2 → 1, as we will

review in the next section. As a result, Gaussian white noise disorder (χ = 2) is marginal

at the Wilson-Fisher fixed point in the large-N limit! The interacting dirty boson prob-

lem can therefore be studied by first flowing to the N → ∞ Wilson-Fisher fixed point and

subsequently performing a perturbative RG calculation, with 1/N corrections entering as

marginal perturbations of the N →∞ fixed point. This will be the goal of the next section.

Interpolating between the N = 1 limit, where η|φ|2 ∼ 0.5, and the N → ∞ limit, where

η|φ|2 → 1, we expect 1/N corrections to [|φφ|2] to be negative, indicating that the Wilson-Fisher

fixed point is ultimately unstable to disorder for finite N . Nevertheless, disorder generates

additional corrections to scaling dimensions as well. Provided these quantum corrections

to [|φφ|2] are positive, they may be able to balance the corrections from interactions, thus

resulting in a perturbatively accessible, disordered quantum critical point. In contrast, if the

quantum corrections due to disorder are also negative, no such fixed point can exist, and

all perturbations result in a flow to strong disorder. Serendipitously, we find that it is the

former scenario which is played out.

3 The O(2N) Model with a Random Mass

This section presents the primary technical content of the paper. We begin by describing the

disorder-averaged theory and its replicated analogue. Next, the number of bosons N is taken
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to infinity, leaving us with a theory in which disorder is exactly marginal. We subsequently

derive the β function for the running disorder strength at O(1/N) and demonstrate the

existence of the fixed point and RG flow shown in Fig. 1(b). The section concludes with a

comparison of the fixed point obtained here with the results from the double-ε expansion.

3.1 Disorder Averaging and the Replica Trick

We now describe how to systematically study the dirty Lagrangian in Eq. (2.10) in the

N →∞ limit. While the addition of the quenched degree of freedom R(x) strongly breaks

translation invariance, seemingly rendering the theory intractable, we are interested in the

disorder-averaged correlation functions, for which translation symmetry remains. Hence, all

quantities of interest in the disordered theory may be calculated from the disorder-averaged

free energy:

F̄ = −logZ[R] = −
∫
DRP [R] logZ[R] , (3.1)

where P [R] is the probability distribution that gives rise to the moments in Eq. (2.5). Spec-

ifying to Gaussian white noise disorder, the appropriate probability functional is

P [R] =
1

N
exp

(
−
∫
d2x

1

2∆
R2(x)

)
, (3.2)

where N is a normalization constant.

While directly disorder averaging the logarithm may appear prohibitively difficult, the

problem can be made manageable through the so-called replica trick, in which one applies

the identity,

logZ = lim
nr→0

Znr − 1

nr
· (3.3)

Upon inserting this expression into the definition of F̄ , we obtain

F̄ = − lim
nr→0

1

nr

∫
DRP [R]

nr∏
n=1

∫
Dφφn e−S[φφn,R]

= − lim
nr→0

∫
DRDφφn e−Sr[φφn,R] , (3.4)

where S =
∫
d2x dτ L[φφn, R] and nr “replicas,” φφn, n = 1, . . . , nr, have been introduced. We

remind the reader that each replica is associated with N physical species of bosons. The full
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replicated action for Gaussian white noise disorder is

Sr =

∫
d2x dτ

nr∑
n=1

[
|∂φφn(x, τ)|2 +

R(x)√
N
|φφn(x, τ)|2 +

u

2N
|φφn(x, τ)|4

]
+

∫
d2x

1

2∆
R2(x). (3.5)

Here, R has been rescaled by
√
N , equivalent to rescaling ∆ by 1/N . In summary, the

replica trick has produced an action amenable to the standard tools of perturbative field

theory through the addition of nr replica fields, with the caveat that we must eventually

take the limit nr → 0.

3.2 The Large-N Limit

Fixing the value of ∆ and u, we are now able to take the large-N limit. It is convenient

to introduce a Hubbard-Stratonovich field iσ̃ (the reason for the tilde will become apparent

shortly) to mediate the scalar self-interaction:

Sr =

∫
d2x dτ

∑
n

[
|∂φφn|2 +

1√
N

(
iσ̃n +R(x)

)
|φφn|2 +

1

2u
σ̃2
n

]
+

∫
d2x

1

2∆
R2(x) . (3.6)

The equations of motion for iσ̃ directly relate it to the mass operator

iσ̃n =
u√
N
|φφn|2 , (3.7)

and it follows that correlation functions containing iσ̃ will reproduce correlation functions

containing |φφ|2 up to an contact term. Next, we shift iσ̃n → iσn = iσ̃n + R so that the

coupling between R and the φφ fields is replaced with a coupling between R and σ,

Sr =

∫
d2x dτ

∑
n

[
|∂φφn|2 +

i√
N
σn|φφn|2 +

i

u
R(x)σn +

1

2u
σ2
n

]
+

∫
d2x

1

2∆
R2(x). (3.8)

Here, an extra term quadratic in R is not included because it is proportional to the number

of replicas and therefore vanishes in the replica limit. Finally, integrating out the quenched

degree of freedom R(x) yields

Sr =

∫
d2x dτ

∑
n

[
|∂φφn|2 +

i√
N
σn|φφn|2 +

1

2u
σ2
n

]
+

∫
d2x dτdτ ′

∑
n,m

∆

2u2
σn(x, τ)σm(x, τ ′) . (3.9)
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Figure 2: In the N →∞ limit, the propagator of σ may be represented as a geometric series of polarization

bubbles Π(p). The dash-dotted lines on the right-hand side represent the ‘bare’ σ propagator ∼ 1/u, whereas

the solid lines represent the φ propagator. The dotted line corresponds to the large-N σ Green’s function.

Equipped with this Lagrangian, we are now prepared to take the large-N limit following the

standard procedure. For a more detailed review, see Refs. 51 and 52.

We begin by noting that the action Sr is quadratic with the exception of the σ|φφ|2

interaction. While σ couples more and more weakly to the φφ’s as N approaches infinity, it

also couples to increasingly many such fields. The result of these opposing effects can be

understood in the language of Feynman diagrams. In particular, the one-loop contribution

to the σ propagator is the polarization bubble shown in Fig. 2. Because the internal boson

lines must be summed over all N fields while each vertex contributes a factor of 1/
√
N , this

diagram is O(1). It evaluates to

Π(p) =

∫
d3k

(2π)3

1

k2(p− k)2
=

1

8|p|
· (3.10)

Of course, if a diagram containing a single bubble is O(1), a diagram containing an arbitrary

number of bubbles is also O(1), and so it should be include as well. The sum over bubble

diagrams forms the geometric series shown in Fig. 2, which may be familiar to readers trained

in the random phase approximation. The large-N σ propagator is therefore

Gσ(p) =
u

1 + uΠ(p)
→ 8|p| for p� u , (3.11)

where we have taken u ∼ Λ as our UV cutoff. Since σ lines with multiple disorder insertions

vanish in the replica limit, we do not sum the quenched disorder term into the σ propagator,

but instead treat it as a two-point vertex (we remark on this point further at the end of

Sec. 3.3.2).

The physical meaning of these bubble diagrams can be understood by considering the

real space representation of Gσ, which has been “screened” to be

Gσ(x) = 〈σ(x)σ(0)〉 ∼ 1

|x|4
· (3.12)

The large-N σ propagator makes it clear that [σ] = 2 when N → ∞, implying that σ has

acquired an anomalous dimension ησ = η|φ|2 = 1, as claimed in the previous section.
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Having accounted for the effect of bubble diagrams, the interaction between φφ and σ

may be safely discarded in the limit N → ∞. It is possible to access 1/N corrections by

reintroducing the coupling between φφ and σ and using the screened σ propagator in Eq. (3.11)

on the condition that bubble diagrams are not redundantly included in any subsequent

calculation. Keeping this is mind, we obtain the effective action

Seff = Sφ + Sσφ + Sdis (3.13)

Sφ =
∑
n

∫
d2x dτ |∂φφn|2 (3.14)

Sσφ =
∑
n

∫
d2x dτ

[
i√
N
σn|φφn|2 +

1

16
σn(−∂2)−1/2σn

]
(3.15)

Sdis =
∑
n,m

∫
d2x dτdτ ′

∆̄

2
σn(x, τ)σm(x, τ ′) , (3.16)

where we have defined the dimensionless disorder strength ∆̄ ≡ ∆/u2.

We are interested in the effect nonzero ∆̄ has on this theory, which we emphasize is now

a marginal perturbation at tree level. Indeed, the disorder-mediated potential between two

φφ fields has been screened to be

V (x− y) ∼ ∆̄

|x− y|4
· (3.17)

3.3 1/N Corrections: Introducing Disorder at the Interacting Fixed Point

3.3.1 Philosophy and Scaling Conventions

We include the effects of disorder and interactions at O(1/N) via a Wilsonian momentum

shell RG procedure. To begin, we present our tree-level scaling conventions. The action in

Eq. (3.13), including the disorder, is scale invariant under

x 7→ eδ`x, τ 7→ ezδ`τ, φφ 7→ e−δ`/2φφ, σ 7→ e−2δ`σ . (3.18)

Lorentz invariance dictates that space and time scale in the same way at the clean Wilson-

Fisher fixed point; hence, z = 1. The scaling prescriptions for φφ and σ are in agreement

with our earlier statement that [φφ] = 1/2 and [σ] = 2 in the N → ∞ limit of the Wilson-

Fisher fixed point. At O(1/N), these relations must be updated to account for anomalous

dimensions generated by disorder and interactions, which we denote ηφ and ησ for the φφ and

σ fields, respectively. Similarly, because disorder breaks Lorentz invariance, the dynamical
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exponent is corrected to a value z > 1. We systematically compute these corrections to

scaling by integrating out modes in a momentum shell (1 − δ`)Λ < |p| < Λ, where Λ ∼ u

is a hard cutoff. Note that because of the large-N limit, we may take ∆̄ ∼ O(1), as our

perturbation theory continues to be controlled in powers of 1/N .

Before presenting the details of our calculation, we remark on some idiosyncrasies of

the theory (3.13) that ultimately serve to simplify our analysis. We first comment on the

clean limit, ∆̄ = 0. Quantum corrections are typically organized into self energy corrections

and vertex corrections, which modify the scaling of the fields and affect the running of the

interactions. In the theory (3.13), we would therefore expect σ|φφ|2 to enter in the Lagrangian

alongside a running coupling constant. However, because σ was defined through a Hubbard-

Stratonovich transformation, it is not independent from |φφ|2, as indicated by the operator

identity of Eq. (3.7). It follows that the σ|φφ|2 vertex remains exactly marginal under the

RG, making the renormalization of this vertex sufficient to determine ησ, the anomalous

dimension of σ. This observation is advantageous because the corrections to σ|φφ|2 all occur

at one loop, whereas a direct calculation of the σ self energy involves the computation of

two loop diagrams.

The introduction of disorder results in both a running disorder strength ∆̄ and the afore-

mentioned dynamical scaling exponent z. It turns out that these are the only additional

objects to be renormalized in our problem at O(1/N). Further, we find that the running

of both may be obtained solely through the φφ self energy and the σ|φφ|2 vertex correction,

similar to the clean case discussed above. The key consequence of this assertion is that under

the modified scaling relations τ 7→ ezδ`τ,x 7→ eδ`x, and σ 7→ e−(2+ησ)δ`σ,

β∆̄ = −δ∆̄
δ`

= 2
(
1− z + ησ

)
∆̄ . (3.19)

The remainder of the section is dedicated to the calculation of z and ησ.

We emphasize that this simplification is not a generic feature of the problem. It is possible

for logarithmically divergent diagrams to generate operators containing4
∑

n

∫
dτ σn(x, τ)

independently from σn(x, τ). Such mixing would invalidate Eq. (3.19), as well as contribute

to a running velocity for σ. For this reason, the σ self energy must also be computed. These

considerations are reflected by the modification of Eq. (3.7) in the presence of disorder, which

now involves this new, linearly independent operator,

iσn =
u√
N
|φφn|2 − iu ∆̄

∑
m

∫
dτ σm(x, τ) . (3.20)

4For a more general discussion of this point, see Refs. 22 and 23.
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Figure 3: Feynman rules for the theory (3.13). Here, p = (p, ω), q = (q, ν), where p,q are spatial momenta

and ω, ν are frequencies.

We evaluate the σ self energy in Appendix A using a dimensional regularization scheme, a

more natural method for higher loop calculations. This calculation confirms that no such

diagrams occur at O(1/N), although they may appear at higher orders.

3.3.2 Feynman Rules

The Feynman rules for the theory in Eq. (3.13) are shown in Fig. 3, where

Gφ
IJ,nm(p) =

1

p2
δIJ δmn , (3.21)

Gσ
nm(p) = 8|p| δmn , (3.22)

Γσφ
†φ

IJ,nm` = − i√
N
δIJ δmnδn` , (3.23)

Γσσ,dis
nm = −2π∆̄ δ(ω) . (3.24)

Here, we have suppressed the momenta-conserving delta functions and use I, J = 1, . . . , N

to denote flavor indices. Below, we suppress the U(N) and replica indices in the three-point

vertex functions: Γσφ
†φ

IJ,nm` = Γσφ
†φ. We also emphasize that the quenched disorder is capable

of transferring momentum, but not frequency, as indicated with the frequency of δ-function.

We remind the reader here that disorder is being treated as a two-point vertex even

though it appears as a quadratic field term in the action. While such terms are typically

incorporated directly into the propagator, in our problem σ lines with multiple disorder

insertions necessarily vanish in the replica limit, leaving only the contribution from the

two-point vertex. We underscore that this is a non-perturbative statement, as ∆̄ ∼ O(1).
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3.3.3 Momentum Shell RG

We first focus on the φ self energy, as shown in Fig. 4. After the momentum shell integration,

we obtain

Σ(p, ω) = Σint(p, ω) + Σdis(p, ω), (3.25)

Σint(p, ω) = − 8

N

∫ Λ

(1−δ`)Λ

d2k

(2π)2

∫ ∞
−∞

dk0

2π

|k − p|
k2

= − 4

3π2N
p2δ`, (3.26)

Σdis(p, ω) =
64∆̄

N

∫ Λ

(1−δ`)Λ

d2k

(2π)2

(k− p)2

ω2 + |k|2
=

32∆̄

πN
(−ω2 + |p|2)δ`. (3.27)

These correct the kinetic term of Sφ, Eq. (3.14); the mass renormalization has been sup-

pressed. To maintain the scale invariance of the action, we correct the tree level scaling in

Eq. (3.18) as follows,

x 7→ eδ`x, τ 7→ ezδ`τ, φφ 7→ e−δ`/2Z
−1/2
φ φφ = e−(1/2+ηφ)δ`φφ, (3.28)

where ηφ and z are chosen to cancel the self energy corrections of Eqs. (3.26) and (3.27)

respectively,

ηφ =
1

2

δ

δ`
logZφ =

2

3π2N
, z = 1 +

32∆̄

πN
. (3.29)

Here, ηφ > 0 is the usual anomalous dimension of φφ arising from its interaction with σ at

the clean Wilson-Fisher fixed point [53]. The deviation of the dynamical exponent z from

unity signals the breaking of Lorentz invariance by quenched disorder. In Appendix B, we

check our result for z against a general expression derived in Refs. 22 and 23 for dirty fixed

points accessible through conformal perturbation theory. The agreement between this result

and the value of z shown above serves as confirmation of our diagrammatic calculation.

We now study the remaining one-loop diagrams, which correct the vertex Γσφ†φ(ω =

0, |p| = 0). As shown on the second line of Fig. 4, there are contributions from both

interactions and disorder,

δΓσφ†φ = δΓint + δΓdis, (3.30)

δΓint =
i√
N

8

N

∫ Λ

(1−δ`)Λ

d2k

(2π)2

∫ ∞
−∞

dk0

2π

|k|
k4

=
i√
N

4

π2N
δ` , (3.31)

δΓdis = − i√
N

64∆̄

N

∫ Λ

(1−δ`)Λ

d2k

(2π)2

|k|2

|k|4
= − i√

N

32∆̄

πN
δ` . (3.32)

Additional O(1/N) vertex diagrams do exist, but are not logarithmically divergent, as veri-

fied in Appendix A. The corrections obtained above must be added to the action Sr. Imposing
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Figure 4: Quantum corrections at O(1/N). (Top) φ self-energy corrections, Σint (left) and Σdis (right).

(Bottom) Logarithmically divergent vertex corrections, δΓint (left) and δΓdis (right). The full set of O(1/N)

diagrams are shown in Fig. 6 in Appendix A.

scale invariance and the marginality of the σ|φφ|2 vertex requires updating Eq. (3.18) once

more to include the anomalous dimension ησ:

σ 7→ e−2δ`Z−1/2
σ σ = e−(2+ησ)δ`σ . (3.33)

Together with the results for z and ηφ in Eq. (3.29) , we find

ησ =
1

2

δ logZσ
δ`

= z − 1− 2ηφ +
32∆̄

πN
− 4

π2N
=

64∆̄

πN
− 16

3π2N
· (3.34)

We verify that the second term is the known value of the O(1/N) anomalous dimension

of σ at the clean Wilson-Fisher fixed point [52].

3.3.4 A Dirty Quantum Critical Point

In light of the comments in Sec. 3.3.1, the information obtained in the previous section allows

us to calculate the running of ∆̄ directly from Eq. (3.16), which yields

β∆̄ = −δ∆̄
δ`

= 2(1− z + ησ)∆̄ =

(
64

π
∆̄− 32

3π2

)
∆̄

N
· (3.35)

The flows exhibited by this β function are shown in Fig. 1(b). In particular, a fixed point

with both finite disorder and interactions occurs at

∆̄∗ =
1

6π
· (3.36)

This fixed point constitutes a disordered, interacting quantum critical point! It is attractive

(IR stable) in ∆̄ and u, but is unstable to perturbations in the mass of the boson, δr |φφ|2,
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which are allowed by symmetry5. For δr < 0, the theory flows to a phase in which the global

O(2N) symmetry is spontaneously broken, and the ground state hosts Goldstone bosons.

On the other hand, for δr > 0, the theory flows to an insulating phase.

The QCP we have obtained is characterized by universal dynamical and correlation length

exponents,

ν = 1 , z = 1 +
16

3π2N
, (3.37)

where the correlation length exponent ν is defined via

ξ ∼ |δr|−ν . (3.38)

From dimensional analysis, this implies

ν−1 = z + d− [|φφ|2] = z − ησ = 1− 1

2
β∆̄ . (3.39)

As we have demonstrated at O(1/N) [see Appendix A], so long as no additional anomalous

dimensions are associated with disorder, the β∆̄ is given by Eq. (3.19), implying that the fixed

point condition is identical to the statement ν = 1, i.e. ν receives no quantum corrections.

We can view this as the physical manifestation of the counterbalancing between disorder

and interactions at the QCP. On the other hand, having 1 < z < 2 is a reflection of the

fact that this is a disordered quantum critical point – Lorentz invariance is broken, and the

compressibility κ ∼ |δr|ν(d−z) vanishes as δr → 0 at the transition.

Specifying to N = 1, the symmetry-broken state is a superfluid. The gapped, symmetry-

preserving phase may be the “Mott glass” phase [42, 43], which is an insulating, glassy state

with vanishing compressibility. This is in contrast to the perhaps more famous Bose glass

phase, which includes disorder that does not respect particle-hole (PH) symmetry and has

finite compresibility. We comment further on this case in the next subsection, although

we emphasize that the glassy nature (or lack thereof) of the disordered state accessible

through the dirty QCP derived here cannot be confirmed using our perturbative approach.

Extrapolation of Eq. (3.37) to N = 1 yields

ν = 1 , z ≈ 1.5 . (3.40)

Remarkably, these results are both consistent with recent numerical studies of the dirty

superfluid-Mott glass transition [35, 41]. To our knowledge, the quantum critical point we

5We define a quantum critical point as being a fixed point of a RG flow that can be perturbed by relevant

operators without explicitly breaking a symmetry. This is in contrast to a quantum critical phase, for which

any relevant perturbation breaks a symmetry.

18



describe here is the only analytic result to unambiguously achieve this agreement. It is

therefore a tantalizing possibility that the fixed point we obtain is in the same universality

class as this transition. However, as with any large-N expansion, we caution the reader that

the extrapolation of the small parameter 1/N to unity may be problematic, as we have not

proven that the 1/N expansion converges quickly enough for this to be truly reliable. We

comment further on this and related issues in the subsection below.

3.4 Comparison with the Double-ε Expansion

It is important to understand the relationship the dirty QCP examined here has with those

obtained in earlier approaches to the dirty boson problem. As mentioned in the Introduction,

theories of bosons with self-interactions and random mass disorder have been considered

before using an expansion in the number of spatial dimensions, ε = 4 − d, and the number

of time dimensions, ετ = dτ [16–18]. This expansion involves perturbing the Gaussian fixed

point in d = 4 dimensions with classical (dτ = 0) disorder, a situation that is far-removed

from the physically relevant case of d = 2, dτ = 1 for all values of N . While this approach also

yields a fixed point with finite disorder and interaction strengths, it exhibits some potentially

pathological irregularities.

As Fig. 1(a) demonstrates, upon extrapolating back to d = 2, dτ = 1, the RG flows in the

critical point’s vicinity are spirals for the case of a single species of complex bosons (N = 1).

In contrast, the results obtained in this paper through a large-N expansion show no indication

of spiralling flows. This is not necessarily incompatible with the double-ε expansion since

more germane, direct flows similar to Fig. 1(b) do appear when N > Nc = 11 + 6
√

3 ≈ 21.4.

Therefore, while we must remain open to the possibility that spiralling flows may appear

at a higher order in 1/N , we argue here that they are instead an artifact of the double-ε

expansion, implying that our results may be more physically relevant even for relatively

small values of N .

We first note that the peculiar flows that appear in the double-ε theory follow from the

appearance of complex anomalous dimensions, a signature of non-unitarity [22, 23]: unlike a

unitary theory, the operator dimensions of a disorder-averaged theory are not constrained to

the real line6. Nevertheless, in a perturbative expansion about a unitary theory, operators

can only acquire complex scaling dimensions in conjugate pairs, implying that the (real)

scaling dimensions of these operators became identical at some point along the RG flow.

6 For example, replica field theories have central charges which vanish in the replica limit, breaking

unitarity, despite the fact that each disorder realization is itself a unitary quantum field theory.
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Since the φ4 operator and the operator associated with the quenched disorder have the same

scaling dimension at the free, classical fixed point in (d = 4, dτ = 0) being expanded about

in the double-ε formalism, they can immediately mix in such a way that their anomalous

dimensions enter the complex plane when disorder is added. Conversely, at the large-N

fixed point, the scaling of |φφ|2 and thus the disorder operator is non-perturbatively altered,

as indicated by a correlation length exponent ν = 1 — a substantial modification from its

free value, ν = 1/2. Our expansion accordingly returns no indication of spiralling flows.

The absence of complex scaling dimensions in our theory may be interpreted as the

result of balancing between interactions and disorder at the Wilson-Fisher fixed point. From

this perspective, the ubiquity of strong interactions at the Wilson-Fisher fixed point should

always deter (though not completely preclude) the formation of complex scaling dimensions.

Indeed, the critical exponent ν differs significantly from its free value even for N = 1 where

ν ≈ 0.67 [50]. It is therefore plausible that the propensity for spiralling flows displayed in

the double-ε formalism is an unphysical consequence of starting from a degenerate point and

that the value of Nc obtained by expanding in ε and ετ is greatly exaggerated compared to

the true critical number of species for the onset of spiralling flows.

The failure of the ε expansion to capture the small-N behavior in such situations is not

unprecedented. The Abelian Higgs model, a theory of complex scalar fields coupled to a

fluctuating gauge field, appears to lack a (real) fixed point for N ≤ 182 in D = 4 − ε

spacetime dimensions [54]. However, lattice duality with the 3d XY model [55–57], for

which the critical theory is the Wilson-Fisher fixed point discussed here, and numerical

results [58, 59] place that critical number at values as small as one. As in the dirty boson

problem, this phenomenon can be traced to the presence of two operators having the same

scaling dimension.

We caution that while the agreement of our results with numerics is indeed remarkable,

the arguments outlined by no means constitute a proof that the large-N expansion offers any

advantage over the double-ε treatment or even that it is physically relevant. For N = 1, both

methods are predicated on the disconcerting assignment of a small expansion parameter to

an O(1) value, and both are therefore fundamentally suspect in this regime. We acknowledge

that the absence of spiralling flows and complex dimensions in our study may simply follow

from the fact we are perturbing about the regime where the flows from the Wilson-Fisher

fixed point are regular. Nevertheless, even were this the case, our treatment and the fixed

point should remain valid at least for sufficiently large-N .
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4 Scalar and Vector Potential Disorder

We have so far focused exclusively on theories that preserve a global U(N), time-reversal

(T), and particle-hole (PH) symmetry for each realization of disorder, and we have shown

that this is equivalent to imposing a global O(2N) symmetry. In this section, we relax this

constraint by only imposing the discrete T and PH symmetries on average, allowing for

additional disorder perturbations. Such perturbations can be chosen to preserve the U(N)

symmetry for each disorder realization, but not the O(2N) symmetry.

The symmetries PH and T are broken respectively by random scalar and vector poten-

tials, which we denote V(x) and Ai(x),

LJ-dis = V(x) Jτ (x, τ) +
∑
i=x,y

Ai(x) Ji(x, τ) (4.1)

where

Jτ = φφ†∂τφφ− ∂τφφ† φφ, Ji = i
(
φφ†∂iφφ− ∂iφφ† φφ

)
. (4.2)

Here, the scalar potential disorder may be interpreted as a random chemical potential that

breaks PH, while vector potential disorder can be associated with a random magnetic flux

that breaks T and parity (P). The current Jµ is the global current corresponding to the

electromagnetic charge, a U(1) subgroup of the global U(N) symmetry. While it may also

be interesting to study disorder that couples to non-Abelian U(N) currents, such disorder

breaks the U(N) symmetry within each realization, so we do not consider it.

As for the random mass disorder discussed in the previous section, we assume that scalar

and vector potential disorder is drawn from a Gaussian white noise distribution with zero

mean,

V(x)V(x′) = ∆V δ(x− x′) , Ai(x)Aj(x′) = ∆A δij δ(x− x′) , V(x) = Ai(x) = 0. (4.3)

The case of general disorder correlations can also be studied, although we limit ourselves to

the Gaussian white noise case for clarity.

Because V and Ax,y respectively couple to the temporal and spatial components of a

conserved (Abelian) global current, their scaling dimensions satisfy certain non-perturbative

constraints, and we use these to derive stability criteria that hold even away from a critical

point. While [Jτ ] = [Ji] = 2 for relativistic (z = 1) theories in 2+1 dimensions, these

relations are modified in the absence of Lorentz symmetry. To see how, we recall that the

currents’ dimensions are fixed by their conservation,

∂µJ
µ = 0 , (4.4)
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which implies a conserved, dimensionless charge

Q =

∫
d2x Jτ . (4.5)

More precisely, in the quantum theory, current conservation is the statement that correlation

functions of Jµ satisfy Ward identities that embody the condition (4.4). The requirement

that Q in Eq. (4.5) be dimensionless returns

[Jτ ] = 2. (4.6)

while the continuity equation, Eq. (4.4), indicates that ∂τJ
τ and ∂iJ

i must have the same

scaling dimension, which gives

[Ji] = 1 + z . (4.7)

Armed with the knowledge that any disorder leads to a deviation of z above unity, we use

these relations to deduce the running of ∆V and ∆A, both near the clean Wilson-Fisher fixed

point and the dirty quantum critical point obtained in the previous subsection.

We first consider the case of vector potential disorder in the absence of scalar potential

disorder. From Eq. (4.7), dimensional analysis indicates that [A] = 1, which should be

familiar as the usual scaling dimension of a vector potential. We conclude from Eq. (4.3)

that [∆A] = 0 to all orders. Phrased in terms of β-functions, this reads simply as

β∆A = 0 . (4.8)

In other words, the random vector potential is exactly marginal, both at the clean Wilson-

Fisher fixed point and at our dirty quantum critical point. No matter how the dynamical

exponent z is renormalized, ∆A will not run, resulting in a fixed line parameterized by z.

We now turn to the random scalar potential, following the same logic as we did for vector

potential disorder. Using the fact that Eq. (4.6) implies [V ] = z, together with Eq. (4.3), we

find [∆V ] = 2z − 2, which is equivalent to

β∆V = −(2z − 2)∆V . (4.9)

Hence, ∆V is relevant for any z > 1: both the clean Wilson-Fisher fixed point and our dirty

quantum critical point are unstable to ∆V , regardless of the strength of the mass or vector

potential disorder.

Although the theory flows to strong disorder, and its ultimate fate cannot be understood

perturbatively, one can speculate that the theory flows to a glassy state. Since PH is broken
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in each realization, this may be the Bose glass, which has finite compressibility despite being

an insulator [44, 45]. Indeed, the exponents we obtain in Eq. (3.40) are fairly close to those

obtained for the disorder-tuned transition between a superfluid and Bose glass if PH is only

imposed on average [36–38, 40]. In particular, ν = 1 is always seen, although there appears

to be some disagreement in z7. This indicates that the quantum critical point obtained in

the previous subsection may at least be in a similar universality class to these transitions.

The conclusions of this section hold in general for quenched disorder that couples to

conserved Abelian global currents. The exact marginality of the random vector potential

and the relevance of the random scalar potential for z > 1 are already well-known in the

context of dirty non-interacting Dirac fermion systems [61–63]. They were also understood

in the strongly interacting context of QED3; there, the global U(1) current is actually a

monopole current, jµ = εµνλ∂νaλ/2π, where a is the fluctuating gauge field, and so random

density and random flux exchange roles [12–14]. Note that if we had introduced disorder in

the non-Abelian U(N) currents, this would have broken the U(N) symmetry explicitly in

each realization, invalidating the non-perturbative conclusions of this section.

5 Boson-Fermion Duality and the N = 1 Theory

The proposal of a web of dualities connecting a menagerie of quantum critical points and

phases in 2+1 spacetime dimensions [64, 65] has resulted in progress on several condensed

matter problems [14, 66–74]. These dualities are non-perturbative tools that enable one to

determine the low-energy behavior of a strongly-coupled quantum field theory by instead

considering the physics of a dual theory that may be more tractable. In this section, we

continue the results of Sections 3 and 4 to the case of N = 1 and explore their implications

for the duals of this theory, following the philosophy of Ref. 14. In particular, we focus on

the particular case of boson-fermion duality [64, 65, 75], in which the dual theory consists of

Dirac fermions coupled to an emergent Chern-Simons gauge field. In Appendix C, we also

consider the case of boson-vortex duality [55–57], in which the dual theory, known as the

Abelian Higgs model, consists of bosonic vortices coupled to a fluctuating emergent gauge

field. In both cases, an immediate consequence of the duality is that, in the presence of a

7For many years, it was expected that the superfluid-Bose glass transition in d spatial dimensions should

have z = d because both phases have finite compressibility, which scales in temperature like κ = ∂n/∂µ ∼
T (d−z)/z [44, 45]. However, this expectation relies on the assumption that the measured compressibility is

determined by the singular part of the free energy, which is not the case here when PH symmetry is broken

[60].
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random mass, the dual theory flows to a dirty, interacting QCP with the same exponents as

those obtained in Section 3,

ν = 1 , z = 1 +
16

3π2
≈ 1.5 . (5.1)

We emphasize, however, that this result relies on the extrapolation of N to unity, which may

not be valid.

Although many of the results presented in this section are based on conjecture, they

nevertheless represent progress in our understanding of dirty Chern-Simons-Dirac fermion

theories. While disorder has been studied in such theories in the limit of a large number

of Dirac fermion species [76, 77], such expansions suppress the role of the Chern-Simons

term to sub-leading orders in 1/N . The resulting analysis may therefore miss some of the

important global effects of a O(1) Chern-Simons term. Using duality with the Wilson-Fisher

theory circumvents the difficulties of developing a perturbative approach that treats both the

disorder and the Chern-Simons gauge field equitably. However, we note that recent progress

in studying the large-N Chern-Simons-Dirac problem with disorder [77] has yielded results

for critical exponents which are impressively close to those we predict using duality.

We organize this section as follows. We begin with a brief review of the boson-fermion

duality. We next apply the results of Section 3 for Wilson-Fisher bosons with random mass

disorder to the Dirac fermion theory. Finally, we use the non-perturbative results of Section

4 to comment on the fate of the Dirac theory in the presence of random scalar and vector

potentials.

5.1 Review of the Duality

We consider the boson-fermion duality [64, 65, 75] that relates the Wilson-Fisher theory of

the boson φ to a theory of a Dirac fermion, ψ, coupled8 to a fluctuating U(1) Chern-Simons

gauge field, bµ,

Lφ = |DAφ|2 − |φ|4 ←→ Lψ = iψ̄ /Dbψ +
1

8π
bdb− 1

4g2
fµνf

µν +
1

2π
bdA+

1

4π
AdA , (5.2)

The expressions DB, AdB, fµν , and /D are shorthand for ∂−iB, εµνλAµ∂νBλ, and ∂µbν−∂νbµ,

and Dµγ
µ, respectively. The double arrow, ‘←→,’ denotes duality. Since the duality holds

only at energy scales much smaller than g2, we omit the Maxwell term, − 1
4g2
fµνf

µν , below.

8Note that we approximate the Atiyah-Patodi-Singer η-invariant by a level-1/2 Chern-Simons term and

include it in the Lagrangian.
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For convenience, throughout this section we work with theories in Minkowski spacetime,

which are related to the theories considered in earlier sections through a Wick rotation.

Note that while T and PH are manifestly global symmetries of the bosonic theory, Lφ,

they are not immediately apparent in the Dirac fermion theory, Lψ. Instead, they are to be

viewed as emergent IR symmetries of the fermionic theory. Indeed, under this duality, the

T symmetry actually manifests as fermion-vortex self-duality [64].

Varying both sides of Eq. (5.2) with respect to A, we see that charge in the bosonic

theory maps to flux in the fermionic theory,

Jµφ = i(φ†∂µφ− ∂µφ†φ)←→ 1

2π
εµνλ∂ν (bλ + Aλ) , (5.3)

where we have introduced the subscript on Jµφ for clarity. The physical interpretation of this

relation is informed by the flux attachment implemented by the Chern-Simons gauge field.

In the fermion theory, charge and flux are slaved to one another through the Chern-Simons

gauge field, as are current and electric field. Indeed, differentiating the fermion Lagrangrian

Lψ with respect to bµ one finds the mean field equations

〈ψ̄γµψ〉+
1

2

1

2π
〈εµνλ∂νbλ〉 = − 1

2π
εµνλ∂νAλ , (5.4)

where brackets are used to emphasize that the right-hand side is not an operator, but a

c-number. By defining the emergent and background electromagnetic fields b∗ = εij∂ibj, ei =

fit(b), B = εij∂iAj, Ei = ∂iAt − ∂tAi, and the Dirac fermion density and current, ρψ = J tψ =

ψ†ψ, J iψ = ψ̄γiψ, we re-express this relation as

〈ρψ〉+
1

2

1

2π
〈b∗〉 = − 1

2π
B , (5.5)

〈J iψ〉+
1

2

1

2π
εij〈ej〉 = − 1

2π
εijEj . (5.6)

The first equation relates the Dirac fermion charge density, ρψ, to the sum of the emergent

and background magnetic fields, while the second relates the Dirac fermion current to the

sum of the emergent and background electric fields. In contrast, in a typical electromagnetic

theory, vector potentials are associated with currents and scalar potentials are associated

with charge.

It is helpful to determine the relationship between the conductivities of the bosons and

fermions, defined via 〈J iφ〉 = σφijEj and 〈J iψ〉 = σψij〈ej〉. Combining these definitions with

Eqs. (5.3) and (5.6), we obtain

σψ = −1

2

1

2π
ε− 1

(2π)2
ε

(
σφ − 1

2π
ε

)−1

ε , (5.7)
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where tensor indices have been suppressed to reduce clutter. Assuming rotational invariance

and expanding in components, this relation becomes

σψxx =
1

(2π)2

σφxx

(σφxx)2 + (σφxy − 1/2π)2
, σψxy = −1

2

1

2π
+

1

(2π)2

1/2π − σφxy
(σφxx)2 + (σφxy − 1/2π)2

· (5.8)

Since we consider the bosonic theory in the absence of background magnetic fields, we take

σφxy = 0 below.

In terms of the Dirac fermion variables, the superfluid-insulator transition of the bosonic

theory is experienced as a quantum Hall plateau transition tuned by the mass term, −Mψ̄ψ.

Integrating out the fermions yields a parity anomaly term for the emergent gauge field,

sgn(M) 1
8π
b db. For M > 0, the anomaly adds to the Chern-Simons term already in the

Lagrangian, which gives the gauge field a so-called ‘topological mass.’ By integrating out

the gauge field, we see that this state is a trivial, gapped insulator. To verify that the

bosonic dual is also a trivial insulator, we set σφxx = σφxy = 0 in Eq. (5.8), which implies the

expected response σψxx = 0, σψxy = +1/2·2π. On the other hand, for M < 0, the Chern-Simons

terms cancel. The resulting Lagrangian consists of a gapless gauge field b, which Higgses

the background fields A through the BF term, suggesting that this side of the transition

corresponds to the superfluid phase, with b acting as the dual to the Goldstone mode of

the bosonic theory. The insertion of the expected bosonic response, σφxx → ∞, σφxy = 0,

into Eq. (5.8) accordingly yields σψxx = 0, σψxy = −1/2·2π. We therefore conclude that, as in

boson-vortex duality, the mass operators of the two theories are dual to one another,

|φ|2 ←→ ψ̄ψ . (5.9)

This operator duality is highly non-trivial: it implies that ψ̄ψ has the same dimension

as |φ|2 at the Wilson-Fisher fixed point, [|φ|2] ≈ 1.5, meaning that interactions with the

Chern-Simons gauge field lead to a negative anomalous dimension at the clean fixed point,

ηψ̄ψ ∼ −0.5.

5.2 Random Mass

Having reviewed the boson-fermion duality in the clean case, we now consider the effects

of quenched disorder (again with Gaussian white noise correlations) in the Dirac fermion

theory in the absence of the background field A. We mention that, since the boson-fermion

duality is valid only in the IR, we require the disorder to be sufficiently long-wavelength that

it may be considered a perturbation of the IR fixed point.
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We first study the effect of a random mass. From Eq. (5.9), we again find that mass

disorder maps to mass disorder

R(x) |φ|2(x, t)←→ R(x) ψ̄ψ(x, t) . (5.10)

As described in Section 3, a random mass causes the bosonic theory in the large-N limit to

flow to a disordered, interacting QCP. Provided this remains true for N = 1, duality implies

that the Dirac fermion theory also flows to such a QCP and that at this fixed point, the

Dirac fermion mass operator has scaling dimension,

[ψ̄ψ] = [|φ|2] = 2 +
3

16π2
· (5.11)

Moreover, the identification of the QCPs across the duality also implies that the correlation

length and dynamical scaling exponents of the Dirac theory, respectively denoted νψ and zψ,

are identical to those obtained in Section 3,

νψ = ν = 1 , zψ = z = 1 +
16

3π2
≈ 1.5 . (5.12)

The problem of mass disorder in Chern-Simons-Dirac fermion theories was recently revisited

in a large-N expansion by Lee and Mulligan [77], who reproduced a fixed point of this type

and found results for ν and z fairly close to those featured here when N is set to 1.

Since the QCP studied here is characterized by a universal DC conductivity, it would be

very interesting to determine the DC transport properties of the Dirac fermions by applying

the transport dictionary, Eq. (5.8), utilizing the DC response of the Wilson-Fisher bosons

with a random mass. However, we leave this calculation, which is possible both using a

large-N approach and numerical techniques, for future work.

5.3 Random Scalar and Vector Potentials

We now introduce random scalar and vector potentials, as in Eq. (4.2). We emphasize that

the conclusions of this section are non-perturbative, and so are valid for N = 1. They are

also consistent with the results of Ye [76] when Coulomb interactions are turned off. From

the current mapping, Eq. (5.3), we first see that a random chemical potential in the bosonic

theory maps to a randomly sourced flux in the Dirac fermion theory,

V(x) J0(x, t)←→ 1

2π
V(x) εij∂ibj(x, t) . (5.13)

Importantly, the flux attachment constraint, Eq. (5.5) implies that randomly sourcing the

emergent magnetic field is equivalent to randomly sourcing the Dirac fermion density since
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the two operators are identical in the absence of an external magnetic field, B = 0. In other

words, this disorder should be simultaneously understood as a random current and a random

chemical potential (electric field), as can be seen from Eq. (5.6) by noting that a random

scalar potential corresponds to Ej = ∂jV/2π.

From Section 4, we recognize that a random scalar potential is relevant, and we expect its

addition to push the bosonic theory towards an insulating and possibly glassy phase. If this

is true, then the DC response of the bosons is σφxx = σφxy = 0. The dual fermions therefore

exhibit the same Hall effect as in the clean insulating state, σψxx = 0, σψxy = +1
2

1
2π

. It would

be interesting to improve our understanding of this state in future work.

We conclude this section by considering a random vector potential,

Ai(x) Ji(x, t)←→
1

2π
B(x) at(x, t) (5.14)

where B = εij∂iAj. From Eq. (5.5), the random field B(x) should be interpreted both as

a random density and a random random vector potential (magnetic field). As we observed

in Section 4, this kind of perturbation is exactly marginal in the bosonic theory, and so the

same should hold in the fermionic dual.

6 Discussion

In this work, we have revisited the problem of quenched disorder at the quantum superfluid-

insulator transition by directly introducing disorder at the strongly coupled Wilson-Fisher

fixed point of the O(2N) model in 2 + 1 spacetime dimensions. Using a controlled large-

N expansion, we showed that, in the presence of a quenched random mass, the Wilson-

Fisher fixed point flows directly to a QCP characterized by finite disorder and interaction

strengths. When N is extrapolated to unity, the critical exponents for this transition are

strikingly close to recent numerical results for the superfluid-Mott glass transition (although

we again mention that this extrapolation may not be innocuous). As far as we are aware,

ours is the first construction to achieve this, suggesting that the QCP we obtain may be

in the same universality class as the superfluid-Mott glass transition. This is in contrast

to earlier approaches using the double-ε expansions about the non-interacting fixed point,

which returns spiralling RG flows that are not of obvious physical significance. Indeed, the

relative simplicity of our result is a testament to the important roles played by both strong

interactions and disorder in 2d quantum critical systems.

In addition, we presented non-perturbative results for the stability of this QCP to random

scalar and vector potentials. While a random vector potential is exactly marginal, a random
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scalar potential is relevant, leading to what is likely a kind of compressible, glassy state

referred to as a Bose glass. Understanding the nature of this glassy state and its relationship

to the phenomenology of the Bose glass is an interesting direction for future exploration,

although it requires accounting for non-perturbative, rare region effects. The theories con-

sidered in this work may provide interesting platforms for the study of such non-perturbative

effects when both disorder and interactions are present.

By setting N to unity and applying our results to dual theories of a Dirac fermion

coupled to a fluctuating Chern-Simons gauge field, as well as the Abelian Higgs model (in

Appendix C), we were able to make conjectures regarding the behavior of these theories to

quenched disorder. Our conclusions constitute significant progress in the study of both of

these historically difficult problems. The results of these approaches can then be compared

to our conjecture from duality.

In addition to the critical exponents computed here, the QCP we discuss possesses uni-

versal DC and optical conductivities. Examining the universal transport properties of this

theory via analytic of numerical techniques is important for understanding randomness at

the Wilson-Fisher fixed point, as well as its duals. Such information may shed light on uni-

versal features of both superconductor-insulator transitions (the Abelian Higgs model) and

plateau transitions (the Chern-Simons-Dirac theory).
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A RG Calculation using Dimensional Regularization

A.1 Renormalization

Dimensional regularization is a more natural scheme when considering higher loop diagrams,

as needed to calculate the σ self energy at O(1/N). Our method is as follows. The action

given in Eq. (3.13) is the bare action. For convenience, we reproduce it here:

SBr =
∑
n

∫
ddx dτB

[
φφ†B,n

(
− ∂2

∂τ 2
B

− ∂2

∂x2

)
φφB,n +

1

2 · 8
σB,n

(
− ∂2

∂τ 2
B

− ∂2

∂x2

)−1/2

σB,n (A.1)

+
i√
N
σB,n

∣∣φφB,n∣∣2
]

+
∆̄B

2

∫
ddx

∑
n

∫
dτB σB,n(x, τB)

∑
m

∫
dτ ′B σB,m(x, τB).

Notably, we have added a subscript or superscript ‘B’ to the fields, coupling constants, and

time coordinate to highlight that these are the bare objects and thus not physical. The

spatial dimension is d = 2− ε. The Feynman rules are the same as those shown in Fig. 3 and

given in Eq. (3.21) save that these objects should now include a ‘B’ subscript (or superscript).

The physical object is the generating functional Γ, and the theory is renormalized by

ensuring its finiteness at each order in 1/N . To guarantee that the time direction is being

renormalized correctly, it is useful to rederive the relation between the bare and renormalized

vertex functions explicitly. In doing so, we can suppress both replica and U(N) vector indices

since we assume that neither symmetry is broken. The generating functional is a function

of the bare field configuration φφB and σB:

Γ[φ̄φB, σ̄B] =
∞∑

N ,M=0

1

N !M!

∫ N+M∏
i=1

(
ddxi dτ

B
i

)
Γ

(N ,M)
B

(
{xi, τBi }

)
×
N∏
j=1

φ̄φB
(
xj, τ

B
j

)
·
N+M∏
k=N+1

σ̄B
(
xk, τ

B
k

)
, (A.2)

where Γ(0,0) = 0 and the ∆B dependence is left implicit. To make contact with the notation

of the main text, we note that the vertices Γσφ†φ = Γ(1,2), Γ(2,0) = −(Gφ)−1 and Γ(0,2) =

−(Gσ)−1.

As emphasized, the vertex functions ΓB are not finite in the limit that the UV cutoff

Λ→∞. We define the renormalized fields and time as

φφ(x, τ) = Z
1/2
φ φφB

(
x, τB

)
, σ(x, τ) = Z1/2

σ σB
(
x, τB

)
, τB = Zττ, ∆̄B = Z∆̄∆̄. (A.3)
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The renormalization constants can be written as Zx = 1 + δx, x = φ, σ, τ,∆, where δx is

O(1/N), allowing for a perturbative treatment. Inserting the renormalized fields into the

functional returns

Γ[φ̄φB, σ̄B] =
∞∑

N ,M=0

1

N !M!

∫ N+M∏
`=1

(
ddxi dτi

)
Z
N/2
φ ZM/2

σ ZN+M
τ Γ

(N ,M)
B

(
{x`, τB` }

)
×
N∏
n=1

φ̄ (xn, τn) ·
N+M∏
m=N+1

σ̄ (xm, τm) . (A.4)

The renormalized vertex functions are obtained by differentiating Γ with respect to φ̄ and

σ̄. It follows that

Γ
(N ,M)
R [{xi, τi}] = Z

N/2
φ ZM/2

σ ZN+M
τ Γ

(N ,M)
B

[{
xi, τ

B
i

}]
. (A.5)

Finally, since perturbation theory is more efficiently done in momentum space, we Fourier

transform to obtain

(2π)d+1δd
(∑

ipi
)
δ
(∑

ip0,i

)
Γ

(N ,M)
R [{pi, p0,i}]

= (2π)d+1δd
(∑

`p`
)
δ
(∑

`p
B
0,`

)
Z
N/2
φ Z

M/2
σ Γ

(N ,M)
B

[{
p`, p

B
0,`

}]
= (2π)d+1δd

(∑
`p`
)
δ
(∑

`p0,`

)
Z
N/2
φ Z

M/2
σ ZτΓ

(N ,M)
B

[{
p`, p

B
0,`

}]
, (A.6)

where in the second line we used p0,B = p0/Zτ . Cancelling the δ-functions, we are left with

Γ
(N ,M)
R [{p`, p0,`}] = Z

N/2
φ ZM/2

σ ZτΓ
(N ,M)
B

[{
p`, p

B
0,`

}]
. (A.7)

The renormalization constants are determined by first calculating the bare vertex functions

and cancelling all divergences in ΓB with the counterterms Zx. Since we use a dimensional

regularization scheme (D = 3 − ε), this is done by defining the Z’s such that all 1/ε poles

cancel. (We express these 1/ε poles in terms of the cutoff Λ and renormalization scale µ in

Appendix A.3.)

We emphasize that the bare vertex functions must be computed entirely using the bare

propagators and vertex functions, as well as time (frequency). If this is not done, there is a

risk of double counting some of the divergences, as we believe was done in Ref. 46.

At O(1/N), only three vertex functions, Γ
(2,0)
B , Γ

(2,1)
B , and Γ

(0,2)
B , need be considered.

We compute these below. In what follows, all non-log-divergent contributions (e.g. all

divergences that do not contribute a 1/ε pole) are ignored.
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A1 A2

Figure 5: Divergences corresponding to the φ self energy. In the notation of this appendeix, they contribute

to Γ
(2,0)
B . The time-component of momenta, p, q is considered to be bare, q = (q, q0,B), etc.

A.2 Diagrams

A.2.1 Γ
(2,0)
R : φφ self-energy

The log-divergent contributions to the φ propagator are shown in Fig. 5. Summing them,

we find

Σφ = A1 + A2 + finite = −p2

(
4

3π2N

1

ε
− 32∆̄B

πN

1

ε

)
− p2

0,B

(
4

3π2N

1

ε
+

32∆̄B

πN

1

ε

)
, (A.8)

and then using Γ
(2,0)
B = p2 + p2

0,B − Σφ,B, gives

Γ
(2,0)
R = ZφZτ

[
p2

(
1 +

4

3π2N

1

ε
− 32∆̄

πN

1

ε

)
+ p2

0,B

(
1 +

4

3π2N

1

ε
+

32∆̄

πN

1

ε

)]
= p2

(
1 + δφ + δτ +

4

3π2N

1

ε
− 32∆̄

πN

1

ε

)
+ p2

0

(
1 + δφ − δτ +

4

3π2N

1

ε
+

32∆̄

πN

1

ε

)
.

(A.9)

From this we conclude

δφ = − 4

3π2N

1

ε
, δτ =

32∆̄

πN

1

ε
· (A.10)

A.2.2 Γ
(2,1)
R : 3-point vertex

We summarize the divergent contributions to the 3-point vertex in Fig. 6. We note that the

diagram B6 indicates that 〈σ |φφ | 2〉 mixes with〈∫
τ

(−∇2)−1/2 σ

∫
τ ′

[(
φφ†∇2φφ−∇φφ† ·∇φφ

)
−
(
φφ†∂0φφ− ∂0φφ

†∂0φφ
)]〉

, (A.11)
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B1 B2

B3 B4

B5 B6

Figure 6: All three-point diagrams correcting the σ |φ|2 vertex, Γ
(2,1)
B at O(1/N). Diagrams B3-B6 possess

partners where the φ fields traverse the loop in the converse direction. The time-component of momenta, p,

q is considered to be bare, q = (q, q0,B), etc.
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This is a consequence of the fact that the disordered theory is nonrenormalizable. For the

purpose of determining the renormalization constant Zσ, it is not necessary to consider this

mixing.

Ignoring these terms, we find that the bare 3-point is

Γ
(2,1)
B ∼ − i√

N
+ B1 + B2 = − i√

N

(
1− 4

π2N

1

ε
+

32∆̄B

πN

1

ε

)
, (A.12)

implying that the renormalized vertex function is

Γ
(2,1)
R = Z1/2

σ ZφZτΓ
(2,1)
B

∼ − i√
N

(
1 +

1

2
δσ + δφ + δτ −

4

π2N

1

ε
+

32∆̄

πN

1

ε

)
= − i√

N

(
1 +

1

2
δσ −

4

3π2N

1

ε
+

32∆̄

πN

1

ε
− 4

π2N

1

ε
+

32∆̄

πN

1

ε

)
, (A.13)

where the results of Eq. (A.10) have been inserted in the third line. Enforcing the finiteness

of Γ
(2,1)
R requires

δσ =

(
32

3π2N
− 128∆̄

πN

)
1

ε
· (A.14)

A.2.3 Γ
(0,2)
R : σ self energy

In order to determine whether
∫
dτ σ(x, τ) is renormalized differently than σ(x, τ), we di-

rectly calculate the σ self energy. We remark that the renormalization scheme [Eq. (A.3)]

cannot account for these types of divergences – new counterterms would be required. Our

ability to renormalize Γ
(0,2)
R with the current set of counterterms is proof that our scheme is

sufficient at O(1/N). It also serves as verification of our results for δσ and δτ above.

The log-divergent contributions are shown in Fig. 7. Adding them, we find

Σσ,B[q, q0,B] = C1 + C2 + C3 + C4

=
1√

q2 + q2
0,B

(
1

π2N
+

1

3π2N
− 8∆̄B

πN
− 4∆̄B

πN

)
1

ε
+

q2
0,B(

q2 + q2
0,B

)3/2

4∆̄B

πN

1

ε
·

(A.15)

The bare 2-point σ vertex is therefore

Γ
(0,2)
B [q, q0,B] =

1

8
√

q2 + q2
0,B

(
1− 32

3π2N

1

ε
+

96∆̄B

πN

1

ε
−

q2
0,B

q2 + q2
0,B

32∆̄B

πN

1

ε

)
+ 2πδ(q0,B)∆̄B.

(A.16)
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C1

C3

C2

C4

C6

C8

C5

C7

Figure 7: Contributions to the bare σ self energy, Γ
(0,2)
B = Γσσ at O(1/N). Only the two-loop diagrams,

C1-C4, are found to contain log divergences. We note that each of these diagrams has a partner where the

internal Gφ lines in the converse direction. These diagrams have been included in the divergent terms shown

beneath each diagram. The time-component of the momenta, p, q is considered to be bare, q = (q, q0,B),

etc.
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To renormalize, we write

Γ
(0,2)
R [q, q0] = ZσZτΓ

(0,2)
B [q, q0,B]

=
1

8
√

q2 + q2
0

(
1 + δσ + δτ −

32

3π2N

1

ε
+

96∆̄

πN

1

ε
+

q2
0

q2 + q2
0

[
δτ −

32∆̄

πN

1

ε

])
+ 2πδ(q0)∆̄(1 + δσ + 2δτ + δ∆̄). (A.17)

Ensuring finiteness returns

δσ =

(
32

3π2N
− 128∆̄

πN

)
1

ε
, δτ =

32∆̄

πN

1

ε
, δ∆̄ =

(
− 32

3π2N
+

64∆̄

πN

)
1

ε
· (A.18)

Our results for δσ and δτ are notably in agreement with what we obtained from the φ self-

energy and the three-point vertex in Eqs. (A.10) and (A.14).

In Ref. 46, the renormalized φ propagator was instead used to compute the diagram C3.

As a result, its divergence cancels out and does not appear in Eq. (A.17).

A.3 Scaling functions

Summarizing our results from Eqs. (A.10), (A.14), and (A.18), we have

δφ = − 4

3π2N

[
1

ε
+ log

(
Λ

µ

)]
, δτ =

32∆̄

πN

[
1

ε
+ log

(
Λ

µ

)]
, (A.19)

δσ =

(
32

3π2N
− 128∆̄

πN

)[
1

ε
+ log

(
Λ

µ

)]
, δ∆̄ =

(
− 32

3π2N
+

64∆̄

πN

)[
1

ε
+ log

(
Λ

µ

)]
.

Here, we have taken 1/ε → 1/ε + log (Λ/µ) through the following reasoning. In the Feynamn

diagrams calculated, factor of 1/ε is always accompanied by − log p. Since p is dimensionful,

the logarithm should actually be a fraction of p to some other scale. The only other scale in

the theory is the UV cutoff Λ, and it follows that these diagrams should be interpreted as

# [1/ε + log (Λ/p)] where ‘#’ represents the coefficients we just calculated. Hence, in order to

ensure that the renormalized diagram is finite as Λ→∞, the 1/ε of the counterterm should

be accompanied by log (Λ/µ), where µ is the renormalization scale: δj = −# [1/ε + log (Λ/µ)].

With these counterterms, we can now calculate the primary quantities of interest: the

dynamical critical exponent z, the anomalous dimension for φ, the anomalous dimension for

σ, and the β-function for the disorder strength ∆.
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A.3.1 Dynamical critical exponent z

The dynamical critical exponent is defined through

µ
d

dµ
τ = zτ (A.20)

The bare time, conversely, scales as

µ
d

dµ
τB = τB. (A.21)

Inserting τB = Zττ , we find

z = 1− µ d

dµ
Zτ = 1 +

32∆̄

πN
· (A.22)

A.3.2 Anomalous dimensions of φ and σ

We define the anomalous dimension of an operator O as ηO such that [O] = [O]0 +ηO, where

[O]0 is the engineering dimension of O. It follows from the definitions of Eq. (A.3) that the

anomalous dimension of φ is

ηφ =
1

2
µ
d

dµ
logZφ =

2

3π2N
, (A.23)

and of σ is

ησ =
1

2
µ
d

dµ
logZσ = − 16

3π2N
+

64∆̄

πN
· (A.24)

Recall that the operator identity of Eq. (3.7) implies ησ = η|φ|2 .

A.3.3 β function of ∆̄

Finally, β∆̄ is defined through the requirement that the bare coupling constant be invariant

under RG:

µ
d

dµ
∆B = 0. (A.25)

From this we find

β∆̄ = µ
d

dµ
∆ = −∆̄

d logZ∆̄

d log µ
= − 32∆̄

3π2N
+

64∆̄2

πN
. (A.26)

We note that here we are using the high energy convention, so that β∆̄ < 0 implies a flow to

strong coupling.
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B Check of dynamical critical exponent

The authors of Ref. 22 derive a formula for the leading order correction to the dynamical

critical exponent z of a a generic theory with (quantum) disorder of strength ∆ coupling to

an operator O. In Eq. (4.36) of their paper, they state

z − 1 =
∆

2

cOO
cT

D(D + 1)

D − 1

Γ(D/2)

2πD/2
D→3
=

∆

2

cOO
cT

3

2π
· (B.1)

Here, cOO is the coefficient of the two-point O correlator and cT is the central charge (the

coefficient of the two-point correlator of the stress energy tensor). We show that this is

consistent with our results.

From Eq. (3.8), we see that the disorder couples to iσ(x, τ)/u, and it follows that for us

cOO = −cσσ/u2. This coefficient is determined by the real space σ Green’s function:

Gσ(r) =

∫
dDp

(2π)D
eip·r 8 |p| = − 8

π2

1

r4
, (B.2)

implying that

−cσσ
u2

=
1

u2

8

π2
· (B.3)

The leading contribution to the central charge of the O(2N) Wilson-Fisher fixed point cor-

responds simply to the central charge of 2N real, free bosons, which is given by [78, 79]

cT ∼= 2N

(
1

2πD/2/Γ(D/2)

)2
D

D − 1
D→3
=

3N

16π2
, (B.4)

where D = d+1 is the total number of spacetime dimensions. Putting this together, we find

z − 1 =
1

2

∆

u2

8/π2

3N/16π2

3

2π
=

32∆̄

πN
, (B.5)

in perfect agreement with Eq. (3.29) (as well as Eq. (A.22) in Appendix A).

C Boson-Vortex Duality

C.1 Review of the Duality

The first duality we consider [55–57] relates a single complex scalar field, φ (we drop the

boldface since N = 1), at its Wilson-Fisher fixed point to the Abelian Higgs model, a
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theory of complex bosonic vortices, φ̃, also at their Wilson-Fisher fixed point. These vortices

additionally interact through a logarithmic potential mediated by an emergent U(1) gauge

field, aµ,

Lφ = |DAφ|2 − |φ|4 ←→ Lφ̃ = |Daφ̃|2 − |φ̃|4 +
1

2π
Ada− 1

4g2
fµνf

µν , (C.1)

where Aµ is a background gauge field. Here the interaction terms − |φ|4, −|φ̃|4 imply that

the theories are tuned to the Wilson-Fished fixed point. As in the case of the boson-fermion

duality, we only consider physics at energy scales much smaller than g2, allowing us to omit

the Maxwell term, − 1
4g2
fµνf

µν . We again work in Minkowski spacetime.

By differentiating each theory in Eq. (C.1) with respect to Aµ, one sees that this duality

relates charge in the Wilson-Fisher theory to flux in the Abelian Higgs model,

Jµ = i(φ†∂µφ− ∂µ φ†φ)←→ jµ =
1

2π
εµνλ∂νaλ , (C.2)

By considering the equations of motion for aµ in the Abelian Higgs model, it follows that

the converse is also true,

1

2π
εµνλ∂νAλ = 〈J̃µ〉 = 〈i(φ̃†∂µφ̃− ∂µ φ̃†φ̃)〉 . (C.3)

In terms of global symmetries, the mapping of charge to flux across the duality implies an ex-

change of T and PH symmetries (here defined with appropriate transformation laws for the

gauge fields). Since current and voltage exchange roles across the duality, the conductivity

of the particles φ corresponds to the resistivity of the vortices φ̃ and vice versa

σφij =
1

(2π)2
εikεjlρφ̃kl , (C.4)

where we write conductivity (resistivity) in units of e2/~ (~/e2). This dictionary is obtained

using the charge-flux relations, Eqs. (C.2)-(C.3), and the definition of the conductivities

〈Ji〉 = σφijE
j, 〈J̃i〉 = σφ̃ij〈ej〉, where Ei = ∂iAt − ∂tAi and e(a) = fit(a) are the electric fields

associated with A and a respectively, and ρ = σ−1.

The duality, Eq. (C.1), can be verified by considering the phase diagrams of each of the

dual theories. As discussed earlier, the Wilson-Fisher theory is tuned through the addition

of a mass, δr |φ|2. For δr > 0, φ is gapped, and the ground state is insulating, while for

δr < 0, φ condenses, and the ground state hosts a Goldstone mode. On the other hand,

when a mass term −δr̃|φ̃|2 with δr̃ > 0 is added to the dual theory, Lφ̃, φ̃ is gapped out,

but the ground state contains a gapless gauge field. This is the superfluid phase seen in
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in the Wilson-Fisher theory: the gauge field is the dual of the Goldstone mode. Similarly,

for δr̃ < 0, φ̃ condenses and the gauge field is Higgsed, forming a superconductor. The

conductivity dictionary of Eq. (C.4) indicates that a superconductor of vortices (ρφ̃ = 0) is

an insulator of φ particles, making it the dual of the insulating phase of φ’s. This mapping

of the phase diagrams suggests that the mass operators in the two theories are dual to one

another up to a sign,

|φ|2 ←→ −|φ̃|2 . (C.5)

In summary, when the charge in one theory is gapped, the vortices of the dual theory

condense, and vice versa.

C.2 Random Mass

We now use the results of Sections 3 and 4 and the operator dictionaries, Eqs. (C.2) and

(C.5), to determine the effects of disorder on the Abelian Higgs model (setting the back-

ground field, Aµ, to zero). We begin by considering the effect of a random mass with Gaussian

white noise correlations, as discussed in Section 3. From Eq. (C.5), we see that a random

mass at the N = 1 Wilson-Fisher fixed point is dual to a random mass in the Abelian Higgs

model,

R(x)|φ|2(x, τ)←→ −R(x)|φ̃|2(x, τ) . (C.6)

Since R is a random variable which can take positive and negative values, the change in sign

is immaterial. In the large-N limit, we observed that the Wilson-Fisher fixed point gives

way to a QCP with finite disorder and interaction strengths. Under the assumption that

this story continues to hold down to N = 1, the Abelian Higgs model with a random mass

must also flow to such a QCP. Moreover, since the mass operators in the two theories are

dual to one another, they have the same scaling dimension at the fixed point,

[|φ̃|2] = [|φ|2] = 2 +
3

16π2
. (C.7)

As in the boson-fermion duality, the dynamical scaling exponent, z̃, and correlation length

exponent, ν̃, remain unchanged across the duality,

ν̃ = ν = 1 , z̃ = z = 1 +
16

3π2
≈ 1.5 . (C.8)

It should be possible to compute these exponents in a large-N expansion of the Abelian

Higgs model as well, and it would be interesting to compare the two results. However, we

caution that for N > 1 the theories are no longer dual, and one limit may be more similar to
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the N = 1 behavior than the other. It may also be possible to obtain exponents numerically

for the dirty Abelian Higgs model with N = 1.

Should the Abelian Higgs model with a random mass flow to such a QCP, this QCP

will be characterized by a universal conductivity, which would be related to the universal

conductivity of the fixed point we developed in Section 3 via Eq. (C.4). We leave the

calculation of the DC response of the Wilson-Fisher bosons with a random mass, both using

a large-N approach and numerical techniques, for future work.

C.3 Random Scalar and Vector Potentials

We now consider the effects of perturbing by random scalar and vector potentials, as in

Eq. (4.2). The conclusion reached in that section only necessitated the preservation of a

U(1) symmetry so our results remain valid even if the continuation to N = 1 is invalid.

By the mapping of charge to flux in Eq. (C.2), the vortices φ̃ experience a random scalar

potential as a randomly sourced flux of ai,

V(x) J0(x, t)←→ 1

2π
V(x) εij∂iaj(x, t) . (C.9)

Integrating by parts, we see that the disorder takes the form of a random current, Ji(x) =

∂iV/2π. As demonstrated in Section 4, the V(x) disorder is always relevant since it involves

the temporal component of a conserved current, the flux jt = εij∂iaj/2π. The ultimate fate

of the Abelian Higgs theory is inaccessible through the perturbative RG approach employed

throughout this paper. Nevertheless, since we expect the φ bosons form a (perhaps glassy)

insulating state in the presence of a random scalar potential, the conductivty dictionary

in Eq. (C.4) indicates that the φ̃ vortices have DC resistivity ρxx(T/ω → 0) → 0. The

vortices therefore appear to form a superconducting state. It would be interesting to better

characterize this state in future work, using the conductivity dictionary and making suitable

assumptions regarding fate of the Wilson-Fisher theory with a random scalar potential.

In keeping with the exchange of flux and charge, a random vector potential in the Wilson-

Fisher theory maps to a random magnetic field B(x) = εij∂iAj(x), which manifests as a

random charge density in the Abelian Higgs model,

Ai(x) Ji(x, t)←→
1

2π
B(x) at(x, t) . (C.10)

As discussed in Section 4, this type of disorder is exactly marginal, leading to a line of fixed

points parameterized by the dynamical exponent z, which depends on the disorder variance

∆A.
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